人教版八年级数学上册《分式方程》PPT课件(7篇)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程
整式方程
整式方程
分式方程
分式方程
探究
下面我们一起研究下怎么样来解分式方程: 转化 一元一次方程
方程两边同乘以(30+v)(30-v) ,得:
解得:
检验:将v=6代入分式方程,左边= =右边,所以
v=6是原分式方程的解.
解分式方程基本思路: 分式方程
转化 去分母
整式方程
练习 解下列方程:
解分式方程
化简,得mx+m-nx=0.
移项、合并同类项,得(m-n)x=-m.
∵m≠n≠0, ∴m-n≠0,
检验:当
∴ x=
增根问题 m为何值时
有增根呢?
解:去分母,得 x-3=m
所以
x=m+3
方程有增根,即 x=m+3 时分母x-1为0
所以m+3-1=0
所以m=-2
归纳 已知方程有增根求参数的步骤: 1.把参数当作已知数,解出分式方程 2.再根据分母为0,得到一个关于参数的方程. 3.解出参数.
解:方程两边同乘以最简公分母(x-5)(x+5),得:
x+5=10
增根 解得: x=5 检验:
从去分母后所得的 整式方程中解出的
将x=5代入x-5、x 2-25的值都为0,相应分式无意义.
所以x=5不是原分式方程的解.
∴原分式方程无解.
增根
增根的定义
增根:由去分母后所得的整式方程解出的,使分母为 零的根. 增根满足的两个要求: ①是相应_整__式___方程的根. ②使分式方程的公___分__母__为0.
分式方程
知识回顾 1.观察,这是个什么方程? 一元一次方程
①只含有一个未知数 2.一元一次方程有什么特点? ②未百度文库数的次数为1
③各项都是整式
3.解一元一次方程的步骤有哪些?
解:
去分母 去括号
移项
合并同类项
系数化1
一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速
顺流航行90千米所用时间,与以最大航速逆流航行60千米所用时
也可以先把方程化为 整式方程,然后把可 能的增根代入方程
所以当k=1时,方程
产生增根.
增根问题
k为何值时,分式方程
根? 解:方程两边都乘以(x-1)(x+1),

x(x+1)+k(x+1)-x(x-1)=0
把 x=1代入上式,则k=-1
把 x=-1代入上式,k 值不存在
∴当k =-1,原方程有增根.
思考
刚才我们解了两个分式方程
为什么第一个去分母后所得整式方程的解是原分式 方程的解,第二个却不是呢? 大家可以讨论一下.
要回答这个问题,还是要来回顾一下解方程的过程.
思考
两边同乘(30+v)(30-v) 100 (30-v)=60(30+v)
当v=6,(30+v)(30-v)≠0 左右两边的方程是可以等价转化的,这两个方程的解相等
有增
增根问题 若关于x的分式方程 的值是A ( )
A.m=-1 C.m=3
有增根,则m
B.m=0 D.m=0或m=3
增根问题
分式方程 (C )
A.0
B.2
2
D.1
有增根,则增根可能是 C.0或
无解问题 k为何值时,方程
无解?
提示:分式方程无解意味着什么呢? 【解析】方程两边都乘以x-2,约去分母,得
③忘记检验.
解含参分式方程 解关于x的方程
解:方程两边同乘以x-a,得 a+b(x-a)=x-a 去括号,得a+bx-ba=x-a
点睛:把参数当作已知 数,正常求解即可.
移项、合并同类项,得(b-1)x=ab-2a
∵b ≠1 ∴b-1≠0
检验:当
解含参分式方程
解关于 x 的方程
解:方程两边同乘 x(x+1),得m(x+1)-nx=0.
例题 解下列方程:
(1)解:方程两边乘x(x-3),得 2x=3x-9
解得 x=9 检验:当x=9时,x(x=3)≠0. 所以,原分式方程的解为x=9.
例题 解下列方程:
(2)解:方程两边乘(x-1)(x-2),得 x(x+2)-(x-1)(x+2)=3 解得 x=1
检验:当x=1时,(x-1)(x+2)=0, 因此,x=1不是原分式方程的解. 所以,原分式方程无解.
1.怎么解分式方程? 2.为什么解分式方程一定要检验?
练习 解下列方程:
练习 解下列方程:
练习 解下列方程:
练习 解下列方程:
练习 解分式方程:
【答案】x=3是增根,原分式方程无解
练习 解方程:
【答案】x=0
易错点 解分式方程时容易犯的错误: ①去分母时,原方程的整式部分漏乘. ②约去分母后,分子是多项式时, 要注意添括号.
间相等,江水的流速为多少?
解:设江水的流速为 v 千米/时,则
顺水速度为________千米/时;
逆水速度为________千米/ 时;
根据题意,得
说说两方程
有何异同
分式方程 像这样,分母中含有未知数的方程叫做分式方程.
分式方程 下列方程中,哪些是分式方程?哪些整式方程.
整式方程
分式方程
分式方程
k+3(x-2)=-(1-x)
解得
由题意可知 解得k=1.
是原分式方程的增根,即
无解问题 关于 x 的方程
A.-5
B.-8
无解,则m的值为A( )
C.-2
D.5
提示:分式方程无解意味着什么呢?
含参分式方程增根问题
1.方程有增根怎么求参数? 2.方程无解怎么求参数?
已知解得范围求参数范围 k为何值时,方程
归纳 1.解分式方程的思路: 分式方程
转化 去分母
整式方程
2.解分式方程一般步骤: ①去分母 ②解整式方程 ③检验 注意:检验必不可少.
流程图 分式方程
解分式方程一般步骤:
去分母
整式方程
解整式方程
目标
x=a
检验
x=a是 分式方程的解
最简公分母不为最0简公分母为x0=a不是 分式方程的解
解分式方程
增根问题
1.当m=0时,方程

x=6,不会
会产生增根吗
2.当m=1时,方程 ?
x=5,不会
会产生增根吗
3.当m为何值时,方程
会产生增根呢?
x=6-m,m=3时会产生增根
增根问题 k为何值时,方程
产生增根?
解:方程两边都乘以x-2,约去分母, 得k+3(x-2)=x-1 把x=2代入以上方程得:k=1
解为正数?
提示:既要考虑解的范围,又要考虑增根 【解析】由方程有解,结合上题有
两边同乘(x+5)(x-5) 当x=5,(x+5)(x-5)=0
x+5=10
从右边的方程推不出左边的方程,整式方程的解不一定是分式 方程的解
怎样检验 怎样检验所得整式方程的解是否是原分式方程的解?
将整式方程的解代入最简公分母, 如果最简公分母的值不为0,
则整式方程的解是原分式方程的解, 否则这个解就不是原分式方程的解.
相关文档
最新文档