直流过压保护电路
直流电源过电压过流保护电路
![直流电源过电压过流保护电路](https://img.taocdn.com/s3/m/1143dafc4693daef5ef73dfd.png)
直流电源过电压、欠电压及过流保护电路该保护电路在直流电源输入电压大于30V或小于18V或负载电流超过35A时,晶闸管都将被触发导通,致使断路器QF跳闸。
图中,YR为断路器QF的脱扣线圈;KI为过电流继电器。
带过流保护的电动自行车无级调速电路图中,RC为补偿网络,以改善电动机的力矩特性。
具体数值由实验决定。
电路如图16-91所示。
它适用于电动自行车或电动三轮车。
调节电位器RP,可改变由555时基集成电路A组成的方波发生器的方波占空比,达到调速的目的。
Rs是过电流取样电阻,当电动机过载时,Rs上的压降增大,使三极管VTz导通,触发双向晶闸管V导通,分流了部分负载,从而保护了功率管VTi。
过流保护用电子保险的制作电路图本电路适用于直流供电过流保护,如各种电池供电的场合。
如果负载电流超过预设值,该电子保险将断开直流负载。
重置电路时,只需把电源关掉,然后再接通。
该电路有两个联接点(A、B标记),可以连接在负载的任意一边。
负载电流流过三极管T4、电阻R10和R11。
A、B端的电压与负载电流成正比,大多数的电压分配在电阻上。
当电源刚刚接通时,全部电源电压加在保险上。
三极管T2由R4的电流导通,其集电极的电流值由下式确定:VD4=VR7+0.6。
因为D4上的电压(VD4)和R7上的电压(VR7)是恒定的,所以T2的集电极电流也是恒定。
该三极管提供稳定的基极电流给T3,因而使其导通,接着又提供稳定的基极电流给T4。
保险导电,负载有电流流过。
当电源刚接通时,电容器C1提供一段延时,从而避免T1导电和保持T2断开。
保险上的电压(VAB)通常小于2V,具体值取决于负载电流。
当负载电流增大时,该电压升高,并且在二极管D4导通时,达到分流部分T2的基极电流,T2的集电极电流因而受到限制。
由此,保险上的电压进一步增大,直到大约4.5V,齐纳二极管D1击穿,使T1导通,T2便截止,这使得T3和T4也截止,此时保险上的电压增大,并且产生正反馈,使这些三极管保持截止状态。
直流可调稳压电源的过压过流保护技术
![直流可调稳压电源的过压过流保护技术](https://img.taocdn.com/s3/m/989ccc05bf1e650e52ea551810a6f524ccbfcbb5.png)
直流可调稳压电源的过压过流保护技术直流可调稳压电源是一种广泛应用于实验室、仪器仪表和电子设备等领域的电源设备。
然而,由于电路设计或使用不当,过压和过流问题可能会导致电源设备的破坏,甚至对用户的安全构成威胁。
因此,过压过流保护技术在直流可调稳压电源中起着至关重要的作用。
本文将探讨几种常用的过压过流保护技术,以及它们的原理和应用。
1. 过压保护技术过压是指电源输出电压超过额定值的情况。
当过压发生时,保护系统应该能够迅速检测到,并采取相应的措施来保护电源设备。
以下是两种常见的过压保护技术:1.1 瞬时过压保护(OVP)瞬时过压保护是一种通过检测电源输出电压,一旦超过设定的阈值,立即采取措施限制电压的上升。
在这种技术中,一般会采用比较器和触发器等元件,通过反馈电路实现对电压的检测和控制。
1.2 渐变过压保护(SVP)渐变过压保护技术是一种在过压情况下逐步限制输出电压上升的技术。
通过控制电源输出电压的增加速度,以减轻过压对电源设备的冲击。
这种技术可以采用电源控制芯片来实现,通过软启动电路来限制电压的上升速度。
2. 过流保护技术过流是指电源输出电流超过额定值的情况。
类似于过压保护技术,过流保护技术也是非常重要的一种保护机制。
以下是两种常见的过流保护技术:2.1 瞬时过流保护(OCP)瞬时过流保护技术是一种通过检测电源输出电流来限制电流超过额定值的技术。
当电流超过设定的阈值时,瞬时过流保护会迅速切断电源输出,以避免电源设备和负载的损坏。
通常会采用电流检测电阻和比较器等元件来实现。
2.2 渐变过流保护(SCP)渐变过流保护技术是一种在过流情况下逐步限制输出电流上升的技术。
它类似于渐变过压保护技术,通过控制电源输出电流的增加速度来减轻过流对电源设备和负载的影响。
这种技术可以通过电流限制电路和反馈控制电路来实现。
在实际应用中,过压和过流保护技术往往是同时采用的,以确保电源设备和负载的安全。
此外,还可以结合其他保护技术,如温度保护、短路保护等,来进一步增强电源设备的安全性和可靠性。
过压保护电路原理
![过压保护电路原理](https://img.taocdn.com/s3/m/e86398a1162ded630b1c59eef8c75fbfc77d94bf.png)
过压保护电路原理
过压保护电路是一种用于保护电子设备免受电源输入过高电压的损害的电路。
它的原理是通过监测电源输入电压,并当电压超过预设阈值时,迅速切断电源,从而保护下游电子设备。
过压保护电路通常由一个电压比较器和一个继电器组成。
电压比较器负责监测电源输入电压,并将其与预设的阈值进行比较。
如果输入电压高于阈值,电压比较器将发出一个触发信号。
触发信号随后被传递给继电器,继电器将被激活,断开电源输入电路。
此外,过压保护电路常常还包括一个电源输入电压检测电路,用于确保准确测量电源输入电压。
检测电路通常由电阻、电容和操作放大器等元件组成。
它的功能是为电压比较器提供准确的输入电压值。
检测电路将检测到的电压信号传递给电压比较器,以进行比较。
过压保护电路的工作原理是基于阈值比较和继电器控制。
当输入电压超过设定的阈值时,电路将迅速切断电源。
这个过程是自动进行的,无需人工干预。
一旦电源输入电压恢复正常水平,过压保护电路将重新连接电源,使设备回到正常工作状态。
总之,过压保护电路通过监测电源输入电压,并在电压超过设定阈值时,迅速切断电源,从而保护电子设备免受过高电压的损害。
这种电路通过阈值比较和继电器控制实现,能够自动运行并确保设备的安全运行。
过压保护电路原理
![过压保护电路原理](https://img.taocdn.com/s3/m/5f5be961cdbff121dd36a32d7375a417876fc113.png)
过压保护电路原理
过压保护电路是一种常用的电子保护装置,用于防止电路或电器设备受到过电压的损坏。
其工作原理是通过监测电路中的电压来判断电压是否超过了设定的安全范围,一旦检测到过压情况,就会采取相应的措施来保护电路或设备。
过压保护电路通常由以下几个主要组成部分构成:
1. 电压检测器:通过采集电路中的电压信号来实时监测电压的变化情况。
电压检测器通常采用电阻、电容、二极管等元件构成的电路来完成。
2. 比较器:将电压检测器采集到的电压信号与设定的安全阈值进行比较,判断是否发生了过压。
比较器可以是模拟或数字电路,其功能是判断输入信号是否超过了设定的阈值。
3. 控制器:一旦过压被检测到,控制器会向保护电路发送信号,触发相应的保护措施。
控制器可以是逻辑门电路、微处理器或专用的保护芯片。
4. 保护措施:过压被检测到后,保护措施会被激活以保护电路或设备。
常见的保护措施包括切断电源、短路电流、引入电阻、电容等,以消耗过多的电压或将其分流。
过压保护电路的工作原理是通过不断监测电路中的电压,并判断是否超过设定的阈值,一旦超过阈值,则触发保护措施以防
止电路或设备的损坏。
这种电路广泛应用于各种电子设备和电路中,保护电子器件免受过电压的损坏。
buck型dc-dc变换器中保护电路的设计
![buck型dc-dc变换器中保护电路的设计](https://img.taocdn.com/s3/m/ca07a06d905f804d2b160b4e767f5acfa0c7835a.png)
buck型dc-dc变换器中保护电路的设计Buck型DC-DC变换器是一种常见的降压型电源转换器,广泛应用于各种电子设备中。
在进行Buck型DC-DC变换器的设计过程中,保护电路的设计非常重要,可以保护变换器及其他电路不受损坏,保证电源系统的正常运行。
保护电路主要包括输入端和输出端的保护。
在输入端,保护电路的设计主要是为了防止输入电压过高或过低、瞬时过流和输入短路等情况对变换器产生不利影响。
一般情况下,设计输入端的保护电路主要包括过压保护、欠压保护和输入限流等功能。
首先,过压保护是为了防止输入电压超过变换器的额定输入电压范围,对于Buck 型DC-DC变换器来说,一般输入电压范围是相对稳定的,因此可以通过过压保护电路检测输入电压,并在超过设定阈值时触发保护措施,例如通过断开输入电源或者切断输入端的电流流通路径等方式。
其次,欠压保护是为了防止输入电压过低而影响Buck型DC-DC变换器的正常工作。
一般来说,欠压保护可以通过监测输入电压并在低于设定阈值时触发保护措施,如停止输出电流或关闭整个变换器等方式。
最后,输入限流是为了防止输入电流瞬时过高而损坏Buck型DC-DC变换器。
输入限流电路主要通过设置合适的电流检测电阻和比较器等元件来实现,当输入电流超过预设阈值时,可以通过控制开关管或采取其他措施限制输入电流值。
在输出端,保护电路的设计主要是为了防止输出端负载短路、过载和过压等情况对Buck型DC-DC变换器产生不利影响,同时保护被供电电路不受损坏。
首先,负载短路保护是为了防止输出端负载短路时产生大电流对Buck型DC-DC 变换器和被供电电路造成损坏。
负载短路保护电路主要包括电流检测电阻、比较器和限流电路等元件,当输出电流超过设定阈值时,保护电路会采取相应的控制措施,如限制电流或断开输出电源等。
其次,过载保护是为了防止输出端负载电流过大而超过Buck型DC-DC变换器的额定输出能力,导致器件及电路故障。
过压保护电路
![过压保护电路](https://img.taocdn.com/s3/m/06ee640eeff9aef8941e06e4.png)
过压保护电路
最近在做一个东西,以前用的一个过压保护电路,保护范围不够大,测试了一下,超过26V就不行了(26V一下还是很好用的,也在我上传的文库里),但是我的保护电压设定的是28V,所以又另外换了一个方案,电路其实很简单,肯定也有很多人在用这个电路,但是我没见有谁分享出来,所以就贴出来,和大家分享,为需要但又不知如何下手的朋友提供个参考。
下面分析下原理。
1、当VCC_IN电压在28V以内的时候,稳压管D1不会导通,所以Q1就相当于通过R1和R4两个电阻上拉到VCC_IN,Q1截止,注意Q1是PNP的管子!Q1截止,就相当于是个开路,可以将左边部分电路去掉,相当于下面电路
Shao_hx 2012-04-10
这样Q2就会导通,VCC_OUT就会有输出,给后级电路供电。
2、当VCC_IN超过28V,稳压管导通,并使稳压管阴极电压维持在28V,这样,Q1的BE极间电压就不为0,三极管开始导通,从而使Q2的门极电压等于源极电压,使其关断。
则后级供电也就断开了。
图中VD2是为了保护三极管的BE极电压不要超过范围,稳压管的稳压值不的高于三极管BE级间电压所能承受的范围。
如果觉得对您有帮助,请朋友推荐一下,谢谢!
本人QQ:330597893,愿结识有共同爱好的朋友。
Shao_hx 2012-04-10。
过压保护电路
![过压保护电路](https://img.taocdn.com/s3/m/b632b859fe4733687e21aa46.png)
过压保护电路MAX6495-MAX6499/MAX6397/MAX6398过压保护(OVP)器件用于保护后续电路免受甩负载或瞬间高压的破坏。
器件通过控制外部串联在电源线上的n沟道MOSFET实现。
当电压超过用户设置的过压门限时,拉低MOSFET的栅极,MOSFET关断,将负载与输入电源断开。
过压保护器件数据资料中提供的典型电路可以满足大多数应用的需求(图1)。
然而,有些应用需要对基本电路进行适当修改。
本文讨论了两种类似应用:增大电路的最大输入电压,在过压情况发生时利用输出电容存储能量。
图1 过压保护的基本电路增加电路的最大输入电压虽然图1电路能够工作在72V瞬态电压,但有些应用需要更高的保护。
因此,如何提高OVP器件的最大输入电压是一件有意义的事情。
图2所示电路增加了一个电阻和齐纳二极管,用来对IN的电压进行箝位。
如果增加一个三极管缓冲器(图3),就可以降低对并联稳压器电流的需求,但也提高了设计成本。
图2 增大最大输入电压的过压保护电路图3 功过三极管缓冲器增大输入电压的过压保护电路齐纳二极管的选择,要求避免在正常工作时消耗过多的功率,并可承受高于输入电压最大值的电压。
此外,齐纳二极管的击穿电压必须小于OVP的最大工作电压(72V),击穿时齐纳二极管电流最大。
串联电阻(R3)既要足够大,以限制过压时齐纳二极管的功耗,又要足够小,在最小输入电压时能够维持OVP器件正常工作。
图2中电阻R3的阻值根据以下数据计算:齐纳二极管D1的击穿电压为54V;过压时峰值为150V,齐纳二极管的功率小于3W。
根据这些数据要求,齐纳二极管流过的最大电流为:3W/54V = 56mA根据这个电流,R3的下限为:(150V - 54V)/56mA = 1.7kWR3的峰值功耗为:(56mA)2 ×1.7kW = 5.3W如果选择比5.3W对应电阻更小的阻值,则会在电阻和齐纳二极管上引起相当大的功率消耗。
为了计算电阻R3的上限,必须了解供电电压的最小值。
buck型dc-dc变换器中保护电路的设计
![buck型dc-dc变换器中保护电路的设计](https://img.taocdn.com/s3/m/410f1ac4d5d8d15abe23482fb4daa58da0111c03.png)
buck型DC-DC变换器是一种常见的电源转换器,用于将高压直流电源转换为稳定的低压直流电源,广泛应用于电子设备和通信系统中。
在设计buck型DC-DC变换器时,保护电路的设计至关重要,可以有效保护电路和相关元器件,提高整个系统的可靠性和稳定性。
本文将从保护电路的设计入手,对buck型DC-DC变换器进行深入研究和分析。
1. 保护电路的作用保护电路是buck型DC-DC变换器中的重要组成部分,其主要作用是防止过流、过压、过温等异常情况对电路和元器件造成损坏。
通过及时检测异常信号并采取相应的保护措施,可以有效避免电路的故障和损坏,延长系统的使用寿命。
2. 过流保护电路设计过流是buck型DC-DC变换器中常见的故障情况之一,如果电流超过设定的安全范围,将会对电路和元器件造成严重的损害。
在设计过流保护电路时,需要合理选择电流传感器和保护元件,并设置合适的保护触发门槛。
常用的过流保护电路包括电流限制器、熔断器和过流保护芯片等,通过这些器件的合理组合可以实现对电路的有效保护。
3. 过压保护电路设计过压是另一种常见的故障情况,当输入电压超过设定的安全范围时,将对电路和元器件产生严重的影响。
在设计过压保护电路时,需要考虑输入电压的波动范围和保护触发门槛,并选择合适的过压保护器件进行搭配。
常用的过压保护电路包括过压保护芯片、击穿二极管和电容滤波器等,通过这些器件的合理配置可以有效防止过压对电路的损坏。
4. 过温保护电路设计过温是buck型DC-DC变换器中的另一个重要故障情况,当工作温度超过元器件的最大承受温度时,将会导致电路的失效和损坏。
在设计过温保护电路时,需要合理选择温度传感器和保护器件,并设置适当的保护触发温度。
常用的过温保护电路包括温度开关、热敏电阻和温度保护芯片等,通过这些器件的合理配置可以实现对电路的及时保护。
5. 其他保护电路设计除了上述提到的过流、过压和过温保护电路外,buck型DC-DC变换器的保护系统还需要考虑短路保护、输入欠压保护和输出失稳保护等其他故障情况。
直流电源过电压过流保护电路
![直流电源过电压过流保护电路](https://img.taocdn.com/s3/m/1143dafc4693daef5ef73dfd.png)
直流电源过电压、欠电压及过流保护电路该保护电路在直流电源输入电压大于30V或小于18V或负载电流超过35A时,晶闸管都将被触发导通,致使断路器QF跳闸。
图中,YR为断路器QF的脱扣线圈;KI为过电流继电器。
带过流保护的电动自行车无级调速电路图中,RC为补偿网络,以改善电动机的力矩特性。
具体数值由实验决定。
电路如图16-91所示。
它适用于电动自行车或电动三轮车。
调节电位器RP,可改变由555时基集成电路A组成的方波发生器的方波占空比,达到调速的目的。
Rs是过电流取样电阻,当电动机过载时,Rs上的压降增大,使三极管VTz导通,触发双向晶闸管V导通,分流了部分负载,从而保护了功率管VTi。
过流保护用电子保险的制作电路图本电路适用于直流供电过流保护,如各种电池供电的场合。
如果负载电流超过预设值,该电子保险将断开直流负载。
重置电路时,只需把电源关掉,然后再接通。
该电路有两个联接点(A、B标记),可以连接在负载的任意一边。
负载电流流过三极管T4、电阻R10和R11。
A、B端的电压与负载电流成正比,大多数的电压分配在电阻上。
当电源刚刚接通时,全部电源电压加在保险上。
三极管T2由R4的电流导通,其集电极的电流值由下式确定:VD4=VR7+0.6。
因为D4上的电压(VD4)和R7上的电压(VR7)是恒定的,所以T2的集电极电流也是恒定。
该三极管提供稳定的基极电流给T3,因而使其导通,接着又提供稳定的基极电流给T4。
保险导电,负载有电流流过。
当电源刚接通时,电容器C1提供一段延时,从而避免T1导电和保持T2断开。
保险上的电压(VAB)通常小于2V,具体值取决于负载电流。
当负载电流增大时,该电压升高,并且在二极管D4导通时,达到分流部分T2的基极电流,T2的集电极电流因而受到限制。
由此,保险上的电压进一步增大,直到大约4.5V,齐纳二极管D1击穿,使T1导通,T2便截止,这使得T3和T4也截止,此时保险上的电压增大,并且产生正反馈,使这些三极管保持截止状态。
过压保护电路原理
![过压保护电路原理](https://img.taocdn.com/s3/m/7c9101cbd5d8d15abe23482fb4daa58da0111c8e.png)
过压保护电路原理过压保护电路是一种常见的电子保护装置,它可以有效地保护电路和设备免受过高电压的损害。
在电路设计和应用中,过压保护电路起着非常重要的作用。
本文将介绍过压保护电路的原理和工作方式,以及其在实际应用中的一些注意事项。
过压保护电路的原理是基于电压比较器的工作原理。
当电路中的电压超过设定的阈值时,电压比较器将输出一个高电平信号,触发保护电路的动作。
保护电路可以采取多种方式来应对过压情况,例如切断电源、引入阻抗等。
通过及时有效地响应过压情况,保护电路可以保护电路和设备免受损坏。
在实际应用中,过压保护电路通常与其他保护装置相结合,构成完整的电子保护系统。
这些保护装置可以包括过流保护、过温保护等,共同保障电路和设备的安全可靠运行。
同时,过压保护电路的设计和选型需要考虑到电路的工作环境、电压波动范围、响应速度等因素,以确保其能够在各种情况下可靠工作。
在设计和应用过压保护电路时,需要注意以下几点。
首先,选择合适的电压比较器和触发器,以确保过压保护电路的准确性和可靠性。
其次,合理设置过压保护电路的阈值,不仅要考虑电路的额定工作电压,还要考虑到电压波动和峰值电压的影响。
最后,需要对过压保护电路进行充分的测试和验证,确保其在实际工作中能够可靠地发挥作用。
总之,过压保护电路是一种重要的电子保护装置,它通过电压比较器的原理实现对过压情况的及时响应,有效保护电路和设备免受损坏。
在实际应用中,需要合理设计和选型过压保护电路,并注意其与其他保护装置的配合,以确保电路和设备的安全可靠运行。
希望本文能够帮助读者更好地理解过压保护电路的原理和应用,为实际工程应用提供一些参考和借鉴。
过压保护电路工作原理
![过压保护电路工作原理](https://img.taocdn.com/s3/m/625f0c0acdbff121dd36a32d7375a417876fc179.png)
过压保护电路工作原理
过压保护电路是一种常见的电路保护装置,它的作用是在电路电压超过设定值时,立即切断电路,保护电路中的元器件不被过高电压破坏。
过压保护电路是由一个过压保护器件和一个触发器件组成。
当电路电压超过设定值时,过压保护器件会自动熔断或者开关断路,触发器件接收到保护器件的信号,立即切断电路。
过压保护器件包括熔断器、保险丝、电子保护器等。
熔断器和保险丝主要通过热效应来实现过压保护,当电路电压过高时,保险丝内的金属丝会熔断,从而切断电路。
电子保护器则是通过电子元件来实现过压保护,当电路电压超过设定值时,电子保护器会自动切断电路。
触发器件可以是一个继电器、固态继电器或者其他开关装置。
当过压保护器件发生作用时,它会向触发器件发送信号,触发器件接收到信号后,就会切断电路。
触发器件的选择要根据电路的实际情况来确定,有些电路需要更快的响应速度,需要采用固态继电器。
过压保护电路的工作原理比较简单,但是在实际应用中,还需要考虑一些因素,比如过压保护器件的选择、触发器件的响应速度、电路负载等。
过压保护电路应用广泛,可以用于各种电路保护,比如电源保护、变频器保护、电机保护等。
- 1 -。
过压及欠压的保护电路图
![过压及欠压的保护电路图](https://img.taocdn.com/s3/m/600bb215a76e58fafab003fb.png)
图4是仅用一个4比较器LM339及几个分立元器件构成的过压、欠压、过热保护电路。
取样电压可以直接从辅助控制电源整流滤波后取得,它反映输入电源电压的变化,比较器共用一个基准电压,N1.1为欠压比较器,N1.2为过压比较器,调整R1可以调节过、欠压的动作阈值。
N1.3为过热比较器,R T为负温度系数的热敏电阻,它与R7构成分压器,紧贴于功率开关器件IGBT的表面,温度升高时,R T阻值下降,适当选取R7的阻值,使N1.3在设定的温度阈值动作。
N1.4用于外部故障应急关机,当其正向端输入低电平时,比较器输出低电平封锁PWM驱动信号。
由于4个比较器的输出端是并联的,无论是过压、欠压、过热任何一种故障发生,比较器输出低电平,封锁驱动信号使电源停止工作,实现保护。
如将电路稍加变动,亦可使比较器输出高电平封锁驱动信号。
交流电源过压、欠压保护电路一、实验目的1、学习使用运算放大器构成比较器。
2、学习元件的选择及用万用表检测电子器件。
3、学会电路调试技术。
二、实验设备与器件1、函数信号发生器2、双踪示波器3、交流毫伏表4、数字万用表5、元件自选三、设计要求a) 设计说明某些用电设备对输入电压有一定的要求,电网工作正常时,用电设备接通电源,电网电压波动超过正负10%时,自动切断电源,停止工作。
b)设计要求1)要求利用实验台和所学过的模拟电子技术的知识,实际该装置。
2)输入市电。
3)使用运算放大器构成比较器。
4)电源工作正常,绿色发光二极管亮,电源过压、欠压,红色发光二极管亮。
四、设计提示实验的原理框图如图1所示。
市电经整流滤波后加入比较器电路,电网电压在正常范围时,执行电路将常开触点J闭合,用电设备通电;当电网电压波动超过正负10%时,触点J断开。
切断电源,用电设备停止工作。
图1 交流电源过压、欠压保护电路原理框图利用实验装置似的交流变压输出的14、16、18V端点模拟电网电压的变化。
用16V模拟电网电压工作在正常范围,用14V和18V模拟电网电压波动超出正负10%状态。
直流无刷电机过压保护电路
![直流无刷电机过压保护电路](https://img.taocdn.com/s3/m/f981e416814d2b160b4e767f5acfa1c7aa0082a2.png)
直流无刷电机过压保护电路的设计是为了防止电机受到过高的电压影响,从而保护电机并避免损坏。
下面是一个简单的直流无刷电机过压保护电路的介绍。
一、电路原理直流无刷电机过压保护电路通常由电压检测元件、比较器、控制驱动器和电机本身组成。
当电机承受的电压超过正常值时,该电路会启动保护机制,使电机停止运转或降低转速,从而避免过压对电机造成损害。
二、电路组成1. 电压检测元件:这部分负责实时监测电机的电压,通常使用电阻和电容组成的有源或无源电压检测电路。
2. 比较器:比较器用于比较电机的实际电压与设定的安全电压。
如果实际电压超过安全电压,比较器将输出一个信号。
3. 控制驱动器:控制驱动器负责接收比较器的信号,并控制电机停止或降低转速。
这个组件可以是一个能实现相应功能的芯片,也可以是电路板上的控制接口。
4. 直流无刷电机:这是被保护的对象,也是实施过压保护的核心器件。
三、电路工作流程1. 当电机正常工作时,电压检测元件会监测到电机的工作电压,并将其转换成电信号传送给比较器。
2. 比较器将实际电压与设定的安全电压进行比较,如果实际电压超过安全电压,比较器将输出一个信号给控制驱动器。
3. 控制驱动器接收到信号后,会控制电机停止或降低转速,从而避免电机过压受损。
4. 如果电机承受的电压恢复正常,控制驱动器将解除保护状态,电机将恢复正常工作。
四、注意事项1. 电源电压的稳定性对保护电路的工作至关重要,因此需要使用高质量的电源稳压设备。
2. 比较器和控制驱动器需要定期检查和维护,以确保其正常工作。
3. 在实际应用中,可能需要根据电机的具体规格和环境条件对过压保护电路进行适当的调整和优化。
总之,直流无刷电机过压保护电路是确保电机安全运行的重要措施。
通过设计合理的电压检测元件、比较器和控制驱动器,以及对电机本身的质量把控,我们可以有效避免电机过压受损,延长电机的使用寿命。
过压过流保护电路设计
![过压过流保护电路设计](https://img.taocdn.com/s3/m/8b262511cdbff121dd36a32d7375a417866fc1e7.png)
过压过流保护电路设计过压过流保护电路是电子设备中非常重要的一种保护机制,能够有效地保护电路、电源和设备安全。
本文将介绍过压过流保护电路的设计原理和实现方法,主要包括过压保护电路、过流保护电路和整合过压过流保护电路。
过压保护电路是一种用于保护电子设备电路不受过高电压损害的电路。
其设计基于普通开关稳压电源,当输入电压超过可承受范围时,过压保护电路将不会通过输出端口向下的电路供电,从而使电路不受过高电压损害。
过压保护电路一般由电源稳压芯片、输血电阻、稳压二极管、开关二极管和放电二极管等组成。
输血电阻的作用是降低过高的输入电压,稳压二极管用于稳定输出电压,开关二极管用于控制输出电流的开关状态,放电二极管用于保护电源和电路不会受到电流的反冲击。
过压过流保护电路能够保护电路、电源和设备免受过压和过流损害,是电子设备中不可或缺的保护机制。
通过学习以上的设计原理和实现方法,可以更好地理解和应用该电路,提高电子设备的安全性和稳定性。
实际上,过压过流保护电路已经广泛应用于电子设备中,如手机、电脑、电视等。
它不仅可以保护电子设备本身,还可以保护用户的安全。
在使用充电器充电时,由于一些原因可能导致过压和过流现象,如果没有过压过流保护电路,充电器可能会过热甚至发生爆炸,从而对用户造成伤害。
从设计角度来看,过压过流保护电路的实现并不困难。
它可以通过选择合适的稳压芯片、二极管、电容等元器件进行电路设计和搭建,同时调整稳压芯片和比较器的参数,达到最佳的保护效果。
在实际应用中,需要根据具体需要进行适当的调整和优化,并进行充分的测试和验证,确保电路的安全可靠性。
随着市场对节能环保的要求日益增强,可以考虑采用智能化的过压过流保护电路,使设备在满足保护需要的能够实现尽可能的节能和环保效果。
在充电器中,可以通过控制输出电压和电流的大小和速度,实现节省能源的目的。
对于一些重要的应用场景,如汽车电路、机器人控制系统等,过压过流保护电路也具有重要的应用价值。
电路中的过压保护和过流保护
![电路中的过压保护和过流保护](https://img.taocdn.com/s3/m/32164a9127fff705cc1755270722192e45365824.png)
电路中的过压保护和过流保护过压保护和过流保护在电路中扮演着至关重要的角色。
它们是为了确保电路运行的安全和稳定而采取的一系列措施。
过压保护和过流保护可有效预防电路中出现过电压和过电流的情况,保护电路设备免受损坏。
本文将详细介绍电路中的过压保护和过流保护的原理、应用和常用保护器件。
一、过压保护过压是指电路中电压超出额定范围的情况,可能导致电路中的元器件发生过载、损坏甚至引发火灾等严重后果。
过压保护的功能是在电路中检测到过压情况时,迅速采取措施,将过压电源切断或将电压降至安全范围内,以保护电路元器件的安全。
过压保护的常用方法之一是采用过压保护电路。
这种电路是通过测量电压来检测过压情况,一旦电压超出设定的安全阈值,保护电路会触发并切断电源。
过压保护电路的核心元件是过压保护器件,常见的过压保护器件包括瞬态电压抑制器(TVS)、气体放电管(GDT)和过压保护二极管(VDR)等。
另一种常见的过压保护方式是采用整流器和稳压器。
整流器和稳压器可在电路中实现对过压情况的检测和处理。
通过将过压电压转换为电流信号,进而触发稳压器对电压进行调整,将电路中的电压维持在安全范围内。
二、过流保护过流是指电路中电流超出额定范围的情况,可能引起电路元器件发热、烧坏或焦糊等危险。
过流保护的目的是在电路中检测到过流情况时迅速采取措施,切断电源或限制电流流过元器件,以确保电路的正常运行和元器件的安全。
过流保护的常见方法包括熔断器和电流保护开关。
熔断器是一种自动开关设备,当电流超过额定值时,熔断器内的熔丝会熔断,切断电源。
电流保护开关则是通过电流互感器来感知电流大小,当电流超过设定的阈值时,保护开关会切断电源,以保护电路设备免受过流的危害。
除了熔断器和电流保护开关,还有一种过流保护装置被广泛应用于电路中,那就是电子式保护装置。
电子式保护装置利用电子元器件和控制电路,能够检测出电流异常,并及时触发保护装置动作,切断电源或限制电流,以实现对电路的过流保护。
600v直流过压欠压保护电路
![600v直流过压欠压保护电路](https://img.taocdn.com/s3/m/8551287a30126edb6f1aff00bed5b9f3f90f72f0.png)
600V直流过压欠压保护电路是一种用于保护电路元件和设备的重要电子保护装置。
在直流电路中,由于诸如输电系统和电子设备等原因,过压和欠压等异常情况可能会给电路带来危险。
设计一种能够有效保护电路安全运行的过压欠压保护电路就显得尤为重要。
1. 过压保护当直流电路中的电压超出设定范围时,过压保护电路会自动启动,切断电路,防止电压过高对电路元件和设备造成损坏。
过压保护电路通常采用电压比较器、电压放大器和触发器等电子元件构成,通过检测电路中的电压变化,实现对电压超出安全范围时的快速切断。
2. 欠压保护与过压保护相反,欠压保护电路则是在电路中电压过低时起到保护作用。
欠压保护电路同样采用电压比较器和触发器等元件,通过监测电路中的电压变化,实现对电压过低时的快速切断,避免设备由于电压不足而导致的故障。
3. 保护电路的设计要点在设计600V直流过压欠压保护电路时,首先需要确定目标保护电压范围,即设定过压和欠压的阈值电压。
需要选择合适的电子元件,如稳压芯片、比较器、触发器等,构建具备灵敏度和稳定性的保护电路。
还需要考虑保护电路与被保护设备的连接方式和安全性,确保电路能够及时、有效地对异常电压进行切断。
4. 电路实现方式600V直流过压欠压保护电路可以采用多种实现方式,如采用稳压芯片作为基础搭建比较器和触发器电路,也可以采用单片机控制的方式实现智能化的保护功能。
不同的实现方式会影响电路的成本、稳定性和灵活性,需要根据具体的应用场景和要求进行选择。
5. 典型应用领域600V直流过压欠压保护电路广泛应用于工业控制系统、电力输配电系统、新能源领域、轨道交通等领域,对设备和系统的安全稳定运行起着至关重要的作用。
特别是在直流输电系统中,由于电压波动频繁,对过压欠压保护电路提出了更高的要求,以确保电力系统的稳定运行。
6. 发展趋势随着电气设备的智能化和兼容性要求的提高,600V直流过压欠压保护电路也在不断演进。
未来,随着新型电子元件和智能控制技术的不断发展,保护电路将更加智能化、精准化,以更好地满足工业和电力领域对电路安全保护的需求。
电路设计干货——过压保护电路
![电路设计干货——过压保护电路](https://img.taocdn.com/s3/m/d8e8ef86a1116c175f0e7cd184254b35eefd1a6c.png)
电路设计⼲货——过压保护电路常⽤直流电源在很多的电⼦产品设计中,电源部分是极为重要的,也是很容易损坏的。
⼀⽅⾯是输⼊的电源极性错误,这个我们之前的⽂章,也介绍了⼀部分防⽌极性发⽣错误的电路。
另外⼀⽅⾯是输⼊的电压过⾼。
下⾯我们主要讨论如何简单、可靠的解决这个问题。
1、对于浪涌电压的保护⽐如在电⼦器件电源前端的电源不稳定,如汽车电瓶在汽车启动时,会产⽣很⼤的浪涌电压。
对于此类过压电源的保护,⼀般采⽤TVS管去保护。
⼀般应保证TVS管应⼯作在后端电源芯⽚器件的正常电压VCC以上,最⼤⼯作电压Vmax以下。
TVS管应⽤电路⼯作原理:直流电压输⼊的时候,有时由于供电环境的变化会带来⼀些瞬时脉冲。
⽽要消除瞬时脉冲对器件损害的最好办法,就是将瞬时电流从敏感器件引到地,⼀般具体做法是将TVS在线路板上与被保护线路并联。
这样,当瞬时电压超过电路正常⼯作电压后,TVS将发⽣雪崩击穿,从⽽提供给瞬时电流⼀个超低阻抗的通路,其结果是瞬时电流通过TVS被短路到GND,从⽽避开被保护器件,并且在电压恢复正常值之前使被保护回路⼀直保持截⽌电压。
⽽当瞬时脉冲结束以后,TVS⼆极管再⾃动恢复⾄⾼阻状态,整个回路⼜回到正常电压状态。
TVS管伏安特性曲线选择时,应注意VR>V0,且VC<Vmax。
以保证TVS管正常⼯作时,这样电压正常,TVS管不⼯作时不会消耗电流⼤,同时电压过⾼时,TVS管⼯作时可以正常保护后端器件不会损坏。
2、对于脉冲电压的保护相对于浪涌电压,脉冲电压的能量不⼤,电压不⾼较长,对于器件对电压的反应能⼒要求反⽽不⾼。
此时我们需要⽤稳压⼆极管稳压。
稳压电路的⽤法正确选取限流电阻R的阻值,是使稳压电路正常⼯作的前提。
1、在负载电路空载时,使流过稳压⼆极管Dz的电流不超过其最⼤耐受值⽽损坏;2、在最⼤负载时,仍要保障流过Dz的电流超过最⼩击穿电流值,仍其仍处于击穿⼯作区。
从稳压⼆极管的安全出发,只要限制其流通电流不超过稳压⼆极管最⼤反向耐受电流,电路元件就不会有损坏的危险。
开关电源常用保护电路-过热、过流、过压以及软启动保护电路
![开关电源常用保护电路-过热、过流、过压以及软启动保护电路](https://img.taocdn.com/s3/m/7b9c498a0740be1e640e9a20.png)
1引言随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,因此直流开关电源开始发挥着越来越重要的作用,并相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了直流开关电源。
同时随着许多高新技术,包括高频开关技术、软开关技术、功率因数校正技术、同步整流技术、智能化技术、表面安装技术等技术的发展,开关电源技术在不断地创新,这为直流开关电源提供了广泛的发展空间。
但是由于开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便。
为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点,设计了过热保护、过电流保护、过电压保护以及软启动保护电路。
2、开关电源的原理及特点2、1工作原理直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成。
功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能。
它主要由开关三极管和高频变压器组成。
图1画出了直流开关电源的原理图及等效原理框图,它是由全波整流器,开关管V,激励信号,续流二极管Vp,储能电感和滤波电容C组成。
实际上,直流开关电源的核心部分是一个直流变压器。
2、2特点为了适应用户的需求,国内外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是通过改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,同时SMT 技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。
因此直流开关电源的发展趋势是高频、高可靠、低耗、低噪声、抗干扰和模块化。
直流开关电源的缺点是存在较为严重的开关干扰,适应恶劣环境和突发故障的能力较弱。
由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因此直流开关电源的制作技术难度大、维修麻烦和造价成本较高,3、直流开关电源的保护基于直流开关电源的特点和实际的电气状况,为使直流开关电源在恶劣环境及突发故障情况下安全可靠地工作,本文根据不同的情况设计了多种保护电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直流过压保护电路
直流过压保护电路
笔者介绍附图所示的电源,不仅可用于仪表电路,也可用于视频或功率小于50W的音频放大器。
工作原理:该电源电路简单,它用变压器T把市电220V降压为30V,该低压经D1~D4整流,再用C1、C2的大容量电解电容器4700μF滤波,结果在A点可获得纹波很低的直流(DC)电压。
电路的稳压部分是一种串联的稳压器,其中三端稳压器IC1(LM7805)的输出供给稳压器输出管(大功率三极管T)基极的基准参考电压。
IC1的公共端又外加稳压管ZD1和LED(红色)作偏置电压,结果稳压器的输出直流电压可达+12.2V。