化工原理课程设计 塔计算流程

合集下载

化工原理课程设计——精馏塔设计

化工原理课程设计——精馏塔设计

南京工程学院课程设计说明书(论文)题目乙醇—水连续精馏塔的设计课程名称化工原理院(系、部、中心)康尼学院专业环境工程班级K环境091学生姓名朱盟翔学号240094410设计地点文理楼A404指导教师李乾军张东平设计起止时间:2011年12月5日至 2011 年12月16日符号说明英文字母A a——塔板开孔区面积,m2;A f——降液管截面积,m2;A0——筛孔面积;A T——塔截面积;c0——流量系数,无因此;C——计算u max时的负荷系数,m/s;C S——气相负荷因子,m/s;d0——筛孔直径,m;D——塔径,m;D L——液体扩散系数,m2/s;D V——气体扩散系数,m2/s;e V——液沫夹带线量,kg(液)/kg(气);E——液流收缩系数,无因次;E T——总板效率,无因次;F——气相动能因子,kg1/2/(s·m1/2);F0——筛孔气相动能因子,kg1/2/(s·m1/2);g——重力加速度,9.81m/s2;h1——进口堰与降液管间的距离,m;h C——与干板压降相当的液柱高度,m液柱;h d——与液体流过降液管相当的液柱高度,m;h f——塔板上鼓泡层液高度,m;h1——与板上液层阻力相当的高度,m液柱;h L——板上清夜层高度,m;h0——降液管底隙高度,m;h OW——堰上液层高度,m;h W——出口堰高度,m;h'W——进口堰高度,m;Hσ——与克服表面张力的压降相当的液柱高度,m液柱;H——板式塔高度,m;溶解系数,kmol/(m3·kPa);H B——塔底空间高度,m;H d——降液管内清夜层高度,m;H D——塔顶空间高度,m;H F——进料板处塔板间距,m;H P——人孔处塔板间距,m;H T——塔板间距,m;K——稳定系数,无因次;l W——堰长,m;L h——液体体积流量,m3/h;L S——液体体积流量,m3/h;n——筛孔数目;P——操作压力,Pa;△P——压力降,Pa;△P P——气体通过每层筛板的压降,Pa;r——鼓泡区半径,m,t——筛板的中心距,m;u——空塔气速,m/s;u0——气体通过筛孔的速度,m/s;u0,min——漏气点速度,m/s;u'0——液体通过降液管底隙的速度,m/s;V h——气体体积流量,m3/h;V s——气体体积流量,m3/h;W c——边缘无效区宽度,m;W d——弓形降液管宽度,m;W s——破沫区宽度,m;x——液相摩尔分数;X——液相摩尔比;y——气相摩尔分数;Y——气相摩尔比;Z——板式塔的有效高度,m。

《化工原理》电子教案 —— 板式塔及其工艺设计计算

《化工原理》电子教案 —— 板式塔及其工艺设计计算

《化工原理》电子教案——板式塔及其工艺设计计算教案章节:一、板式塔的概述1. 塔设备的分类及应用2. 板式塔的结构及特点3. 板式塔的分类及选用原则二、塔盘结构与性能1. 塔盘的类型及工作原理2. 塔盘性能的评定指标3. 常用塔盘的结构与性能比较三、塔内流体流动与传质过程1. 塔内流体流动特点2. 气液两相流动计算3. 传质过程及计算四、板式塔的设计计算1. 设计计算的基本步骤2. 塔径的计算方法3. 塔高的计算与确定五、板式塔的工艺计算与优化1. 工艺计算的基本内容2. 塔盘效率的计算与提高措施3. 塔内压降的计算与控制教学目标:通过本章的学习,使学生掌握板式塔的基本概念、结构及特点,了解板式塔的分类和选用原则;掌握塔盘的结构与性能,能够根据实际需求选择合适的塔盘;理解塔内流体流动与传质过程,能够进行简单的计算;熟悉板式塔的设计计算方法,能够进行基本的设计与优化。

教学方法:采用讲解、案例分析、互动讨论相结合的方式进行教学。

通过讲解使学生掌握基本概念和原理,通过案例分析使学生了解实际工程中的应用,通过互动讨论激发学生的思考和创新能力。

教学内容:一、板式塔的概述1. 塔设备的分类及应用讲解:塔设备在化工、环保等领域的应用,各类塔设备的特点及适用范围。

2. 板式塔的结构及特点讲解:板式塔的组成部分,各部分的作用及板式塔相较于其他类型塔的优势。

3. 板式塔的分类及选用原则讲解:不同类型板式塔的结构特点及应用领域,选用原则及注意事项。

二、塔盘结构与性能1. 塔盘的类型及工作原理讲解:常见塔盘类型,如平板塔、圆形塔、浮阀塔等,及其工作原理。

2. 塔盘性能的评定指标讲解:塔盘性能的评定指标,如塔盘效率、压降等,及其计算方法。

3. 常用塔盘的结构与性能比较讲解:常用塔盘的结构特点及性能比较,如圆形塔与浮阀塔的优缺点。

三、塔内流体流动与传质过程1. 塔内流体流动特点讲解:塔内气液两相流动的特点,如流动形态、流动参数等。

化工原理课程设计任务书精馏塔

化工原理课程设计任务书精馏塔

化工原理课程设计任务书精馏塔本篇文档主要介绍化工原理课程设计任务书中关于精馏塔的要求和内容。

一、设计任务设计一座丙酮-甲醇精馏塔,要求:1. 产品:A级丙酮、B级丙酮、水、甲醇2. 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%3. 操作压力:常压4. 输出流量:1000kg/h,A级丙酮90%,B级丙酮10%5. 设计基准:精馏32个板层二、设计步骤1. 精馏塔的结构设计(1) 塔的类型:管式塔(2) 塔的高度:设定32个板层,按传质条件设计最小高度(3) 填料类型:采用网格填料(4) 塔的直径:根据输入流量、精馏塔高度和填料设计(5) 塔的材质:不锈钢(6) 填料厚度:1.5cm2. 精馏塔的操作参数及控制(1) 操作压力:常压(2) 丙酮的重心温度:58℃(3) 甲醇的重心温度:52℃(4) 塔顶压力:1atm(5) 塔底压力:1atm(6) 板间压力降:0.015atm(7) 蒸汽进口管直径:50mm(8) 汽液分离器直径:100mm(9) 泵的扬程:15m3. 精馏塔的热力学计算(1) 设定板层数:32(2) 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%(3) 设定塔顶压力:1atm(4) 设定塔底压力:1atm(5) 设定塔板温度,参考数值文献或软件计算(6) 根据塔板温度确定物质的蒸汽压(7) 根据物质的蒸汽压计算物质的分馏、回流比等参数4. 精馏塔的动力学模拟(1) 建立模型:使用MATLAB或其他模拟软件建立动力学模型(2) 确定控制方案:根据设定的输出要求,确定控制方案(3) 模拟仿真:进行塔的动态仿真,查找可能的故障及出现的问题(4) 评价:对模拟结果进行评价,并应对出现的问题进行处理三、设计成果1. 绘制精馏塔的结构图:包含填料、板层、进口出口等2. 绘制精馏塔的液相、气相平衡图3. 计算精馏塔流程图:包括输入和输出物质流量、温度、压力等参数4. 编写精馏塔的操作说明:包括操作控制、参数设定、操作步骤等5. 输出精馏塔的动态模拟成果:包括MATLAB或其他模拟软件的代码和仿真结果以上是化工原理课程设计的精馏塔任务书的要求和内容,本文档中介绍了设计步骤和要求,设计成果等部分,可以为读者提供一定帮助,同时也展示了精馏塔设计工作的一般流程和方法。

化工原理课程设计(氨气填料吸收塔设计)

化工原理课程设计(氨气填料吸收塔设计)

化工原理课程设计(氨气填料吸收塔设计)1000字氨气填料吸收塔是一种常见的化工工艺设备,用于从氨气等气体中去除二氧化碳等有害成分。

在这篇课程设计中,我们将重点讨论氨气填料吸收塔的设计原理和实现方法。

一、设计原理氨气填料吸收塔的设计原理基于物理吸收法,它通过填充物(如泡沫塑料、陶瓷、金属等)将气相物质传递到液相解吸剂中,以达到去除气体中有害成分的目的。

其中,填充物的种类、形状和大小会影响到吸收效率和压力损失。

塔顶设置进口气流分布器,塔底设置液体分布器,使操作稳定,保证吸收效果。

二、实现方法1. 确定设计参数氨气填料吸收塔的设计需要涉及到多项因素,包括:(1)吸收剂的化学性质:吸收剂的化学性质会影响到塔内化学反应的速率和吸收效率。

因此,需要选择合适的吸收剂,并对其进行物性参数测定。

(2)气体流量:气体流量会影响到塔内的混合程度和扩散速率。

因此,需要确定气体流量范围和变化规律。

(3)操作温度和压力:操作温度和压力会直接影响到化学反应的速率和吸收效率。

因此,需要选择合适的操作温度和压力,并对其进行测定。

(4)塔体高度和直径:塔体高度和直径会影响到填充物的分布、气液流动情况和压降。

因此,需要按照实际需要确定塔的高度和直径。

(5)填充物种类和数量:填充物的种类和数量对吸收效率和压力损失有较大影响。

因此,需要选择合适的填充物,并确定填充层数和填充物粒径。

2. 填充物选型填充物的种类是影响氨气填料吸收塔吸收效率和压力损失的一个关键因素。

选用填充物时需要考虑以下方面:(1)物理性能:填充物的物理性能直接影响其在吸收塔内的分布、气液流动情况和压降。

因此,需要选择合适的物理性能(如比表面积、孔隙率、容重等)的填充物。

(2)化学特性:填充物的化学特性对气液反应速率和吸收效率有较大影响。

因此,需要选择符合需要的化学特性的填充物。

(3)成本和耐久性:填充物的成本和耐久性也是选型时需要考虑的因素,以确保经济可行和长期稳定运行。

化工原理课程设计---精馏塔设计

化工原理课程设计---精馏塔设计
u —空 塔 气 速 , m/s u 0.6 ~ 0.8 umax
umax C
L V V
umax —最 大 空 塔 气 速 , m/s
L、V — 分 别 为 液 相 与 气 相 密 度 , k g m 3
负荷系数
C

C
20


20
0 .2

(C20 值 可 由 S m i t h 关 联 图 求 取 )
先求出分凝器内与 Xd 成相平衡的 X0,再由 操作线方程以 X0 计算得出 Y1,然后由相平衡方 程由 Y1 计算出 X1,如此交替地使用操作线方程 和相平衡关系逐板往下计算,直到规定的塔底组成为止,得到理论板 数和加料位置。
2019/12/7
(3)加料板位置的确定
求出精馏段操作线和提馏段操作线的交点 xq 、yq ,并以xq 为分
5 2
hOW 超过齿顶时 LS

0.735
lW hn

hOW
5 2

hOW
hn
5 2
LS —塔内液体流量,m3 S hn —齿深, m;可取为 0.015m
(3).堰高 hW
堰高与板上液层高度及堰上液层高度的关系:
hW hL hOW
2019/12/7
5、降液管的设计
塔径
流体 流 量 m3/h
Mm
U 形流型 单流型 双流型 阶梯流型
600
5 以下
5~ 25
900
7 以下
7~ 50
1000 1200 1400 1500 2000 3000 4000 5000 6000 应用 场合
7 以下
45 以下
9 以下

课程设计-板式塔设计计算

课程设计-板式塔设计计算

(2)筛板塔板
塔板上开圆孔,孔径:3 - 8 mm,大孔径筛板:12 - 25 mm。
(3)浮阀塔板 浮阀塔盘
方形浮阀
圆形浮阀
条形浮阀
方形浮阀
F1型浮阀
优点:浮阀根据气体流量,自动调节开度,提高了塔板的操作弹 性、降低塔板的压降,同时具有较高塔板效率,在生产中得到广 泛的应用。 缺点:浮阀易脱落或损坏。
② 降液管液泛
当塔内气、液两相流量较大,导致降液管内阻力及塔板阻
力增大时,均会引起降液管液层升高,当降液管内液层高度难 以维持塔板上液相畅通时,降液管内液层迅速上升,以致达到 上一层塔板,逐渐充满塔板空间,即发生液泛。并称之为降液 管液泛。
说明:两种液泛互相影响和关联,其最终现象相同。
(2) 严重漏液 漏液量增大,导致塔板上难以维持正常操作所需的液面,无
6.10.2 塔内气、液两相异常流动
(1)液泛 如果由于某种原因,使得气、液两相流动不畅,使板上液
层迅速积累,以致充满整个空间,破坏塔的正常操作,称此现
象为液泛。 液 泛现象:
① 过量雾沫夹带液泛 原因:
① 气相在液层中鼓泡,气泡破裂,将雾沫弹溅至上一层塔板;
② 气相运动是喷射状,将液体分散并可携带一部分液沫流动。 说明:开始发生液泛时的气速称之为液泛气速 。
为了使进料保持稳定,一般入塔的原料液由高位槽供给,
以免受泵的流量波动的影响。
为了保持回流液的稳定,冷凝器常采用冷却水,而不用塔 顶蒸气预热原料液.因为塔顶蒸气量如有波动,将影响回 流液量及进料温度。从而影响整个塔的操作稳定性。有 时也把冷凝器分割为两部分,一部分预热原料液,另一 部分用冷却水使蒸气冷凝。这样可以用控制冷却水量来 控制冷凝器的操作,同时保证进料温度一定。 塔釜液体虽然温度很高,但用它来预热原料液,对液-液 传热过程其传热系数很小,则所需传热面积必然很大。

《化工原理》电子教案-板式塔及其设计计算

《化工原理》电子教案-板式塔及其设计计算
《化工原理》电子教案板式塔及其设计计算
欢迎来到《化工原理》电子教案系列!在本节课中,我们将介绍板式塔及其 设计计算,帮助您深入了解这一关键概念,提升化工工程技能!
什么是板式塔
板式塔是化工工程中常用的分离设备,用于将混合物分离为不同组分。它结 构紧凑,高效可靠,广泛应用于石油、化工、制药等行业。
板式塔的结构和原理
通过分Байду номын сангаас混合物的组分、物理性质和工作条件,确定板式塔的输入和输出条 件。这对于塔设计的准确性和性能优化非常重要。
理论计算与模拟软件的应用
利用化学工程原理和计算方法,进行板式塔的理论计算。同时,计算软件如 Aspen Plus等也为塔设计和优化提供了强大的工具。
实际案例分析
通过实际案例的分析,深入了解板式塔设计和操作中的挑战和解决方案。这 将帮助您应对实际工程中的各种情况。
板式塔由一系列水平放置的平板组成,通过不同级别的填料和板间的液体-气体接触,实现物质的分离。 它运用传质和传质过程来促进组分之间的分离。
板式塔设计计算的基本步骤
板式塔的设计计算包括确定输入和输出条件、理论计算和模拟软件的应用。 了解这些步骤可以帮助您更好地设计和优化板式塔的操作。
确定输入和输出条件
总结和展望
在本节课中,我们回顾了板式塔的概念、结构、工作原理以及设计计算的基本步骤。接下来,我们将进 一步探索相关的研究和最新进展。

化工原理课程设计塔

化工原理课程设计塔

化工原理课程设计任务书(07化工一班叶成 2)一、题目:酒精连续精馏板式塔的设计二、原始数据:1、乙醇-水混合物,含乙醇 32 %(质量),温度 28 ℃;2、产品:馏出液含乙醇 93 %(质量),温度 31 ℃;3、塔底:塔底液含乙醇 0.06 %(质量)4、生产能力:日产酒精(指馏出液) 9800 kg;5、热源条件:加热蒸汽为饱和蒸汽,其绝对压强为 300 kPa;三、任务:1、确定精馏的流程,绘出流程图,标明所需的设备、管线及其有关观测或控制所必需的仪表和装置。

2、精馏塔的工艺设计和结构设计:选定塔板型,确定塔径、塔高及进料板的位置;选择塔板的结构型式、确定塔板的结构尺寸;进行塔板流体力学的计算(包括塔板压降、淹塔的校核及雾沫夹带量的校核等)。

3、作出塔的操作性能图、计算其操作弹性。

4、确定与塔身相连的各种管路的直径。

5、计算全塔装置所用蒸汽量和冷却水用量,确定每个换热器的传热面积并进行选型,若采用直接蒸汽加热,需确定蒸汽鼓泡管的形式和尺寸。

6、其它。

四、作业份量:1、设计说明书一份,说明书内容见《化工过程及设备设计》的绪论,其中设计说明结果概要一项具体内容包括:塔板数、塔高、塔径、板间距、回流比、蒸汽上升速度、热交换面积、单位产品热交换面积、蒸汽用量、单位产品蒸汽用量、冷却水用量、单位产品冷却水用量、操作压强、附属设备的规格、型号及数量等。

2、塔装配图(1号图纸);塔板结构草图(35×35计算纸);工艺流程图(35×50计算纸〕第一部分化工原理课程设计任务原始数据:1、乙醇-水混合物,含乙醇 32 %(质量),温度 28 ℃;2、产品:馏出液含乙醇 93 %(质量),温度 31 ℃;3、塔底:塔底液含乙醇 0.06 %(质量)4、生产能力:日产酒精(指馏出液) 9800 kg;5、热源条件:加热蒸汽为饱和蒸汽,其绝对压强为 300 kPa;第二部分工艺流程图第三部分设计方案确定第三部分:设计方案的确定一、操作压力:对于酒精——水体系,在常压下已经是液态,而且高压或者真空操作会引起操作上的其他问题以及设备费用的增加,尤其是真空操作不仅需要增加真空设备的投资和操作费用;综上所述,本设计选择常压操作。

化工原理吸收塔的计算

化工原理吸收塔的计算

填料层高度=传质单元高度×传质单元数
(1)传质单元数(以NOG为例)
•定义:NOG
Y1 dY Y2 Y Y *
气相总传质单元数
NOG

Y1 dY Y2 Y Y *

Y1 Y2 (Y Y *)m
气相组成变化 平均传质推动力
• 传质单元数的意义:
反映了取得一定吸收效果的难易程度。
当所要求的(Y1-Y2)为一定值时,平均吸收推动力(YY*)m越大,NOG就越小,所需的填料层高度就越小。
(2)传质单元高度
•定义:
H OG

G Kya
气相总传质单元高度,m。
•传质单元高度的意义:
完成一个传质单元分离效果所需的填料层高度,
反映了吸收设备效能的高低。
•传质单元高度影响因素:
填料性能、流动状况
四、吸收塔的操作计算 1.吸收过程的强化
Y1
Y*1
Y2
T △Y2
Y*2
O X2
B △Y1
X1
吸收推动力 NA 吸收阻力
目标:提高吸收过程的推动力; 降低吸收过程的阻力。
从L、G、m、X2、Y1、Y2着手。
其它因素: 1)降低吸收剂入口温度; 2)提高吸收的压力; 3)提高流体流动的湍动程度; 4)改善填料的性能。
Y1 dY Y2 Y
NOG

Y1 Y1
Y2 Y2
ln
Y1 Y2
X1
NOG

Y1 Y2 Ym
Ym (Y1 Y2)/ ln Y1 / Y2
注意: •平均推动力法适用于平衡线为直线,逆流、并流 吸收皆可。 •平衡线与操作线平行时,
Ym Y1 Y2 X m X1 X 2

化工原理课程设计-塔设计(详细过程)

化工原理课程设计-塔设计(详细过程)
hw
出口堰 出口堰 降 液 管
how hL ho
52
受液盘:承接来自降液管的液体, 平受液盘和 受液盘:承接来自降液管的液体,有平受液盘和 凹形受液盘。 凹形受液盘。 凹形受液盘:用于大塔( 800mm mm) 凹形受液盘:用于大塔(D>800mm)。 平 受 液 盘
塔板 凹形受 液盘
溢流堰 降液管
釜液
W, xW
39
理论板数N 图解法) 理论板数N(图解法) q线 加料板 3 4 5 xW xF 再 沸 器 xD
40
1
2
q=
r + C p (t b − t F ) r
实际板数
Np =
N ET
1
0.8
0.6 y 0.4
0.2
0 0 0.2
乙醇乙醇-水的汽液平衡数据及沸点见 《化工原理实验讲义》,乙醇-水 化工原理实验讲义》 乙醇混合物的密度、 比热、 混合物的密度、焓、比热、粘度 化工原理课程设计》 见《化工原理课程设计》等。
27
28
29
30
31
32
液 汽
液 堰 筛孔 塔板
33
浮阀塔板
泡罩
37
38
物料衡算
D, xD F, xF
塔顶产品
F = D + W FxF = DxD + WxW
进料
F、D、W——摩尔流量,kmol/h 摩尔流量 xF、xD、xW ——摩尔分率 摩尔分率
4
液 汽

溢 流 堰
筛孔 塔板
5
封头
板 式 塔 结 构
封头
6
7
8
9
10
塔的附件 选做) (选做)

《化工原理》电子教案——板式塔及其工艺设计计算

《化工原理》电子教案——板式塔及其工艺设计计算

《化工原理》电子教案——板式塔及其工艺设计计算一、教学目标1. 使学生了解板式塔的分类、结构及工作原理。

2. 培养学生掌握板式塔的工艺设计计算方法。

3. 培养学生运用板式塔进行化工过程中的分离操作。

二、教学内容1. 板式塔的分类及结构1.1 板式塔的分类1.2 板式塔的结构组成2. 板式塔的工作原理2.1 塔内流体流动与传质过程2.2 塔内压力降及液相传质系数计算3. 板式塔的工艺设计计算3.1 塔径计算3.2 塔高计算3.3 塔内流体分布与调整三、教学方法1. 采用多媒体课件进行教学,展示板式塔的图片及动画,增强学生对板式塔的认识。

2. 结合实际案例,分析板式塔在化工过程中的应用,提高学生的实际操作能力。

3. 利用板式塔的设计软件,让学生动手进行塔的设计计算,培养学生的实际设计能力。

四、教学资源1. 多媒体课件2. 板式塔设计软件3. 实际案例资料五、教学进程1. 板式塔的分类及结构(2课时)1.1 板式塔的分类1.2 板式塔的结构组成2. 板式塔的工作原理(2课时)2.1 塔内流体流动与传质过程2.2 塔内压力降及液相传质系数计算3. 板式塔的工艺设计计算(3课时)3.1 塔径计算3.2 塔高计算3.3 塔内流体分布与调整4. 实际案例分析与讨论(2课时)4.1 分析板式塔在化工过程中的应用4.2 学生分组讨论,提出改进措施5. 板式塔设计软件操作实践(2课时)5.1 学生动手进行塔的设计计算5.2 教师点评,解答学生疑问六、教学评估1. 课堂提问:通过提问了解学生对板式塔分类、结构及工作原理的掌握情况。

2. 设计计算作业:布置板式塔设计计算的相关作业,评估学生对设计计算方法的掌握程度。

3. 实际案例分析报告:评估学生在实际案例分析中的表现,了解其对板式塔应用的理解。

七、教学反思本章节通过板式塔的分类、结构、工作原理及设计计算方法的学习,使学生掌握板式塔的基本知识。

在教学过程中,注意结合实际案例进行分析,让学生了解板式塔在化工过程中的实际应用。

化工原理 塔计算流程 (最终)

化工原理 塔计算流程 (最终)

气相密度ρv 27.9kg/m 3液相表面张力σ 4.09液相密度ρl449.8kg/m 3摩尔质量43.96计算过程气相流量q vvs 0.24m 3/s 863.916液相流量q vls0.0154m 3/s55.267两相流动参数F LV 0.257642262a.粗估塔径初选板间距H T 0.45m C 200.06气体负荷因子C 0.043680733泛点率取值0.8液泛气速u f0.169860569m/s操作气速u 0.135888气体流道截面积A 1.766154454m 21.766154454A d /A T =0.12A/A T =0.88塔板截面积A T = 2.006993697m 2塔径D= 1.598556782取实际塔径为D=1.6m所选塔板尺寸为塔板截面积A T = 2.010619264m 2降液管截面积A d =0.241274气体流道截面积A 1.769344952m 2实际操作气速u 0.135643泛点率0.798557433液泛气速uf 0.1698610.08边缘宽度b c =0.050.16故降液管b d =0.271x=0.449r=0.751.261537取筛孔直径d 0=0.0060.024开孔率υ=0.05668750.071513393筛孔气速u 0= 3.356014735筛孔个数n=2529选取塔板厚度δ=0.0040.070.75堰长l w =1.2溢流强度=液头高度h ow =0.036566185m 取底隙h b =0.04c.塔板校核取堰高h w =由A d /A T =0.12,查图得l w /D=b.塔板布置和其余结构尺寸的选择1.80MP ,326.15K 下的物性参数:选取单流型、弓形降液管塔板筛孔总截面积A 0=取进出口安定区宽度bs=bs`=根据A d /A T =0.12,可查得b d /D=有效传质区面积Aa=筛孔中心距t=1.液沫夹带量e vflv0.0070.2576422620.8e v =0.007292451kg 液体/kg 气体由式(6.10.16)有e v =0.000529117kg 液体/kg 气体2.塔板阻力h f(1)h 0的计算因为,d 0/δ=1.50.80所以,h 0=0.055635692m 液柱(2)h 1的计算由u a =0.157060802m/s气体动能因子Fa =0.829602查得充气系数β=0.7所以,h 1=0.07459633m 液柱(3)h δ的计算h δ=0.000617936所以,h f =0.130849958m 液柱h d =0.015643406m 液柱则,H d =0.253059549m 液柱取降液管中Φ=0.6则:H`d =0.421766τ=7.050223393s >5s3-3严重漏液校核h`0=0.0188356681/k=0.581854k= 1.718645216> 1.5-2.0u o `= 1.952709439m/sd.负荷性能图1.过量液沫夹带线q vvh =24207.61221 * (0.275-q vvh =6657.093357-152.2028571* q vlh 2/32.液相下限线q vlh =3.684m 3/h3.严重漏液线a =3661.62033b=0.014082c=0.000326768q vvh =502.3658234.液相上限线q vlh =78.172876985.降液管液泛线a`=7.45529E-08b`=0.193由F lv =0.258和泛点率=0.799,得ψ=所以查得C 0=h 0+h 1+h δ =3-1降液管液泛校核m < H T +h w =3-2液体在降液管中的停留时间τc`= 5.12153E-06d`=0.00427543 q vlh 1.q vvh 2.qvvh 3.qvvh 4.qvvh 5.qvvh 06657.093357502.36581608.965 56212.049503502.36581555.43 105950.630275502.36581521.747 155731.364836502.36581491.479 205535.653118502.36581462.446 255355.777234502.36581433.707 305187.590929502.36581404.726 355028.541841502.36581375.137 604324.403656502.36581209.355 704071.928967502.36581130.533 803831.241029502.36581041.332 903600.405128502.3658938.4098 1003377.982205502.3658816.26223.68403.6841800q vlh q vvh78.17287698055.267863.91678.17287698130000kg/kmolhl0.075 m/slw/D0.75m2Ad/AT=0.12 m/s Array46.055830.520.006287 * q vlh2/3)$C$72*(F72+C73*A81^(2/3))^(1/2)C72*(F72+C73*(C7*3600)^(2/3))^0.5434.5167 449.0159 457.3184 464.1677 470.1969 475.6709 480.7328 485.4711 505.9157 513.0479 519.756 526.1091 532.159。

化工原理课程设计精馏塔详细版

化工原理课程设计精馏塔详细版

广西大学化学化工学院化工原理课程设计任务书专业:班级:姓名:学号:设计时间:设计题目:乙醇——水筛板精馏塔工艺设计(取至南京某厂药用酒精生产现场)设计条件: 1. 常压操作,P=1 atm(绝压)。

2. 原料来至上游的粗馏塔,为95——96℃的饱和蒸汽。

因沿程热损失,进精馏塔时原料液温度降为90℃。

3. 塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为 40吨/日。

4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分率)。

5.塔釜采用饱和水蒸汽加热(加热方式自选);塔顶采用全凝器,泡点回流。

6.操作回流比R=(1.1——2.0)R。

min设计任务: 1. 完成该精馏塔工艺设计,包括辅助设备及进出口接管的计算和选型。

2.画出带控制点的工艺流程图,t-x-y相平衡图,塔板负荷性能图,筛孔布置图以及塔的工艺条件图。

3.写出该精流塔的设计说明书,包括设计结果汇总和对自己设计的评价。

指导教师:时间1设计任务1.1 任务1.1.1 设计题目乙醇—水筛板精馏塔工艺设计(取至南京某厂药用酒精生产现场)1.1.2 设计条件 1.常压操作,P=1 atm(绝压)。

2.原料来至上游的粗馏塔,为95-96℃的饱和蒸气。

因沿程热损失,进精馏塔时原料液温度降为90℃。

3.塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为40吨/日。

4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分率)。

5.塔釜采用饱和水蒸气加热(加热方式自选);塔顶采用全凝器,泡点回流。

6.操作回流比R=(1.1—2.0)R。

min1.1.3 设计任务1.完成该精馏塔工艺设计,包括辅助设备及进出口接管的计算和选型。

2.画出带控制点的工艺流程示意图,t-x-y相平衡图,塔板负荷性能图,筛孔布置图以及塔的工艺条件图。

3.写出该精馏塔的设计说明书,包括设计结果汇总和对自己设计的评价。

1.2 设计方案论证及确定1.2.1 生产时日设计要求塔日产40吨92.41%乙醇,工厂实行三班制,每班工作8小时,每天24小时连续正常工作。

化工原理课程设计—板式精馏塔的设计

化工原理课程设计—板式精馏塔的设计

板式精馏塔的设计1.1 概述塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。

根据塔内气液接触部件的结构型式,可分为板式塔和填料塔。

板式塔内设置一定数目的塔板,气体以鼓泡或喷射形式穿过板上液层进行质热传递,气液相组成呈阶梯变化,属逐级接触逆流操作过程。

填料塔内装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上(也有并流向下者)与液相接触进行质热传递,气液相组成沿塔高连续变化,属微分接触操作过程。

工业上对塔设备的主要要求是:(1)生产能力大;(2)传热、传质效率高;(3)气流的摩擦阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量少;(6)制造安装容易,操作维修方便。

此外,还要求不易堵塞、耐腐蚀等。

板式塔大致可分为两类:(1)有降液管的塔板,如泡罩、浮阀、筛板、导向筛板、新型垂直筛板、蛇形、S型、多降液管塔板;(2)无降液管的塔板,如穿流式筛板(栅板)、穿流式波纹板等。

工业应用较多的是有降液管的塔板,如浮阀、筛板、泡罩塔板等。

(一)泡罩塔泡罩塔是最早使用的板式塔,是Celler于1813年提出的,其主要构件是泡罩、升气管及降液管。

泡罩的种类很多,国内应用较多的是圆形泡罩。

泡罩塔的主要优点是:因升气管高出液层,不易发生漏液现象,操作弹性较大,液气比范围大,适用多种介质,操作稳定可靠,塔板不易堵塞,适于处理各种物料;但其结构复杂,造价高、安装维修不便,板上液层厚,气体流径曲折,塔板压降大,因雾沫夹带现象较严重,限制了起诉的提高。

现虽已为其他新型塔板代替,但鉴于其某些优点,仍有沿用。

(a b)图1 泡罩塔(二)浮阀塔浮阀塔广泛用于精馏、吸收和解吸等过程。

其主要特点是在塔板的开孔上装有可浮动的浮阀,气流从浮阀周边以稳定的速度水平地进入塔板上液层进行两相接触。

浮阀可根据气体流量的大小而上下浮动,自行调节。

浮阀有盘式、条式等多种,国内多用盘式浮阀,此型又分为F-1型(V-1型)、V-4型、十字架型、和A型,其中F-1型浮阀结构较简单、节省材料,制造方便,性能良好,故在化工及炼油生产中普遍应用,已列入部颁标准(JB-1118-81)。

《化工原理》电子教案 板式塔及其工艺设计计算

《化工原理》电子教案  板式塔及其工艺设计计算

一、教案基本信息《化工原理》电子教案板式塔及其工艺设计计算适用课程:化工原理课时安排:2课时(90分钟)教学目标:1. 让学生了解板式塔的基本结构和工作原理;2. 让学生掌握板式塔的工艺设计计算方法;3. 培养学生运用理论知识解决实际问题的能力。

教学重点:1. 板式塔的基本结构;2. 板式塔的工艺设计计算方法。

教学难点:1. 板式塔的工艺设计计算方法的运用;2. 实际工程中的板式塔设计。

二、教学准备教材:《化工原理》教具:多媒体教学设备、板书、教案、计算器三、教学过程1. 导入(5分钟)教师简要介绍板式塔在化工工艺中的应用,激发学生学习兴趣。

2. 板式塔的基本结构(15分钟)教师讲解板式塔的结构组成,包括塔本体、塔板、塔内件等,并通过图片展示板式塔的实物图。

3. 板式塔的工作原理(15分钟)教师讲解板式塔的工作原理,包括气液两相流动、传质传热过程等。

4. 板式塔的工艺设计计算方法(15分钟)教师讲解板式塔的工艺设计计算方法,包括塔径计算、塔板设计、塔高计算等。

5. 案例分析(15分钟)教师给出一个板式塔设计的实际案例,让学生运用所学知识进行分析和计算,培养学生的实际操作能力。

四、课堂练习(10分钟)教师布置一些有关板式塔工艺设计计算的练习题,让学生在课堂上完成,检验学生对知识的掌握程度。

五、总结与布置作业(5分钟)教师对本节课的主要内容进行总结,布置一些有关板式塔的作业,让学生巩固所学知识。

六、板式塔设计软件演示(10分钟)教师讲解板式塔设计软件的使用方法,让学生了解板式塔设计的现代化手段。

七、课堂互动(10分钟)学生之间进行板式塔设计计算的交流和讨论,提高学生的团队协作能力。

八、课后反思(5分钟)教师让学生谈谈对本节课内容的学习体会,提出改进意见。

九、板式塔设计竞赛(10分钟)教师组织学生进行板式塔设计竞赛,激发学生的学习兴趣和竞争意识。

十、课程评价(5分钟)教师对学生的课堂表现、作业完成情况进行评价,鼓励优秀学生,帮助后进生。

化工原理课程设计之浮阀塔的设计例示

化工原理课程设计之浮阀塔的设计例示

化工原理课程设计最新浮阀塔的设计例示:1.题目拟建一浮阀塔用以分离某种液体混合物,决定采用F1型浮阀(重阀),试按下述条件进行浮阀塔的设计计算。

气相流量Vs = 1.27m3/s;液相流量Ls = 0.01m3/s;气相密度ρV = 3.62kg/m3;液相密度ρL = 734kg/m3;混合液表面张力σ= 16.3mN/m,平均操作压强p = 1.013×105Pa。

2.设计计算过程(一)塔径欲求出塔径应先计算出适宜空塔速度。

适宜空塔速度u一般为最大允许气速uF的0.6~0.8倍,即:u=(0.6~0.8)u F依式(2-34) 可知:式中C可由史密斯关联图查得,液气动能参数为:取板间距HT = 0.6m,板上液层高度hL = 0.083m,那么图中的参变量值HT - hL = 0.6 - 0.083 =0.517m。

根据以上数值由图2-15可得液相表面张力为20mN/m时的负荷系数C20 = 0.1。

由所给出的工艺条件校正得:最大允许气速:取安全系数为0.7,则适宜空塔速度为:由下式计算塔径:按标准塔径尺寸圆整,取D = 1.4m;那么实际塔截面积:实际空塔速度:安全系数:在0.6~0.8范围间,合适(二)溢流装置选用单流型降液管,不设进口堰。

1)液管尺寸取溢流堰长lw=0.7D ,即lw/D=0.7 由弓形降液管的结构参数图查得:A f/A T=0.09,W d/D=0.15因此:弓形降液管所占面积:A f=0.09×1.54=0.139(m2)弓形降液管宽度:W d=0.15×1.4=0.21(m2)验算液体在降液管的停留时间θ,由于停留时间θ>5s,合适。

2)流堰尺寸由以上设计数据可求出:溢流堰长lw=0.7×1.4=0.98m采用平直堰,堰上液层高度可依下式计算,式中E近似取1,即溢流堰高:h w=h L-h ow=0.083-0.033=0.05m液体由降液管流入塔板不设进口堰,并取降液管底隙处液体流速u0′= 0.228m/s,那么,降液管底隙高度:浮阀数及排列方式:1)浮阀数初取阀孔动能因数F0 = 11,阀孔气速为:每层塔板上浮阀个数 :(个)2)浮阀的排列 按所设定的尺寸画出塔板,并在塔板的鼓泡区内依排列方式进行试排,确定出实际的阀孔数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气相密度ρv 37.5kg/m 3液相表面张力σ 2.7065液相密度ρ
l
389.3
kg/m
3
乙烷的摩尔质量
30
计算过程
气相流量q vvs 0.134093m 3/s 液相流量q vls
0.014476m 3/s
两相流动参数F LV 0.347841
a.粗估塔径
初选板间距H T 0.45m C 200.05
气体负荷因子C 0.033515泛点率取值0.7液泛气速u f 0.102654m/s
操作气速u 0.071858
气体流道截面积A 1.866084m 2
A d /A T =0.12
A/A T =0.88
塔板截面积A T = 2.12055m 2
塔径D= 1.643158
取实际塔径为
D=1.6
m
所选塔板尺寸为
塔板截面积A T =2.010619m 2
降液管截面积A d =0.241274气体流道截面积A 1.769345m 2
实际操作气速u 0.075787
泛点率0.738273
0.07边缘宽度b c =0.05
0.16
故降液管b d =0.256
x=0.474
r=0.75
0.564435
取筛孔直径d 0=0.0080.028
开孔率υ=0.074041
0.041791筛孔气速u 0=3.208646筛孔个数n=831
选取塔板厚度δ=0.0040.045
0.75
堰长l w =1.2
液头高度h ow =0.035089m 取底隙h b =0.03
c.塔板校核
取堰高h w =由A d /A T =0.11,查图得l w /D=b.塔板布置和其余结构尺寸的选择
2.6MP ,278.1K 下乙烷的物性参数:
选取单流型、弓形降液管塔板
筛孔总截面积A 0=取进出口安定区宽度bs=bs`=根据A d /A T =0.12,可查得b d /D=有效传质区面积Aa=筛孔中心距t=
1.液沫夹带量e v
0.0042
e v =0.004727kg 液体/kg 气体
由式(6.10.16)有
e v =4.63E-05kg 液体/kg 气体
2.塔板阻力h f
(1)h 0的计算因为,d 0/δ=2
0.82
所以,h 0=0.075173m 液柱
(2)h 1的计算
由u a =0.087753m/s
气体动能因子Fa =0.537377
查得充气系数β=0.66
所以,h 1=0.052859m 液柱
(3)h δ的计算
h δ=0.000354所以,h f =
0.128386499
m 液柱
h d =0.024729m 液柱
则,H d =0.233205m 液柱取降液管中Φ=0.6则:
H`d =0.388674τ=7.500025s >5s
3-3严重漏液校核
h`0=0.0156571/k=0.456379k= 2.19116> 1.5-2.0u o `=1.464359m/s
d.负荷性能图1.过量液沫夹带线
q vvh =21277.27 * (0.3375-q vvh =7181.079

133.7786414
* q vlh 2/3
2.液相下限线
q vlh =
3.684
m 3/h
3.严重漏液线
a =1760.006b=0.011096
c=0.000327q vvh =220.2103
4.液相上限线
q vlh =78.17288
5.降液管液泛线
a`=3.23E-07
b`=0.2223
由F lv =0.3238和泛点率=0.663,得ψ=所以查得C 0=h 0+h 1+h δ =
3-1降液管液泛校核
m < H T +h w =
3-2液体在降液管中的停留时间τ
c`=9.1E-06d`=0.004174831 q vlh 1.q vvh 2.qvvh 3.qvvh 4.qvvh 5.qvvh 07181.079039220.2103830.0006 56789.907918220.2103806.4525 106560.133591220.2103791.2194 156367.410319220.2103777.0862 206195.389581220.2103763.0787 256037.287744220.2103748.766 305889.460457220.2103733.8902 355749.664324220.2103718.2653 605130.762344220.2103623.7294 704908.849815220.2103575.2362 804697.297247220.2103517.7968
3.6840
3.684850q vlh q vvh
78.17287698052.11508482.736
78.1728769880000
kg/kmol m/s
m2
m/s
0.495
0.006287 * q vlh2/3)。

相关文档
最新文档