认识无理数(第1课时)教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

序号:6

第二章实数

1. 认识无理数(第1课时)

一、教学目标

本节课的教学目标是:

①通过拼图活动,让学生感受客观世界中无理数的存在;

②能判断三角形的某边长是否为无理数;

③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;

④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;

二、教学重难点

重点:能判断三角形的某边长是否为无理数。

难点:能正确地进行判断某些数是否为有理数。

三、教学过程设计

第一环节:质疑

内容:【想一想】

⑴一个整数的平方一定是整数吗?

⑵一个分数的平方一定是分数吗?

目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.

效果:为后续环节的进行起了很好的铺垫的作用

第二环节:课题引入

内容:1.【算一算】

已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?

2.【剪剪拼拼】

把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?

目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.

效果:巧设问题背景,顺利引入本节课题.

第三环节:获取新知

内容:【议一议】→【释一释】→【忆一忆】→【找一找】

【议一议】: 已知2

2a =,请问:①a 可能是整数吗?②a 可能是分数吗?

【释一释】:释1.满足22a =的a 为什么不是整数?

释2.满足22a =的a 为什么不是分数?

【忆一忆】:让学生回顾“有理数”概念,既然a 不是整数也不是分数,那么a 一定

不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习

奠定了基础

【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有

理数的线段

第四环节:应用与巩固

【画一画1】:在右1的正方形网格中,画出两条线段:

1.长度是有理数的线段 2.长度不是有理数的线段

【画一画2】:在右2的正方形网格中画出四个三角形 (右1)

2.三边长都是有理数 2.只有两边长是有理数

3.只有一边长是有理数 4.三边长都不是有理数

【仿一仿】:例:在数轴上表示满足()220x x =>的x 解: (右2)

仿:在数轴上表示满足()2

50x x =>的x

【赛一赛】:右3是由五个单位正方形组成的纸片,请你把

它剪成三块,然后拼成一个正方形,你会吗?试试看! (右3)

第五环节:课堂小结

内容: 1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?

2.客观世界中,的确存在不是有理数的数,你能列举几个吗?

3.除了本课所认识的非有理数的数以外,你还能找到吗?

第六环节:布置作业

习题2.1

四、教学设计反思

(一)生活是数学的源泉,兴趣是学习的动力

大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.

(二)化抽象为具体

常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.

(三)强化知识间联系,注意纠错

既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.

五、板书设计

相关文档
最新文档