物理竞赛1-35届真题分类04刚体力学(无答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
真题分类—刚体力学
(21届复赛)六、(20分)如图所示,三个质量都是m 的刚性小球A 、B 、C 位于光滑的水平桌面上(图中纸面),A 、B 之间,B 、C 之间分别用刚性轻杆相连,杆与A 、B 、C 的各连接处皆为“铰链式”的(不能对小球产生垂直于杆方向的作用力).已知杆AB 与BC 的夹角为 ,< /2.DE 为固定在桌面上一块挡板,它与AB 连线方向垂直.现令A 、B 、C 一起以共同的速度v 沿平行于AB 连线方向向DE 运动,已知在C 与挡板碰撞过程中C 与挡板之间无摩擦力作用,求碰撞时当C 沿垂直于DE 方向的速度由v 变为0这一极短时间内挡板对C 的冲量的大小.
二、(23届复赛)(25分)如图所示,一根质量可以忽略的细杆,长2L ,两端和中心处分别固连着质量为m 的小球B 、D 和C ,开始时静止在光滑的水平桌面上。桌面上另有一质量为M 的小球A ,以一给定的速度Vo 沿垂直于杆DB 的方向与右端小球B 作弹性碰撞求刚碰后小球A 、B 、C 、D 的速度,并详细讨论以后可能发生的运动情况。
由杆的刚性条件有 D C C B ''''-=-v v v v (21)
(19)式的角动量参考点设在刚要发生第二次碰撞时与D 球重合的空间点.
把(18)、(19)、(20)、(21)式与(1)、(2)、(3)、(4)式对比,可以看到它们除了小球B 和D 互换之外是完全相同的.因此它们也有两个解 C 0'=v (22)
和 C
0456M
M m
'=+v v (23)
C
(27届复赛)三、( 22 分)如图,一质量均匀分布的刚性螺旋环质量为m ,半径为 R ,螺距H =πR ,可绕竖直的对称轴OO ′,无摩擦地转动,连接螺旋环与转轴的两支撑杆的质量可忽略不计.一质量也为 m 的小球穿在螺旋环上并可沿螺旋环无摩擦地滑动,首先扶住小球使其静止于螺旋环上的某一点 A ,这时螺旋环也处于静止状态.然后放开小球,让小球沿螺旋环下滑,螺旋环便绕转轴 OO ′,转动.求当小球下滑到离其初始位置沿竖直方向的距离为 h 时,螺旋环转动的角速度和小球对螺旋环作用力的大小.
(29届复赛)三、(25分)如图所示,两根刚性轻杆AB 和BC 在B 段牢固粘接在一
起,AB 延长线与BC 的夹角α为锐角,杆BC 长为l ,杆AB 长为αcos l 。在杆的
A 、
B 和
C 三点各固连一质量均为m 的小球,构成一刚性系统。整个系统放在光滑水平桌面上,桌面上有一固定的光滑竖直挡板,杆AB 延长线与挡板垂直。现使该系统以大小为0v 、方向沿AB 的速度向挡板平动。在某时刻,小球C 与挡板碰撞,碰撞结束时球C 在垂直于挡板方向的分速度为零,且球C 与挡板不粘连。若使球C 碰撞后,球B 先于球A 与挡板
相碰,求夹角α应满足的条件。
(30届复赛)三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆,
1. 令m
L
λ=表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在
竖直平面内转动时,其转动动能可表示为
k E k L αβγλω=
式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.
2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值.
3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g .
提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为 d (())d d d d d Y X t Y X t X t
=
例如,函数cos ()t θ对自变量t 的导数为 dcos ()dcos d d d d t t t θθθθ=
(27届决赛)三、(20分)如图,刚性细轻杆(其质量可视为零)可绕通过其中的点O 的光滑水平轴在竖直面内自由转动。两质量分别为2m 和m 的小球1和2(可视为质点)串
在轻杆上,它们与轻杆之间的静摩擦系数为μ。开始时轻杆静止在水平位置,小球1
和2分别位于紧靠轻杆两端A 和B 的位置。现让系统自水平位置以零初速下摆,求
1.小球1脱离轻杆时的位置(用小球1脱离杆时杆与水平线的夹角表示); 2.小球2脱离轻杆时的位置(用小球2脱离杆时杆与水平线的夹角表示)。
(31届复赛)四、(24分)如图所示,半径为R 、质量为m 0的光滑均匀圆环,套在光滑竖直细轴OO '上,可沿OO '轴滑动或绕OO '轴旋转.圆环上串着两个质量均为m 的小球. 开始时让圆环以某一角速度绕OO '轴转动,两小球自圆环顶端同时从静止开始释放.
(1)设开始时圆环绕OO '轴转动的角速度为ω0,在两小球从环顶下滑过程中,应满足什么条件,圆环才有可能沿OO '轴上滑?
(2)若小球下滑至30θ=︒(θ是过小球的圆环半径与OO '轴的夹角)时,圆环就开始
沿OO'轴上滑,求开始时圆环绕OO'轴转动的角速度ω0、在30
θ=︒时圆环绕OO'轴转动的角速度ω和小球相对于圆环滑动的速率.
(32届复赛15年)二、(15分)如图,在光滑水平桌面上有一长为L的轻杆,轻杆两端各固定一质量均为M的小球A和B。开始时细杆静止;有一质量为m的小球C以垂直于杆的速度
v运动,与A球碰撞。将小球和细杆视为一个系统。
(1)求碰后系统的动能(用已知条件和球C碰后的速度表出);
(2)若碰后系统动能恰好达到极小值,求此时球C的速度和系统的动能。
(32届复赛15年)三、(20分)如图,一质量分布均匀、半径为r的刚性薄圆环落到粗糙的水平地面前的瞬间,圆环质心速度v0与竖直方向成θ(
π3π
22
θ
<<)角,并同时以
角速度
ω(
ω的正方向如图中箭头所示)绕通过其质心O、且垂直环面的轴转动。已知圆环仅在其所在的竖直平面内运动,在弹起前刚好与地面无相对滑动,圆环与地面碰撞的恢复系数为k,重力加速度大小为g。忽略空气阻力。
(1)求圆环与地面碰后圆环质心的速度和圆环转动的角速度;
(2)求使圆环在与地面碰后能竖直弹起的条件和在此条件下圆环能上升的最大高度;
(3)若让θ角可变,求圆环第二次落地点到首次落地点之间的水平距离s随θ变化的