初一列方程解应用题的一般步骤
初中数学列方程解应用题
初中数学列方程解应用题列方程解应用题一元一次方程应用题:1.列一元一次方程解应用题的一般步骤1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.2.和差倍分问题增长量=原有量×增长率现在量=原有量+增长量3.等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h=r2h②长方体的体积V=长×宽×高=abc4.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.市场经济问题1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润100%商品本钱价3)商品销售额=商品销售价×商品销售量4)商品的贩卖利润=(贩卖价-本钱价)×贩卖量5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间1)相遇问题:快行距+慢行距=原距2)追及问题:快行距-慢行距=原距3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两船埠间距离不变,水流速和船速(静不速)不变的特性斟酌相等关系.7.工程问题:事情量=事情效率×事情时间完成某项任务的各工作量的和=总工作量=18.储蓄问题利润=每个期数内的利钱100%利息=本金×利率×期数本金1.将一批产业最新动态信息输入管理贮存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成事情?2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,≈3.14).4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这类三色冰淇淋中咖啡色、红色和白色配料分别是多少克?6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.7.某地域居民生活用电基本价格为每千瓦时0.40元,若每月用电量跨越a千瓦时,则跨越局部按基本电价的70%收费.1)某户八月份用电84千瓦时,共交电费30.72元,求a.2)若该用户玄月份的均匀电费为0.36元,则玄月份共用电多少千瓦?•应交电费是多少元?8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机。
列方程组解应用题的步骤
列方程组解应用题的步骤
解应用题的步骤通常包括以下几个步骤:
1. 确定未知量:阅读应用题目,找出需要求解的未知量,将其用字母表示。
2. 设立方程:根据题目中给出的条件和关系,利用代数方法建立方程组。
根据题目中的问题,可以设立一个或多个方程。
3. 化简方程:对方程进行化简,使得方程的形式更简洁,更易求解。
可以使用运算规律,合并同类项,消去分母等方法进行化简。
4. 解方程:通过解方程组,求出未知量的值。
可以使用代入法、消元法、等价转换等方法进行求解。
5. 验证解:将求得的解代入原方程组中,验证是否满足题目给出的条件。
6. 回答问题:得到未知量的具体值后,根据题目要求,给出回答问题的具体答案。
需要注意的是,在解应用题时,理解题意和建立方程的过程往往比解方程更重要。
因此,正确理解题意和准确建立方程是解应用题的关键步骤。
此外,解应用题时需要注意思考和推理,灵活运用数学知识和解题方法。
七年级学生列方程解应用题的一般方法和步骤
七年级学生列方程解应用题的一般方法和步骤伟大的数学家笛卡儿说:“一切问题都可以转化为数学问题,一切数学问题都可以转化为代数问题,而一切代数问题又都可以转化为方程。
因此,一旦解决了方程问题,一切问题将迎刃而解。
”笛卡儿的这句话已经清楚地告诉我们方程是多么的重要,所以从七年级甚至小学我们就应该重视方程的教学。
所谓方程,就是“含有未知数的等式”。
而所谓列方程解应用题的思想方法,就是在一道数学实际应用题中运用方程的思想来寻求答案。
对于七年级学生来说,一道应用题如何入手才是最重要的,用方程的方法解答无疑是学生较易接受的方式。
方程是一种逆向思维的解题方法,它改变了小学一般解决逆思维题目用算术方法解答而学生很难理解的困惑,符合学生的认知规律和知识基础,易于学生运用知识的正迁移,并结合思维方法正确解决此类实际问题,学生学得轻松、有效,很好地提高了课堂教学效率。
列方程有这样一个定义:列方程是为了求未知数,在未知数和已知数之间建立的一种等式关系。
这就揭示了应用方程解决实际问题的三种好处:第一,它揭示了方程这一数学思想方法的目标,即为了求未知数。
第二,陈述了“已知数”的存在。
列方程解应用题需要充分利用已知数和未知数之间的关系。
第三,方程的本质是“关系”,而且是一个等式关系。
所以,列方程解应用题归根结底就是要在实际问题中确定等量关系。
一般来说,列方程解应用题要完成两个转化过程:首先,通过分析把实际问题中的数量关系转化为数学问题,也就是列方程;其次,通过解方程,将未知数转化为已知,也就是方程变形。
这时,根据等量关系列方程就成为了列方程解应用题的关键。
而等量关系往往是隐含在题目中的,一般情况下,题目里是不会明显呈现的,并且确定等量关系也没有固定方法可循,如果考虑的角度不同,所取得的等量关系也不会相同。
这正是学生在学习列方程解应用题时总是找不到恰当的等量关系的根本原因。
那么,如何加强列方程解应用题的训练,帮助学生实现从算术思维到代数思维的转变呢?一、列方程解应用题的一般方法1.解决设求的困难。
初一一元一次方程应用题八种类型解析与练习
初一一元一次方程应用题八种类型解析与练习列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.1.和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.(3)增长量=原有量×增长率现在量=原有量+增长量2. 等积变形问题:“等积变形”是以形状改变而体积不变为前提.常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积.常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h= r2h②长方体的体积 V=长×宽×高=abc3. 劳力调配问题:这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变4. 数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c.(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.商品销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18. 储蓄问题⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税⑵利息=本金×利率×期数本息和=本金+利息利息税=利息×税率(20%)1、一个两位数,十位上的数字与个位上的数字之和为11,如果把十位上的数字与个位上的数字对调,那么得到的新数就比原数大63,求原来的两位数。
列方程解应用题的一般步骤是
列方程解应用题的一般步骤是:(1)审(2)找(3)设(4)列(5)解(6)答,而最关键的是第二步找等量关系,只有找出等量关系才可列方程,下面我来谈谈怎样找相等关系和设未知数。
一、怎样找等量关系(一)、根据数量关系找相等关系。
好多应用题都有体现数量关系的语句,即“…比…多…”、“ …比…少…”、“…是…的几倍”、“ …和…共…”等字眼,解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定相等关系。
例1:某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生相等关系:女生人数-男生人数=80例2:合唱队有80人,合唱队的人数比舞蹈队的3倍多15人,则舞蹈队有多少人相等关系:舞蹈队的人数×3+15=合唱队的人数例3:在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处人数为在乙处的人数的2倍,应调往甲、乙两处各多少人相等关系:调动后甲处人数=调动后乙处人数×2解:设调x人到甲处,则调(20-x)人到乙处,由题意得:27+x=2(19+20-x),解得 x=17所以 20-x=20-17=3(人)答:应调往甲处17人,乙处3人。
(二)、根据熟悉的公式找相等关系。
单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工作效率×工作时间=工作总量,售价=原价×打折的百分数,利润=售价-进价,利润=进价×利润率,几何形体周长、面积和体积公式,都是解答相关方程应用题的工具。
例1:一件商品按成本价提高100元后标价,再打8折销售,售价为240元。
求这件商品的成本价为多少元相等关系:(成本价+100)×80%=售价例2:用一根长20cm的铁丝围成一个正方形,正方形的边长是多少相等关系:正方形的周长=边长×4例3:一个梯形的下底比上底多2厘米,高是5厘米,面积是40平方厘米,求上底。
列分式方程解应用题的一般步骤
列分式方程解应用题的一般步骤解分式方程应用题的一般步骤:
一、理解题意和变量定义
1. 仔细阅读题目,理解问题的背景和意图。
2. 确定需要解决的问题,并定义所涉及的变量。
二、列出分式方程
1. 根据问题中的条件和定义的变量,用数学语言将问题表达为分式方程。
2. 根据题目中所需求解的未知数,将分式方程进行变形,使得未知数只出现在一个分式中。
三、清除分母
1. 将方程两边的分母消除,使方程变为整式方程。
2. 方法一:将每个分母乘到方程两边的相应项上。
3. 方法二:求出各个分母的最小公倍数,并将每个分母乘以使其等于最小公倍数的倍数。
四、解整式方程
1. 如果分式方程已消去分母,得到的是一个整式方程。
2. 解整式方程的方法与一元一次方程的解法相同,例如使用等式两边的规律性质(加减反运算、去项、合并同类项等)进行计算。
五、检验解的有效性
1. 将求得的解代入原分式方程,验证是否满足方程的条件。
2. 如果解满足原方程,则解是有效的。
否则需要重新检查方程的推导过程。
六、书写解的结论
1. 根据题目要求和解的有效性,得出问题的解答。
2. 如果问题要求解是唯一的,需要明确指出解的唯一性。
这是解分式方程应用题的一般步骤,具体题目可能会有一些特殊的步骤或变形的需求,需要根据题目的具体要求来进行相应的考虑和解答。
同时,在解题过程中,需要注意每一步的合理性、准确性以及解的有效性的验证。
列一元一次方程解应用题的一般步骤
∙列一元一次方程解应用题的一般步骤:列方程(组)解应用题是中学数学联系实际的一个重要方面。
其具体步骤是:⑴审题:理解题意。
弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数):找出等量关系:找出能够表示本题含义的相等关系;①直接未知数:设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程;②间接未知数(往往二者兼用)。
一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。
一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答题。
综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。
在这个过程中,列方程起着承前启后的作用。
因此,列方程是解应用题的关键。
∙一元一次方程应用题型及技巧:列方程解应用题的几种常见类型及解题技巧:(1)和差倍分问题:①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
②多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
③基本数量关系:增长量=原有量×增长率,现在量=原有量+增长量。
(2)行程问题:基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,路程=速度×时间。
①相遇问题:快行距+慢行距=原距;②追及问题:快行距-慢行距=原距;③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度,逆水(风)速度=静水(风)速度-水流(风)速度例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?两车同时开出,相背而行多少小时后两车相距600公里?两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
列方程解应用题的一般步骤是什么(精)
经检验x=300为原方程的根
答:利息为300元。
练一练
练习: 1、一组学生乘汽车去春游,预计
共需车费120元,后来人数增加了 用仍不变,这样每人少摊3元,原来这组 学生的人数是多少个?
1 ,费 4
2、解一组方程,先用小计算器解20 分钟,再改用大计算器解25分钟可解完, 如果大计算器的运算速度是小计算器的4 倍,求单用大计算器解这组方程需多少时 间?
王明同学准备在课外活动时间组织部分 同学参加电脑网络培训,按原定的人数估计 共需费用300元。后因人数增加到原定人数 的2倍,费用享受了优惠,一共只需480元, 参加活动的每个同学平均分摊的费用比原计 划少4元。原定人数是多少?
3、(03苏州)为了绿化江山,某村计划在荒 山上种植1200棵树,原计划每天种x棵,由于邻村 的支援,每天比原计划多种了40棵,结果提前了5 天完成了任务,则可以列出方程为( )
列方程解应用题的 步骤是怎样的呢?
归纳概括
列分式方程解应用题的一般步骤: (1)审清题意; (2)设未知数(要有单位); (3)根据题目中的数量关系列出式子,找 出相等关系,列出方程; (4)解方程,并验根,还要看方程的解是 否符合题意; (5)写出答案(要有单位)。
练习:求解本章导图中的 问题.
三、例题讲解与练习
A,B两地相距135千米,两辆汽车从A开往B,大 汽车比小汽车早出发5小时,大汽车又比小汽车 早到30分钟,已知小汽车与大汽车的速度之比 为5:2,求两车的速度。 分析: 已知两边的速度之比为5:2,所以 设大车的速度为2x千米/时,小说车的速度为5x千 米/时,而A、B两地相距135千米,则大车行驶时 135 135 间 2 x 小时,小车行驶时间 5 x 小时,由题意可知大 车早出发5小时,又比小车早到30分钟,实际大车 行驶时间比小车行驶时间多4.5小时,由此可得等 量关系
列出方程组解应用题的一般步骤
1、审题:弄清题意和题目中的已知数、未知数;2、找等量关系:找出能够表示应用题全部含义的一个(或几个)相等关系;3、设未知数:据找出的相等关系选择直接或间接设置未知数4、列方程(组):根据确立的等量关系列出方程5、解方程(或方程组),求出未知数的值;6、检验:针对结果进行必要的检验;7、作答:包括单位名称在内进行完整的答语。
1.基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置.相遇问题:速度和×相遇时间=相遇路程追击问题:追击时间=路程差÷速度差流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷22.现价=原价*折扣率折扣价=现价/原价*100%件商品的利润=售价-进货价=利润率*进价毛利润=销售额-费用利润率=(售价--进价)/进价*100%标价=售价=现价进价=售价-利润售价=利润+进价3.储蓄存款利息计算的基本公式为:利息=本金×存期×利率税率=应纳数额/总收入*100%本息和=本金+利息税后利息=本金*存期*利率*(1- 税率)税后利息=利息*税率利率-利息/存期/本金/*100%利率的换算:年利率、月利率、日利率三者的换算关系是:年利率=月利率×12(月)=日利率×360(天);月利率=年利率÷12(月)=日利率×30(天);日利率=年利率÷360(天)=月利率÷30(天)。
使用利率要注意与存期相一致。
利润与折扣问题的公式利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)4.溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量5.若平均增长(下降)数百分率为x,增长(或下降)前的是a,增长(或下降)n次后的量是b,则它们的数量关系可表示为:a(1+x)n =b或a(1-x) =bn6.工作效率=总工作量/工作时间工作时间=总工作量/工作效率77.单循环赛:n(n-1)/2淘汰赛:n个球队,比赛场数为n-1场次。
列方程解应用题的一般步骤
用字母代替应用题中的未知数,根据等量关系列出方程,再解所列出的方程,从而得到应用题的答案,这个过程叫做列方程解应用题.列方程解应用题的一般步骤是:(1)分析题意.认真读题,反复审题,弄清问题中的已知量是什么,未知量是什么,它们之间有什么等量关系:(2)设未知数为x.合理选择未知数是解题的关键步骤之一.一般设题目里所求的未知数是x,特殊情况下也可设与所求量相关的另一个未知数为x;(3)列方程.根据所设的未知量x和题目中的已知条件,利用等量关系列出方程;(4)解方程.求未知数x的值;(5)检验并答题.对方程的解进行检查验算,看是否符合题意,针对问题作出答案.例1 甲船载油595吨,乙船载油225吨,要使甲船的载油量为乙船的4倍,必须从乙船抽多少吨油给甲船?分析:先找相等的关系.乙船抽出一部分油给甲船后,使甲船的油等于乙船的油的4倍,即:甲船的油+乙船抽出的油=(乙船的油-乙船抽出的油)×4,我们可以设乙船抽出的油为x吨,利用等量关系列出方程求解.解:设从乙船抽出x吨油,则595+x=(225-x)×4595+x=900-4x4x+x=900-5955x=305x=61答:必须从乙船抽出61吨油给甲船.例2 甲、乙两人骑自行车同时从西镇出发去东镇,甲每小时行15千米,乙每小时行10千米.甲行30分钟后,因事用原速返回西镇,在西镇耽搁了半小时,又以原速去东镇,结果比乙晚到30分钟,试求两镇间的距离.分析:甲从西镇出发,行了30分钟,因有事用原速返回西镇,这样又得需要30分钟,到西镇后又耽搁了半小时,甲前后共耽误了0.5×3=1.5小时,但在甲耽误的时间里,乙没有停留,因此可以看作乙比甲从西镇提前1.5小时出发,然后甲追乙,结果比乙晚30分钟到达东镇,如果设甲第二次从西镇出发到东镇所用时间为x小时,我们可以得出东西两镇的距离为:甲时速×x=乙在甲前的路程+乙时速×(x-0.5)根据这样的等量关系,可以列出方程求解.解:设甲第二次从西镇出发到东镇所用的时间为x小时,则15x=10×(0.5×3)+10(x-0.5)15x=15+10x-515x-10x=15-55x=10x=2代入15x=15×2=30答:东西两镇的距离是30千米.例3 哥哥现在的年龄是弟弟当年年龄的3倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁,问哥哥、弟弟现在多少岁?分析:解答有关年龄方面的问题时,注意两人的年龄差经过多少年都不会变,因此可以根据这个差不变找等量关系.如果假设哥哥现在的年龄为x岁,由于哥哥与弟弟现在的年龄和是30岁,所以弟弟现在的年龄为30-x岁,又因为哥哥当年的年龄与弟弟现在的年龄相同,所以哥哥当年的年龄为30-x岁,又由于哥哥现在的年龄是弟弟当年年龄的3倍,所以弟弟当年的年龄为他们的年龄差不变.解:设哥哥现在的年龄为x,则方程两边同乘以3,得6x-90=90-3x-x6x+4x=90+9010x=180x=18代入30-x=30-18=12答:哥哥现在的年龄是18岁,弟弟现在的年龄是12岁.思考:如果设弟弟现在的年龄为x岁,如何列方程呢?例4 小红、小丽、小强三位同学,各用同样多的钱买了一些练习本.小红买的每本是0.6元,比小强少2本,小丽买的每本是0.4元,比小强多3本,问小强买了多少个练习本?每本的价格是多少?分析:设小强买了x个练习本,由于小红买的本数比小强少2本,所以小红买的本数为x-2个,小丽买的本数比小强多3本,所以小丽买的本数为x+3个.根据三人买练习本花的钱数相同,可以列出方程.解:设小强买了x个练习本,则0.6×(x-2)=0.4×(x+3)0.6x-1.2=0.4x+1.20.6x-0.4x=1.2+1.20.2x=2.4x=12代入0.6×(x-2)=0.6×(12-2)=66÷12=0.5答:小强买了12个练习本,每本价格0.5元。
列方程解应用题的一般步骤
找出题目中的等量关系
根据题目的描述,找出已知量与未知量之间的等量关系。 将等量关系式转化为数学表达式或方程,以便求解。
02 设未知数
直接设未知数
总结词
直接设立未知数是解决应用题的基础 步骤,有助于简化问题并明确解题方 向。
详细描述
直接设未知数是指在应用题中直接定 义未知的量,通常用字母表示。例如 ,在路程问题中,可以直接设速度为v ,时间t等。
总结词
详述解题步骤
VS
详细描述
列出详细的解题过程,包括方程的建立、 求解过程以及如何得出最终答案。这有助 于读者理解解题思路和方法。
对解进行解释和说明
总结词
阐述解的意义和实际背景
详细描述
对解进行解释和说明,包括解在实际问题中 的应用和意义。这有助于加深对题目的理解 ,并使答案更具实际价值。
THANKS 感谢观看
检验解是否符合题目要求
核对解是否满足题目的目标或任务,例如求解最大值、最 小值等。
检验解是否满足题目的特定要求,例如特定数值、特定关 系等。
06 作答
写出解的完整形式
总结词
明确解的形式
详细描述
在解答应用题时,需要将解的完整形式写出,包括未知数的具体数值和单位,确保答案 清晰明了。
写出解题过程
根据几何图形列出方程
分析几何图形中的已知条件和未 知量。
根据几何定理和性质,列出方程 表示图形的边长、角度等关系。
对方程进行整理,使其形式更简 单,便于求解。
04 解方程
合并同类项
合并同类项
将方程中相同或相似的项合并, 简化方程。
合并方法
将同类项的系数相加或相减,字 母和字母的指数保持不变。
初中数学列方程解应用题
列方程解应用题:1.列一元一次方程解应用题的一般步骤1审题:弄清题意.2找出等量关系:找出能够表示本题含义的相等关系.3设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.4解方程:解所列的方程,求出未知数的值.5检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.2.和差倍分问题增长量=原有量×增长率现在量=原有量+增长量3.等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h= r2h②长方体的体积 V=长×宽×高=abc4.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a, 百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.市场经济问题1商品利润=商品售价-商品成本价 2商品利润率=商品利润商品成本价×100%3商品销售额=商品销售价×商品销售量4商品的销售利润=销售价-成本价×销售量5商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间1相遇问题:快行距+慢行距=原距2追及问题:快行距-慢行距=原距3航行问题:顺水风速度=静水风速度+水流风速度逆水风速度=静水风速度-水流风速度抓住两码头间距离不变,水流速和船速静不速不变的特点考虑相等关系.7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18.储蓄问题利润=每个期数内的利息本金×100% 利息=本金×利率×期数1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作:2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高精确到毫米, ≈.4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.7.某地区居民生活用电基本价格为每千瓦时元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.1某户八月份用电84千瓦时,共交电费元,求a.2若该用户九月份的平均电费为元,则九月份共用电多少千瓦•应交电费是多少元8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.1若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.2若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案二元一次方程组应用题:一分配配套问题1.一张方桌由一个桌面和四个桌腿组成,如果1立方米木料可制作方桌桌面50个,或制作桌腿300条,现有5立方米木料,请你设计一下,用多少木料做桌面,用多少木料做桌腿,恰好制成方桌多少张2.运往灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完;第二批共运524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨3.将若干练习本分给若干名同学,如果每人分4本,那么还余20本;如果每人分8本,那么最后一名同学分到的不足8本,求学生人数和练习本数;二行程问题航速问题1.相遇,相向而行, 甲走的路程+乙走的路程=总路程同时不同地前者走的路程+两者的距离=追者走的距离2.追击,同地不同时前者所用的时间—多用的时间=追者所用的时间3. 环形, 同向出发后者走的路程—前者走的路程=环形周长道路4.反向出发甲走的路程+乙走的路程=环形周长1. 甲、乙两车分别以均匀的速度在周长为600米的圆形轨道上运动;甲车的速度较快,当两车反向运动时,每15秒钟相遇一次,当两车同向运动时,每1分钟相遇一次,求两车的速度;2 甲、乙两人练习跑步,如果甲让乙先跑10米,甲跑5秒钟就可追上乙,如果甲让乙先跑2秒,那么甲跑4秒就能追上乙,问甲、乙每秒各跑多少米3甲乙两人相距6km,两人同时出发相向而行,1小时相遇;同时出发同向而行,3小时可追上乙;两人的平均速度各是多少44 A,B两地相距1200km ,一条船顺流航行需2小时30分,逆流航行需3小时20分,求飞机的平均速度和风速;三工程问题工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.1.某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45 ;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套要求的期限是几天2 . 现要加工400个机器零件,若甲先做1天,然后两人再共做2天,则还有60个未完成;若两人齐心合作3天,则可超产20个.问甲、乙两人每天各做多少个零件3 一项工程,甲乙两人合作8天可完成,需费用3520元,若甲单独做6天后,剩下的由乙单独做还需12天才能完成,这样需要费用3480元;问:1甲一个人单独完成此工程费用为多少元2甲.乙两人单独做完成此项工程,个需多少天3哪一个人单独完成此工程的费用较省四.数字问题1.有一个两位数,个位上的数比十位上的数大5,如果把两个数字的位置对换,那么所得的新数与原数的和是143,求这个两位数2.有一个两位数,其值等于十位数字与个位数字之和的4倍,其十位数字比个位数字小2,求这个两位数.3 .一个三位数和一个两位数的差为225,在三位数的左边写这个两位数,得到一个五位数,在三位数的右边写上这个两位数,也得到一个五位数,已知前面的五位数比后面的五位数大225,求这个三位数和两位数.五和差倍分问题1 甲乙二人,若乙给甲10元,则甲所有的钱为乙的3倍,若甲给乙10元,则甲所有的钱为乙的2倍多10元,求甲乙各拥有多少钱2 甲乙两个商店各进洗衣机若干台,若甲店拨给乙店12台,则两店的洗衣机一样多,若乙店拨给甲店12台,则甲店的洗衣机比乙店洗衣机数的5倍还多6台,求甲、乙两店各进洗衣机多少台3 甲乙两条绳共长17米,如果甲绳子减去五分之一,乙绳增加1米,两条绳子相等,求甲、乙两条绳各长多少米六盈亏利润问题利润=标价—进价利润=进价×利润率盈利百分数.1 一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少2 工艺商场按标价销售某种工艺品时,每件获得45元利润;按标价的八折销售该工艺品10件与标价降低25元销售该工艺品12件所获利润相等,求该工艺品每件的进价、标价分别是多少元3 某市场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元,问甲、乙两种商品各购进了多少件七增长率问题增长量=原有量×增长率原有量=现有量—增长量现有量=原有量×1+增长率1. 某人装修房屋,原预算25000元;装修时因材料费下降了20%,工资涨了10%,实际用去21500元;求原来材料费及工资各是多少元2. 某单位甲、乙两人,去年共分得现金9000元,今年共分得现金12700元. 已知今年分得的现金,甲增加50%,乙增加30%. 两人今年分得的现金各是多少元八. 年龄问题解这类问题的基本关系是抓住两个人年龄的增长数相等;年龄问题的主要特点是:时间发生变化,年龄在增长,但是年龄差始终不变;年龄问题往往是“和差”、“差倍”等问题的综合应用1 . 父子的年龄差30岁,五年后父亲的年龄正好是儿子的3倍,问今年父亲和儿子各是多少岁2 . 现在父亲的年龄是儿子年龄的3倍,7年前父亲的年龄是儿子年龄的5倍,问父亲、儿子现在的年龄分别是多少岁一元二次方程应用题:变化前数量×1 x n=变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,求水稻每公顷产量的年平均增长率;2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是多少3.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为元,求2、3月份价格的平均增长率;4.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率商品销售问题:售价—进价=利润一件商品的利润×销售量=总利润单价×销售量=销售额1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P件与每件的销售价X元满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元每天要售出这种商品多少件2.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R元,售价每只为P元,且RP与x的关系式分别为R=500+30X,P=170—2X;(1)当日产量为多少时每日获得的利润为1750元(2)若可获得的最大利润为1950元,问日产量应为多少3.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克;现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元面积问题:1.有一面积为54cm2的长方形,将它的一组对边剪短5cm,另一组对边剪短2cm,刚好变成一个正方形,这个正方形的边长是多少2.如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的正方形,使得留下的图形图中阴影部分面积是原矩形面积的80%,求所截去的小正方形的边长;3.张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已购买这种铁皮每平方米需20元钱,问张大叔购买这张铁皮共花了多少元钱4.如图,在宽为20m ,长为30m ,的矩形地面上修建两条同样宽且互相垂直的道路,余分作为耕地为551㎡;则道路的宽为行程问题:1、A、B两地相距82km,甲骑车由A向B驶去,9分钟后,乙骑自行车由B出发以每小时比甲快2km的速度向A驶去,两人在相距B点40km处相遇;问甲、乙的速度各是多少2、甲、乙二人分别从相距20千米的A、B两地以相同的速度同时相向而行,相遇后,二人继续前进,乙的速度不变,甲每小时比原来多走1千米,结果甲到达B地后乙还需30分钟才能到达A地,求乙每小时走多少千米.3、甲、乙两个城市间的铁路路程为1600公里,经过技术改造,列车实施了提速,提速后比提速前速度增加20公里/小时,列车从甲城到乙城行驶时间减少4小时,这条铁路在现有的安全条件下安全行驶速度不得超过140公里/小时.请你用学过的数学知识说明在这条铁路现有的条件下列车还可以再次提速.工程问题:1、某公司需在一个月31天内完成新建办公楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成.1求甲、乙两工程队单独完成此项工程所需的天数.2如果请甲工程队施工,公司每日需付费用2000元;如果请乙队施工,公司每日需付费用1400元.在规定时间内:A.请甲队单独完成此项工程出.B请乙队单独完成此项工程;C.请甲、乙两队合作完成此项工程.以上三种方案哪一种花钱最少2、搬运一个仓库的货物,如果单独搬空,甲需10小时完成,乙需12小时完成,丙需15小时完成,有货物存量相的两个仓库A和B,甲在A仓库,乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙,最后两个仓库的货物同时搬完,丙帮助甲乙各多少时间列式子3、甲、乙两人都以不变的速度在环形路上跑步,相向而行,每隔2分钟相遇一次;同向而行,每隔6分钟相遇一次,已知甲比乙跑得快,求甲、乙每分钟各跑几圈。
列方程解应用题的一般步骤是什么
列方程解应用题的一般步骤是什么?((1)审题:分析题意,弄清哪些是已知量,哪些是未知量,它们之间的数量关系.(2)设未知数:未知数有直接与间接两种,恰当的设元有利于布列方程和解方程,以直接设未知数居多.(3)根据已知条件找出等量关系布列方程或方程组.(4)解方程或方程组.(5)检验并写出答案.)例1 两个连续奇数的积是323,求这两个数.分析:(启发同学思考回答)审题(1)有两个连续奇数;(2)两数之积等于323;(3)要求出这两个数.设元(复习奇数,连续数的表示)(1)设较小的一个奇数为x,则另一个奇数为x+2.(2)设较小的一个奇数为x-1,则另一个奇数为x+1.(3)设较小的一个奇数为2x-1,则另一个奇数为2x+1.找等量关系布列方程:两数之积等于323.解:设较小的一个奇数为x,另一个为x+2,根据题意,得x(x+2)=323.整理后得x2+2x-323=0解这个方程得x1=17,x2=-19.由x=17得x+2=19;由x=-19得x+2=-17.答:这两个奇数是17、19或者-19、-17.提问:1.按后两种设未知数的方法列出怎样的方程.(x+1)(x-1)=323,(2x+1)(2x-1)=323)2.三种不同的设元,列出三个不同的方程,得出不同的x值,影响最后结果吗?3.解题中x出现了负值,为什么不舍去?(奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数).例2 有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数.分析:1.首先弄清数与数字之间的关系,如35≠3×5,35=3×10+5,3是十位数字,5是个位数字,由这两个数字组成的两位数是3×10+5=35.同理,若个位数字是x,十位数字是y,则这两位数是10y+x.由此可知,数与数字的关系是:两位数=(十位数字×10)+个位数字三位数=(百位数字×100)+(十位数字×10)+个位数字2.审题:(1)十位数字比个位数字小2.(2)这两个数字构成两位数.(3)两位数等于数字之积的3倍.3.设元设个位数字为x,则十位数字为x-2.解:设个位数字为x,则十位数字为x-2.这个两位数是10(x-2)+x.根据题意得10(x-2)+x=3x(x-2).整理后得3x2-17x+20=0.当x=4时,x-2=2,10(x-2)+x=24.答:这个两位数是24.*例3有一个两位数,它的十位数字与个位数字之和是8,如果把十位数字与个位数字调换后,所得两位数乘以原来的两位数就得1855,求原来的两位数.关键:正确写出原来的两位数和调换后的两位数.(带领同学分析后解题)解:设十位数字是x,个位数字为8-x.则原来的两位数是10x+(8-x).调换后的两位数是10(8-x)+x.根据题意得[10x+(8-x)][10(8-x)+x]=1855.整理后得x2-8x+15=0解这个方程得x1=3,x2=5当x=3时,8-x=5,两位数为35.当x=5时,8-x=3,两位数为53.答:原来的两位数是35或53.小结1.列一元二次方程解应用题,步骤与以前列方程解应用题一样,其中审题是解决问题的基础,找出等量关系列方程是关键.恰当灵活地设元直接影响着列方程与解法的难易,它可以为寻求正确的、合理的答案提供有利条件.2.注意方程的解不一定适合应用题,因此必须检验方程的解是否符合实际问题的要求.。
列方程解应用题的一般步骤(精)
解:解方程(解法因题而异),间接设的问 题及有多个未知数的问题不要有遗漏 验:(1)检验解方程的结果是否正确; (2)将解出的结果带入实际的问题情境 进行检验。 答:根据问题写出回答,要完整准确。
应用题的基本类型及应注意的知识点
一.数字问题(未知数的设法,验根)
1.某月日历中一竖列上相邻的三数之和 为75,若设中间一个数为 x ,则另两个 数为 x 7 ,x 7 可列方程为:
各买了5件该服装。那么,谁更合算?
解:珺珺(甲):150×80%×5=600(元)
璐璐(乙): 150×70%×5+150=675(元)
答:珺珺更合算。
(6)由上面两道题可见,有时去甲
商场合算,有时去乙商场合算。 聪明的你能否计算出买几件该服 装时去两家商场一样合算吗?
甲商场花的钱 = 乙商场花的钱 解:设买x件服装时去两家商场一样合算。 根据题意 ,得 150×80%· x = 150×70%· x+150 X = 10
联络员路程=联络员速度×联络员时间
解:15×4=60(千米) 答:当后队追上前队时联络员行了60千米。
3.甲、乙两人从同一村庄步行去县城, 甲比乙早出发1小时,而晚到1小时; 甲每小时走4千米,乙每小时走6千米。 求从村庄到县城的路程。 4.甲、乙两人由A村去B城办小时追上 甲,求甲、乙两人的速度及追上时离A 村的距离。
六、工程问题:(工作量=工作效率×工作时间) (工作量之和=工作总量)
1.某人读一本书,第一天读了全书的 1/3还多2页,第二天读了剩下的1/2少 1页,这时还剩下28页没读完,这本 书共有多少页? 解:设这本数共有 x 页,根据题意得:
1 x 2 1 [ x ( 1 x 2)] 1 28 x 2 3 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一列方程解应用题的一
般步骤
Prepared on 24 November 2020
列方程解应用题的一般步骤(解题思路)
(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).
(2)设—设出未知数:根据提问,巧设未知数.
(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系
列出方程.
(4)解——解方程:解所列的方程,求出未知数的值.
(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,
检验后写出答案.(注意带上单位)
二、各类题型解法分析
一元一次方程应用题归类汇集:
行程问题,工程问题,和差倍分问题(生产、做工等各类问题),
等积变形问题,调配问题,分配问题,配套问题,增长率问题,
数字问题,方案设计与成本分析,古典数学,浓度问题等。
第一类、行程问题
基本的数量关系:
(1)路程=速度×时间⑵速度=路程÷时间⑶时间=路程÷速度
要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)
常用的等量关系:
1、甲、乙二人相向相遇问题
⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量
2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题
⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量
3、单人往返
⑴各段路程和=总路程⑵各段时间和=总时间⑶匀速行驶时速度不变
4、行船问题与飞机飞行问题
⑴顺水速度=静水速度+水流速度⑵逆水速度=静水速度-水流速度
5、考虑车长的过桥或通过山洞隧道问题
将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
6、时钟问题:
⑴将时钟的时针、分针、秒针的尖端看作一个点来研究
⑵通常将时钟问题看作以整时整分为起点的同向追击问题来分析。
常用数据:①时针的速度是°/分②分针的速度是6°/分③秒针的速度是6°/秒
1.一列火车通过隧道,从车头进入道口到车尾离开隧道共需45 秒,当整列火车在隧道里需32 秒,若车身长为180 米,隧道x 米,可列方程为_______________。
2.火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图像描述大致是()
3.某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟
4.一列匀速前进的火车,从它进入320m长的隧道到完全通过隧道经历了18s的时间,隧道顶部一盏固定的灯光在火车上,垂直照射的时间为10s,问这列火车的长为多少米
5.在一段双轨铁道上,两列火车相向驶过,A列车车速为20米/秒,B列车车速为24米/秒,若A列车全长180米,B列车全长160米,求两列车从相遇到相离所要的时间。
6.小红、小南、小芳在郊游,看到远处一列火车匀速通过一个隧道后,小红:火车从开始进入隧道到完全开出隧道共用30秒;小南:整列火车完全在隧道里的时间是20秒;小芳:我爸爸参与过这个隧道的修建,他告诉我隧道长500米。
求出这列火车的长。
7.一人以每分钟120米的速度沿铁路边跑步.一列长288米的火车从对面开来,从他身边通过用了8秒钟,求列车的速度。
8.在6点和7点之间,什么时刻时钟的分针和时针重合
9.一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
10某船从A码头顺流航行到B码头,然后逆流返行到C码头,共行20小时,已知船在静水中的速度为千米/时,水流的速度为千米/时,若A与C的距离比A与B的距离短40千米,求A与B的距离。
.。