2018最新人教版高中数学知识点总结(精炼版)
高中数学知识点全总结精炼
![高中数学知识点全总结精炼](https://img.taocdn.com/s3/m/6800f05f6fdb6f1aff00bed5b9f3f90f76c64d2e.png)
高中数学知识点全总结精炼高中数学是学生在中学阶段学习的数学内容的高级阶段,它在初中数学的基础上,进一步拓展和深化,为大学数学和各种理工科的学习打下基础。
高中数学的知识点繁多,涵盖了代数、几何、概率统计等多个领域。
以下是对高中数学主要知识点的精炼总结。
# 代数函数与方程- 函数的概念:定义、性质、函数图像、函数的运算。
- 方程与不等式:一元一次方程、一元二次方程、高次方程、不等式及其解集。
- 函数的极限与连续性:极限的定义、性质、连续函数的概念。
- 序列与数列:数列的通项公式、等差数列、等比数列、数列的极限。
集合与逻辑- 集合的基本概念:集合的表示、子集、并集、交集、补集。
- 逻辑用语:命题、充分必要条件、逻辑连接词。
初等代数- 指数与对数:指数运算法则、对数运算法则、换底公式。
- 三角函数:三角函数的定义、性质、三角恒等变换。
- 复数:复数的概念、代数形式、几何意义、复数的运算。
# 几何平面几何- 几何图形:点、线、面的基本性质。
- 三角形:三角形的分类、性质、三角形的面积公式。
- 圆:圆的性质、圆周角定理、圆的应用。
- 相似与全等:相似三角形、全等三角形的判定与性质。
空间几何- 空间图形:空间直线、平面的基本性质。
- 立体几何:棱柱、棱锥、圆柱、圆锥、球的性质与体积计算。
- 向量:向量的加法、数量积、向量积、混合积。
解析几何- 直线与圆的方程:直线的点斜式、一般式、圆的标准方程。
- 圆锥曲线:椭圆、双曲线、抛物线的方程与性质。
- 参数方程与极坐标:参数方程的基本概念、极坐标系。
# 概率统计概率- 随机事件:事件的概率、条件概率、独立事件。
- 随机变量:离散型随机变量、连续型随机变量。
- 概率分布:二项分布、正态分布、均匀分布。
统计- 统计量:平均数、中位数、众数、方差、标准差。
- 抽样与估计:抽样分布、参数估计。
- 假设检验:显著性检验、置信区间。
# 数学分析微积分- 导数:导数的定义、运算法则、高阶导数。
高中数学人教版_必修五_不等式_知识点最完全精炼总结
![高中数学人教版_必修五_不等式_知识点最完全精炼总结](https://img.taocdn.com/s3/m/8faa7826a6c30c2259019ed8.png)
2012.3.264.公式: 1.两实数大小的比较⎪⎩⎪⎨⎧<-⇔<=-⇔=>-⇔>0b a b a 0b a b a 0b a b a 一.不等式(淮上陌客)3.基 本不等式定理⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧-≤+⇒<≥+⇒>≥+⎪⎪⎩⎪⎪⎨⎧+≤+≥+⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧+≤⎪⎭⎫ ⎝⎛+≤+≥+≥+2a 1a 0a 2a 1a 0ab ,a (2b aa b )b a (2b a ab 2b a 2b a ab 2b a ab )b a (21b a ab 2b a 2222222222倒数形式同号)分式形式根式形式整式形式2211222a b a b ab a b --++≤≤≤+2.不等式的性质:8条性质.3.解不等式(1)一元一次不等式(2)一元二次不等式:判别式△=b2- 4ac△>0 △=0△<0y=ax2+bx+c的图象(a>0)ax2+bx+c=0 (a>0)的根有两相异实根x1, x2 (x1<x2)有两相等实根x1=x2=没有实根ax2+bx+c>0(y>0)的解集{x|x<x1,或x>x2} {x|x≠}Rax2+bx+c<0 (y<0)的解集{x|x1< x <x2}ΦΦx1x2xyOyxO x1yxO⎪⎩⎪⎨⎧<<>>≠>)0a(abx)0a(abx)0a(baxab2-ab2-一元二次不等式的求 解流程:一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象.五解集:根据图象写出不等式的解集. (3)解分式不等式:高次不等式:(4)解含参数的不等式:(1)(x – 2)(ax – 2)>0(2)x 2 – (a +a 2)x +a 3>0;(3)2x 2 +ax +2 > 0;注:解形如ax 2+bx+c>0的不等式时分类讨 论的标准有:1、讨论a 与0的大小;2、讨论⊿与0的大小;3、讨论两根的大小;二、运用的数学思想:1、分类讨论的思想;2、数形结合的思想;3、等与不等的化归思想(4)含参不等式恒成立的问题:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧≠≤⋅⇔≤>⋅⇔>0)x (g 0)x (g )x (f 0)x (g )x (f 0)x (g )x (f 0)x (g )x (f 0)())((21>---n a x a x a x⎪⎩⎪⎨⎧用图象分离参数后用最值函数、、、321例1.已知关于x 的不等式在(–2,0)上恒成立,求实数a 的取值范围. 例2.关于x 的不等式对所有实数x ∈R 都成立,求a 的取值范围.(5)一元二次方程根的分布问题:方法:依据二次函数的图像特征从:开口方向、判别式、对称轴、 函数值三个角度列出不等式组,总之都是转化为一元二次20,31xx a x x >≤++恒成立,例3.若对任意则 的取值范围.a22(3)210x a x a +-+-<)1(log 22++-=ax ax y不等式组求解. 二次方程根的分布问题的讨论:y()020f k b k a >⎧⎪⎪-<⎨⎪∆>⎪⎩1.x 1< x 2< kxOkx 1x 2xyO x 2x 1 k ()020f k b k a >⎧⎪⎪->⎨⎪∆>⎪⎩2.k < x 1< x xyO xx 1 k()0f k <3.x 1< k < x 24. k 1 < x 1 < x 2 < k 2 5. x 1 < k 1 < k 2 < x 2 1212()0()002f k f k b k k a >⎧⎪>⎪⎪⎨∆>⎪⎪<-<⎪⎩12()0()0f k f k >⎧⎨>⎩6. k 1 <x 1 < k 2 < x 2< k 3122()0()0()0f k f k f k >⎧⎪<⎨⎪>⎩ 4解线性规划问题的一般步骤:第一步:在平面直角坐标系中作出可行域; 第二步:在可行域内找到最优解所对应的点;第三步:解方程的最优解,从而求出目标函数的最大值或最小值。
人教版高中数学知识点汇总(全册版)
![人教版高中数学知识点汇总(全册版)](https://img.taocdn.com/s3/m/32782c11a5e9856a56126078.png)
① f (x) 是整式时,定义域是全体实数. ② f ( x) 是分式函数时,定义域是使分母不为零的一切实数. ③ f ( x) 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于 1.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个 最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是
提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.
②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数 的值域或最值.
对象 a 与集合 M 的关系是 a M ,或者 a M ,两者必居其一.
(4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.
③描述法:{ x | x 具有的性质},其中 x 为集合的代表元素.
④图示法:用数轴或韦恩图来表示集合. (5)集合的分类
人教版高中数学知识点(必修+选修)
高中数学 必修 1 知识点
第一章 集合与函数概念 【1.1.1】集合的含义与表示
(1)集合的概念 集合中的元素具有确定性、互异性和无序性.
(2)常用数集及其记法
N 表示自然数集, N 或 N 表示正整数集, Z 表示整数集, Q 表示有理数集, R 表示实数集.
2018年高中数学知识点二项式定理-范文word版 (2页)
![2018年高中数学知识点二项式定理-范文word版 (2页)](https://img.taocdn.com/s3/m/e63cb9f080eb6294dd886c57.png)
2018年高中数学知识点二项式定理-范文word版本文部分内容来自网络整
理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改!== 高中数学知识点二项式定理数学公式是在
数学科目中最重要的知识点,本内容由小编为大家
带来的高中数学知识点二项式定理,欢迎大家学习 ! 高中数学知识点:二项式定理一、二项式定理
二项式定理是指这样一个展开式的公式.它是(a+b)2=a2+2ab+b2,
(a+b)3=a3+3a2b+3ab2+b3…等等展开式的一般形式,
在初等数学中它与各章节的联系似乎不太多,而在
高等数学中它是许多重要公式的共同基础,根据二
项式定理的展开,才求得y=xn的导数公式y′=nxn-1,同时e≈2.718281…也正是由二项式定理的
展开规律所确定。
二、掌握二项展开式的特点1.项数:共n+1项. 2.系数:组合数Crm叫
做二项式系数.要注意"二项式系数"是严格定义的概念,仅指展开式中的组合数,它与"项的系数"是不
同的概念. 3.指数:按通项公式记准升幂与降幂的
规律. 4.因为二项式系数就是组合数,所以应将上一节学过的组合数的两个性质与本节学习的性质综
合起来概括出组合数的所有有用的性质. 高中数学知识点:指数与指数函数一、指数函数的定义
指数函数的一般形式为y=a^x(a>0且≠1) (x∈R).
二、指数函数的性质 1.曲线沿x轴方向向左无限
延展〈=〉函数的定义域为(-∞,+∞)。
集合知识点总结及例题分析-高中数学2018版
![集合知识点总结及例题分析-高中数学2018版](https://img.taocdn.com/s3/m/43a8c6df4afe04a1b171de1d.png)
U 中的所有属于 U 但不
属于集合 A 的元素组成
的集合称为集合 A 在全
集 U 中的补集,
注意区分 和 , 连接的是元素与集合,
连接的是集合与集合。即元素
集合,集合 集合
( 2)设有限集 A 中有 n 个元素则
A 的子集个数是 2n ,真子集个数 2n 1,非空子集 2 n 1,非空真子集 2n 2
无序性
集合中的元素排列没有一定的顺序
( 2) 集合的分类:无限集,有限集特别地,我们把不含任何元素的集合叫做空集。记作
( 3) 常用数集及表示符号
名称
正整数集
符号
N*(N )
非负整数集 (自然数 )
N
2、 集合间的基本关系 子集,交集,并集,补集 ( 1)集合间的运算关系
子集
自然语言描述 如果集合 B 中的所有元
(
)
A. 9
B. 8
【答案】 A
,则 中元素的个数为
C. 5
D.时,
;当
时,
;
当
时,
;所以共有 9 个,选 A.
【说明】本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别
.
4.【2018 年理数天津卷】设全集为 R,集合
,
,则
()
2
A.
B.
C.
D.
【答案】 B 【解析】
( A){x| –2<x<–1}
(B) {x| –2<x<3}
( C) {x| –1<x<1}
( D){x|1< x<3}
【答案】 A
【解析】利用数轴可知 A B x 2 x 1 ,故选 A.
高中数学知识点总结(第四章 三角函数、解三角形 第七节 正弦定理和余弦定理)
![高中数学知识点总结(第四章 三角函数、解三角形 第七节 正弦定理和余弦定理)](https://img.taocdn.com/s3/m/1df7b4661fd9ad51f01dc281e53a580216fc5090.png)
第七节 正弦定理和余弦定理一、基础知识 1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径).正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ; (4)a +b +c sin A +sin B +sin C =a sin A. 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C . 3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高);(2)S △ABC =12ab sin C =12bc sin A =12ac sin B ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).二、常用结论汇总——规律多一点 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.第一课时 正弦定理和余弦定理(一) 考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形[典例] (1)(2019·江西重点中学联考)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.[解析] (1)由正弦定理可得sin B =b sin A a =2×sin 30°3=13,∵a =3>b =2,∴B <A ,即B为锐角,∴cos B =1-sin 2B =223. (2)∵sin B =12且B ∈(0,π),∴B =π6或B =5π6,又∵C =π6,∴B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即3sin 2π3=b sinπ6,解得b =1. [答案] (1)223 (2)1考法(二) 余弦定理解三角形[典例] (1)(2019·山西五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)(2018·泰安二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b2c -a=sin Asin B +sin C,则角B =________.[解析](1)∵b cos A +a cos B =c 2,∴由余弦定理可得b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac=c 2,整理可得2c 2=2c 3,解得c =1,则△ABC 的周长为a +b +c =2+2+1=5.(2)由正弦定理可得c -b 2c -a =sin A sin B +sin C =ab +c, ∴c 2-b 2=2ac -a 2,∴c 2+a 2-b 2=2ac ,∴cos B =a 2+c 2-b 22ac =22,∵0<B <π,∴B =π4.[答案] (1)D (2)π4[题组训练]1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24B .-24C.34D .-34解析:选B 由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12 B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以t a n A =-1, 因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin Aa =2×222=12, 又0<C <π4,所以C =π6.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.解:(1)由正弦定理可得b 2+c 2=a 2+bc ,由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C 得c =a sin C sin A=3×3+2232×6=1+263.考点二 判定三角形的形状[典例] (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[解析] (1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.[答案] (1)B (2)C[变透练清] 1.变条件若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________.解析:根据正弦定理可得a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角,所以△ABC 是钝角三角形. 答案:钝角三角形 2.变条件若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.解析:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0, 所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形. 答案:等腰或直角三角形 3.变条件若本例(2)条件改为“cos A cos B =ba=2”,那么△ABC 的形状为________.解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又因为A ,B ∈(0,π),所以2A =π-2B ,即A +B =π2,所以C =π2,于是△ABC是直角三角形.答案:直角三角形[课时跟踪检测]A 级1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.(2018·重庆六校联考)在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形解析:选A 因为cos B =ac ,由余弦定理得a 2+c 2-b 22ac =a c ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3, cos B =23,则b =( )A .14B .6 C.14D.6解析:选D ∵b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,∴b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,∴b = 6.5.(2019·莆田调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C+c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sin C sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6. 6.(2019·山西大同联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A.5 B .3 C.10D .4解析:选B 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C , ∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.7.在△ABC 中,AB =6,A =75°,B =45°,则AC =________. 解析:C =180°-75°-45°=60°, 由正弦定理得AB sin C =ACsin B ,即6sin 60°=AC sin 45°,解得AC =2. 答案:28.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sinB ,则c =________.解析:∵3sin A =2sin B ,∴3a =2b . 又∵a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝⎛⎭⎫-14=16,∴c =4. 答案:49.(2018·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sinB =________,c =________.解析:由正弦定理a sin A =bsin B ,得sin B =b a ·sin A =27×32=217.由余弦定理a 2=b 2+c 2-2bc cos A , 得7=4+c 2-4c ×cos 60°,即c 2-2c -3=0,解得c =3或c =-1(舍去). 答案:2173 10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.解析:因为sin A ,sin B ,sin C 成等差数列,所以2sin B =sin A +sin C .由正弦定理得a +c =2b ,又因为a =2c ,可得b =32c ,所以cos A =b 2+c 2-a 22bc=94c 2+c 2-4c 22×32c 2=-14.答案:-1411.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.解:(1)证明:因为A =2B ,所以由正弦定理a sin A =b sin B ,得a sin 2B =bsin B ,所以a =2b cos B .(2)由余弦定理,a 2=b 2+c 2-2bc cos A , 因为b =2,c =4,A =2B ,所以16c os 2B =4+16-16cos 2B ,所以c os 2B =34,因为A +B =2B +B <π,所以B <π3,所以cos B =32,所以B =π6.12.(2019·绵阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,结合正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 又由余弦定理,得a 2=b 2+c 2-2bc cos A , 所以bc =-2bc cos A ,即cos A =-12.由于A 为△ABC 的内角,所以A =2π3.(2)由已知2a sin A =(2b +c )sin B +(2c +b )sin C ,结合正弦定理,得2sin 2A =(2sin B +sin C )sin B +(2sin C +sin B )sin C , 即sin 2A =sin 2B +sin 2C +sin B sin C =sin 22π3=34.又由sin B +sin C =1,得sin 2B +sin 2C +2sin B sin C =1,所以sin B sin C =14,结合sin B +sin C =1,解得sin B =sin C =12.因为B +C =π-A =π3,所以B =C =π6,所以△ABC 是等腰三角形.B 级1.(2019·郑州质量预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D .6解析:选A 由2c os 2A +B2-cos 2C =1,得1+c os(A +B )-(2c os 2C -1)=2-2c os 2C -cos C =1,即2c os 2C +cos C -1=0,解得cos C =12或cos C =-1(舍去).由4sin B =3sin A及正弦定理,得4b =3a ,结合a -b =1,得a =4,b =3.由余弦定理,知c 2=a 2+b 2-2ab cos C =42+32-2×4×3×12=13,所以c =13.2.(2019·长春模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n Cc,若sin(A -B )+sin C =2sin 2B ,则a +b =________. 解析:∵2sin A a =t a n C c =sin C c cos C ,且由正弦定理可得a =2R sin A ,c =2R sin C (R 为△ABC的外接圆的半径),∴cos C =12.∵C ∈(0,π),∴C =π3.∵sin(A -B )+sin C =2sin 2B ,sin C =sin(A +B ),∴2sin A cos B =4sin B cos B .当cos B =0时,B =π2,则A =π6,∵c =3, ∴a =1,b =2,则a +b =3.当cos B ≠0时,sin A =2sin B ,即a =2b .∵cos C =a 2+b 2-c 22ab =12,∴b 2=1,即b =1,∴a =2,则a +b =3.综上,a +b =3.答案:33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b . (1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解:(1)2a cos C -c =2b ⇒2sin A cos C -sin C =2sin B ⇒2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C , ∵sin C ≠0,∴cos A =-12,又A ∈(0,π),∴A =2π3.(2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A ,∴sin ∠ADB =AB sin A BD =22.又∠ADB ∈(0,π),A =2π3,∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,b =c =2,由余弦定理,得a 2=c 2+b 2-2c ·b ·cos A =(2)2+(2)2-2×2×2c os 2π3=6,∴a = 6.第二课时 正弦定理和余弦定理(二) 考点一 有关三角形面积的计算[典例] (1)(2019·广州调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos B =34,则△ABC 的面积等于( )A .37 B.372C .9D.92(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若△ABC 的面积为34(a 2+c 2-b 2),则B =________.[解析] (1)法一:由余弦定理b 2=a 2+c 2-2ac cos B ,代入数据,得a =3,又cos B =34,B ∈(0,π),所以sin B =74,所以S △ABC =12ac sin B =372. 法二:由cos B =34,B ∈(0,π),得sin B =74,由正弦定理b sin B =csin C 及b =7,c =4,可得sin C =1,所以C =π2,所以sin A =cos B =34,所以S △ABC =12bc sin A =372.(2)由余弦定理得cos B =a 2+c 2-b 22ac ,∴a 2+c 2-b 2=2ac cos B . 又∵S =34(a 2+c 2-b 2),∴12ac sin B =34×2ac cos B , ∴t a n B =3,∵B ∈()0,π,∴B =π3.[答案] (1)B (2)π3[变透练清] 1.变条件本例(1)的条件变为:若c =4,sin C =2sin A ,sin B =154,则S △ABC =________. 解析:因为sin C =2sin A ,所以c =2a ,所以a =2,所以S △ABC =12ac sin B =12×2×4×154=15.答案:15 2.变结论本例(2)的条件不变,则C 为钝角时,ca的取值范围是________.解析:∵B =π3且C 为钝角,∴C =2π3-A >π2,∴0<A <π6 .由正弦定理得ca =sin ⎝⎛⎭⎫2π3-A sin A=32cos A +12sin A sin A =12+32·1t a n A.∵0<t a n A <33,∴1t a n A>3, ∴c a >12+32×3=2,即ca >2. 答案:(2,+∞)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.解:(1)由已知及正弦定理得(2sin B -sin A )cos C =sin C cos A , 即2sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sin B , ∵B ∈(0,π),∴sin B >0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由(1)知,C =π3,故S =12ab sin C =12ab sin π3=433,解得ab =163.由余弦定理可得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab , 又c =3,∴(a +b )2=c 2+3ab =32+3×163=25,得a +b =5.∴△ABC 的周长为a +b +c =5+3=8.[解题技法]1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. 考点二 平面图形中的计算问题[典例] (2018·广东佛山质检)如图,在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1. (1)若AC =5,求△ABC 的面积; (2)若∠ADC =π6,CD =4,求sin ∠CAD .[解] (1)在△ABC 中,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·c os ∠ABC , 即5=1+BC 2+2BC ,解得BC =2,所以△ABC 的面积S △ABC =12AB ·BC ·sin ∠ABC =12×1×2×22=12.(2)设∠CAD =θ,在△ACD 中,由正弦定理得AC sin ∠ADC =CDsin ∠CAD ,即AC sin π6=4sin θ, ① 在△ABC 中,∠BAC =π2-θ,∠BCA =π-3π4-⎝⎛⎭⎫π2-θ=θ-π4, 由正弦定理得AC sin ∠ABC =ABsin ∠BCA ,即AC sin 3π4=1sin ⎝⎛⎭⎫θ-π4,② ①②两式相除,得sin 3π4sin π6=4sin ⎝⎛⎭⎫θ-π4sin θ,即4⎝⎛⎭⎫22sin θ-22cos θ=2sin θ,整理得sin θ=2cos θ. 又因为sin 2θ+c os 2θ=1,所以sin θ=255,即sin ∠CAD =255.[解题技法]与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.[提醒] 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.[题组训练]1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________.解析:设AB =a ,∵AB =AD,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a 3. 在△ABD 中,c os ∠ADB =a 2+4a 23-a22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63. 在△BDC 中,BD sin C =BCsin ∠BDC, ∴sin C =BD ·sin ∠BDC BC =66.答案:662.如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列.(1)求sin ∠CED ; (2)求BE 的长. 解:设∠CED =α.因为∠CBE ,∠BEC ,∠BCE 成等差数列, 所以2∠BEC =∠CBE +∠BCE ,又∠CBE +∠BEC +∠BCE =π,所以∠BEC =π3.(1)在△CDE 中,由余弦定理得EC 2=CD 2+DE 2-2CD ·DE ·c os ∠EDC , 即7=CD 2+1+CD ,即CD 2+CD -6=0, 解得CD =2(CD =-3舍去). 在△CDE 中,由正弦定理得EC sin ∠EDC =CDsin α,于是sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知0<α<π3,由(1)知cos α=1-sin 2α=1-2149=277,又∠AEB =π-∠BEC -α=2π3-α,所以c os ∠AEB =c os ⎝⎛⎭⎫2π3-α=c os 2π3cos α+sin 2π3sin α=-12×277+32×217=714. 在Rt △EAB 中,c os ∠AEB =EA BE =2BE =714,所以BE =47.考点三 三角形中的最值、范围问题[典例] (1)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B -A )=2sin 2A ,则角A 的取值范围为( )A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π4 C.⎣⎡⎦⎤π6,π4D.⎣⎡⎦⎤π6,π3(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2A +cos 2B =2cos 2C ,则cos C 的最小值为( )A.32B.22C.12D .-12[解析] (1)在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin 2A ,即2sin B cos A =22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理得,b=2a ,所以A 为锐角.又因为sin B =2sin A ∈(0,1],所以sin A ∈⎝⎛⎦⎤0,22,所以A ∈⎝⎛⎦⎤0,π4. (2)因为cos 2A +cos 2B =2cos 2C ,所以1-2sin 2A +1-2sin 2B =2-4sin 2C ,得a 2+b 2=2c 2,cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12,当且仅当a =b 时等号成立,故选C. [答案] (1)B (2)C[解题技法]1.三角形中的最值、范围问题的解题策略解与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角取值范围等求解即可.2.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解, 已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,b -c <a <b +c ,三角形中大边对大角等.[题组训练]1.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A = b sin A ,则sin A +sin C 的最大值为( )A.2B.98C .1D.78解析:选B ∵a cos A =b sin A ,由正弦定理可得,sin A cos A =sin B sin A ,∵sin A ≠0,∴cos A =sin B ,又B 为钝角,∴B =A +π2,sin A +sin C =sin A +sin(A +B )=sin A +cos 2A =sin A +1-2sin 2A =-2⎝⎛⎭⎫sin A -142+98,∴sin A +sin C 的最大值为98. 2.(2018·哈尔滨三中二模)在△ABC 中,已知c =2,若sin 2A +sin 2B -sin A sin B =sin 2C ,则a +b 的取值范围为________.解析:∵sin 2A +sin 2B -sin A sin B =sin 2C ,∴a 2+b 2-ab =c 2,∴cos C =a 2+b 2-c 22ab =12,又∵C ∈(0,π),∴C =π3.由正弦定理可得a sin A =b sin B =2sin π3=433,∴a =433sin A ,b =433sin B .又∵B =2π3-A ,∴a +b =433sin A +433sin B =433sin A +433sin ⎝⎛⎭⎫2π3-A =4sin ⎝⎛⎭⎫A +π6.又∵A ∈⎝⎛⎭⎫0,2π3,∴A +π6∈⎝⎛⎭⎫π6,5π6,∴sin ⎝⎛⎭⎫A +π6∈⎝⎛⎦⎤12,1,∴a +b ∈(2,4]. 答案:(2,4]3.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos B b +cos C c =sin A 3sin C .(1)求b 的值;(2)若cos B +3sin B =2,求△ABC 面积的最大值.解:(1)由题意及正、余弦定理得a 2+c 2-b 22abc +a 2+b 2-c 22abc =3a 3c ,整理得2a 22abc =3a3c ,所以b = 3.(2)由题意得cos B +3sin B =2sin ⎝⎛⎭⎫B +π6=2, 所以sin ⎝⎛⎭⎫B +π6=1, 因为B ∈(0,π),所以B +π6=π2,所以B =π3.由余弦定理得b 2=a 2+c 2-2ac cos B , 所以3=a 2+c 2-ac ≥2ac -ac =ac , 即ac ≤3,当且仅当a =c =3时等号成立. 所以△ABC 的面积S △ABC =12ac sin B =34ac ≤334,当且仅当a =c =3时等号成立.故△ABC 面积的最大值为334.考点四 解三角形与三角函数的综合应用考法(一) 正、余弦定理与三角恒等变换[典例] (2018·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 b sin A =ac os ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. [解] (1)在△ABC 中,由正弦定理a sin A =b sin B ,可得b sin A =a sin B .又因为b sin A =ac os ⎝⎛⎭⎫B -π6, 所以a sin B =ac os ⎝⎛⎭⎫B -π6, 即sin B =32cos B +12sin B , 所以t a n B = 3.因为B ∈(0,π),所以B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,得b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =ac os ⎝⎛⎭⎫B -π6,可得sin A =37. 因为a <c ,所以cos A =27. 所以sin 2A =2sin A cos A =437,cos 2A =2c os 2A -1=17.所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314. 考法(二) 正、余弦定理与三角函数的性质[典例] (2018·辽宁五校联考)已知函数f (x )=c os 2x +3sin(π-x )c os(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.[解] (1)f (x )=c os 2x -3sin x cos x -12=1+cos 2x 2-32sin 2x -12=-sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,又∵x ∈[0,π],∴函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π. (2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π6, ∴f (A )=-sin ⎝⎛⎭⎫2A -π6=-1, ∵△ABC 为锐角三角形,∴0<A <π2,∴-π6<2A -π6<5π6,∴2A -π6=π2,即A =π3.又∵b sin C =a sin A ,∴bc =a 2=4, ∴S △ABC =12bc sin A = 3.[对点训练]在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2a -c )cos B -b cos C =0. (1)求角B 的大小;(2)设函数f (x )=2sin x cos x cos B -32cos 2x ,求函数f (x )的最大值及当f (x )取得最大值时x 的值.解:(1)因为(2a -c )cos B -b cos C =0, 所以2a cos B -c cos B -b cos C =0, 由正弦定理得2sin A cos B -sin C cos B -cos C sin B =0, 即2sin A cos B -sin(C +B )=0,又因为C +B =π-A ,所以sin(C +B )=sin A . 所以sin A (2cos B -1)=0.在△ABC 中,sin A ≠0,所以cos B =12,又因为B ∈(0,π),所以B =π3.(2)因为B =π3,所以f (x )=12sin 2x -32cos 2x =sin ⎝⎛⎭⎫2x -π3, 令2x -π3=2k π+π2(k ∈Z),得x =k π+5π12(k ∈Z),即当x =k π+5π12(k ∈Z)时,f (x )取得最大值1.[课时跟踪检测]A 级1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则 △ABC 的面积为( )A.12 B.14C .1D .2解析:选A 由cos 2A =sin A ,得1-2sin 2A =sin A ,解得sin A =12(负值舍去),由bc =2,可得△ABC 的面积S =12bc sin A =12×2×12=12.2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若(2a +c )cos B +b cos C =0,则角B 的大小为( )A.π6 B.π3C.2π3D.5π6解析:选C 由已知条件和正弦定理,得(2sin A +sin C )cos B +sin B cos C =0.化简,得2sin A cos B +sin A =0.因为角A 为三角形的内角,所以sin A ≠0,所以cos B =-12,所以B =2π3. 3.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =3,S △ABC =22,则b 的值为( )A .6B .3C .2D .2或3解析:选D 因为S △ABC =12bc sin A =22,所以bc =6,又因为sin A =223,A ∈⎝⎛⎭⎫0,π2, 所以cos A =13,因为a =3,所以由余弦定理得9=b 2+c 2-2bc cos A =b 2+c 2-4,b 2+c 2=13,可得b =2或b =3. 4.(2018·昆明检测)在△ABC 中,已知AB =2,AC =5,t a n ∠BAC =-3,则BC 边上的高等于( )A .1 B.2 C.3D .2解析:选A 法一:因为t a n ∠BAC =-3,所以sin ∠BAC =310,c os ∠BAC =-110.由余弦定理,得BC 2=AC 2+AB 2-2AC ·ABc os ∠BAC =5+2-2×5×2×⎝⎛⎭⎫-110=9,所以BC =3,所以S △ABC =12AB ·AC sin ∠BAC =12×2×5×310=32,所以BC 边上的高h =2S △ABCBC =2×323=1.法二:在△ABC 中,因为t a n ∠BAC =-3<0,所以∠BAC 为钝角,因此BC 边上的高小于2,结合选项可知选A.5.(2018·重庆九校联考)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,且a sin B =3b cos A ,当b +c =4时,△ABC 面积的最大值为( )A.33B.32C.3D .23解析:选C 由a sin B =3b cos A ,得sin A sin B =3sin B cos A ,∴t a n A =3,∵0<A <π,∴A =π3,故S △ABC =12bc sin A =34bc ≤34⎝⎛⎭⎫b +c 22=3(当且仅当b =c =2时取等号),故选C.6.(2019·安徽名校联盟联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( )A .2+3B .2+2C .3D .3+2解析:选A 由b +2c cos A =0,得b +2c ·b 2+c 2-a 22bc =0,整理得2b 2=a 2-c 2.由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+3c 24ac ≥23ac 4ac =32,当且仅当a =3c 时等号成立,此时角B 取得最大值,将a =3c 代入2b 2=a 2-c 2可得b =c .又因为bc =1,所以b =c =1,a =3,故△ABC 的周长为2+ 3.7.在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:由余弦定理知72=52+BC 2-2×5×BC ×cos 120°, 即49=25+BC 2+5BC ,解得BC =3(负值舍去). 故S △ABC =12AB ·BC sin B =12×5×3×32=1534.答案:15348.(2019·长春质量检测)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若 12b cos A =sin B ,且a =23,b +c =6,则△ABC 的面积为________.解析:由题意可知cos A 2=sin B b =sin Aa ,因为a =23,所以t a n A =3,因为0<A <π,所以A =π3,由余弦定理得12=b 2+c 2-bc =(b +c )2-3bc ,又因为b +c =6,所以bc =8,从而△ABC 的面积为12bc sin A =12×8×sin π3=2 3.答案:239.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠BAC =π2,点D 在边BC上,AD =1,且BD =2DC ,∠BAD =2∠DAC ,则sin Bsin C=________.解析:由∠BAC =π2及∠BAD =2∠DAC ,可得∠BAD =π3,∠DAC =π6.由BD =2DC ,令DC =x ,则BD =2x .因为AD =1,在△ADC 中,由正弦定理得1sin C =x sin π6,所以sin C =12x,在△ABD 中,sin B =sin π32x =34x ,所以sin B sin C =34x 12x=32.答案:3210.(2018·河南新乡二模)如图所示,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,若DE =22,则cos A =________.解析:∵AD =DB ,∴∠A =∠ABD ,∠BDC =2∠A .设AD =DB =x , ∴在△BCD 中,BC sin ∠BDC =DB sin C,可得4sin 2A =xsin π3. ①在△AED 中,DE sin A =AD sin ∠AED ,可得22sin A =x1. ② 联立①②可得42sin A cos A =22sin A 32,解得cos A =64.答案:6411.(2019·南宁摸底联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知 c (1+cos B )=b (2-cos C ).(1)求证:2b =a +c ;(2)若B =π3,△ABC 的面积为43,求b .解:(1)证明:∵c (1+cos B )=b (2-cos C ),∴由正弦定理可得sin C +sin C cos B =2sin B -sin B cos C , 即sin C cos B +sin B cos C +sin C =sin(B +C )+sin C =2sin B , ∴sin A +sin C =2sin B ,∴a +c =2b .(2)∵B =π3,∴△ABC 的面积S =12ac sin B =34ac =43,∴ac =16.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac =(a +c )2-3ac . ∵a +c =2b ,∴b 2=4b 2-3×16,解得b =4. 12.在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长; (2)求c os ⎝⎛⎭⎫A -π6的值. 解:(1)因为cos B =45,0<B <π,所以sin B =35.由正弦定理得AC sin B =AB sin C ,所以AB =AC ·sin Csin B =6×2235=5 2.(2)在△ABC 中,因为A +B +C =π,所以A =π-(B +C ), 又因为cos B =45,sin B =35,所以cos A =-c os(B +C )=-c os ⎝⎛⎭⎫B +π4=-cos Bc os π4+sin B sin π4=-45×22+35×22=-210.因为0<A <π,所以sin A =1-c os 2A =7210. 因此,c os ⎝⎛⎭⎫A -π6=cos Ac os π6+sin A sin π6=-210×32+7210×12=72-620. B 级1.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2ba的取值范围是( )A .(2,2)B .(2,6)C .(2,3)D .(6,4)解析:选B ∵B =2A ,∴sin B =sin 2A =2sin A cos A ,∴ba =2cos A .又C =π-3A ,C为锐角,∴0<π-3A <π2⇒π6<A <π3,又B =2A ,B 为锐角,∴0<2A <π2⇒0<A <π4,∴π6<A <π4,22<cosA <32,∴2<b a <3,∴2<2ba< 6. 2.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +bc os 2A =2a ,则角A 的取值范围是________.解析:由已知及正弦定理得sin 2A sin B +sin Bc os 2A =2sin A ,即sin B (sin 2A +c os 2A )=2sin A ,∴sin B =2sin A ,∴b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc =4a 2+c 2-a 24ac =3a 2+c 24ac ≥23ac 4ac =32,当且仅当c =3a 时取等号.∵A 为三角形的内角,且y =cos x 在(0,π)上是减函数,∴0<A ≤π6,则角A 的取值范围是⎝⎛⎦⎤0,π6. 答案:⎝⎛⎦⎤0,π6 3.(2018·昆明质检)如图,在平面四边形ABCD 中,AB ⊥BC ,AB =2,BD =5,∠BCD =2∠ABD ,△ABD 的面积为2.(1)求AD 的长; (2)求△CBD 的面积.解:(1)由已知S △ABD =12AB ·BD ·sin ∠ABD =12×2×5×sin ∠ABD =2,可得sin ∠ABD =255,又∠BCD =2∠ABD ,所以∠ABD ∈⎝⎛⎭⎫0,π2,所以c os ∠ABD =55. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2·AB ·BD ·c os ∠ABD ,可得AD 2=5,所以AD = 5.(2)由AB ⊥BC ,得∠ABD +∠CBD =π2,所以sin ∠CBD =c os ∠ABD =55. 又∠BCD =2∠ABD ,所以sin ∠BCD =2sin ∠ABD ·c os ∠ABD =45,∠BDC =π-∠CBD -∠BCD =π-⎝⎛⎭⎫π2-∠ABD -2∠ABD =π2-∠ABD =∠CBD , 所以△CBD 为等腰三角形,即CB =CD .在△CBD 中,由正弦定理BD sin ∠BCD =CDsin ∠CBD ,得CD =BD ·sin ∠CBDsin ∠BCD=5×5545=54, 所以S △CBD =12CB ·CD ·sin ∠BCD =12×54×54×45=58.。
高中数学知识点总结(第八章 立体几何 第四节 直线、平面平行的判定与性质)
![高中数学知识点总结(第八章 立体几何 第四节 直线、平面平行的判定与性质)](https://img.taocdn.com/s3/m/12fca0106d175f0e7cd184254b35eefdc8d31523.png)
第四节 直线、平面平行的判定与性质一、基础知识1.直线与平面平行的判定定理和性质定理文字语言图形语言符号语言 判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行)∵l ∥a ,a ⊂α, l ⊄α,∴l ∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)∵l ∥α,l ⊂β,α∩β=b ,∴l ∥b⎣⎢⎡⎦⎥⎤❶应用判定定理时,要注意“内”“外”“平行”三个条件必须都具备,缺一不可. 2.平面与平面平行的判定定理和性质定理文字语言 图形语言符号语言 判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)∵a ∥β, b ∥β, a ∩b =P ,a ⊂α, b ⊂α, ∴α∥β 性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行∵α∥β,α∩γ=a ,β∩γ=b ,∴a ∥b⎣⎢⎢⎡⎦⎥⎥⎤❷如果一个平面内的两条相交直线分别平行于另一个平面的两条直线,那么这两个平面互相平行.符号表示:a ⊂α,b ⊂α,a ∩b =O ,a ′⊂β,b ′⊂β,a ∥a ′,b ∥b ′⇒α∥β.二、常用结论平面与平面平行的三个性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两个平行平面间的平行线段长度相等.(3)两条直线被三个平行平面所截,截得的对应线段成比例.考点一直线与平面平行的判定与性质考法(一)直线与平面平行的判定[典例]如图,在直三棱柱ABCA1B1C1中,点M,N分别为线段A1B,AC1的中点.求证:MN∥平面BB1C1C.[证明]如图,连接A1C.在直三棱柱ABCA1B1C1中,侧面AA1C1C为平行四边形.又因为N为线段AC1的中点,所以A1C与AC1相交于点N,即A1C经过点N,且N为线段A1C的中点.因为M为线段A1B的中点,所以MN∥BC.又因为MN⊄平面BB1C1C,BC⊂平面BB1C1C,所以MN∥平面BB1C1C.考法(二)线面平行性质定理的应用[典例](2018·豫东名校联考)如图,在四棱柱ABCDA1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1与平面BB1D交于FG.求证:FG∥平面AA1B1B.[证明]在四棱柱ABCDA1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1与平面BB1D交于FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.因为BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.[题组训练]1.(2018·浙江高考)已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A ∵若m ⊄α,n ⊂α,且m ∥n ,由线面平行的判定定理知m ∥α,但若m ⊄α,n ⊂α,且m ∥α,则m 与n 有可能异面,∴“m ∥n ”是“m ∥α”的充分不必要条件.2.如图,在四棱锥P ABCD 中,AB ∥CD ,AB =2,CD =3,M 为PC 上一点,且PM =2MC .求证:BM ∥平面P AD .证明:法一:如图,过点M 作MN ∥CD 交PD 于点N ,连接AN . ∵PM =2MC ,∴MN =23CD .又AB =23CD ,且AB ∥CD ,∴AB 綊MN ,∴四边形ABMN 为平行四边形, ∴BM ∥AN .又BM ⊄平面P AD ,AN ⊂平面P AD , ∴BM ∥平面P AD .法二:如图,过点M 作MN ∥PD 交CD 于点N ,连接BN . ∵PM =2MC ,∴DN =2NC , 又AB ∥CD ,AB =23CD ,∴AB 綊DN ,∴四边形ABND 为平行四边形, ∴BN ∥AD .∵BN ⊂平面MBN ,MN ⊂平面MBN ,BN ∩MN =N , AD ⊂平面P AD ,PD ⊂平面P AD ,AD ∩PD =D , ∴平面MBN ∥平面P AD .∵BM ⊂平面MBN ,∴BM ∥平面P AD .3.如图所示,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和P A作平面P AHG交平面BMD于GH.求证:P A∥GH.证明:如图所示,连接AC交BD于点O,连接MO,∵四边形ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴P A∥MO.又MO⊂平面BMD,P A⊄平面BMD,∴P A∥平面BMD.∵平面P AHG∩平面BMD=GH,P A⊂平面P AHG,∴P A∥GH.考点二平面与平面平行的判定与性质[典例]如图,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.[证明](1)∵GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.[变透练清]1.变结论在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C,AC1,设交点为M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵DM⊄平面A1BD1,A1B⊂平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又∵DC1∩DM=D,DC1⊂平面AC1D,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.2.如图,四边形ABCD与四边形ADEF为平行四边形,M,N,G分别是AB,AD,EF 的中点,求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明:(1)如图,连接AE,设DF与GN的交点为O,则AE必过DF与GN的交点O.连接MO,则MO为△ABE的中位线,所以BE∥MO.又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点, 所以DE ∥GN .又DE ⊄平面MNG ,GN ⊂平面MNG , 所以DE ∥平面MNG . 又M 为AB 中点,所以MN 为△ABD 的中位线, 所以BD ∥MN .又BD ⊄平面MNG ,MN ⊂平面MNG , 所以BD ∥平面MNG .又DE ⊂平面BDE ,BD ⊂平面BDE ,DE ∩BD =D , 所以平面BDE ∥平面MNG .[课时跟踪检测]A 级1.已知直线a 与直线b 平行,直线a 与平面α平行,则直线b 与α的关系为( ) A .平行 B .相交C .直线b 在平面α内D .平行或直线b 在平面α内解析:选D 依题意,直线a 必与平面α内的某直线平行,又a ∥b ,因此直线b 与平面α的位置关系是平行或直线b 在平面α内.2.若平面α∥平面β,直线a ∥平面α,点B ∈β,则在平面β内且过B 点的所有直线中( )A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一与a 平行的直线解析:选A 当直线a 在平面β内且过B 点时,不存在与a 平行的直线,故选A. 3.在空间四边形ABCD 中,E ,F 分别是AB 和BC 上的点,若AE ∶EB =CF ∶FB =1∶2,则对角线AC 和平面DEF 的位置关系是( )A .平行B .相交C .在平面内D .不能确定解析:选A 如图,由AE EB =CFFB 得AC ∥EF .又因为EF ⊂平面DEF ,AC ⊄平面DEF , 所以AC ∥平面DEF .4.(2019·重庆六校联考)设a ,b 是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A .存在一条直线a ,a ∥α,a ∥βB .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α解析:选D 对于选项A ,若存在一条直线a ,a ∥α,a ∥β,则α∥β或α与β相交,若α∥β,则存在一条直线a ,使得a ∥α,a ∥β,所以选项A 的内容是α∥β的一个必要条件;同理,选项B 、C 的内容也是α∥β的一个必要条件而不是充分条件;对于选项D ,可以通过平移把两条异面直线平移到一个平面中,成为相交直线,则有α∥β,所以选项D 的内容是α∥β的一个充分条件.故选D.5.如图,透明塑料制成的长方体容器ABCD A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH 所在四边形的面积为定值; ③棱A 1D 1始终与水面所在平面平行; ④当容器倾斜如图所示时,BE ·BF 是定值. 其中正确命题的个数是( ) A .1 B .2 C .3D .4解析:选C 由题图,显然①是正确的,②是错误的; 对于③,∵A 1D 1∥BC ,BC ∥FG ,∴A 1D 1∥FG 且A 1D 1⊄平面EFGH ,FG ⊂平面EFGH , ∴A 1D 1∥平面EFGH (水面). ∴③是正确的;对于④,∵水是定量的(定体积V ), ∴S △BEF ·BC =V ,即12BE ·BF ·BC =V .∴BE ·BF =2VBC(定值),即④是正确的,故选C.6.如图,平面α∥平面β,△P AB 所在的平面与α,β分别交于CD ,AB ,若PC =2,CA =3,CD =1,则AB =________.解析:∵平面α∥平面β,∴CD ∥AB , 则PC P A =CD AB ,∴AB =P A ×CD PC =5×12=52.答案:527.设α,β,γ是三个平面,a ,b 是两条不同直线,有下列三个条件: ①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________(填序号).解析:由面面平行的性质定理可知,①正确;当b ∥β,a ⊂γ时,a 和b 在同一平面内,且没有公共点,所以平行,③正确.故应填入的条件为①或③.答案:①或③8.在三棱锥P ABC 中,PB =6,AC =3,G 为△P AC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________.解析:如图,过点G 作EF ∥AC ,分别交P A ,PC 于点E ,F ,过点E 作EN ∥PB 交AB 于点N ,过点F 作FM ∥PB 交BC 于点M ,连接MN ,则四边形EFMN 是平行四边形(平面EFMN 为所求截面),且EF =MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8.10.(2019·南昌摸底调研)如图,在四棱锥P ABCD 中,∠ABC = ∠ACD =90°,∠BAC =∠CAD =60°,P A ⊥平面ABCD ,P A =2,AB =1.设M ,N 分别为PD ,AD 的中点.(1)求证:平面CMN ∥平面P AB ; (2)求三棱锥P ABM 的体积.解:(1)证明:∵M ,N 分别为PD ,AD 的中点, ∴MN ∥P A ,又MN ⊄平面P AB ,P A ⊂平面P AB , ∴MN ∥平面P AB .在Rt △ACD 中,∠CAD =60°,CN =AN , ∴∠ACN =60°.又∠BAC =60°,∴CN ∥AB . ∵CN ⊄平面P AB ,AB ⊂平面P AB , ∴CN ∥平面P AB . 又CN ∩MN =N , ∴平面CMN ∥平面P AB .(2)由(1)知,平面CMN ∥平面P AB ,∴点M 到平面P AB 的距离等于点C 到平面P AB 的距离.∵AB =1,∠ABC =90°,∠BAC =60°,∴BC =3,∴三棱锥P ABM 的体积V =V M P AB =V C P AB =V P ABC =13×12×1×3×2=33.B 级1.如图,四棱锥P ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)求证:MN ∥平面P AB ; (2)求四面体N BCM 的体积. 解:(1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN , 由N 为PC 的中点知TN ∥BC , TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3,得AE ⊥BC ,AE =AB 2-BE 2= 5. 由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体N BCM 的体积V N BCM =13×S △BCM ×P A 2=453.2.如图所示,几何体E ABCD 是四棱锥,△ABD 为正三角形,CB =CD ,EC ⊥BD . (1)求证:BE =DE ;(2)若∠BCD =120°,M 为线段AE 的中点,求证:DM ∥平面BEC . 证明:(1)如图所示,取BD 的中点O ,连接OC ,OE . ∵CB =CD ,∴CO ⊥BD . 又∵EC ⊥BD ,EC ∩CO =C ,∴BD⊥平面OEC,∴BD⊥EO.又∵O为BD中点.∴OE为BD的中垂线,∴BE=DE.(2)取BA的中点N,连接DN,MN.∵M为AE的中点,∴MN∥BE.∵△ABD为等边三角形,N为AB的中点,∴DN⊥AB.∵∠DCB=120°,DC=BC,∴∠OBC=30°,∴∠CBN=90°,即BC⊥AB,∴DN∥BC.∵DN∩MN=N,BC∩BE=B,∴平面MND∥平面BEC.又∵DM⊂平面MND,∴DM∥平面BEC.。
二项式定理知识点总结及例题分析-高中数学2018版
![二项式定理知识点总结及例题分析-高中数学2018版](https://img.taocdn.com/s3/m/8a7e830e0066f5335a8121c2.png)
高中数学-二项式定理知识点总结及例题分析一、 基本知识点1.二项式定理(1)0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -kn .(2)二项式系数先增后减中间项最大当n 为偶数时,第n 2+1项的二项式系数最大,最大值为C n2n ;当n 为奇数时,第n +12项和n +32项的二项式系数最大,最大值为C n -12n 或C n +12n. (3)各二项式系数和:C 0n +C 1n +C 2n +…+C nn =2n ; C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1. 方法分析1.二项式系数最大项的确定方法(1)如果n 是偶数,则中间一项⎝⎛⎭⎫第⎝⎛⎭⎫n 2+1项的二项式系数最大; (2)如果n 是奇数,则中间两项(第n +12项与第⎝⎛⎭⎫n +12+1项)的二项式系数相等并最大. 2.二项展开式系数最大项的求法:如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1,从而解出k 来,即得.例题讲解考点一求二项展开式中的项或项的系数 1 (1)⎝⎛⎭⎫12x -2y 5的展开式中x 2y 3的系数是( ) A .-20 B .-5 C .5 D .20(2)二项式⎝⎛⎭⎪⎫x -13x n的展开式中第4项为常数项,则常数项为( )A .10B .-10C .20D .-20解析: (1)由二项展开式的通项可得,第四项T 4=C 35⎝ ⎛⎭⎪⎫12x 2(-2y )3=-20x 2y 3,故x 2y3的系数为-20.(2)由题意可知常数项为T 4=C 3n (x )n -3⎝⎛⎭⎪⎪⎫-13x 3=(-1)3C 3n x 3n -156,令3n -15=0,可得n =5.故所求常数项为T 4=(-1)3C 35=-10,选B.答案: (1)A (2)B 变式练习1.若二项式⎝⎛⎫2x +a x 7的展开式中1x 3的系数是84,则实数a =( ) A .2 B .54 C .1 D .242.⎝⎛⎭⎫x -13x 10的展开式中含x 的正整数次幂的项数是( ) A .0 B .2 C .4 D .6 3.⎝⎛⎭⎫x 3-2x 4+⎝⎛⎭⎫x +1x 8的展开式中的常数项为( ) A .32 B .34 C .36 D .384.(2014·山东卷)若⎝⎛⎭⎫ax 2+bx 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________.5.(2014·皖南八校联考)(x 2-4x +4)5的展开式中x 的系数是________. 答案1C 2.B 3.D 42 5-5120 考点二 二项式系数及项的系数问题(1)(2014·辽宁五校联考)若⎝⎛⎭⎫x +2x 2n 展开式中只有第6项的二项式系数最大,则展开式的常数项是A .360B .180C .90D .45(2)(2014·河北衡水中学五调)已知(x -m )7=a 0+a 1x +a 2x 2+…+a 7x 7的展开式中x 4的系数是-35,则a 1+a 2+a 3+…+a 7=________.解析: (1)展开式中只有第6项的二项式系数最大,则展开式总共11项,所以n =10,通项公式为T r +1=C r 10(x )10-r·⎝ ⎛⎭⎪⎫2x 2r =C r 102rx 5-52r ,所以r =2时,常数项为180.(2)∵T r +1=C r 7x7-r(-m )r,0≤r ≤7,r ∈Z ,∴C 37(-m )3=-35,∴m =1,令x =1,a 0+a 1+…+a 7=(1-1)7=0,令x =0,a 0=(-1)7=-1,∴a 1+a 2+a 3+…+a 7=1.答案: (1)B (2)1变式练习1.设二项式⎝⎛⎭⎪⎫3x +3x n 的展开式各项系数的和为a ,所有二项式系数的和为b ,若a +2b=80,则n 的值为( )A .8B .4C .3D .22.若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为( )A .1或-3B .-1或3C .1D .-3考点三 二项式定理的应用、设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =( ) A .0 B .1 C .1 1D .12 解析: 512 012+a =(52-1)2 012+a =522 012+C 12 012×522 011×(-1)+…+C 2 0112 012×52×(-1)2 011+(-1)2 012+a 能被13整除,只需(-1)2 012+a =1+a 能被13整除即可.∵0≤a <13,∴a =12,故选D.答案: D。
高中数学知识点总结(第八章 立体几何 第五节 直线、平面垂直的判定与性质)
![高中数学知识点总结(第八章 立体几何 第五节 直线、平面垂直的判定与性质)](https://img.taocdn.com/s3/m/18606c165e0e7cd184254b35eefdc8d376ee1423.png)
第五节 直线、平面垂直的判定与性质一、基础知识1.直线与平面垂直 (1)直线和平面垂直的定义:直线l 与平面α内的任意一条直线都垂直, 就说直线l 与平面α互相垂直.(2)直线与平面垂直的判定定理及性质定理:文字语言 图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫a ,b ⊂αa ∩b =Ol ⊥a l ⊥b⇒l ⊥α 性质定理 垂直于同一个平面的两条直线平行⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b⎣⎢⎡⎦⎥⎤❶如果一条直线与平面内再多(即无数条)的直线垂直,但这些直线不相交就不能说明这条直线与此平面垂直. 2.平面与平面垂直的判定定理与性质定理文字语言 图形语言符号语言判定定理一个平面过另一个平面的垂线❷,则这两个平面垂直⎭⎪⎬⎪⎫l ⊂βl ⊥α⇒α⊥β 性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎪⎬⎪⎫α⊥βl ⊂βα∩β=a l ⊥a ⇒l ⊥α[❷要求一平面只需过另一平面的垂线.]二、常用结论直线与平面垂直的五个结论(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线.(2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.(5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.考点一直线与平面垂直的判定与性质[典例]如图,在四棱锥PABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.求证:(1)CD⊥AE;(2)PD⊥平面ABE.[证明](1)在四棱锥PABCD中,∵P A⊥底面ABCD,CD⊂底面ABCD,∴P A⊥CD,又∵AC⊥CD,且P A∩AC=A,∴CD⊥平面P AC.∵AE⊂平面P AC,∴CD⊥AE.(2)由P A=AB=BC,∠ABC=60°,可得AC=P A.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.∵PD⊂平面PCD,∴AE⊥PD.∵P A⊥底面ABCD,AB⊂底面ABCD,∴P A⊥AB.又∵AB⊥AD,且P A∩AD=A,∴AB⊥平面P AD,∵PD⊂平面P AD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.[解题技法]证明线面垂直的4种方法(1)线面垂直的判定定理:l ⊥a ,l ⊥b ,a ⊂α,b ⊂α,a ∩b =P ⇒l ⊥α. (2)面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. (3)性质:①a ∥b ,b ⊥α⇒a ⊥α,②α∥β,a ⊥β⇒a ⊥α. (4)α⊥γ,β⊥γ,α∩β=l ⇒l ⊥γ.(客观题可用) [口诀归纳]线面垂直的关键,定义来证最常见, 判定定理也常用,它的意义要记清. 平面之内两直线,两线相交于一点, 面外还有一直线,垂直两线是条件. [题组训练]1.(2019·安徽知名示范高中联考)如图,在直三棱柱ABC A 1B 1C 1中,AB =BC =BB 1,AB 1∩A 1B =E ,D 为AC 上的点,B 1C ∥平面A 1BD .(1)求证:BD ⊥平面A 1ACC 1;(2)若AB =1,且AC ·AD =1,求三棱锥A BCB 1的体积. 解: (1)证明:如图,连接ED ,∵平面AB 1C ∩平面A 1BD =ED ,B 1C ∥平面A 1BD , ∴B 1C ∥ED , ∵E 为AB 1的中点, ∴D 为AC 的中点, ∵AB =BC ,∴BD ⊥AC .∵A 1A ⊥平面ABC ,BD ⊂平面ABC ,∴A 1A ⊥BD . 又∵A 1A ,AC 是平面A 1ACC 1内的两条相交直线, ∴BD ⊥平面A 1ACC 1.(2)由AB =1,得BC =BB 1=1,由(1)知AD =12AC ,又AC ·AD =1,∴AC 2=2,∴AC 2=2=AB 2+BC 2,∴AB ⊥BC , ∴S △ABC =12AB ·BC =12,∴V A BCB 1=V B 1ABC =13S △ABC ·BB 1=13×12×1=16.2.如图,S是Rt△ABC所在平面外一点,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.证明:(1)如图所示,取AB的中点E,连接SE,DE,在Rt△ABC中,D,E分别为AC,AB的中点.∴DE∥BC,∴DE⊥AB,∵SA=SB,∴SE⊥AB.又SE∩DE=E,∴AB⊥平面SDE.又SD⊂平面SDE,∴AB⊥SD.在△SAC中,∵SA=SC,D为AC的中点,∴SD⊥AC.又AC∩AB=A,∴SD⊥平面ABC.(2)∵AB=BC,∴BD⊥AC,由(1)可知,SD⊥平面ABC,又BD⊂平面ABC,∴SD⊥BD,又SD∩AC=D,∴BD⊥平面SAC.考点二面面垂直的判定与性质[典例](2018·江苏高考)在平行六面体ABCDA1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.[证明](1)在平行六面体ABCDA1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCDA1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.[解题技法] 证明面面垂直的2种方法 定义法利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题定理法 利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决[题组训练]1.(2019·武汉调研)如图,三棱锥P ABC 中,底面ABC 是边长为2的正三角形,P A ⊥PC ,PB =2.求证:平面P AC ⊥平面ABC .证明:取AC 的中点O ,连接BO ,PO . 因为△ABC 是边长为2的正三角形, 所以BO ⊥AC ,BO = 3.因为P A ⊥PC ,所以PO =12AC =1.因为PB =2,所以OP 2+OB 2=PB 2,所以PO ⊥OB . 因为AC ∩OP =O , 所以BO ⊥平面P AC . 又OB ⊂平面ABC , 所以平面P AC ⊥平面ABC .2.(2018·安徽淮北一中模拟)如图,四棱锥P ABCD 的底面是矩形,P A ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点,且P A =AD .求证:(1)AF ∥平面PEC ; (2)平面PEC ⊥平面PCD .证明:(1)取PC 的中点G ,连接FG ,EG , ∵F 为PD 的中点,G 为PC 的中点, ∴FG 为△CDP 的中位线, ∴FG ∥CD ,FG =12CD .∵四边形ABCD 为矩形,E 为AB 的中点, ∴AE ∥CD ,AE =12CD .∴FG =AE ,FG ∥AE , ∴四边形AEGF 是平行四边形,∴AF ∥EG ,又EG ⊂平面PEC ,AF ⊄平面PEC ,∴AF∥平面PEC.(2)∵P A=AD,F为PD中点,∴AF⊥PD,∵P A⊥平面ABCD,CD⊂平面ABCD,∴P A⊥CD,又∵CD⊥AD,AD∩P A=A,∴CD⊥平面P AD,∵AF⊂平面P AD,∴CD⊥AF.又PD∩CD=D,∴AF⊥平面PCD.由(1)知EG∥AF,∴EG⊥平面PCD,又EG⊂平面PEC,∴平面PEC⊥平面PCD.[课时跟踪检测]A级1.设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是() A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β解析:选C对于C项,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故选C.2.(2019·湘东五校联考)已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题:①若α∥β,则m⊥l;②若α⊥β,则m∥l;③若m⊥l,则α⊥β;④若m∥l,则α⊥β.其中正确的命题是()A.①④B.③④C.①②D.①③解析:选A对于①,若α∥β,m⊥α,l⊂β,则m⊥l,故①正确,排除B.对于④,若m∥l,m⊥α,则l⊥α,又l⊂β,所以α⊥β.故④正确.故选A.3.已知P A垂直于以AB为直径的圆所在的平面,C为圆上异于A,B两点的任一点,则下列关系不正确的是()A.P A⊥BC B.BC⊥平面P ACC.AC⊥PB D.PC⊥BC解析:选C由P A⊥平面ACB⇒P A⊥BC,故A不符合题意;由BC⊥P A,BC⊥AC,P A∩AC=A,可得BC⊥平面P AC,所以BC⊥PC,故B、D不符合题意;AC⊥PB显然不成立,故C符合题意.4.如图,在四面体ABCD中,已知AB⊥AC,BD⊥AC,那么点D在平面ABC内的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:选A因为AB⊥AC,BD⊥AC,AB∩BD=B,所以AC⊥平央ABD,又AC⊂平面ABC,所以平面ABC⊥平面ABD,所以点D在平面ABC内的射影H必在直线AB上.5.如图,在正四面体PABC中,D,E,F分别是AB,BC,CA的中点,则下面四个结论不成立的是()A.BC∥平面PDFB.DF⊥平面P AEC.平面PDF⊥平面P AED.平面PDE⊥平面ABC解析:选D因为BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,故选项A正确.在正四面体中,AE⊥BC,PE⊥BC,AE∩PE=E,所以BC⊥平面P AE,又DF∥BC,则DF⊥平面P AE,从而平面PDF⊥平面P AE.因此选项B、C均正确.6.如图,已知∠BAC=90°,PC⊥平面ABC,则在△ABC,△P AC的边所在的直线中,与PC垂直的直线有________个;与AP垂直的直线有________个.解析:∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC.∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面P AC,又∵AP⊂平面P AC,∴AB⊥AP,与AP垂直的直线是AB.答案:317.设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α∥β;②若α外的一条直线l与α内的一条直线平行,则l∥α;③设α∩β=l,若α内有一条直线垂直于l,则α⊥β;④直线l⊥α的充要条件是l与α内的两条直线垂直.其中所有的真命题的序号是________.解析:①正确;②正确;满足③的α与β不一定垂直,所以③错误;直线l⊥α的充要条件是l与α内的两条相交直线垂直,所以④错误.故所有的真命题的序号是①②.答案:①②8.在直三棱柱ABCA1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确命题的序号是________.解析:如图所示,因为AA1∥平面α,平面α∩平面AA1B1B=EH,所以AA1∥EH.同理AA1∥GF,所以EH∥GF,又ABCA1B1C1是直三棱柱,易知EH=GF=AA1,所以四边形EFGH是平行四边形,故①正确;若平面α∥平面BB1C1C,由平面α∩平面A1B1C1=GH,平面BCC1B1∩平面A1B1C1=B1C1,知GH∥B1C1,而GH∥B1C1不一定成立,故②错误;由AA1⊥平面BCFE,结合AA1∥EH知EH⊥平面BCFE,又EH⊂平面α,所以平面α⊥平面BCFE,故③正确.答案:①③9.(2019·太原模拟)如图,在四棱锥PABCD中,底面ABCD是菱形,∠BAD=60°,P A=PD=AD=2,点M在线段PC上,且PM=2MC,N为AD的中点.(1)求证:AD⊥平面PNB;(2)若平面P AD⊥平面ABCD,求三棱锥PNBM的体积.解:(1)证明:连接BD.∵P A=PD,N为AD的中点,∴PN⊥AD.又底面ABCD是菱形,∠BAD=60°,∴△ABD为等边三角形,∴BN⊥AD,又PN∩BN=N,∴AD⊥平面PNB.(2)∵P A=PD=AD=2,∴PN=NB= 3.又平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,PN⊥AD,∴PN⊥平面ABCD,∴PN⊥NB,∴S△PNB=12×3×3=32.∵AD⊥平面PNB,AD∥BC,∴BC ⊥平面PNB .又PM =2MC , ∴V P NBM =V M PNB =23V C PNB =23×13×32×2=23.10.如图,在直三棱柱ABC A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.求证:(1)直线DE ∥平面A 1C 1F ; (2)平面B 1DE ⊥平面A 1C 1F .证明:(1)在直三棱柱ABC A 1B 1C 1中,AC ∥A 1C 1, 在△ABC 中,因为D ,E 分别为AB ,BC 的中点. 所以DE ∥AC ,于是DE ∥A 1C 1,又因为DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F , 所以直线DE ∥平面A 1C 1F .(2)在直三棱柱ABC A 1B 1C 1中,AA 1⊥平面A 1B 1C 1, 因为A 1C 1⊂平面A 1B 1C 1,所以AA 1⊥A 1C 1,又因为A 1C 1⊥A 1B 1,A 1B 1∩AA 1=A 1,AA 1⊂平面ABB 1A 1,A 1B 1⊂平面ABB 1A 1, 所以A 1C 1⊥平面ABB 1A 1, 因为B 1D ⊂平面ABB 1A 1, 所以A 1C 1⊥B 1D ,又因为B 1D ⊥A 1F ,A 1C 1∩A 1F =A 1,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F , 所以B 1D ⊥平面A 1C 1F , 因为直线B 1D ⊂平面B 1DE , 所以平面B 1DE ⊥平面A 1C 1F .B 级1.(2018·全国卷Ⅱ)如图,在三棱锥P ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离. 解:(1)证明:因为P A =PC =AC =4,O 为AC 的中点, 所以PO ⊥AC ,且PO =2 3. 连接OB , 因为AB =BC =22AC , 所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥OB . 又因为AC ∩OB =O ,所以PO ⊥平面ABC . (2)作CH ⊥OM ,垂足为H , 又由(1)可得OP ⊥CH , 所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°,所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.2.(2019·河南中原名校质量考评)如图,在四棱锥P ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD ,E ,F 分别是CD ,PC 的中点.求证:(1)BE ∥平面P AD ; (2)平面BEF ⊥平面PCD .证明:(1)∵AB ∥CD ,CD =2AB ,E 是CD 的中点, ∴AB ∥DE 且AB =DE , ∴四边形ABED 为平行四边形,∴AD ∥BE ,又BE ⊄平面P AD ,AD ⊂平面P AD , ∴BE ∥平面P AD .(2)∵AB ⊥AD ,∴四边形ABED 为矩形, ∴BE ⊥CD ,AD ⊥CD ,∵平面P AD ⊥底面ABCD ,平面P AD ∩底面ABCD =AD ,P A ⊥AD , ∴P A ⊥底面ABCD , ∴P A ⊥CD ,又P A ∩AD =A , ∴CD ⊥平面P AD ,∴CD ⊥PD , ∵E ,F 分别是CD ,PC 的中点, ∴PD ∥EF ,∴CD ⊥EF ,又EF ∩BE =E , ∴CD ⊥平面BEF ,∵CD ⊂平面PCD ,∴平面BEF ⊥平面PCD .。
高中数学知识点总结(第八章 立体几何 第六节 直线、平面平行与垂直的综合问题) -
![高中数学知识点总结(第八章 立体几何 第六节 直线、平面平行与垂直的综合问题) -](https://img.taocdn.com/s3/m/c4f6e304cd1755270722192e453610661ed95a5b.png)
第六节 直线、平面平行与垂直的综合问题考点一 立体几何中的探索性问题[典例] (2018·全国卷Ⅲ)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC .(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.[解] (1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,所以BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM .又BC ∩CM =C ,所以DM ⊥平面BMC .因为DM ⊂平面AMD ,所以平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD . 证明如下: 连接AC 交BD 于O . 因为四边形ABCD 为矩形, 所以O 为AC 的中点.连接OP ,因为P 为AM 的中点, 所以MC ∥OP .又MC ⊄平面PBD ,OP ⊂平面PBD , 所以MC ∥平面PBD . [题组训练]1.如图,三棱锥P ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥P ABC 的体积;(2)在线段PC 上是否存在点M ,使得AC ⊥BM ,若存在,请说明理由,并求PMMC 的值.解:(1)由题设AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=32.由P A ⊥平面ABC ,可知P A 是三棱锥P ABC 的高,又P A =1,所以三棱锥P ABC 的体积V =13·S △ABC ·P A =36.(2)在线段PC 上存在点M ,使得AC ⊥BM ,证明如下:如图,在平面ABC 内,过点B 作BN ⊥AC ,垂足为N .在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连接BM .由P A ⊥平面ABC ,知P A ⊥AC , 所以MN ⊥AC .因为BN ∩MN =N ,所以AC ⊥平面MBN , 又BM ⊂平面MBN , 所以AC ⊥BM .在Rt △BAN 中,AN =AB ·cos ∠BAC =12,从而NC =AC -AN =32,由MN ∥P A ,得PM MC =AN NC =13.2.如图,在四棱锥P ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC =PD =2,E 为PC 的中点,CB =3CG .(1)求证:PC ⊥BC ;(2)AD 边上是否存在一点M ,使得P A ∥平面MEG ?若存在,求出AM 的长;若不存在,请说明理由.解:(1)证明:因为PD ⊥平面ABCD ,BC ⊂平面ABCD , 所以PD ⊥BC .因为四边形ABCD 是正方形,所以BC ⊥CD . 又PD ∩CD =D ,PD ⊂平面PCD ,CD ⊂平面PCD , 所以BC ⊥平面PCD .因为PC ⊂平面PCD ,所以PC ⊥BC .(2)连接AC ,BD 交于点O ,连接EO ,GO ,延长GO 交AD 于点M ,连接EM ,则P A ∥平面MEG . 证明如下:因为E 为PC 的中点,O 是AC 的中点, 所以EO ∥P A .因为EO ⊂平面MEG ,P A ⊄平面MEG ,所以P A ∥平面MEG . 因为△OCG ≌△OAM ,所以AM =CG =23,所以AM 的长为23.考点二 平面图形的翻折问题[典例] (2018·全国卷Ⅲ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°.以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =D Q =23DA ,求三棱锥QABP 的体积.解:(1)证明:由已知可得,∠BAC =90°,即BA ⊥AC . 又因为BA ⊥AD ,AC ∩AD =A , 所以AB ⊥平面ACD . 因为AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =3 2. 又BP =D Q =23DA ,所以BP =2 2.如图,过点Q 作Q E ⊥AC ,垂足为E ,则Q E 平行且等于13DC .由已知及(1)可得,DC ⊥平面ABC , 所以Q E ⊥平面ABC ,Q E =1.因此,三棱锥QABP 的体积为V QABP =13×S △ABP ×Q E =13×12×3×22sin 45°×1=1.[题组训练]1.(2019·湖北五校联考)如图1所示,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =12AB =2,E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直,得到如图2所示的几何体D ABC .(1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F BCE 的体积. 解:(1)证明:∵AC =AD 2+CD 2=22, ∠BAC =∠ACD =45°,AB =4,∴在△ABC 中,BC 2=AC 2+AB 2-2AC ×AB ×cos 45°=8, ∴AB 2=AC 2+BC 2=16,∴AC ⊥BC .∵平面ACD ⊥平面ABC ,平面ACD ∩平面ABC =AC , ∴BC ⊥平面ACD .(2)∵AD ∥平面BEF ,AD ⊂平面ACD ,平面ACD ∩平面BEF =EF ,∴AD ∥EF , ∵E 为AC 的中点,∴EF 为△ACD 的中位线,由(1)知,几何体F BCE 的体积V F BCE =V B CEF =13×S △CEF ×BC ,S △CEF =14S △ACD =14×12×2×2=12,∴V F BCE =13×12×22=23.2.(2018·合肥二检)如图1,在平面五边形ABCDE 中,AB ∥CE ,且AE =2,∠AEC =60°,CD =ED =7,cos ∠EDC =57.将△CDE 沿CE 折起,使点D 到P 的位置,且AP =3,得到如图2所示的四棱锥P ABCE .(1)求证:AP ⊥平面ABCE ;(2)记平面P AB 与平面PCE 相交于直线l ,求证:AB ∥l . 证明:(1)在△CDE 中,∵CD =ED =7,cos ∠EDC =57,由余弦定理得CE = 72+72-2×7×7×57=2.连接AC ,∵AE =2,∠AEC =60°, ∴AC =2. 又AP =3,∴在△P AE 中,AP 2+AE 2=PE 2, 即AP ⊥AE . 同理,AP ⊥AC .∵AC ∩AE =A ,AC ⊂平面ABCE ,AE ⊂平面ABCE , ∴AP ⊥平面ABCE .(2)∵AB ∥CE ,且CE ⊂平面PCE ,AB ⊄平面PCE , ∴AB ∥平面PCE .又平面P AB ∩平面PCE =l ,∴AB ∥l .[课时跟踪检测]1.如图,四棱锥P ABCD 的底面ABCD 是圆内接四边形(记此圆为W ),且P A ⊥平面ABCD .(1)当BD 是圆W 的直径时,P A =BD =2,AD =CD =3,求四棱锥P ABCD 的体积.(2)在(1)的条件下,判断在棱P A 上是否存在一点Q ,使得B Q ∥平面PCD ?若存在,求出A Q 的长;若不存在,请说明理由.解:(1)因为BD 是圆W 的直径,所以BA ⊥AD , 因为BD =2,AD =3,所以AB =1. 同理BC =1,所以S 四边形ABCD =AB ·AD = 3. 因为P A ⊥平面ABCD ,P A =2,所以四棱锥P ABCD 的体积V =13S 四边形ABCD ·P A =233.(2)存在,A Q =23.理由如下.延长AB ,DC 交于点E ,连接PE ,则平面P AB 与平面PCD 的交线是PE . 假设在棱P A 上存在一点Q ,使得B Q ∥平面PCD , 则B Q ∥PE ,所以A Q P A =ABAE.经计算可得BE =2,所以AE =AB +BE =3,所以A Q =23.故存在这样的点Q ,使B Q ∥平面PCD ,且A Q =23.2.如图,侧棱与底面垂直的四棱柱ABCD A 1B 1C 1D 1的底面是梯形,AB ∥CD ,AB ⊥AD ,AA 1=4,DC =2AB ,AB =AD =3,点M 在棱A 1B 1上,且A 1M =13A 1B 1.已知点E 是直线CD 上的一点,AM ∥平面BC 1E .(1)试确定点E 的位置,并说明理由; (2)求三棱锥M BC 1E 的体积.解:(1)点E 在线段CD 上且EC =1,理由如下:在棱C 1D 1上取点N ,使得D 1N =A 1M =1,连接MN ,DN , 因为D 1N ∥A 1M ,所以四边形D 1NMA 1为平行四边形, 所以MN 平行且等于A 1D 1平行且等于AD .所以四边形AMND 为平行四边形,所以AM ∥DN . 因为CE =1,所以易知DN ∥EC 1,所以AM ∥EC 1, 又AM ⊄平面BC 1E ,EC 1⊂平面BC 1E ,所以AM ∥平面BC 1E . 故点E 在线段CD 上且EC =1. (2)由(1)知,AM ∥平面BC 1E ,所以V M BC 1E =V A BC 1E =V C 1ABE =13×⎝⎛⎭⎫12×3×3×4=6. 3.(2019·湖北武汉部分学校调研)如图1,在矩形ABCD 中,AB =4,AD =2,E 是CD 的中点,将△ADE 沿AE 折起,得到如图2所示的四棱锥D 1ABCE ,其中平面D 1AE ⊥平面ABCE .(1)证明:BE ⊥平面D 1AE ;(2)设F 为CD 1的中点,在线段AB 上是否存在一点M ,使得MF ∥平面D 1AE ,若存在,求出AMAB的值;若不存在,请说明理由.解:(1)证明:∵四边形ABCD 为矩形且AD =DE =EC =BC =2, ∴∠AEB =90°,即BE ⊥AE ,又平面D 1AE ⊥平面ABCE ,平面D 1AE ∩平面ABCE =AE , ∴BE ⊥平面D 1AE . (2)当AM AB =14时,MF ∥平面D 1AE ,理由如下: 取D 1E 的中点L ,连接FL ,AL , ∴FL ∥EC ,又EC ∥AB , ∴FL ∥AB ,且FL =14AB ,∴M ,F ,L ,A 四点共面, 又MF ∥平面AD 1E ,∴MF ∥AL . ∴四边形AMFL 为平行四边形, ∴AM =FL =14AB ,AM AB =14.4.如图1所示,在Rt △ABC 中,∠ABC =90°,D 为AC 的中点,AE ⊥BD 于点E (不同于点D ),延长AE 交BC 于点F ,将△ABD 沿BD 折起,得到三棱锥A 1BCD ,如图2所示.(1)若M是FC的中点,求证:直线DM∥平面A1EF.(2)求证:BD⊥A1F.(3)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?请说明理由.解:(1)证明:∵D,M分别为AC,FC的中点,∴DM∥EF,又∵EF⊂平面A1EF,DM⊄平面A1EF,∴DM∥平面A1EF.(2)证明:∵EF⊥BD,A1E⊥BD,A1E∩EF=E,A1E⊂平面A1EF,EF⊂平面A1EF,∴BD⊥平面A1EF,又A1F⊂平面A1EF,∴BD⊥A1F.(3)直线A1B与直线CD不能垂直.理由如下:∵平面BCD⊥平面A1BD,平面BCD∩平面A1BD=BD,EF⊥BD,EF⊂平面BCD,∴EF⊥平面A1BD,又∵A1B⊂平面A1BD,∴A1B⊥EF,又∵DM∥EF,∴A1B⊥DM.假设A1B⊥CD,∵DM∩CD=D,∴A1B⊥平面BCD,∴A1B⊥BD,与∠A1BD为锐角矛盾,∴直线A1B与直线CD不能垂直.5.(2019·河南名校联考)如图,在多面体ABCDEF中,四边形ABCD是梯形,AB∥CD,AD=DC=CB=a,∠ABC=60°,四边形ACFE是矩形,且平面ACFE⊥平面ABCD,点M在线段EF上.(1)求证:BC⊥平面ACFE;(2)当EM为何值时,AM∥平面BDF?证明你的结论.解:(1)证明:在梯形ABCD中,因为AB∥CD,AD=DC=CB=a,∠ABC=60°,所以四边形ABCD是等腰梯形,且∠DCA=∠DAC=30°,∠DCB=120°,所以∠ACB=∠DCB-∠DCA=90°,所以AC⊥BC.又平面ACFE⊥平面ABCD,平面ACFE∩平面ABCD=AC,BC⊂平面ABCD,所以BC⊥平面ACFE.(2)当EM =33a 时,AM ∥平面BDF ,理由如下: 如图,在梯形ABCD 中,设AC ∩BD =N ,连接FN .由(1)知四边形ABCD 为等腰梯形,且∠ABC =60°,所以AB =2DC ,则CN ∶NA =1∶2.易知EF =AC =3a ,所以AN =233a .因为EM =33a , 所以MF =23EF =233a ,所以MF 平行且等于AN , 所以四边形ANFM 是平行四边形, 所以AM ∥NF ,又NF ⊂平面BDF ,AM ⊄平面BDF , 所以AM ∥平面BDF .6.如图所示的五面体ABEDFC 中,四边形ACFD 是等腰梯形,AD ∥FC ,∠DAC =60°,BC ⊥平面ACFD ,CA =CB =CF =1,AD =2CF ,点G 为AC 的中点.(1)在AD 上是否存在一点H ,使GH ∥平面BCD ?若存在,指出点H 的位置并给出证明;若不存在,说明理由;(2)求三棱锥G ECD 的体积.解:(1)存在点H 使GH ∥平面BCD ,此时H 为AD 的中点.证明如下. 取点H 为AD 的中点,连接GH , 因为点G 为AC 的中点,所以在△ACD 中,由三角形中位线定理可知GH ∥CD , 又GH ⊄平面BCD ,CD ⊂平面BCD , 所以GH ∥平面BCD .(2)因为AD ∥CF ,AD ⊂平面ADEB ,CF ⊄平面ADEB , 所以CF ∥平面ADEB ,因为CF ⊂平面CFEB ,平面CFEB ∩平面ADEB =BE , 所以CF ∥BE ,又CF ⊂平面ACFD ,BE ⊄平面ACFD , 所以BE ∥平面ACFD , 所以V G ECD =V E GCD =V B GCD .因为四边形ACFD 是等腰梯形,∠DAC =60°,AD =2CF =2AC ,所以∠ACD =90°,又CA =CB =CF =1,所以CD =3,CG =12,又BC ⊥平面ACFD ,所以V B GCD =13×12CG ×CD ×BC =13×12×12×3×1=312.所以三棱锥G ECD 的体积为312.。
2018届高考高中数学全部知识点整理
![2018届高考高中数学全部知识点整理](https://img.taocdn.com/s3/m/7906190a48d7c1c708a145cb.png)
高中高一数学必修 1
各章知识点总结
第一章集合与函数概念
一、集合有关概念
1.常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R
2.关于“属于”的概念
如:a是集合A的元素,就说a属于集合 A 记作 a∈A ,相反,a不属于集合 A 记作 a A
3.集合的分类:
(1).有限集含有有限个元素的集合
(2).无限集含有无限个元素的集合
(3).空集不含任何元素的集合例:{x|x2=-5}=Φ
二、集合间的基本关系
1.“包含”关系—子集注意:B
A有两种可能(1)A是B的一部分,;(2)A 与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B
1。
高中数学知识点总结(第二章 函数的概念与基本初等函数Ⅰ第五节 函数的图象)
![高中数学知识点总结(第二章 函数的概念与基本初等函数Ⅰ第五节 函数的图象)](https://img.taocdn.com/s3/m/4acb3fc3d4bbfd0a79563c1ec5da50e2524dd15f.png)
第五节 函数的图象一、基础知识1.利用描点法作函数图象 其基本步骤是列表、描点、连线. 首先:(1)确定函数的定义域; (2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);其次,列表,描点,连线. 2.函数图象的变换 (1)平移变换①y =f (x )的图象――――――――→a >0,右移a 个单位a <0,左移|a |个单位y =f (x -a )的图象; ②y =f (x )的图象――――――――→b >0,上移b 个单位b <0,下移|b |个单位y =f (x )+b 的图象. “左加右减,上加下减”,左加右减只针对x 本身,与x 的系数,无关,上加下减指的是在f x 整体上加减.(2)对称变换①y =f (x )的图象―――――→关于x 轴对称 y =-f (x )的图象; ②y =f (x )的图象―――――→关于y 轴对称 y =f (-x )的图象; ③y =f (x )的图象――――――→关于原点对称y =-f (-x )的图象; ④y =a x (a >0且a ≠1)的图象―――――――→关于直线y =x 对称y =log a x (a >0且a ≠1)的图象. (3)伸缩变换①y =f (x )的图象―――――――――――――――――――→a >1,横坐标缩短为原来的1a 纵坐标不变0<a <1,横坐标伸长为原来的1a倍,纵坐标不变y =f (ax )的图象. ②y =f (x )的图象――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变y =af (x )的图象. (4)翻折变换 ①y =f (x )的图象――→x 轴下方部分翻折到上方x 轴及上方部分不变y =|f (x )|的图象;②y =f (x )的图象――→y 轴右侧部分翻折到左侧原y 轴左侧部分去掉,右侧不变y =f (|x |)的图象.二、常用结论1.函数图象自身的轴对称(1)f (-x )=f (x )⇔函数y =f (x )的图象关于y 轴对称;(2)函数y =f (x )的图象关于x =a 对称⇔f (a +x )=f (a -x )⇔f (x )=f (2a -x )⇔f (-x )=f (2a +x );(3)若函数y =f (x )的定义域为R ,且有f (a +x )=f (b -x ),则函数y =f (x )的图象关于直线x =a +b 2对称.2.函数图象自身的中心对称(1)f (-x )=-f (x )⇔函数y =f (x )的图象关于原点对称;(2)函数y =f (x )的图象关于(a,0)对称⇔f (a +x )=-f (a -x )⇔f (x )=-f (2a -x )⇔f (-x )=-f (2a +x );(3)函数y =f (x )的图象关于点(a ,b )成中心对称⇔f (a +x )=2b -f (a -x )⇔f (x )=2b -f (2a -x ).3.两个函数图象之间的对称关系(1)函数y =f (a +x )与y =f (b -x )的图象关于直线x =b -a 2对称(由a +x =b -x 得对称轴方程);(2)函数y =f (x )与y =f (2a -x )的图象关于直线x =a 对称; (3)函数y =f (x )与y =2b -f (-x )的图象关于点(0,b )对称; (4)函数y =f (x )与y =2b -f (2a -x )的图象关于点(a ,b )对称. 考点一 作函数的图象[典例] 作出下列函数的图象.(1)y =⎩⎪⎨⎪⎧-2x +3,x ≤1,-x 2+4x -2,x >1;(2)y =2x +2; (3)y =x 2-2|x |-1.[解] (1)分段分别画出函数的图象,如图①所示.(2)y =2x+2的图象是由y =2x 的图象向左平移2个单位长度得到的,其图象如图②所示.(3)y =⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0,其图象如图③所示.[变透练清]1.[变条件]若本例(2)变为y =⎝⎛⎭⎫12x -2,试作出其图象.解:y =⎝⎛⎭⎫12x -2的图象是由y =⎝⎛⎭⎫12x 的图象向右平移2个单位长度得到的,其图象如图 所示.2.[变条件]若本例(3)变为y =|x 2-2x -1|,试作出其图象.解:y =⎩⎨⎧x 2-2x -1,x ≥1+2或x ≤1-2,-x 2+2x +1,1-2<x <1+2,其图象如图所示.考点二 函数图象的识辨[例1] (2018·全国卷Ⅱ)函数f (x )=e x -e -xx 2的图象大致为( )[解析] ∵y =e x -e -x 是奇函数,y =x 2是偶函数,∴f (x )=e x -e -xx 2是奇函数,图象关于原点对称,排除A 选项;当x =1时,f (1)=e -1e >0,排除D 选项;又e>2,∴1e <12,∴e -1e >1,排除C 选项.故选B.[答案] B[例2] 已知定义在区间[0,4]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为( )[解析] 法一:先作出函数y =f (x )的图象关于y 轴的对称图象,得到y =f (-x )的图象; 然后将y =f (-x )的图象向右平移2个单位,得到y =f (2-x )的图象;再作y =f (2-x )的图象关于x 轴的对称图象,得到y =-f (2-x )的图象.故选D.法二:先作出函数y =f (x )的图象关于原点的对称图象,得到y =-f (-x )的图象;然后将y =-f (-x )的图象向右平移2个单位,得到y =-f (2-x )的图象.故选D.[答案] D [解题技法]1.函数图象与解析式之间的4种对应关系(1)从函数的定义域,判断图象的左右位置,从函数的值域(或有界性),判断图象的上下位置;(2)从函数的单调性,判断图象的升降变化趋势;(3)从函数的奇偶性,判断图象的对称性:奇函数的图象关于原点对称,在对称的区间上单调性一致,偶函数的图象关于y 轴对称,在对称的区间上单调性相反;(4)从函数的周期性,判断图象是否具有循环往复特点. 2.通过图象变换识别函数图象要掌握的两点(1)熟悉基本初等函数的图象(如指数函数、对数函数等函数的图象); (2)了解一些常见的变换形式,如平移变换、翻折变换. 3.借助动点探究函数图象解决此类问题可以根据已知条件求出函数解析式后再判断函数的图象,也可以采用“以静观动”,即将动点处于某些特殊的位置处考察图象的变化特征,从而作出选择.[题组训练]1.(2019•郑州调研)已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≥01x ,x <0,g (x )=-f (-x ),则函数g (x )的图象是( )解析:选D 法一:由题设得函数g (x )=-f (-x )=⎩⎪⎨⎪⎧-x 2,x ≤0,1x ,x >0,据此可画出该函数的图象,如题图选项D 中图象.故选D.法二:先画出函数f (x )的图象,如图1所示,再根据函数f (x )与-f (-x )的图象关于坐标原点对称,即可画出函数-f (-x ),即g (x )的图象,如图2所示.故选D.2.如图,不规则四边形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 交AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD 分成两部分,设AE =x ,左侧部分的面积为y ,则y 关于x 的图象大致是( )解析:选C 当l 从左至右移动时,一开始面积的增加速度越来越快,过了D 点后面积保持匀速增加,图象呈直线变化,过了C 点后面积的增加速度又逐渐减慢.故选C.考点三 函数图象的应用考法(一) 研究函数的性质[典例] 已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0)[解析] 将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.[答案] C[解题技法] 利用函数的图象研究函数的性质对于已知或解析式易画出其在给定区间上图象的函数,其性质常借助图象研究: (1)从图象的最高点、最低点,分析函数的最值、极值; (2)从图象的对称性,分析函数的奇偶性;(3)从图象的走向趋势,分析函数的单调性、周期性.考法(二) 在不等式中的应用[典例] 若不等式(x -1)2<log a x (a >0,且a ≠1)在x ∈(1,2)内恒成立,则实数a 的取值范围为( )A .(1,2] B.⎝⎛⎭⎫22,1C .(1,2)D .(2,2)[解析] 要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需函数y =(x -1)2在(1,2)上的图象在y =log a x 的图象的下方即可.当0<a <1时,显然不成立;当a >1时,如图,要使x ∈(1,2)时,y =(x -1)2的图象在y =log a x 的图象的下方,只需(2-1)2≤log a 2,即log a 2≥1,解得1<a ≤2,故实数a 的取值范围是(1,2].[答案] A [解题技法]当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上下关系问题,从而利用数形结合法求解.[题组训练]1.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f x -f -x x <0的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)解析:选D 因为f (x )为奇函数, 所以不等式f x-f -xx<0可化为f xx<0, 即xf (x )<0,f (x )的大致图象如图所示. 所以xf (x )<0的解集为(-1,0)∪(0,1).2.对a ,b ∈R ,记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,函数f (x )=max{|x +1|,|x -2|}(x ∈R)的最小值是________.解析:函数f (x )=max{|x +1|,|x -2|}(x ∈R)的图象如图所示, 由图象可得,其最小值为32.答案:323.已知函数f (x )=⎩⎨⎧log 2⎝⎛⎭⎫-x2,x ≤-1,-13x 2+43x +23,x >-1,若f (x )在区间[m,4]上的值域为[-1,2],则实数m 的取值范围为________.解析:作出函数f (x )的图象,当x ≤-1时,函数f (x )=log 2⎝⎛⎭⎫-x2单调递减,且最小值为f (-1)=-1,则令log 2⎝⎛⎭⎫-x 2=2,解得x =-8;当x >-1时,函数f (x )=-13x 2+43x +23在(-1,2)上单调递增,在[2,+∞)上单调递减,则最大值为f (2)=2,又f (4)=23<2,f (-1)=-1,故所求实数m的取值范围为[-8,-1].答案:[-8,-1][课时跟踪检测]A级1.为了得到函数y=2x-2的图象,可以把函数y=2x的图象上所有的点()A.向右平行移动2个单位长度B.向右平行移动1个单位长度C.向左平行移动2个单位长度D.向左平行移动1个单位长度解析:选B因为y=2x-2=2(x-1),所以只需将函数y=2x的图象上所有的点向右平移1个单位长度,即可得到y=2(x-1)=2x-2的图象.2.若函数y=f(x)的图象如图所示,则函数y=-f(x+1)的图象大致为()解析:选C要想由y=f(x)的图象得到y=-f(x+1)的图象,需要先将y=f(x)的图象关于x轴对称得到y=-f(x)的图象,然后向左平移1个单位长度得到y=-f(x+1)的图象,根据上述步骤可知C正确.3.(2018·浙江高考)函数y=2|x|sin 2x的图象可能是()解析:选D 由y =2|x |sin 2x 知函数的定义域为R , 令f (x )=2|x |sin 2x ,则f (-x )=2|-x |sin(-2x )=-2|x |sin 2x . ∵f (x )=-f (-x ),∴f (x )为奇函数. ∴f (x )的图象关于原点对称,故排除A 、B. 令f (x )=2|x |sin 2x =0,解得x =k π2(k ∈Z),∴当k =1时,x =π2,故排除C ,选D.4.下列函数y =f (x )图象中,满足f ⎝⎛⎭⎫14>f (3)>f (2)的只可能是( )解析:选D 因为f ⎝⎛⎭⎫14>f (3)>f (2),所以函数f (x )有增有减,排除A 、B.在C 中,f ⎝⎛⎭⎫14<f (0)=1,f (3)>f (0),即f ⎝⎛⎭⎫14<f (3),排除C ,选D.5.已知函数f (x )的图象如图所示,则f (x )的解析式可以是( ) A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:选A 由函数图象可知,函数f (x )为奇函数,应排除B 、C.若函数为f (x )=x -1x ,则x →+∞时,f (x )→+∞,排除D.6.已知函数y =f (x +1)的图象过点(3,2),则函数y =f (x )的图象关于x 轴的对称图形一定过点________.解析:因为函数y =f (x +1)的图象过点(3,2),所以函数y =f (x )的图象一定过点(4,2),所以函数y =f (x )的图象关于x 轴的对称图形一定过点(4,-2).答案:(4,-2)7.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.解析:当-1≤x ≤0时,设解析式为f (x )=kx +b (k ≠0),则⎩⎪⎨⎪⎧ -k +b =0,b =1,得⎩⎪⎨⎪⎧k =1,b =1.∴当-1≤x ≤0时,f (x )=x +1.当x >0时,设解析式为f (x )=a (x -2)2-1(a ≠0), ∵图象过点(4,0), ∴0=a (4-2)2-1,∴a =14.故函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14x -22-1,x >0. 答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14x -22-1,x >0 8.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集为________.解析:令y =log 2(x +1),作出函数y =log 2(x +1)图象如图所示.由⎩⎪⎨⎪⎧x +y =2,y =log 2x +1得⎩⎪⎨⎪⎧x =1,y =1. ∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}. 答案:{x |-1<x ≤1} 9.画出下列函数的图象. (1)y =e ln x ; (2)y =|x -2|·(x +1).解:(1)因为函数的定义域为{x |x >0}且y =e ln x =x (x >0), 所以其图象如图所示. (2)当x ≥2,即x -2≥0时,y =(x -2)(x +1)=x 2-x -2=⎝⎛⎭⎫x -122-94; 当x <2,即x -2<0时,y =-(x -2)(x +1)=-x 2+x +2=-⎝⎛⎭⎫x -122+94. 所以y =⎩⎨⎧⎝⎛⎭⎫x -122-94,x ≥2,-⎝⎛⎭⎫x -122+94,x <2.这是分段函数,每段函数的图象可根据二次函数图象作出(其图象如图所示).10.已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈2,5].(1)在如图所示给定的直角坐标系内画出f (x )的图象;(2)写出f (x )的单调递增区间;(3)由图象指出当x 取什么值时f (x )有最值.解:(1)函数f (x )的图象如图所示.(2)由图象可知,函数f (x )的单调递增区间为[-1,0],[2,5].(3)由图象知当x =2时,f (x )min =f (2)=-1,当x =0时,f (x )max =f (0)=3.B 级1.若函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在 (-1,3)上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)解析:选C 作出函数f (x )的图象如图所示.当x ∈(-1,0)时,由xf (x )>0得x ∈(-1,0);当x ∈(0,1)时,由xf (x )>0得x ∈∅;当x ∈(1,3)时,由xf (x )>0得x ∈(1,3).故x ∈(-1,0)∪(1,3).2.(2019·山西四校联考)已知函数f (x )=|x 2-1|,若0<a <b 且f (a )=f (b ),则b 的取值范围是( )A .(0,+∞)B .(1,+∞)C .(1,2)D .(1,2) 解析:选C 作出函数f (x )=|x 2-1|在区间(0,+∞)上的图象如图所示,作出直线y =1,交f (x )的图象于点B ,由x 2-1=1可得x B =2,结合函数图象可得b 的取值范围是(1,2).3.已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称. (1)求f (x )的解析式;(2)若g (x )=f (x )+a x,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围. 解:(1)设f (x )图象上任一点P (x ,y ),则点P 关于(0,1)点的对称点P ′(-x,2-y )在h (x )的图象上,即2-y =-x -1x +2,∴y =f (x )=x +1x(x ≠0). (2)g (x )=f (x )+a x =x +a +1x ,∴g ′(x )=1-a +1x2. ∵g (x )在(0,2]上为减函数,∴1-a +1x2≤0在(0,2]上恒成立,即a +1≥x 2在(0,2]上恒成立, ∴a +1≥4,即a ≥3,故实数a 的取值范围是[3,+∞).4.若关于x 的不等式4a x -1<3x -4(a >0,且a ≠1)对于任意的x >2恒成立,求a 的取值范围.解:不等式4a x -1<3x -4等价于a x -1<34x -1. 令f (x )=a x -1,g (x )=34x -1, 当a >1时,在同一坐标系中作出两个函数的图象如图(1)所示,由图知不满足条件; 当0<a <1时,在同一坐标系中作出两个函数的图象如图(2)所示,当x ≥2时,f (2)≤g (2),即a 2-1≤34×2-1, 解得a ≤12,所以a 的取值范围是⎝⎛⎦⎤0,12.。
2018版高中数学 第2章 数列 2.3.2 第2课时 等比数列前n项和的性质及应用课件 新人教版必
![2018版高中数学 第2章 数列 2.3.2 第2课时 等比数列前n项和的性质及应用课件 新人教版必](https://img.taocdn.com/s3/m/5f5641d6998fcc22bcd10db5.png)
所以
x=6, y=30
或
x=-4, y=-40
(舍去),
所以 S4n=30. 【答案】 (1)2 (2)30
分XX组X 求和法 已知数列{an}:a1,a2,a3,…,an,…构成一个新数列:a1,(a2
-a1),…,(an-an-1),…此数列是首项为 1,公比为13的等比数列. (1)求数列{an}的通项; (2)求数列{an}的前 n 项和 Sn. 【精彩点拨】 通过观察,不难发现,新数列的前 n 项和恰为 an,这样即
【解析】 法一:由等比数列前 n 项和的性质知 S5,S10-S5, S15-S10 成等比数列,故(S10-S5)2=S5(S15-S10), 即(50-10)2=10(S15-50),解得 S15=210.
法二:设数列{an}的首项为 a1,公比为 q,
显然 q≠1,则
a111--qq5=10,① a111--qq10=50,②
所以 Tn=12+232+253+…+2n2-n 1, 12Tn=212+233+…+2n2-n 3+22nn-+11. 两式相减,得 12Tn=12+222+223+…+22n-22nn-+11 =32-2n1-1-22nn-+11, 所以 Tn=3-2n2+n 3.
1.本题对于ba11+ba22+…+bann=1-21n式的处理运用了和式的思想,这也是求数 列通项公式的基本方法.
可将问题转化为首项为 1,公比为13的等比数列的前 n 项和,数列{an}的通项公 式求出后,计算其前 n 项和 Sn 就容易多了.
【自主解答】 (1)an=a1+(a2-a1)+(a3-a2)+…+(an-an-1) =1+13+132+…+13n-1=321-13n.
(完整版)高中数学人教版必修五不等式知识点最完全精炼总结,推荐文档
![(完整版)高中数学人教版必修五不等式知识点最完全精炼总结,推荐文档](https://img.taocdn.com/s3/m/f17001b8a76e58fafbb0032b.png)
△>0
Байду номын сангаас
ax
b(a
x 0)
x
b
a b
(a (a
0) 0)
a
△=0
△<0
y=ax2+bx+c
y
的图象
(a>0)
x1 O
x2x
y
O x1
x
y x
O
ax2+bx+c=0 有两相异实根 (a>0)的根 x1, x2 (x1<x2)
有两相等实根
x1=x2=
b 2a
ax2+bx+c>0 {x|x<x1,或 x>x2} {x|x≠ b }
一.不等式知识要点
1.两实数大小的比较
a b a b 0 a b a b 0 a b a b 0
2.不等式的性质:8条性质.
3.基 本不 等式 定理
且且且且 且且且且 且且且且 且且且且
a 2 b 2 2ab
a2
b2
1 (a b)2 2
值。
z ax by z x2 y2
z y x
6
练习:1.求满足 | x | + | y | ≤4 的整点(横、纵坐标为整数)的
个数。
2.且且且且且且且f
(x)
2
log2
x
1 log2
x
(0
x
1)
34.f(x)=x+ 1 且x4且且且且且 x1
4.求函数 f ( x) ( x 1)2 4 ( x 1) 的最小值.
(5)一元二次方程根的分布问题: 方法:依据二次函数的图像特征从:开口方向、判别式、对称 轴、
高中数学知识点总结(第九章 平面解析几何 第二节 两直线的位置关系)
![高中数学知识点总结(第九章 平面解析几何 第二节 两直线的位置关系)](https://img.taocdn.com/s3/m/266a038985868762caaedd3383c4bb4cf7ecb745.png)
第二节 两直线的位置关系一、基础知识1.两条直线平行与垂直的判定 (1)两条直线平行①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直①如果两条直线l 1,l 2的斜率存在, 设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1.②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解. 3.三种距离公式 (1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|=x 2-x 12+y 2-y 12.(2)点到直线的距离公式点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两平行直线间的距离公式两条平行直线Ax +By +C 1=0与Ax +By +C 2=0 间的距离d =|C 1-C 2|A 2+B 2.二、常用结论(1)与直线Ax +By +C =0(A 2+B 2≠0)垂直或平行的直线方程可设为: ①垂直:Bx -Ay +m =0;②平行:Ax +By +n =0. (2)与对称问题相关的四个结论:①点(x ,y )关于点(a ,b )的对称点为(2a -x,2b -y ).②点(x ,y )关于直线x =a 的对称点为(2a -x ,y ),关于直线y =b 的对称点为(x,2b -y ). ③点(x ,y )关于直线y =x 的对称点为(y ,x ),关于直线y =-x 的对称点为(-y ,-x ). ④点(x ,y )关于直线x +y =k 的对称点为(k -y ,k -x ),关于直线x -y =k 的对称点为(k +y ,x -k ).考点一 两条直线的位置关系[典例] 已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m ,n 的值,使 (1)l 1与l 2相交于点P (m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.[解] (1)由题意得⎩⎪⎨⎪⎧m 2-8+n =0,2m -m -1=0,解得⎩⎪⎨⎪⎧m =1,n =7.即m =1,n =7时,l 1与l 2相交于点P (m ,-1).(2)∵l 1∥l 2,∴⎩⎪⎨⎪⎧m 2-16=0,-m -2n ≠0,解得⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2.即m =4,n ≠-2或m =-4,n ≠2时,l 1∥l 2. (3)当且仅当2m +8m =0, 即m =0时,l 1⊥l 2. 又-n8=-1,∴n =8.即m =0,n =8时,l 1⊥l 2,且l 1在y 轴上的截距为-1.[解题技法]1..由一般式确定两直线位置关系的方法[题组训练]1.已知直线4x+my-6=0与直线5x-2y+n=0垂直,垂足为(t,1),则n的值为() A.7B.9C.11 D.-7解析:选A由直线4x+my-6=0与直线5x-2y+n=0垂直得,20-2m=0,m=10.直线4x+10y-6=0过点(t,1),所以4t+10-6=0,t=-1.点(-1,1)又在直线5x-2y+n=0上,所以-5-2+n=0,n=7.2.(2019·保定五校联考)直线l1:mx-2y+1=0,l2:x-(m-1)y-1=0,则“m=2”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C由l1∥l2得-m(m-1)=1×(-2),得m=2或m=-1,经验证,当m=-1时,直线l1与l2重合,舍去,所以“m=2”是“l1∥l2”的充要条件,故选C.考点二距离问题[典例](1)过点P(2,1)且与原点O距离最远的直线方程为()A.2x+y-5=0B.2x-y-3=0C.x+2y-4=0 D.x-2y=0(2)若两平行直线l1:x-2y+m=0(m>0)与l2:2x+ny-6=0之间的距离是5,则m +n=()A .0B .1C .-2D .-1[解析] (1)过点P (2,1)且与原点O 距离最远的直线为过点P (2,1)且与OP 垂直的直线,因为直线OP 的斜率为1-02-0=12,所以所求直线的斜率为-2,故所求直线方程为2x +y -5=0.(2)因为l 1,l 2平行,所以1×n =2×(-2),1×(-6)≠2×m ,解得n =-4,m ≠-3,所以直线l 2:x -2y -3=0.又l 1,l 2之间的距离是 5,所以|m +3|1+4=5,解得m =2或m =-8(舍去),所以m +n =-2,故选C.[答案] (1)A (2)C[解题技法]1.点到直线的距离的求法可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式. 2.两平行线间的距离的求法(1)利用“转化法”将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离.(2)利用两平行线间的距离公式. [题组训练]1.已知点P (2,m )到直线2x -y +3=0的距离不小于25,则实数m 的取值范围是________________.解析:由题意得,点P 到直线的距离为|2×2-m +3|22+12≥25,即|m -7|≥10,解得m ≥17或m ≤-3,所以实数m 的取值范围是(-∞,-3]∪[17,+∞).答案:(-∞,-3]∪[17,+∞)2.如果直线l 1:ax +(1-b )y +5=0和直线l 2:(1+a )x -y -b =0都平行于直线l 3:x -2y +3=0,则l 1,l 2之间的距离为________.解析:因为l 1∥l 3,所以-2a -(1-b )=0,同理-2(1+a )+1=0,解得a =-12,b =0,因此l 1:x -2y -10=0,l 2:x -2y =0,d =|-10-0|12+-22=2 5.答案:25考点三 对称问题[典例] 已知直线l :2x -3y +1=0,点A (-1,-2). (1)求点A 关于直线l 的对称点A ′的坐标;(2)求直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程. [解] (1)设A ′(x ,y ),再由已知得 ⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413,所以A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在m ′上.设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1,解得M ′⎝⎛⎭⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又因为m ′经过点N (4,3),所以由两点式得直线m ′方程为9x -46y +102=0.[变透练清] 1.变结论在本例条件下,则直线l 关于点A (-1,-2)对称的直线l ′的方程为________________.解析:法一:在l :2x -3y +1=0上任取两点, 如M (1,1),N (4,3),则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上. 易知M ′(-3,-5),N ′(-6,-7), 由两点式可得 l ′的方程为2x -3y -9=0. 法二:设P (x ,y )为l ′上任意一点, 则P (x ,y )关于点A (-1,-2)的对称点为 P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0. 答案:2x -3y -9=02.(2019·合肥四校联考)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a --3=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.答案:6x -y -6=0[解题技法]1.中心对称问题的两个类型及求解方法 (1)点关于点对称若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1进而求解.(2)直线关于点对称①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程; ③轨迹法,设对称直线上任一点M (x ,y ),其关于已知点的对称点在已知直线上. 2.轴对称问题的两个类型及求解方法 (1)点关于直线的对称若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称, 由方程组⎩⎪⎨⎪⎧A ×x 1+x 22+B ×y 1+y22+C =0,y 2-y 1x 2-x 1×⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).(2)直线关于直线的对称一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[课时跟踪检测]1.过点(1,0)且与直线x -2y -2=0垂直的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0解析:选C 因为直线x -2y -2=0的斜率为12,所以所求直线的斜率k =-2.所以所求直线的方程为y -0=-2(x -1), 即2x +y -2=0.2.已知直线l 1:2ax +(a +1)y +1=0和l 2:(a +1)x +(a -1)y =0,若l 1⊥l 2,则a =( ) A .2或12B.13或-1 C.13D .-1解析:选B 因为直线l 1⊥l 2,所以2a (a +1)+(a +1)(a -1)=0,解得a =13或-1.3.若点P 在直线3x +y -5=0上,且P 到直线x -y -1=0的距离为2,则点P 的坐标为( )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-1,2) 解析:选C 设P (x,5-3x ),则d =|x -5+3x -1|12+-12=2,化简得|4x -6|=2,即4x -6=±2,解得x =1或x =2,故P (1,2)或(2,-1).4.(2018·揭阳一模)若直线l 1:x -3y +2=0与直线l 2:mx -y +b =0关于x 轴对称,则m +b =( )A.13 B .-1 C .-13D .1解析:选B 直线l 1:x -3y +2=0关于x 轴对称的直线为x +3y +2=0.由题意知m ≠0. 因为mx -y +b =0,即x -y m +bm=0,且直线l 1与l 2关于x 轴对称,所以有⎩⎨⎧-1m=3,bm =2,解得⎩⎨⎧m =-13,b =-23,则m +b =-13+⎝⎛⎭⎫-23=-1. 5.点A (1,3)关于直线y =kx +b 对称的点是B (-2,1),则直线y =kx +b 在x 轴上的截距是( )A .-32B.54 C .-65D.56解析:选D 由题意,知⎩⎨⎧3-11+2·k =-1,2=k ·⎝⎛⎭⎫-12+b ,解得⎩⎨⎧k =-32,b =54.∴直线方程为y =-32x +54,它在x 轴上的截距为-54×⎝⎛⎭⎫-23=56.故选D. 6.(2019·成都五校联考)已知A ,B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A .2x +y -7=0B .x +y -5=0C .2y -x -4=0D .2x -y -1=0解析:选B 由|P A |=|PB |得点P 一定在线段AB 的垂直平分线上,根据直线P A 的方程为x -y +1=0,可得A (-1,0),将x =2代入直线x -y +1=0,得y =3,所以P (2,3),所以B (5,0),所以直线PB 的方程是x +y -5=0,选B.7.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3 2B .22C .3 3D .42解析:选A 依题意知AB 的中点M 的集合为与直线l 1:x +y -7=0和l 2:x +y -5=0距离都相等的直线,则M 到原点的距离的最小值为原点到该直线的距离.设点M 所在直线的方程为l :x +y +m =0,根据平行线间的距离公式得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0.根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=3 2. 8.已知点A (1,3),B (5,-2),在x 轴上有一点P ,若|AP |-|BP |最大,则P 点坐标为( )A .(3.4,0)B .(13,0)C .(5,0)D .(-13,0)解析:选B 作出A 点关于x 轴的对称点A ′(1,-3),则A ′B 所在直线方程为x -4y -13=0.令y =0得x =13,所以点P 的坐标为(13,0).9.经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程为________.解析:由方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0得x =0,y =2,即P (0,2).因为l ⊥l 3,所以直线l 的斜率k =-43,所以直线l 的方程为y -2=-43x ,即4x +3y -6=0.答案:4x +3y -6=010.已知点P 1(2,3),P 2(-4,5)和A (-1,2),则过点A 且与点P 1,P 2距离相等的直线方程为________.解析:当直线与点P 1,P 2的连线所在的直线平行时,由直线P 1P 2的斜率k =3-52+4=-13,得所求直线的方程为y -2=-13(x +1),即x +3y -5=0.当直线过线段P 1P 2的中点时,因为线段P 1P 2的中点坐标为(-1,4),所以直线方程为x =-1.综上所述,所求直线方程为x +3y -5=0或x =-1.答案:x +3y -5=0或x =-111.直线x -2y +1=0关于直线x =1对称的直线方程是________.解析:由题意得直线x -2y +1=0与直线x =1的交点坐标为(1,1).又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0),所以由直线方程的两点式,得y -01-0=x -31-3,即x +2y -3=0.答案:x +2y -3=012.过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________.解析:设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,把B 点坐标代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上, 所以由两点式得直线l 的方程为x +4y -4=0. 答案:x +4y -4=013.已知△ABC 的三个顶点是A (1,1),B (-1,3),C (3,4). (1)求BC 边的高所在直线l 1的方程;(2)若直线l 2过C 点,且A ,B 到直线l 2的距离相等,求直线l 2的方程.解:(1)因为k BC =4-33+1=14,又直线l 1与BC 垂直,所以直线l 1的斜率k =-1k BC =-4,所以直线l 1的方程是y =-4(x -1)+1,即4x +y -5=0.(2)因为直线l 2过C 点且A ,B 到直线l 2的距离相等, 所以直线l 2与AB 平行或过AB 的中点M , 因为k AB =3-1-1-1=-1,所以直线l 2的方程是y =-(x -3)+4,即x +y -7=0. 因为AB 的中点M 的坐标为(0,2), 所以k CM =4-23-0=23,所以直线l 2的方程是y =23(x -3)+4,即2x -3y +6=0. 综上,直线l 2的方程是x +y -7=0或2x -3y +6=0.。
人教版高中数学知识点总结大全
![人教版高中数学知识点总结大全](https://img.taocdn.com/s3/m/820a6cba690203d8ce2f0066f5335a8103d26670.png)
人教版高中数学知识点总结大全人教版高一数学重点知识点总结梳理五篇分享1空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp.空间向量法两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点,相交直线;(2)没有公共点,平行或异面直线和平面的位置关系:直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行①直线在平面内,有无数个公共点②直线和平面相交,有且只有一个公共点直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
空间向量法(找平面的法向量)规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°]最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直人教版高一数学重点知识点总结梳理五篇分享2形如y=k/某(k为常数且k≠0)的函数,叫做反比例函数。
自变量某的取值范围是不等于0的一切实数。
反比例函数某像性质:反比例函数的某像为双曲线。
由于反比例函数属于奇函数,有f(-某)=-f(某),某像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的某像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
如某,上面给出了k分别为正和负(2和-2)时的函数某像。
当K>0时,反比例函数某像经过一,三象限,是减函数当K<0时,反比例函数图像经过二,四象限,是增函数反比例函数某像只能无限趋向于坐标轴,无法和坐标轴相交。
人教版高中数学集合部分高考考纲、重点知识、典型例题及高考真题总结整理
![人教版高中数学集合部分高考考纲、重点知识、典型例题及高考真题总结整理](https://img.taocdn.com/s3/m/6928e8bd51e79b8968022687.png)
高中数学必修一 集合部分高考考纲、重点知识、高考真题及典型例题总结一、高考考纲要求(必考)1.集合的含义与表示(1)了解集合的含义、元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题. 2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩(Venn)图表达集合的关系及运算.二、重点知识1.集合的三要素:确定性、互异性、无序性.2.集合与元素间关系,,a A a A a A a A ∈⎧⎨∉⎩元素在集合中元素不在集合中 3.常用数集①自然数集N ;②正整数集*N N +或;③整数集Z ;④有理数集Q ;⑤实数集R4.集合间关系:子集、真子集、集合相等。
①子集:A 中元素都在B 中时,称A 为B 的子集,记作A B ⊆或B A ⊇.②真子集:A 为B 的子集且A B ≠时,称A 为B 的真子集,记作A B Ü或B A Ý. ③集合相等:若A B ⊆同时B A ⊆,即A 与B 互相包含时,A B =.集合相等的重要证明方法:A B =⇔A B ⊆且B A ⊆.5.空集①空集是不含任何元素的集合,记作∅.②是任何集合的子集,是任何非空集合的真子集.6.有限集合的子集个数①n 元集合共有2n 个子集;②n 元集合共有21n -个真子集;④n 元集合共有21n -个非空子集;③n 元集合共有22n -个非空真子集.7.集合的运算:交、并、补.(1)韦恩图示①交集:公共元素组成的集合 ②并集:所有元素组成的集合③补集:“剩余”元素组成的集合A 在全集U 中的补集:U C A(2)基本性质①A ∅=∅,A B BA =,()A AB ⊆,()B A B ⊆A B A B B ⊆⇔=. ②A ∅=∅,A B B A =,()A A B ⊇,()B A B ⊇,A B A B A ⊆⇔=. ③U AC A U =,U A C A =∅,()U U C C A A =,U C U =∅,U C U ∅=.若A B U ⊆⊆,则U U C B C A ⊆,()()()U U U C A B C A C B =,()()()U U U C A B C A C B =. ④集合运算结合律()()AB C A B C =,()()A B C A B C =; ⑤集合运算分配律()()()A B C A B A C =,()()()A B C A B A C =⑥集合中元素个数性质()()()()card A B card A card B card A B =+-,()()()()card A B card A card B card A B =+-三、典型例题1.下列集合中表示同一集合的是.A (){}(){}3,2,2,3M N== .B {}{}4,5,5,4M N == .C (){}{},1,1M x y x y N y x y =+==+= .D {}(){}1,2,1,2M N == 【答案】.B【解析】A 项中集合M 和N 中元素是两个不同的点;C 项中集合M 的元素为坐标,即点N 中元素为函数1x y +=的值域,两集合中元素不同;D 项中,M 中元素为两个常数1和2,N 中 元素点的坐标.B 项中集合M 和N 都仅有两个元素4和5,根据集合的无序性可得M N =. 故选.B2.已知几个关系式:①{}{},,a b b a ⊆;②{}{},,a b b a =;③{}0=∅;④{}00∈;⑤{}0∅∈;⑥{}0∅⊆.其中正确的个数为.A 3个 .B 4个 .C 5个 .D 6个【答案】.B U A A B A B A B A B【解析】正确的有①②④⑥共4个.错误的为③⑤.故选.B3.已知集合S 中三个元素是ABC ∆的三边长,那么ABC ∆一定不是.A 锐角三角形 .B 直角三角形 .C 钝角三角形 .D 等腰三角形【答案】.D【解析】由集合元素的互异性可知,三角形任何两边长不相等,所以不可能是等腰三角形. 4.满足{}{}1,21,2,3,4,5A ⊆Ü的集合A 的个数是.A 3个 .B 4个 .C 7个 .D 8个【答案】.C【解析】∵{}1,2A ⊆,∴集合{}1,2是集合A 的子集,则A 中必含有元素1,2.又∵{}1,2,3,4,5A Ü,∴集合A 的所有可能情况有:{}1,2,{}1,2,3,{}1,2,4,{}1,2,5,{}1,2,3,4, {}1,2,3,5,{}1,2,4,5共7种情况.故选.C5.已知集合{}21P x x ==,集合{}1Q x ax ==,若Q P ⊆,则a 的值为 .A 1 .B -1 .C 1或-1 .D 0,1或-1【答案】.D 【解析】{}{}211,1P x x ===-,集合P 的子集有{}{}{},1,1,1,1∅--. ∵Q P ⊆且Q 中最多有一个元素,∴Q 只可能为{}{},1,1∅-.当Q =∅时,0a =,当{}1Q =-时,把1x =-代入1ax =中解得1a =-,当{}1Q =时,把1x =代入1ax =中解得1a =.综上,a 的值为1,01-或.故选.D6.已知集合3,2A x Z x Z x ⎧⎫=∈∈⎨⎬-⎩⎭,{}2230B x x x =--=. (1)用列举法表示集合A ;(2)求A B ,并列出A B 的所有子集. 【解析】(1)∵32Z x∈-,∴2x -是3的正因数,∴2x -只可能为1,3,此时x 的可能整数值为1,1,3,5-, ∴{}3,1,1,3,52A x Z x Z x ⎧⎫=∈∈=-⎨⎬-⎩⎭. (2)∵{}{}22301,3B x x x =--==-,∴{}{}{}1,1,3,51,31,3A B =--=-.∴A B 的所有子集为:{}{}{},1,3,1,3∅--,共4个子集.四、高考真题1.(2018年高考全国卷Ⅰ,文科卷1题)已知集合{}{}0,2,2,1,0,1,2A B ==--,则A B =.A {}0,2 .B {}1,2 .C {}0 .D {}2,1,0,1,2--。
高中数学知识点总结( 坐标系与参数方程 第一节 坐标系)
![高中数学知识点总结( 坐标系与参数方程 第一节 坐标系)](https://img.taocdn.com/s3/m/d30fcfd73086bceb19e8b8f67c1cfad6195fe99d.png)
坐标系与参数方程第一节 坐标系一、基础知识1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·xλ>0,y ′=μ·y μ>0的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标①极径:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ. ②极角:以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ. ③极坐标:有序数对ρ,θ叫做点M 的极坐标,记为M ρ,θ.一般不作特殊说明时,我们认为ρ ≥0,θ可取任意实数.3.极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y ), 极坐标是(ρ,θ),则它们之间的关系为:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ;⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x x ≠0. 4.简单曲线的极坐标方程曲线极坐标方程 圆心为极点,半径为r 的圆 ρ=r (0≤θ<2π) 圆心为(r,0),半径为r 的圆 ρ=2r cos θ⎝⎛⎭⎫-π2≤θ≤π2 圆心为⎝⎛⎭⎫r ,π2,半径为r 的圆 ρ=2r sin θ(0≤θ<π)过极点,倾斜角为α的直线 θ=α(ρ∈R)或θ=π+α(ρ∈R)过点(a,0),与极轴垂直的直线 ρcos θ=a ⎝⎛⎭⎫-π2<θ<π2 过点⎝⎛⎭⎫a ,π2,与极轴平行的直线 ρsin θ=a (0<θ<π)考点一 平面直角坐标系下图形的伸缩变换[典例] 求双曲线C :x 2-y 264=1经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 变换后所得曲线C ′的焦点坐标. [解] 设曲线C ′上任意一点P (x ′,y ′), 由上述可知,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入x 2-y 264=1,得x ′29-4y ′264=1,化简得x ′29-y ′216=1,即x 29-y 216=1为曲线C ′的方程, 可见仍是双曲线,则焦点(-5,0),(5,0)为所求. [解题技法] 伸缩变换后方程的求法平面上的曲线y =f (x )在变换φ:⎩⎪⎨⎪⎧x ′=λx λ>0,y ′=μy μ>0的作用下的变换方程的求法是将⎩⎨⎧x =x ′λ,y =y ′μ代入y =f (x ),得y ′μ=f ⎝⎛⎭⎫x ′λ,整理之后得到y ′=h (x ′),即为所求变换之后的方程.[提醒] 应用伸缩变换时,要分清变换前的点的坐标(x ,y )与变换后的坐标(x ′,y ′).[题组训练]1.若函数y =f (x )的图象在伸缩变换φ:⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 的作用下得到曲线的方程为y ′=3sin ⎝⎛⎭⎫x ′+π6,求函数y =f (x )的最小正周期. 解:由题意,把变换公式代入曲线y ′=3sin ⎝⎛⎭⎫x ′+π6得 3y =3sin ⎝⎛⎭⎫2x +π6,整理得y =sin ⎝⎛⎭⎫2x +π6, 故f (x )=sin ⎝⎛⎭⎫2x +π6. 所以函数f (x )的最小正周期为π.2.将圆x 2+y 2=1变换为椭圆x 225+y 216=1的一个伸缩变换公式φ:⎩⎪⎨⎪⎧x ′=λx ,y ′=μy (λ,μ>0),求λ,μ的值.解:将变换后的椭圆x 225+y 216=1改写为x ′225+y ′216=1,把伸缩变换公式φ:⎩⎪⎨⎪⎧x ′=λx ,y ′=μy (λ,μ>0)代入上式得:λ2x 225+μ2y 216=1即⎝⎛⎭⎫λ52x 2+⎝⎛⎭⎫μ42y 2=1,与x 2+y 2=1, 比较系数得⎩⎨⎧⎝⎛⎭⎫λ52=1,⎝⎛⎭⎫μ42=1,所以⎩⎪⎨⎪⎧λ=5,μ=4.考点二 极坐标与直角坐标的互化[典例] (2018·江苏高考)在极坐标系中,直线l 的方程为ρsin ⎝⎛⎭⎫π6-θ=2,曲线C 的方程为ρ=4cos θ,求直线l 被曲线C 截得的弦长.[解] 因为曲线C 的极坐标方程为ρ=4cos θ,化成直角坐标方程为(x -2)2+y 2=4, 所以曲线C 是圆心为(2,0),直径为4的圆. 因为直线l 的极坐标方程为ρsin ⎝⎛⎭⎫π6- θ=2, 化成直角坐标方程为y =33(x -4), 则直线l 过A (4,0),倾斜角为π6,所以A 为直线l 与圆C 的一个交点. 设另一个交点为B ,则∠OAB =π6.如图,连接OB .因为OA 为直径,从而∠OBA =π2,所以AB =4cos π6=2 3.所以直线l 被曲线C 截得的弦长为2 3.[解题技法]1.极坐标方程与直角坐标方程的互化方法(1)直角坐标方程化为极坐标方程:将公式x =ρcos θ及y =ρsin θ直接代入直角坐标方程并化简即可.(2)极坐标方程化为直角坐标方程:通过变形,构造出形如ρcos θ,ρsin θ,ρ2的形式,再应用公式进行代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形技巧.2.极角的确定由tan θ确定角θ时,应根据点P 所在象限取最小正角. (1)当x ≠0时,θ角才能由tan θ=yx 按上述方法确定.(2)当x =0时,tan θ没有意义,这时可分三种情况处理:当x =0,y =0时,θ可取任何值;当x =0,y >0时,可取θ=π2;当x =0,y <0时,可取θ=3π2.[题组训练]1.(2019·郑州质检)在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎫θ-π4=22(ρ≥0,0≤θ<2π). (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 的公共点的极坐标. 解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 故圆O 的直角坐标方程为x 2+y 2-x -y =0, 直线l :ρsin ⎝⎛⎭⎫θ-π4=22,即ρsin θ-ρcos θ=1, 则直线l 的直角坐标方程为x -y +1=0.(2)将两直角坐标方程联立得⎩⎪⎨⎪⎧ x 2+y 2-x -y =0,x -y +1=0,解得⎩⎪⎨⎪⎧x =0,y =1,即圆O 与直线l 在直角坐标系下的公共点为(0,1), 将(0,1)转化为极坐标为⎝⎛⎭⎫1,π2即为所求. 2.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρ·cos ⎝⎛⎭⎫θ-π4=2. (1)求圆O 1和圆O 2的直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解:(1)由ρ=2知ρ2=4,所以圆O 1的直角坐标方程为x 2+y 2=4.因为ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2, 所以ρ2-22ρ⎝⎛⎭⎫cos θcos π4+sin θsin π4=2, 所以圆O 2的直角坐标方程为x 2+y 2-2x -2y -2=0. (2)将两圆的直角坐标方程相减, 得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin ⎝⎛⎭⎫θ+π4=22. 考点三 曲线的极坐标方程的应用[典例] (2017·全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值. [解] (1)设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0). 由题设知|OP |=ρ,|OM |=ρ1=4cos θ. 由|OM |·|OP |=16,得C 2的极坐标方程ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0),由题设知|OA |=2,ρB =4cos α,于是△OAB 的面积S =12|OA |·ρB ·sin ∠AOB =4cos α·⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3=2⎪⎪⎪⎪sin ⎝⎛⎭⎫2α-π3-32. 即当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3. [解题技法]1.求简单曲线的极坐标方程的方法(1)设点M (ρ,θ)为曲线上任意一点,由已知条件,构造出三角形,利用三角函数及正、余弦定理求解|OM |与θ的关系.(2)先求出曲线的直角坐标方程,再利用极坐标与直角坐标的变换公式,把直角坐标方程化为极坐标方程.2.利用极坐标系解决问题的技巧(1)用极坐标系解决问题时要注意题目中的几何关系,如果几何关系不容易通过极坐标表示时,可以先化为直角坐标方程,将不熟悉的问题转化为熟悉的问题加以解决.(2)已知极坐标方程解答最值问题时,通常可转化为三角函数模型求最值问题,其比直角坐标系中求最值的运算量小.[提醒] 在曲线的方程进行互化时,一定要注意变量的范围,注意转化的等价性. [题组训练]1.(2019·青岛质检)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =cos φ,y =1+sin φ(其中φ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)设直线l 的极坐标方程是ρsin ⎝⎛⎭⎫θ+π3=2,射线OM :θ=π6与圆C 的交点为P ,与直线l 的交点为Q ,求线段P Q 的长.解:(1)圆C 的普通方程为x 2+(y -1)2=1,又x =ρcos θ,y =ρsin θ, 所以圆C 的极坐标方程为ρ=2sin θ. (2)把θ=π6代入圆的极坐标方程可得ρP =1,把θ=π6代入直线l 的极坐标方程可得ρQ =2,所以|P Q|=|ρP -ρQ |=1.2.(2018·湖北八校联考)已知曲线C 的极坐标方程为ρ2=9cos 2 θ+9sin 2 θ,以极点为平面直角坐标系的原点O ,极轴为x 轴的正半轴建立平面直角坐标系.(1)求曲线C 的直角坐标方程;(2)A ,B 为曲线C 上两点,若OA ⊥OB ,求1|OA |2+1|OB |2的值.解:(1)由ρ2=9cos 2θ+9sin 2θ得ρ2cos 2θ+9ρ2sin 2θ=9,将x =ρcos θ,y =ρsin θ代入得到曲线C 的直角坐标方程是x 29+y 2=1.(2)因为ρ2=9cos 2θ+9sin 2θ,所以1ρ2=cos 2θ9+sin 2θ, 由OA ⊥OB ,设A (ρ1,α),则点B 的坐标可设为⎝⎛⎭⎫ρ2,α±π2, 所以1|OA |2+1|OB |2=1ρ21+1ρ22=cos 2α9+sin 2α+sin 2α9+cos 2α=19+1=109.[课时跟踪检测]1.在极坐标系中,求直线ρcos ⎝⎛⎭⎫θ+π6=1与圆ρ=4sin θ的交点的极坐标. 解:ρcos ⎝⎛⎭⎫θ+π6=1化为直角坐标方程为3x -y =2, 即y =3x -2.ρ=4sin θ可化为x 2+y 2=4y , 把y =3x -2代入x 2+y 2=4y , 得4x 2-83x +12=0, 即(x -3)2=0, 所以x =3,y =1.所以直线与圆的交点坐标为(3,1),化为极坐标为⎝⎛⎭⎫2,π6. 2.在极坐标系中,已知圆C 经过点P ⎝⎛⎭⎫2,π4,圆心为直线ρsin ⎝⎛⎭⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.解:在ρsin ⎝⎛⎭⎫θ-π3=-32中,令θ=0,得ρ=1, 所以圆C 的圆心坐标为(1,0). 因为圆C 经过点P ⎝⎛⎭⎫2,π4, 所以圆C 的半径|PC |=22+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ.3.在直角坐标系xOy 中,圆C 的方程为(x -3)2+(y +1)2=9,以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线OP :θ=π6(ρ∈R)与圆C 交于点M ,N ,求线段MN 的长.解:(1)(x -3)2+(y +1)2=9可化为x 2+y 2-23x +2y -5=0, 故其极坐标方程为ρ2-23ρcos θ+2ρsin θ-5=0. (2)将θ=π6代入ρ2-23ρcos θ+2ρsin θ-5=0,得ρ2-2ρ-5=0,所以ρ1+ρ2=2,ρ1ρ2=-5, 所以|MN |=|ρ1-ρ2|=4+20=2 6.4.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1,M ,N 分别为C 与x 轴,y 轴的交点. (1)求C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解:(1)由ρcos ⎝⎛⎭⎫θ-π3=1得ρ⎝⎛⎭⎫12cos θ+32sin θ=1. 从而C 的直角坐标方程为12x +32y =1,即x +3y =2.当θ=0时,ρ=2,所以M (2,0). 当θ=π2时,ρ=233,所以N ⎝⎛⎭⎫233,π2.(2)由(1)知M 点的直角坐标为(2,0),N 点的直角坐标为⎝⎛⎭⎫0,233.所以点P 的直角坐标为⎝⎛⎭⎫1,33,则点P 的极坐标为⎝⎛⎭⎫233,π6, 所以直线OP 的极坐标方程为θ=π6(ρ∈R).5.(2018·南昌摸底调研)在平面直角坐标系xOy 中,曲线C 1的方程为(x -3)2+(y -2)2=4,直线C 2的方程为y =33x ,以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求曲线C 1和直线C 2的极坐标方程;(2)若直线C 2与曲线C 1交于P ,Q 两点,求|OP |·|O Q|的值. 解:(1)∵曲线C 1的普通方程为(x -3)2+(y -2)2=4, 即x 2+y 2-23x -4y +3=0,∴曲线C 1的极坐标方程为ρ2-23ρcos θ-4ρsin θ+3=0. ∵直线C 2的方程为y =33x , ∴直线C 2的极坐标方程为θ=π6(ρ∈R).(2)设P (ρ1,θ1),Q(ρ2,θ2),将θ=π6(ρ∈R)代入ρ2-23ρcos θ-4ρsin θ+3=0,得ρ2-5ρ+3=0,∴ρ1ρ2=3,∴|OP |·|O Q|=ρ1ρ2=3.6.(2019·山西八校联考)在直角坐标系xOy 中,曲线C 的方程为(x -3)2+(y -4)2=25.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)设l 1:θ=π6,l 2:θ=π3,若l 1,l 2与曲线C 分别交于异于原点的A ,B 两点,求△AOB的面积.解:(1)∵曲线C 的普通方程为(x -3)2+(y -4)2=25, 即x 2+y 2-6x -8y =0.∴曲线C 的极坐标方程为ρ=6cos θ+8sin θ. (2)设A ⎝⎛⎭⎫ρ1,π6,B ⎝⎛⎭⎫ρ2,π3. 把θ=π6代入ρ=6cos θ+8sin θ,得ρ1=4+33,∴A ⎝⎛⎭⎫4+33,π6. 把θ=π3代入ρ=6cos θ+8sin θ,得ρ2=3+43,∴B ⎝⎛⎭⎫3+43,π3. ∴S △AOB =12ρ1ρ2sin ∠AOB=12(4+33)(3+43)sin ⎝⎛⎭⎫π3-π6 =12+2534.7.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值. 解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0, 曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.8.(2019·郑州一中模拟)在平面直角坐标系中,曲线C 1的普通方程为x 2+y 2+2x -4=0,曲线C 2的方程为y 2=x ,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 1,C 2的极坐标方程;(2)求曲线C 1与C 2交点的极坐标,其中ρ≥0,0≤θ<2π.解:(1)依题意,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2+2x -4=0可得ρ2+2ρcos θ-4=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入y 2=x ,得ρsin 2θ=cos θ. 故曲线C 1的极坐标方程为ρ2+2ρcos θ-4=0,曲线C 2的极坐标方程为ρsin 2θ=cos θ. (2)将y 2=x 代入x 2+y 2+2x -4=0,得x 2+3x -4=0,解得x =1,x =-4(舍去), 当x =1时,y =±1,所以曲线C 1与C 2交点的直角坐标分别为(1,1),(1,-1),记A (1,1),B (1,-1),所以ρA =1+1=2,ρB =1+1=2,tan θA =1,tan θB =-1, 因为ρ≥0,0≤θ<2π,点A 在第一象限,点B 在第四象限,所以θA =π4,θB =7π4,故曲线C 1与C 2交点的极坐标分别为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,7π4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年新人教版高中数学知识点总结高中数学 必修1知识点 第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. (3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(7)已知集合A 有(1)n n ≥个元素,则它有2个子集,它有21-个真子集,它有21-个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算并集A B U{|,x x A ∈或}x B ∈(1)A A A =U (2)A A ∅=U (3)AB A ⊇U A B B ⊇UBA补集U A ð {|,}x x U x A ∈∉且1()U A A =∅I ð 2()U A A U =U ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R 20(0)ax bx c a ++<>的解集12{|}x x x x <<∅∅〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <.()()()U U U A B A B =I U 痧?()()()U U U A B A B =U I 痧?(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性yxo ②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x =+>的图象与性质()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性函数的 性 质定义图象 判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(-x)=-f(x),那么函数f(x)叫做奇函数.(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(-x)=f(x),那么函数f(x)叫做偶函数.(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数为奇函数,且在处有定义,则.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ) 〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符n 是偶数时,正数a 的正的n次方根用符号n次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.②式子n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n为奇数时,a =;当n 为偶数时,(0)|| (0) a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,mm nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rs r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)rr r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4〖2.2〗对数函数 【2.2.1】对数与对数运算(1)对数的定义 ①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N叫做真数.②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-=③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b na an M M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质函数值的变化情况log0(1) log 0(1)log0(01)aaax xx xx x>>==<<<log0(1)log0(1)log0(01)aaax xx xx x<>==><< a变化对图象的影响在第一象限内,a越大图象越靠低;在第四象限内,a越大图象越靠高.(6)设函数()y f x=的定义域为A,值域为C,从式子()y f x=中解出x,得式子()x yϕ=.如果对于y在C中的任何一个值,通过式子()x yϕ=,x在A中都有唯一确定的值和它对应,那么式子()x yϕ=表示x是y的函数,函数()x yϕ=叫做函数()y f x=的反函数,记作1()x f y-=,习惯上改写成1()y f x-=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x=中反解出1()x f y-=;③将1()x f y-=改写成1()y f x-=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x=与反函数1()y f x-=的图象关于直线y x=对称.②函数()y f x=的定义域、值域分别是其反函数1()y f x-=的值域、定义域.③若(,)P a b在原函数()y f x=的图象上,则'(,)P b a在反函数1()y f x-=的图象上.④一般地,函数()y f x=要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y xα=叫做幂函数,其中x为自变量,α是常数.(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x轴与y轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q互质,p和q Z∈),若p为奇数q为奇数时,则qpy x=是奇函数,若p为奇数q为偶数时,则qpy x=是偶函数,若p为偶数q 为奇数时,则qpy x=是非奇非偶函数.⑤图象特征:幂函数,(0,)y x xα=∈+∞,当1α>时,若01x<<,其图象在直线y x=下方,若1x>,其图象在直线y x=上方,当1α<时,若01x<<,其图象在直线y x=上方,若1x>,其图象在直线y x=下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a=++≠②顶点式:2()()(0)f x a x h k a=-+≠③两根式:12()()()(0)f x a x x x x a=--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与x轴有两个交点,且横线坐标已知时,选用两根式求()f x更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a=++≠的图象是一条抛物线,对称轴方程为,2bxa=-顶点坐标是24(,)24b ac ba a--.②当0a>时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a-+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba-+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=. ③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布 一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号.①k <②x 1≤2③x 1<k <x 2 af(k )<0④k 1<x 1≤x 2<k 2 ⇔x y1x 2x 0>a O ••1k 2k 0)(1>k f 0)(2>k f ab x 2-= xy1x 2x O•<a 1k •2k 0)(1<k f 0)(2<k f a b x 2-=⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合x y1x 2x 0>a O ••1k 2k 0)(1>k f 0)(2<k fxy1x 2x O•<a 1k •2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出. (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+.(Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2bq a ->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a ->,则(M f p = (Ⅱ)当0a <时(开口向下)①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a ->,则()M f q =①若02b x a -≤,则()m f = ②02b x a->,则()m f p =.x>O-=f (p)f (q)()2b f a-x >O -=f (p)f (q)()2b f a-x>O-=f (p)f (q)()2b f a-x>O -=f(p) f (q) ()2bf a-g 0x x>O-=f(p) f(q) ()2b f a -0x g x<O-=f(p) f (q) ()2b f a -x<O-=f(p)f(q) ()2b f a -x <O-=f (p)f (q)()2b f a-0x gx<O-=f (p)f (q)()2bf a-x<O-=f (p)f (q)()2b f a-g0x第三章 函数的应用一、方程的根与函数的零点 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。