高等代数考研习题精选
高等代数考研真题 第二章 行列式
第二章1.(北师大2003-25)1.计算行列式87162534的逆序数,并依次将上述排列变成12345678的所有对换2.设n 个数码的排列121n n i ,i ,...i ,i -的逆序数是k ,那么排列321n n n i ,i ,...i ,i i -的逆序数是多少?请说明理由。
2.计算下列行列式(每小题6分,共12分)D=2132301211432211---的值。
3.(成电科大,2003)计算下列行列式(每小题6分,共12分)1.32222322223222223n ......D ..................=D .= 2.2323231222111114441555D =4.(中科武汉2004-15)计算行列式1111111222221223331234111111n nn...b a a a ...a a b b a a ...a a D b b b a ...a a .....................b b b b ...b a =5(成电科大2004-10分)求证:1212341112321112321114311211n n n ...n n ...n n x ...n n D ()x x x ...n n .....................x x x (x)xx...x+------==---6.(北工大,2002-10分)计算行列式0121110001000100010n n na ...a x ...a x ...D ..................a ...x a ...x+-----的值。
7(东北大学,2001-10分)计算下列行列式11112n n nnna c a c D (n )db d b =8.(东北大学,2002-10分)11111n aa a D aa+--+=--+9.(北航,2001 10分)已知a>>0,证明n 阶行列式1000110001000000101a ...a ...a ...D (n ).....................a ...a --=≥--10.(复旦,2002)计算下列行列式的值:(7分)95000009500040950004000095400094.......................................11.(中大,2004 10分)计算下列n 阶行列式:000210001200012012......D n ........................=12.(东北大2003 25分)证明当αβ≠时,11000001000101n n ..............................αβαβαβαβαβαβαβαβ++++-=+-+13.(北工大 2001 10分)计算n 阶行列式的值111n a b ab a b ab D a b ab a b++=++其中a,b 为实数。
高等代数考研习题精选
精心整理《高等代数》试题库一、 选择题1.在[]F x 里能整除任意多项式的多项式是( )。
A .零多项式B .零次多项式C .本原多项式D .不可约多项式2A 3A C .D 4A 5A .B .C .D .如果)()(,)()(x h x g x g x f ,那么)()(x h x f6. 对于“命题甲:将(1)n >级行列式D 的主对角线上元素反号, 则行列式变为D -;命题乙:对换行列式中两行的位置, 则行列式反号”有( ) 。
A .甲成立, 乙不成立;B . 甲不成立, 乙成立;C .甲, 乙均成立;D .甲, 乙均不成立精心整理7.下面论述中, 错误的是( ) 。
A . 奇数次实系数多项式必有实根;B . 代数基本定理适用于复数域;C .任一数域包含Q ;D . 在[]P x 中, ()()()()()()f x g x f x h x g x h x =⇒=8.设ij D a =,ij A 为ij a 的代数余子式, 则112111222212.....................n n n n nn A A A A A A A A A =( ) 。
9.A .4610A .31a a 11. A .11a a 12. 设A . C . 13. 设的是( )A .133221A A A A A A --- B .321211A A A A A A +++ C .32121A A A A A -+ D .311132A A A A A +- 14. 设A 为四阶行列式,且2-=A ,则=A A ( )A .4B .52C .52-D .8精心整理15. 设A 为n 阶方阵,k 为非零常数,则=)det(kA ( )A .)(det A kB .A k detC .A k n detD .A k n det16.设A ,B 为数域F 上的n 阶方阵,下列等式成立的是( )。
高等代数考研真题第一章多项式
且f(x)在有理数域上不可约。
第一章多项式1 (清华2 000— 20分)试求7次多项式f(X ),使f(M 1能被(X -1)4整除,而f(X )-1能被(X 1)4整除。
2、 (南航 2001 — 20 分)(1) 设 x —2px+2 I x +3x +px+q ,求 p,q 之值。
(2) 设f(x) , g(x), h(x) € R[x],而满足以下等式2(x +1)h(x)+(x -1) f(x)+ (x -2) g(x)=02(x +1)h(x)+(x+1) f(x)+ (x+2) g(x)=02 2证明:x +1 I f(x) , x +1 I g(x)3、 (北邮2002 —12分)证明:x d - 1 I x "- 1的充分必要条件是d I n (这里里记号 d I n 表示正整数d 整除正整数n )。
4、 、(北邮 2003 —15分)设在数域 P 上的多项式 g 1(x), g 2(x) , g 3(x) , f(x),已知 g 1(x) I f(x),g 2(x) I f(x) , g 3(x) I f(x),试问下列命题是否成立,并说明理由:(〔)如果 g 1(x) ,g 2(x) , g 3(x)两两互素,则一定有 g 1(x) , g 2(x) , g 3(x) I f(X )(2)如果g1(x) , g 2(x) , g 3(x)互素,则一定有 g 1(x)g 2(x)g 3(x)I f(X )5、 (北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。
证明P 是素数当且仅当任取正整数a ,b 若p I ab 则p I a 或p I b 。
6、 (大连理工2003 —12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幕主充分必要条件是,对任意的多项式g(x) , h(x),由f(x) I g(x) h(x)可以推出f(x) I g(x),或者对某一正整数 m , f(x) I h m(x)。
考研高等代数真题答案
考研高等代数真题答案一、选择题1. 根据线性空间的定义,下列哪个选项不是线性空间的子空间?- A. 所有零向量组成的集合- B. 线性空间中的非零向量集合- C. 线性空间中的任意向量集合- D. 线性空间中满足特定线性组合的向量集合答案:B2. 矩阵A的特征值是λ1, λ2, ..., λn,矩阵B的特征值是μ1,μ2, ..., μn。
若AB=BA,那么矩阵A+B的特征值是什么?- A. λ1+μ1, λ2+μ2, ..., λn+μn- B. λ1*μ1, λ2*μ2, ..., λn*μn- C. λ1+μ1, λ1+μ2, ..., λn+μn(无规律)- D. 不能确定答案:A二、填空题1. 若线性变换T: V → W,其中V和W是有限维向量空间,且dim(V) = n,dim(T(V)) = r,则T的核的维数是_________。
答案:n-r2. 设A是一个3×3的矩阵,且|A| = 2,矩阵A的特征多项式为f(λ)= (λ-1)^2(λ-3),则矩阵A的迹是_________。
答案:4三、解答题1. 证明:若矩阵A可逆,则A的伴随矩阵A*的行列式等于|A|^(n-1),其中n是A的阶数。
证明:设矩阵A是一个n×n的可逆矩阵,其伴随矩阵记为A*。
根据伴随矩阵的定义,我们有:A * A* = |A| * I,其中I是单位矩阵。
两边同时乘以A的逆矩阵A^(-1),得到:A^(-1) * A * A* = |A| * A^(-1) * I,即 A* = |A|^(n-1) * A^(-1)。
由此可知,A*的行列式是|A|^(n-1)。
2. 解线性方程组:x + 2y + 3z = 14x + 5y + 6z = 27x + 8y + 9z = 3解:首先写出增广矩阵:[1 2 3 | 1][4 5 6 | 2][7 8 9 | 3]通过初等行变换,将增广矩阵化为行最简形式:[1 0 -1 | -1][0 1 3 | 4][0 0 0 | 0]根据行最简形式,我们可以得到y = 4 - 3z,x = 1 + z。
高等代数每日一题考研真题
高等代数每日一题考研真题高等代数是数学中的重要分支之一,对于考研学生来说,掌握高等代数的知识是非常重要的。
为了帮助考生更好地备考,下面将为大家介绍一道高等代数的考研真题,并给出详细的解答过程。
考研高等代数题目如下:已知矩阵A = [a11, a12, a13; a21, a22, a23; a31, a32, a33]其中,a11, a12, a13, a21, a22, a23, a31, a32, a33均为非零实数。
(1)若|A| = -6,求a33的值。
(2)设矩阵B = (A^-1)^T,其中(A^-1)^T表示矩阵A的逆矩阵的转置矩阵,求B。
解答如下:(1)根据题目已知条件,我们可以使用行列式的性质进行求解。
由于|A| = -6,根据行列式的性质可知:|A| = a11(a22a33 - a23a32) - a12(a21a33 - a23a31) + a13(a21a32 -a22a31) = -6根据上述等式,可以得到一个关于a33的二次方程,进一步求解该二次方程,即可得到a33的值。
(2)根据题目已知条件,我们需要先求解矩阵A的逆矩阵,然后再对其进行转置。
首先,求解矩阵A的逆矩阵。
设A的逆矩阵为A^-1,根据矩阵的性质可知:AA^-1 = I,其中I为单位矩阵,即I = [1, 0, 0; 0, 1, 0; 0, 0, 1]。
根据上述等式,我们可以得到以下方程组:a11x11 + a12x21 + a13x31 = 1a11x12 + a12x22 + a13x32 = 0a11x13 + a12x23 + a13x33 = 0a21x11 + a22x21 + a23x31 = 0a21x12 + a22x22 + a23x32 = 1a21x13 + a22x23 + a23x33 = 0a31x11 + a32x21 + a33x31 = 0a31x12 + a32x22 + a33x32 = 0a31x13 + a32x23 + a33x33 = 1解上述方程组,即可得到逆矩阵A^-1的值。
研究生高等代数复习题
1.设 是数域P 上线性空间 V 的线性变换且 扌2扌,证明: (1) 的特征值为 1或0; (2)0 1(0)A ( )| V ;( 3)*扌"01 fllTUl £J 1 血引& 1 -4 [D 亠 2」La V *1V 才(0)/(V).h 妙门)tb 师A 丫搦就匚由曆岭串入岂切勿门P) ':(«叫刀专壯丫]国弘0 \记出和 忙小加elV,曲此肋卜煤J-殖R H R L対&炭M A Wu 血M E 畑隔茫卜鯛皿W 伽咄 换片⑷二W 二2-如]£艸』.毎(L ;s 器对们*靱为¥^占宦函,戈中箱冋 刪內M •(tr) Sfe 込亂:'oi 绘W 叹E 砒护.如 MV A oi -A^+^IZ.貞b)+AL审a Vote A) fl 5ft 由 D I E 如心 阳p.嶽[小吊。
讹比加"十賊.2.已知 是n 维欧氏空间的正交变换,证明: 的不变子空间 W 的正交补 W 也是 的不变子空间. .呼:演M 肛坊涵凤y 詁色疑接 则站 如巒哪、 WS J 辰磯上飙询辰M 戈二Q. K 幕亍疋丹册匚沪.H 就M 丄 八厲艸)=0 “古忆 押期 卫时贱,朋4神刑. \ r 加/AG*)o 舟呻)二&<舜】"八'亠如 J-初丄匕M 七 D 1 Uy缭制严叫f%舟淀边提.6.设 A 为 n 阶 方阵,W X R "|A X 03.已知复系数矩阵 A 1 2 0 1 0 00 03 42 31 2 '0 1(1)求矩阵 A 的行列式因子、不变因子 和初等因子;(2)若当标准形.(15分) 如 [JH 心巧十5 O 0 _>-<. W X R n| (A E)X4廿M 病營竝杳/屋乩苗常歸•沖疋嘲驗I 「叫+1V1CR" 站卞E|巴火U 阶战)十叙总中 由A U-Ap =蘇-私={A _&Y =D 彌 vM-xe[6f . t [4-£Mp= f 尼A>y 刃知 A 啜E 呛 故gg 加"曲G W 古甌 A J 為骼讹 、•‘ fF?=^i+lAi.丈險皿fl 怜由密刖■触p ;由XE I 似 欲勺哎P 寺 -^-0 孕 g -略nWi斗M .、:E=lVi 费鵝,7.若设 W= f(x)|f(1) 0, f(x)R[x]n ,证明:W 是R[x]”的子空间,并求出 W 的一组基及维数.T 曲,⑴0£用「W 那艺I 仍k 卵)吗X1J 押+肿乜■\ *30+3⑷ e|V血甲他巩押老X 甲.吋g ';申』訓.故时善眈I 個繼邱^V^^weW,阳痂戒怒忑伽f+…十伽伽如由ftnm?紂口十+…+①+弘之.,\ J IMW 二 n 叫.8. 设V 是一个n 维欧氏空间,0证明A 为幂等矩阵,则 R W W .笹 tjOnLXT,』ty 对:。
研究生高等代数复习题完整版
32.设 的两个子空间为: ,
.求 与 的基与维数.
33.设 是3维线性空间, 为它的一个基.线性变换 ,
求(1) 在基 下的矩阵; (2)求核 和值域 .
34.设 是实数域上所有 阶对称阵所构成的线性空间,对任意 ,定义 ,其中 表示 的迹.(1)证明: 构成一欧氏空间;(2)求使 的子空间 的维数;(3)求 的正交补 的维数.
17.设 是5维的欧几里得空间 的一组标准正交基, ,其中 ,求 的一组标准正交基.
18.设 是 矩阵,其中
(1)求 的值;(2)设 ,求W的维数及W的一组基.
19.设?是线性空间 上的线性变换,满足 ,求?在基 下的矩阵.
20.设?是 维线性空间 上的线性变换, 是 的一组基.
如果?是单射,则 也是一组基.
研究生高等代数复习题
1.设?是数域 上线性空间 的线性变换且 ,证明:
(1)?的特征值为1或0;(2) ;(3) .
2.已知?是n维欧氏空间的正交变换,证明:?的不变子空间 的正交补 也是?的不变子空间.
3.已知复系数矩阵 , (1) 求矩阵 的行列式因子、不变因子和初等因子;(2)若当标准形.(15分)
35.试找出全体实2级矩阵 所构成的线性空间到 的一个线性同构.
36.求由向量 生成的子空间 与由向量 生成的子空间 的交的基和维数.
37.设 ,求(1) 的不变因子、行列式因子、初等因子.(2) 的 标准形.
38.设 是数域 上 矩阵关于矩阵加法和数乘作成的线性空间,
定义变换 , .(1)证明: 是 上的对合线性变换,即 是满足 (恒等变换)的线性变换;(2)求 的特征值和特征向量.
58.设 是4维空间 的一组基,已知线性变换 在这组基下的矩阵为
全国名校高等代数考研真题汇编(含部分答案)
考生注意: 1.本 试 卷 满 分 为 150 分,共计10道题,每题满分15 分,考试时间总计180 分钟;
2.答案必须写在答题纸上,写在试题纸上或草稿纸 上均无效。
一、设 是 阶单位矩阵, ,证明 的行列式等于 .
,矩阵 满足
二、设 是 阶幕零矩阵满足
,
.证明所有的 都相似于一个对角矩阵,
的特征值之和等于矩阵 的秩.
3.南开大学高等代数考研真题 2012年南开大学804高等代数考研真题 2011年南开大学802高等代数考研真题
4.厦 门 大 学 825高等代数考研真题 2014年厦门大学825高等代数考研真题 2013年厦门大学825高等代数考研真题 2012年厦门大学825高等代数考研真题 2011年厦门大学825高等代数考研真题
有
证明:
(1)
.
(2) 是 的不变子空间,则 也是的 不变子空间.
10.四川大学高等代数考研真题及 详解
2013年四川大学931高等代数考研真 题及详解
2011年四川大学高等代数考研真题
11.浙江大学高等代数考研真题
2012年浙江大学601高等代数考研真题
浙江大学2012年攻读硕士学位研究生入学试题 考试科目:高等代数(601)
5.中 山 大 学 877高等代数考研真题
2015年中山大学877高等代数考研真题 2014年中山大学874高等代数考研真题 2013年中山大学869高等代数考研真题 2012年中山大学869高等代数考研真题 2011年中山大学875高等代数考研真题 6.中南大学高等代数考研真题 2011年中南大学883高等代数考研真题 7.湖南大学高等代数考研真题 2013年湖南大学813高等代数考研真题 8.华 东 师 范 大 学 817高等代数考研真题 2013年华东师范大学817高等代数考研真题 2012年华东师范大学817高等代数考研真题 2011年华东师范大学817高等代数考研真题 9.华中科技大学高等代数考研真题及详解 2013年华中科技大学高等代数考研真题 2012年华中科技大学高等代数考研真题及详解 2011年华中科技大学高等代数考研真题 10.四川大学高等代数考研真题及详解 2013年四川大学931高等代数考研真题及详解 2011年四川大学高等代数考研真题 11.浙江大学高等代数考研真题 2012年浙江大学601高等代数考研真题
高等代数考研真题 第一章 多项式
第一章 多项式1、(清华2000—20分)试求7次多项式()f x ,使()1f x +能被4(1)X -整除,而()1f x -能被4(1)X +整除。
2、(南航2001—20分)(1)设x 2-2px+2∣x 4+3x 2+px+q ,求p,q 之值。
(2)设f(x),g(x),h(x)∈R[x],而满足以下等式 (x 2+1)h(x)+(x -1) f(x)+ (x -2) g(x)=0 (x 2+1)h(x)+(x+1) f(x)+ (x+2) g(x)=0 证明:x 2+1∣f(x),x 2+1∣g(x) 3、(北邮2002—12分)证明:x d -1∣x n -1的充分必要条件是d ∣n (这里里记号d ∣n 表示正整数d 整除正整数n )。
4、、(北邮2003—15分)设在数域P 上的多项式g 1(x),g 2(x ),g 3(x ),f(x),已知g 1(x)∣f(x),g 2(x)∣f(x), g 3(x)∣f(x),试问下列命题是否成立,并说明理由:(1)如果g 1(x),g 2(x), g 3(x)两两互素,则一定有g 1(x),g 2(x),g 3(x)∣f(x) (2)如果g 1(x),g 2(x), g 3(x)互素,则一定有g 1(x)g 2(x)g 3(x)∣f(x) 5、(北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。
证明P 是素数当且仅当任取正整数a ,b 若p ∣ab 则p ∣a 或p ∣b 。
6、(大连理工2003—12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幂主充分必要条件是,对任意的多项式g(x),h(x) ,由f(x)∣g(x) h(x)可以推出f(x)∣g(x),或者对某一正整数m ,f(x)∣h m (x)。
7、(厦门2004—16分)设f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约。
历届高等代数研究生试题50套2006高等代数考研题
一. 填空题(本题共10小题,每小题4分,满分40分,标明题号,不写过程,直接将答案写在答题纸上)1.若⎪⎪⎪⎭⎫ ⎝⎛=143412321A ,)(λf 是A 的特征多项式,则)(λf 除以1-λ所得的余式=r 。
2.多项式x x x x xx g 43214321432432)(=中3x 的系数是 。
3.若二次型Ax x x f T =)(经过正交变换Py x =后化为22221n y y y +++ ,那么矩阵=A 。
4.已知B A ,是同阶实对称矩阵,则BA AB -的特征值λ的实部=)Re(λ 。
5.若)(V L 表示n 维线性空间V 上全体线性变换所构成的线性空间,则)(V L 的维数是 。
6.三元二次方程022********=+++x x x x x 的一切解=⎪⎪⎪⎭⎫ ⎝⎛321x x x 。
7.若⎪⎪⎪⎭⎫ ⎝⎛----=031251233A ,则A 的最小多项式=)(λm 。
8.命题“欧氏空间nR 上保持内积不变的变换是一个线性变换”是 。
9.若c b a ,,是互不相同的实数,则方程组⎪⎩⎪⎨⎧=++=++=++332213322133221c x c cx x b x b bx x a x a ax x 中的=1x 。
10.已知T 是线性空间2R 上的一个线性变换,并且⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛2121T ,⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛1232T ,那么=⎪⎪⎭⎫ ⎝⎛54T 。
二.解答题(本题共8小题,满分110分,标明题号,要求写出必要的解题步骤,解答写在答题纸上)11.(10分)设)(),(x g x f 都是数域P 上的多项式。
如果)()(),()(x f x g x g x f ,证明存在非零常数c 使得)()(x cg x f =。
12.(10分)讨论常数b a ,为何值时,方程组⎩⎨⎧=-=+004221x x x ax 与⎩⎨⎧=+-=+-00432321bx x x x x x 有非零公共解,并将它们全部求出。
高代考研试题及答案
高代考研试题及答案一、单项选择题(每题5分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为:A. 1/2B. 2C. 1/4D. 1答案:C2. 若向量α=(1,2,3)和向量β=(2,3,4),则向量α和向量β的点积为:A. 20B. 21C. 22D. 23答案:B3. 设函数f(x)=x^3-3x+1,求f'(x):A. 3x^2-3B. 3x^2+3C. x^2-3D. x^2+3答案:A4. 若矩阵B为3阶方阵,且B的秩为2,则矩阵B的零空间的维数为:A. 0B. 1C. 2D. 3答案:B二、填空题(每题5分,共20分)1. 设矩阵C为2阶方阵,其特征值为1和2,则矩阵C的特征多项式为________。
答案:λ^2 - (1+2)λ + 1*2 = λ^2 - 3λ + 22. 设向量a=(1,0),向量b=(0,1),则向量a和向量b的叉积为________。
答案:(0,0)3. 设函数g(x)=x^2+2x+1,则g''(x)=________。
答案:24. 设线性方程组Ax=b,其中A为3阶方阵,且A的秩为3,b为3维列向量,则该方程组的解集为________。
答案:非空集合三、解答题(每题10分,共60分)1. 求矩阵D=\[\begin{matrix}1 & 2 \\ 3 & 4\end{matrix}\]的逆矩阵。
答案:矩阵D的逆矩阵为\[\begin{matrix}2 & -1 \\ -3 &2\end{matrix}\]。
2. 设向量c=(3,-1)和向量d=(2,4),求向量c和向量d的夹角。
答案:向量c和向量d的夹角为cos^-1((3*2 + (-1)*4) / (sqrt(9+1) * sqrt(4+16))) = cos^-1(0.6)。
3. 设函数h(x)=x^3+3x^2-3x+1,求h'(x)和h''(x)。
《高等代数》考研北京大学配套2021考研真题库
《高等代数》考研北京大学配套2021考研真题库第一部分名校考研真题第1章多项式一、判断题1.设Q是有理数域,则P={α+βi|α,β∈Q}也是数域,其中.()[南京大学研]【答案】对查看答案【解析】首先0,1∈P,故P非空;其次令a=α1+β1i,b=α2+β2i其中α1,α2,β1,β2为有理数,故a±b=(α1+β1i)±(α2+β2i)=(α1±α2)+(β1±β2)i∈Pab=(α1+β1i)(α2+β2i)=(α1α2-β1β2)+(α1β2+α2β1)i∈P又令c=α3+β3i,d=α4+β4i,其中α3,α4,β3,β4为有理数且d≠0,即α4≠0,β4≠0,有综上所述得P为数域.2.设f(x)是数域P上的多项式,a∈P,如果a是f(x)的三阶导数f‴(x)的k 重根(k≥1)并且f(a)=0,则a是f(x)的k+3重根.()[南京大学研] 【答案】错查看答案【解析】反例是f(x)=(x-a)k+3+(x-a)2,这里f(a)=0,并且f‴(x)=(k+3)(k+2)(k+1)(x-a)k满足a是f(x)的三阶导数f‴(x)的k重根(k≥1).3.设f(x)=x4+4x-3,则f(x)在有理数域上不可约.()[南京大学研] 【答案】对查看答案【解析】令x=y+1,则f(y)=y4+4y3+6y2+8y+2,故由艾森斯坦因判别法知,它在有理数域上不可约.二、计算题1.f(x)=x3+6x2+3px+8,试确定p的值,使f(x)有重根,并求其根.[清华大学研]解:f′(x)=3(x2+4x+p).且(f(x),f′(x))≠1,则(1)当p=4时,有(f(x),f′(x))=x2+4x+4所以x+2是f(x)的三重因式,即f(x)(x+2)3,这时f(x)的三个根为-2,-2,-2.(2)若p≠4,则继续辗转相除,即当p=-5时,有(f(x),f′(x))=x-1即x-1是f(x)的二重因式,再用(x-1)2除f(x)得商式x+8.故f(x)=x3+bx2-15x+8=(x-1)2(x+8)这时f(x)的三个根为1,1,-8.2.假设f1(x)与f2(x)为次数不超过3的首项系数为1的互异多项式,且x4+x2+1整除f1(x3)+x4f2(x3),试求f1(x)与f2(x)的最大公因式.[上海交通大学研]解:设6次单位根分别为由于x6-1=(x2)3-1=(x2-1)(x4+x2+1),所以ε1,ε2,ε4,ε5是x4+x2+1的4个根.由于ε13=ε53=-1,且x4+x2+1∣f1(x3)+x4f2(x3),所以,分别将ε1,ε5代入f1(x3)+x4f2(x3)可得从而f1(-1)=f2(-1)=0即x+1是f1(x)与f2(x)的一个公因式.同理,将ε2,ε4代入f1(x3)+x4f2(x3)可得f1(1)=f2(1)=0,即x-1是f1(x)与f2(x)的一个公因式.所以(x-1)(x+1)是f1(x)与f2(x)的一个公因式.又因为f1(x),f2(x)为次数不超过3的首项系数为1的互异多项式,所以(f(x),g(x))=x2-1三、证明题1.设不可约的有理分数p/q是整系数多项式f(x)=a0x n+a1x n-1+…+a n-1x+a n的根,证明:q∣a0,p∣a n[华中科技大学研]证明:因为p/q是f(x)的根,所以(x-p/q)∣f(x),从而(qx-p)∣f(x).又因为p,q互素,所以qx-p是本原多项式[即多项式的系数没有异于±l的公因子],且f(x)=(qx-p)(b n-1x n-1+…+b0,b i∈z比较两边系数,得a0=qb n-1,a n=-pb0⇒q∣a0,p∣a n2.设f(x)和g(x)是数域P上两个一元多项式,k为给定的正整数.求证:f (x)∣g(x)的充要条件是f k(x)∣g k(x)[浙江大学研]证明:(1)先证必要性.设f(x)∣g(x),则g(x)=f(x)h(x),其中h (x)∈P(x),两边k次方得g k(x)=f k(x)h k(x),所以f k(x)∣g k(x)(2)再证充分性.设f k(x)∣g k(x)(i)若f(x)=g(x)=0,则f(x)∣g(x)(ii)若f(x),g(x)不全为0,则令d(x)=(f(x),g(x)),那么f(x)=d(x)f1(x),g(x)=d(x)g1(x),且(f1(x),g1(x))=1①所以f k(x)=d k(x)f1k(x),g k(x)=d k(x)g1k(x)因为f k(x)∣g k(x),所以存在h(x)∈P[x](x),使得g k(x)=f k(x)·h(x)所以d k(x)g1k(x)=d k(x)f1k(x)·h(x),两边消去d k(x),得g1k(x)=f1k(x)·h(x)②由②得f1(x)∣g1k(x),但(f1(x),g1(x))=1,所以f1(x)∣g1k-1(x)这样继续下去,有f1(x)∣g1(x),但(f1(x),g1(x))=1故f l(x)=c,其中c为非零常数.所以f(x)=d(x)f1(x)=cd(x)⇒f(x)∣g(x)3.设f(x),g(x)都是P[x]中的非零多项式,且g(x)=s m(x)g1(x),这里m≥1.又若(s(x),g1(x))=1,s(x)∣f(x).证明:不存在f1(x),r(x)∈P[x],且r(x)≠0,∂(r(x))<∂(s(x))使①[浙江大学研]证明:用反证法,若存在f1(x),r(x)使①式成立,则用g(x)乘①式两端,得f(x)=r(x)g1(x)+f1(x)s(x)②因为s(x)∣f(x),s(x)∣f1(x)s(x),由②式有s(x)∣r(x)g1(x).但(s(x),g1(x))=1,所以s(x)∣r(x).这与∂(r(x))<∂(s(x))矛盾.4.设f(x)是有理数域上n次[n≥2]多项式,并且它在有理数域上不可约,但知f (x)的一根的倒数也是f(x)的根.证明:f(x)每一根的倒数也是f(x)的根.[南开大学研]证明:设b是f(x)的一根,1/b也是f(x)的根.再设c是f(x)的任一根.下证1/c也是f(x)的根.令g(x)=f(x)/d,其中d为f(x)的首项系数,不难证明:g(x)与f(x)有相同的根,其中g(x)是首项系数为l的有理系数不可约多项式.设g(x)=x n+a n-1x n-1+…+a1x+a0,(a0≠0).由于b n+a n-1b n-1+…+a1b+a0=0①(1/b)n+a n-1(1/b)n-1+…+a1(1/b)+a0=0⇒a0b n+a1b n-1+…+a n-1b+1=0⇒b n+(a1/a0)b n-1+…+(a n-1/a0)b+1/ a0=0 ②由g(x)不可约及①,②两式可得1/a0=a0,a i/a0=a n-i(i=1,2,…,n-1).故a0=±1,a i=±a n-i(i=1,2,…,n-1)③由③式可知,当f(c)=0时,有f(c)=0,且g(1/c)=0,从而f(1/c)=0.5.设f(x)是复系数一元多项式,对任意整数n有f(n)都是整数.证明:f(x)的系数都是有理数.举例说明存在不是整系数的多项式,满足对任意整数n,有f (n)是整数.[浙江大学研]证明:设f(x)=g(x)+ih(x),g(x),h(x)∈R[x]由于∀n∈Z,f(n)=g(n)+ih(n)∈Z,所以h(x)=0.下证g(x)∈Q[x].事实上,令g(x)=a0+a1x+…+a m x m,a m≠0,a i∈R,i=1,2,…,m则有a0+a1+…+a m=g(1)∈Z,a0+a1·2+…+a m·2m=g(2)∈Z,⋮a0+a1(m+1)+…+a m(m+1)m=g(m+1)∈Z.记则有(a0,a1,…,a m)T=(g(1),g(2),…,g(m+1))①又显见∣T∣=m!(m-1)!…2!1!≠0,由①式得(a0,a1,…,a m)=(g(1),g(2),…,g(m+1))T-1这里T-1是有理数域上的矩阵,g(1),g(2),…,g(m+1)均为整数,所以a0,a1,…,a m∈Q.因此f(x)=g(x)∈Q[x].取f(x)=x2/2-1/2,有f(x)=(x-n)(x/2+n/2)+(n2-1)/2可见存在不是整系数的多项式f(x),对任一整数n,有f(n)=(n2-1)/2∈Z.。
高等代数考研试题及答案
高等代数考研试题及答案一、选择题(每题3分,共30分)1. 下列矩阵中,哪个不是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [1, -1; 2, 2]2. 设线性变换 \( T: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) 由矩阵 \( A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \) 给出,那么 \( T(1, 2, 3) \) 的结果是:A. (3, 5, 3)B. (5, 3, 3)C. (1, 2, 3)D. (2, 3, 1)3. 多项式 \( p(x) = x^3 - 6x^2 + 11x - 6 \) 的根的个数是:A. 1B. 2C. 3D. 44. 设 \( V \) 是所有 \( n \) 次多项式的向量空间,\( T: V\rightarrow V \) 是一个线性变换,且 \( T(p(x)) = p'(x) \)。
如果 \( T \) 的特征值为 \( k \),那么 \( k \) 等于:A. 0B. 1C. -1D. \( n \)5. 下列哪个命题是正确的?A. 每个线性映射都可以用一个矩阵来表示。
B. 矩阵的乘积总是可交换的。
C. 两个相似矩阵必定是同阶矩阵。
D. 行列式的值总是正数或零。
6. 设 \( A \) 是一个 \( n \) 阶方阵,如果 \( A \) 的所有特征值的和等于 \( 0 \),那么 \( A \) 必定是:A. 正交矩阵B. 对角矩阵C. 零矩阵D. 反对称矩阵7. 如果一个 \( n \) 阶方阵 \( A \) 的所有元素都等于 \( 1 \),那么 \( A^n \) 的迹(trace)是:A. \( n \)B. \( n^n \)C. \( n! \)D. \( 0 \)8. 对于任意 \( n \) 阶方阵 \( A \),下列哪个选项是正确的?A. \( \det(A^2) = (\det A)^2 \)B. \( \det(A^T) = \det A \)C. \( \det(A + I) = \det A + 1 \)D. \( \det(A) = \det(A^T) \)9. 设 \( V \) 是一个向量空间,\( T: V \rightarrow V \) 是一个线性变换,如果 \( T \) 的一个特征向量 \( v \) 满足 \( T(v) = \lambda v \),那么 \( T \) 的逆变换 \( T^{-1} \)(如果存在)将 \( v \) 映射到:A. \( \lambda^{-1} v \)B. \( \frac{1}{\lambda} v \)C. \( v \)D. \( v + \lambda v \)10. 下列哪个矩阵是正交矩阵?A. \( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)B. \( \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \)C. \( \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \)D. \( \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \)二、填空题(每题4分,共20分)11. 矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) 的行列式 \( \det A \) 等于 _______。
高等代数考研真题 第一章 多项式
第一章 多项式1、(清华2000—20分)试求7次多项式()f x ,使()1f x +能被4(1)X -整除,而()1f x -能被4(1)X +整除。
2、(南航2001—20分)(1)设x 2-2px+2∣x 4+3x 2+px+q ,求p,q 之值。
(2)设f(x),g(x),h(x)∈R[x],而满足以下等式(x 2+1)h(x)+(x -1) f(x)+ (x -2) g(x)=0(x 2+1)h(x)+(x+1) f(x)+ (x+2) g(x)=0证明:x 2+1∣f(x),x 2+1∣g(x)3、(北邮2002—12分)证明:x d -1∣x n-1的充分必要条件是d ∣n (这里里记号d ∣n 表示正整数d 整除正整数n )。
4、、(北邮2003—15分)设在数域P 上的多项式g 1(x),g 2(x),g 3(x),f(x),已知g 1(x)∣f(x),g 2(x)∣f(x), g 3(x)∣f(x),试问下列命题是否成立,并说明理由:(1)如果g 1(x),g 2(x), g 3(x)两两互素,则一定有g 1(x),g 2(x),g 3(x)∣f(x) (2)如果g 1(x),g 2(x), g 3(x)互素,则一定有g 1(x)g 2(x)g 3(x)∣f(x) 5、(北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。
证明P 是素数当且仅当任取正整数a ,b 若p ∣ab 则p ∣a 或p ∣b 。
6、(大连理工2003—12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幂主充分必要条件是,对任意的多项式g(x),h(x) ,由f(x)∣g(x) h(x)可以推出f(x)∣g(x),或者对某一正整数m ,f(x)∣h m(x)。
7、(厦门2004—16分)设f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约。
高等代数考研真题第一章多项式
第一章 多项式1、(清华2000—20分)试求7次多项式()f x ,使()1f x +能被4(1)X -整除,而()1f x -能被4(1)X +整除。
2、(南航2001—20分)(1)设x 2-2px+2∣x 4+3x 2+px+q ,求p,q 之值。
(2)设f(x),g(x),h(x)∈R[x],而满足以下等式(x 2+1)h(x)+(x -1) f(x)+ (x -2) g(x)=0(x 2+1)h(x)+(x+1) f(x)+ (x+2) g(x)=0证明:x 2+1∣f(x),x 2+1∣g(x)3、(北邮2002—12分)证明:x d -1∣x n-1的充分必要条件是d ∣n (这里里记号d ∣n 表示正整数d 整除正整数n )。
4、、(北邮2003—15分)设在数域P 上的多项式g 1(x),g 2(x),g 3(x),f(x),已知g 1(x)∣f(x),g 2(x)∣f(x), g 3(x)∣f(x),试问下列命题是否成立,并说明理由:(1)如果g 1(x),g 2(x), g 3(x)两两互素,则一定有g 1(x),g 2(x),g 3(x)∣f(x) (2)如果g 1(x),g 2(x), g 3(x)互素,则一定有g 1(x)g 2(x)g 3(x)∣f(x) 5、(北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。
证明P 是素数当且仅当任取正整数a ,b 若p ∣ab 则p ∣a 或p ∣b 。
6、(大连理工2003—12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幂主充分必要条件是,对任意的多项式g(x),h(x) ,由f(x)∣g(x) h(x)可以推出f(x)∣g(x),或者对某一正整数m ,f(x)∣h m(x)。
7、(厦门2004—16分)设f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约。
湖北省考研高等代数习题集精选
湖北省考研高等代数习题集精选在湖北省考研高等代数复习中,练习习题是提高理解和应用能力的重要方法。
为了帮助考生更好地复习,本文整理了一些湖北省考研高等代数习题,并对其中的一些重要知识点进行了解析和讲解。
一、线性代数1. 设A为n阶方阵,k为非零实数,若kA的秩为r,证明rA的秩也为r。
解析:由于kA的秩为r,说明kA的列向量组线性无关,而kA的列向量组是rA的列向量组的倍数,故rA的列向量组也线性无关。
因此,rA的秩也为r。
2. 设A为n阶方阵,若A可逆,证明A的转置矩阵也可逆,并且(A的转置矩阵)的逆等于(A的逆)的转置矩阵。
解析:设B为A的逆矩阵,则AB=BA=I。
对两边同时取转置得到(B的转置矩阵)(A的转置矩阵)=(A的转置矩阵)(B的转置矩阵)=I。
由此可见,A的转置矩阵也可逆,并且(A的转置矩阵)的逆等于(A的逆)的转置矩阵。
二、群论1. 设G为群,H为G的一个子群,证明H的幺元是G的幺元。
解析:设e1是H的幺元,e2是G的幺元。
由于H是G的子群,H 是G的子集,故e1也是G的元素,且满足e1e2=e2e1=e2。
由此可见,H的幺元也是G的幺元。
2. 设G为有限群,n为正整数,证明:G中阶数为n的元素的个数是G的正除子的数目。
解析:设G中阶数为n的元素为a,设G的正除子的个数为m。
由拉格朗日定理可知,n|m。
另外,设G的正除子为H1、H2、…、Hm,则由于H1、H2、…、Hm两两不相交且都包含单位元e,故每个Hk与G的交集只含有一个元素,即Hk中恰好有一个幺元。
由此可得,G中阶数为n的元素的个数等于G的正除子的数目。
三、域论1. 设F为有限域,n为正整数,证明:F中具有n个元素的子域存在且唯一。
解析:设F中具有n个元素的子域为K,则根据域的定义,K满足所有域的性质,且K是F的子集,故K是F的子域。
另外,设存在另一个F中具有n个元素的子域L,由于L是F的子集,故L中的元素也属于K,而K中的元素也属于L,故K与L相等。
高等代数考研试题精选
《高等代数》试题库一、 选择题1.在[]F x 里能整除任意多项式的多项式是( )。
A .零多项式B .零次多项式C .本原多项式D .不可约多项式2.设()1g x x =+是6242()44f x x k x kx x =-++-的一个因式,则=k ( )。
A .1 B .2 C .3 D .43.以下命题不正确的是 ( )。
A . 若()|(),()|()f x g x f x g x 则;B .集合{|,}F a bi a b Q =+∈是数域;C .若((),'())1,()f x f x f x =则没有重因式;D .设()'()1p x f x k -是的重因式,则()()p x f x k 是的重因式4.整系数多项式()f x 在Z 不可约是()f x 在Q 上不可约的( ) 条件。
A . 充分B . 充分必要C .必要D .既不充分也不必要5.下列对于多项式的结论不正确的是( )。
A .如果)()(,)()(x f x g x g x f ,那么)()(x g x f =B .如果)()(,)()(x h x f x g x f ,那么))()(()(x h x g x f ±C .如果)()(x g x f ,那么][)(x F x h ∈∀,有)()()(x h x g x fD .如果)()(,)()(x h x g x g x f ,那么)()(x h x f6. 对于“命题甲:将(1)n >级行列式D 的主对角线上元素反号, 则行列式变为D -;命题乙:对换行列式中两行的位置, 则行列式反号”有( ) 。
A .甲成立, 乙不成立;B . 甲不成立, 乙成立;C .甲, 乙均成立;D .甲, 乙均不成立7.下面论述中, 错误的是( ) 。
A . 奇数次实系数多项式必有实根;B . 代数基本定理适用于复数域;C .任一数域包含Q ;D . 在[]P x 中, ()()()()()()f x g x f x h x g x h x =⇒=8.设ij D a =,ij A 为ij a 的代数余子式, 则112111222212.....................n n n n nn A A A A A A A A A =( ) 。
名校高等代数历年考研试题(1-3章)
第一章 多项式例 1.1(华南理工大学, 2006年) 设 ( ) ( ) x g x f , 是数域F 上的多项式. 证明:( ) ( ) x g x f | 当且仅当对于任意的大于1的自然数n 有, ( ) ( ). | xg x f n n 证明 必要性显然成立,下证充分性. 设 ( ) g x 在数域F 上的不可约分解为( ) ( ) ( ) ( ) 12 12 k lllk g x cp x p x p x =××× ,其中 ( ) ,1,2,..., il i p x i k = 是互不相同的不可约多项式.若有 ( ) ( ) | nnf xg x ,则( ) ( ) ( ) ( ) 12 12 ,0,1,2,...,.k nf nf nfn k i i f x dp x p x p x f l i k =×××££= 其中d 是某个常数,因此有( ) ( ) x g x f | .例 1.2(大连理工大学,2007 年)设 ( ) ( ) ( ) x hx g x f , , 是实系数多项式,如果 ( ) ( ) ( ) x xhx xg x f 22 2 + = ,则 ( ) ( ) ( ) . 0 = = = x h x g x f 证明 由 ( ) ( ) ( ) ( ) 222 f x x g x h x =+ ,可知 ( ) 2 | x f x ,易推得 ( ) | x f x . 于是有 ( ) ( ) 2221 f x x f x= ,代入方程并在两边约去 x 有 () ( ) ( ) x h x g x xf 2 2 21 + = (*)于是有 ( ) ( ) ( ) 22 | x g x h x + ,若多项式 ( ) g x 或 ( ) h x 中的常数项不为零的话,都可 以推出( ) ( )( )x h x g x 2 2 | + 于是有( ) ( ) ( ) () ( )x h x g x x h x g 21 2 1 2 2 2 + = + 代入(*)式并约去 x 有( ) ( ) () ( )x h x g x x f 21 2 1 21 + = 这样又回到原来的方程,所不同的是 ( ) ( ) ( ) 111 ,, f x g x h x 比 ( ) ( ) ( ) ,, f x g x h x 的次数要小 1. 于是经过有限次后必可以使得方程的左边为零次多项式,即为某个常 数c ,使得( ) () ( )x h x g x c k k 22 + = 比较两边的次数易得 0 = c ,并代入方程有( ) () 0 22 = + x h x g k k 于是( ) () 0 = = x h x g k k 那么 ( ) ( ) ( ) ,, f x g x h x 都是某个多项式乘以数0. 由此可推得( ) ( ) ( ) 0 = = = x h x g xf . 例 1.3(大连理工大学,2007年)证明多项式 1 | 1 - - n d x x 的充分必要条件是n d | .证明 充分性显然,下证必要性.若 d r r dq n < < + = 0 ,,则 ( ) ( )11 1 1 - + - = - + - = - r dq r r r n n x x x x x x x 由于 1 - dq x 可被 1 - d x 整除, 而 1 - r x 不能被 1 - d x 整除, 于是 1 - n x 不能被 1 - dx 整除.由其逆否命题可知必要性成立.例 1.4 (北京科技大学,2004年)求一个三次多项式 ( ) x f ,使得 ( ) 1 + x f 能 被( ) 21 - x 整除,而 ( ) 1 - x f 能被( ) 21 + x 整除.解 由题知 ( ) 'f x 能被( ) 1 x - 和( ) 1 x + 整除,又由 ( ) f x 是一个三次多项式, 那么 ( ) 'f x 是一个二次多项式,于是可设( ) ( )( ) aax x x a x f - = - + = 2 ' 1 1 积分易得( ) 33a f x x axb =-+ (其中a, b 为常数) 由题设可知 ( ) 1 f x =- ,易解得3 2 0a b ì = ïí ï = î 那么显然有( ) xx x f 2 3 2 1 3 - = .例 1.5(兰州大学,2004)设 () f x 和 () g x 是数域F 上的两个不完全为零的多 项式,令{ [ ]}()()()()(),() I u x f x v x g x u x v x F x =+Î 证明:(1) I 关于多项式的加法和乘法封闭,并且对任意的 () h x I Î 和任意的 [ ] (), k x F x Î 有 ()() h x k x I Î .(2) I 中存在次数最小的首项系数为 1 的多项式 () d x , 并且()((),()) d x f x g x = .证明 (1) 容易证明,略.(2) 考虑{ [ ] 0 (()()()())(),() I u x f x v x g x u x v x F x =¶+Î 且 } ()()()()0 u x f x v x g x +¹ 则 0 I 是非负整数的一个子集,由最小数原理, 0 I 中存在最小数,也就是说,I 中存在次数最小的首项系数为1的多项式:11 ()()()()()d x u x f x v x g x =+ 设 () h x 是 I 中任意多项式,且 ()()()() h x d x q x r x =+ ,其中 ()0 r x = 或者(()) r x ¶< (()) d x ¶ .若 (()) r x ¶< (()) d x ¶ , 则 ()()()() r x h x d x q x =- .由(1)可知 () r x I Î , 与 () d x 是I 中次数最小的多项式矛盾. 故 ()0 r x = ,所以 ()() d x h x .显然 (),() f x g x I Î ,所以 ()() d x f x , ()() d x g x .如果 ()() p x f x , ()() p x g x ,则11 ()()()()()p x u x f x v x g x +即 ()() p x d x ,所以 ()((),()) d x f x g x = .例 1.6(上海交通大学,2004)假设 1 () f x 与 2 () f x 为次数不超过 3 的首项系数为1的互异多项式,若 42343 12 1()() x x f x x f x +++ ,试求 1 () f x 与 2 () f x 的最大公因式.解 由于42 1x x ++ = 22222 (1)(1)(1) x x x x x x +-=++-+ 设它的4个根分别为 1212 ,,, w w e e 其中1212 13131313 ,,, 2222i i i i w w e e -+--+- ==== 由于 4234312 1()() x x f x x f x +++ ,就有 343 12 ()() f x x f x + = 42 (1) x x ++ () g x . 于是有下面的方程组112 122 (1)(1)0 (1)(1)0 f f f f w w += ì í+= î 与 112 122 (1)(1)0 (1)(1)0f f f f e e ---= ì í ---= î 分别解这两个方程组得,12 (1)(1)0 f f == , 12 (1)(1)0f f -=-= 于是有,11 (1)(),(1)() x f x x f x +- , 22 (1)(),(1)() x f x x f x +- .进而有 1 (1)(1)() x x f x +- , 2 (1)(1)() x x f x +- .而 1 () f x , 2 ,() f x 是互异的次数不超过 3 的首系数为 1 的多项式,所以 2 12 ((),())1 f x f x x =- .例 1.7 (浙江大学,2006 年)设 P 为数域, ( ) [] i i f f x p x =Î , ( ) [],1,2 i i g g x p x i =Î= .证明:( )( ) ( )2 1 2 1 2 1 2 1 2 2 1 1 , , , , , g g f g g f f f g f g f = 证明 设 ( )( ), , , , 2 2 2 1 1 1 g f d g f d = = 有( ) ( ) ( ) ( ) ( ) ( ) ( )( )12121212 12121212 1212 1121122 ,,, ,,, , , ,,. f f f g g f g g f f f g g f g g f d g d f g d f g f g = = = = 例 1.8 (哈尔滨工业大学, 2005年) 设 ( ) ( ) x g x f , 都是实数R 上的多项式,R a Î (1) 证明: ( ) ( ) ( ) ( ) ( ) ( ).| a g f x g f a g x g - - (2) 问 ( )( ) a f x f a x - - 33 | 是否成立,为什么?解 (1) 令 ( ), y g x = 考虑多项式( ) ( ) ( ) ( ) a g f y f y h- = 由 ( ) ( ) ( ) ( ) ( ) ( ) 0= - = a g f a g f a g h 可知 ( ) ( ) ( )y h a g y | - 即( ) ( ) ( ) ( ) ( ) ( ) a g f x g f a g x g - - | .(2) 令 3 b a R =Î ,注意用到(1)的结论,将(1)中a 的换成这里的b ,将(1)的( ) g x 换成这里的 3 x ,可得( ) ( ) 33 | x a f x f a -- .例 1.9(上海大学,2005)设22 1231 1(1)()()()() n n n n n nn x x f x xf x x f x x f x - - éù --++++ ëûL ( 2 n ³ )求证: 1() i x f x - (1,2,,1) i n =- L . 证明 由题设易知1222 1231 1()()()()n n n n n n n n x x x f x xf x x f x x f x --- - ++++++++ L L 这里令e 是n 次本原单位根,那么22 1231 22222 1231 11212 1231 (1)(1)(1)(1)0(1)(1)()(1)()(1)0(1)(1)()(1)()(1)0n n n n n n n n n f f f f f f f f f f f f e e e e e e e e e - - - - ---- - ì ++++= ï ++++= ï íï ï ++++= î L L L LL于是关于 1231 (1),(1),(1),,(1) n f f f f - L 的齐次线性方程组的系数行列式为22 22222112121 1()() 0 1()()n n n n n n ee e e e e e e e - - ---- ¹ L L MMMML .故齐次线性方程组只有零解,于是 121 (1)(1)(1)0 n f f f - ==== L ,所以 1()i x f x - (1,2,,1) i n =- L .例 1.10(哈尔滨工业大学,2006 年)已知 ( ) ( ) x g x f , 是数域 P 上两个次数大 于零的多项式,且存在 ( ) ( ) 11 ,[], u x v x p x Î 使得 ( ) ( ) ( ) ( ) 1 1 1 = + x g x v x f x u ,问是否存 在 ( ) ( ) ,[] u x v x p x Î ,使得 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) x f x v x g x u x g x v x f x u ¶ < ¶ ¶ < ¶ = + , , 1 . 如果存在,这样是唯一的吗?说明理由.解 由于 ( ) ( ) ( ) 11 ()1 u x f x v x g x += ,若 ( ) 1 u x 的次数大于 ( ) g x 的次数,则由 带余除法得( ) ( ) ( ) ( ) 1 u x g x q x u x =+ , ( ) ( ) ( ) ( )u x g x ¶<¶ 代入上式得( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1f xg x q x u x g x v x ++= 即( ) ( ) ( ) ( ) ( ) () ( ) 1 1 = + + x v x q x f x g x u x f 令 ( ) ( ) ( ) ( ) 1 v x f x q x v x =+ ,则有( ) ( ) ( ) ( )x f x v ¶ > ¶ 否则由比较次数可知上式将不可能成立.关于唯一性的证明,可以假设 ( ) 2 u x , ( ) 2 v x 也满足条件,那么有( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1122 1f x u xg x v x f x u x g x v x +=+= 易得( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1221 f x u x u x g x v x v x -=- 由 ( ) f x 与 ( ) g x 互素,可知 ( ) ( ) ( ) ( ) 12 | g x u x u x - .又由 ( ) ( ) ( ) ( ) ( ) 12 u x u x g x ¶-<¶ ,可得 ( ) ( ) 12 0 u x u x -= ,即 ( ) ( ) 12 u x u x = ,这时有( ) ( ) 12 v x v x = .例 1.11(华南理工大学,2005年)证明:如果 ( ) ( )( ) 1 , = x g x f ,那么 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x f x g x g x +++= 证明 由已知条件有 ( ) ( ) ( ) ( ) ,1 f x f x g x += , ( ) ( ) ( ) ( ) ,1 g x f x g x += ,由多 项式互素的性质可得( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x += 于是有( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x g x ++= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x g x +++= 综合上述两个等式以及多项式互素的性质有( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1 f x g x f x g x f x g x f x g x +++= .例 1.12(苏州大学,2005)设 () f x 是一个整系数多项式,证明:如果存在 一个偶数m 和一个奇数n ,使得 () f m 和 () f n 都是奇数,则 () f x 没有整数根.证明 (反证法) 假设 () f x 有整数根k ,则 ()()() f x x k g x =- ,因为x k - 是 本原多项式,故 () g x 是整系数多项式. 又由于()()() f m m k g m =- , ()()() f n n k g n =- .且 () f m 和 () f n 都是奇数,那么m k - ,n k - 都是奇数,与m 是偶数且n 是 奇数矛盾,所以 () f x 没有整数根.例1.13 (四川大学, 2004年) (1) 设多项式 ( ) ( )( ) ( ) ( ) 1 1 2 2 1 + - - × × × - - = n x x x x f , 其中n 为非负整数. 证明: ( ) x f 在有理数域上一定不可约.(2) 在有理数域上求多项式 ( ) 36 12 11 2 2 3 4 + - - + = x x x x x g 的标准分解式.(1) 证明 假设 ( ) f x 在有理数域上可约, 故 ( ) f x 可分解为两个整系数多项式 的积, 即存在两个整系数多项式 ( ) ( ) , h x k x 使得( ) ( ) ( )f x h x k x = 注意到 ( ) 1,1,2,,21 f i i n ==×××- ,于是( ) ( ) 1,1,2,,21h i k i i n ==×××- 令 ( ) ( ) ( ) l x h x k x =- ,由 ( ) h x 与 ( ) k x 的次数小于21 n - 知 ( ) l x 的次数也小于 21 n - ,但是 ( ) l x 有21 n - 个不同的根为 1,2,,21 x n =×××- ,那么有 ( ) 0 l x º ,于是 ( ) ( ) h x k x = ,推得( ) ( ) ( ) 2f x k x =³ 但是 ( ) 00 f = ,矛盾. 于是 ( ) f x 在有理数域上不可约.(2) 注意到 ( ) ( ) 230 g g =-= ,由综合除法可得( ) ( ) ( )2223 g x x x =-+ 上式为 ( ) g x 在有理数域上的标准分解式.例 1.14(上海大学,2005)设 1 ()2n nf x x x + =+- (1) n ³ ,求 () f x 在有理数域上的不可约因式并说明理由. 解11 ()2(1)(1)n n n nf x x x x x ++ =+-=-+- 112 12 (1)(1)(1)(1) (1)(2222)(1)()n n n n n n n x x x x x x x x x x x x g x --- -- =-++++-+++ =-+++++ =- L L L 对 () g x , 令 2 p = , 用Eisenstein 判别法容易证明 () g x 在有理数域上不可约, 因此 () f x 在有理数域的不可约因式是: 1 x - 及 12 2222 n n n x x x x -- +++++ L .例 1.15(大连理工大学,2004)设R Q 分别表示实数域和有理数域,(),()[] f x g x Q x Î . 证明:(1) 若在 [] R x 中有 ()() g x f x ,则在 [] Q x 中也有 ()() g x f x .(2) () f x 与 () g x 在 [] Q x 中互素,当且仅当 () f x 与 () g x 在 [] R x 中互素.(3) 设 () f x 是 [] Q x 中不可约多项式,则 () f x 的根都是单根.证明 (1)(反证)假设在 [] Q x 中 () g x 不能整除 () f x ,作带余除法有()()()(),(),()[]f x q xg x r x q x r x Q x =+Î 且 (()) r x ¶< (()) g x ¶ .以上带余除法的结果在 [] R x 中也成立,所以在 [] R x 中 () g x 不能整除 () f x , 与在 [] R x 中有 ()() g x f x 矛盾. 因此,结论成立.(2) 如果 () f x 与 () g x 在 [] Q x 中互素,那么存在 (),()[] u x v x Q x Î ,使得()()()()1 f x u x g x v x += .以上等式在 [] R x 中也成立,所以 () f x 与 () g x 在 [] R x 中互素.如果 () f x 与() g x 在 [] Q x 中不互素,那么 () f x 与 () g x 在 [] Q x 存在非零次公因式.即()[] d x Q x Î , (())1,d x ¶³ 1 ()()() f x d x f x = , 1 ()()() g x d x g x = ,11 (),()[]f xg x Q x Î 以上两个等式在 [] R x 中也成立. 因此, () f x 与 () g x 在 [] R x 中不互素. (3) () f x 是 [] Q x 中的不可约多项式 , 则 ' ((),())1 f x f x = , 否则 ' ((),())()1, f x f x d x =¹ 则 () f x 有重因式, 与 () f x 不可约矛盾. 于是 () f x 没有重 因式,所以 () f x 的根都是单根.例 1.16(南京理工大学,2005年)设 p 是奇素数,试证 1 + + px x p 在有理数 域上不可约.证明 令 1 x y =- ,代入 ( ) 1 p f x x px =++ 有( ) ( ) ( ) ( ) ( ) 1111 pg y f x f y y p y ==-=-+-+ .考查多项式 ( ) ( ) ( ) 1! h y p g y =- ,注意到 p 是一个奇素数,那么 ( ) h y 的常数项为 ! p - ,于是对于素数 p 有, |! p p - ,而 2p 不整除 ! p - ,对于 ( ) h y 的首项,显然有 ( ) |1! p p - .对于其他的项,利用二项式定理对( ) ( ) 1!1 pp y -- 展开可知 p 能整除除了首项和 常数项之外的所有项系数. 又 ( ) 1 p y - 中关于 y 的一次项的系数也为 p 的倍数, 于是 p 整除 ( ) h y 的除了首项和常数项之外的所有系数. 利用Eisenstein 判别法可 知 ( ) h y 在有理数域上不可约,即 ( ) g y 在有理数域上不可约,也即 ( ) f x 有理数 域上不可约.例 1.17(陕西师范大学, 2006年) 11 ()()(),()()(), f x af x bg x g x cf x dg x =+=+ 且0 a bc d¹ ,证明: 11 ((),())((),()) f x g x f x g x= . 证明 令 111 ()((),()) d x f x g x = , ()((),()) d x f x g x = .由1 ()()() f x af x bg x =+ (*) 1 ()()()g x cf x dg x =+ (**)于是 1 ()() d x f x , 1 ()() d x g x . 那么 1 ()() d x d x .由式(*)与式(**)可以看成是关于 (),() f x g x 的线性方程组,解得,( ) ( )11 11 1()()() 1()()() g x ag x cf x ad bc f x df x bg x ad bc=- - =- - 于是 11 ()() d x f x , 11 ()() d x g x . 那么 1 ()() d x d x . 显然 1 ()() d x d x .于是11 ((),())((),()) f x g x f x g x = .例 1.18(华南理工大学,2006年)设 ( ) 1 2 34 + + + + = x x x x x f .(1) 将 ( ) x f 在实数域上分解因式.(2) 证明: ( ) x f 在有理数域上不可约. 由此证明 ( ) 5/ 2 cos p 不是有理数. (1) 解 不妨设 2 2 5, i e pa b a == , 于是 ,,, a a b b 是1的四个非实数的 5次方根. 显然有( ) ( )( )( )( )( ) ( ) ( ) ( )2222 11 24 2cos 12cos 1 55 f x x x x x x x x x x x x x a ab b a a b b p p =---- =-++-++ æöæö =-+-+ ç÷ç÷èøèø上式为 ( ) f x 在实数域上的因式分解. (2) 证明 令 1 x y =+ ,代入 ( ) f x .有( ) ( )1 g y f y =+ ( ) ( ) 5432 11 11510105y y y y y y +- =+- =++++ 对素数5 用Eisenstein 判别法可得 ( ) g y 是有理数域上不可约的多项式, 于是 有 ( ) f x 在有理数域上不可约 . 若 ( ) cos 2/5 p 是有理数 , 由 ( ) ( ) 2 cos 4/52cos 2/51 p p =- 可知 ( ) cos 4/5 p 也是有理数.于是由(1)的结论可知( ) 22 24 2cos 12cos 1 55 f x x x x x p p æöæö=-+-+ ç÷ç÷ èøèø.上式为 ( ) f x 在有理数域上的分解,这将导致 ( ) f x 在有理数域上可约,矛盾. 故结论成立.例 1.19(华东师范大学,2005 年)试在有理数域、实数域及复数域上将 ( ) 1 7 8 9 + + × × × + + + = x x x x x f 分解为不可约因式的乘积(结果用根式表示),并简 述理由.解 由( ) ( ) 1011 x f x x -=- ( )( )( )( )1 1 1 1 23 4 2 3 4 + - + - + + + + + - = x x x x x x x x x x 可知它在有理数域上的不可约分解为( ) ( )( )( )432432 111 f x x x x x x x x x x =+++++-+-+ (这里设 ( ) 432 1 1 g x x x x x =++++ ,并取 1 x y =+ 代入,并对素数 5用 Eisenstein 判别法可知 ( ) 1 1 g y + 在有理数域上不可约. 同理设 ( ) 432 2 1 g x x x x x =-+-+ ,并取 1 x y =- 代入,可知 ( ) 2 1 g y - 在有理数域上不可约.)设 243 55551212 ,,, i iii eee e pp ppa ab b ==== ,显然 1 的五次方根为 1122 1,,,, a a a a ;‐1的五次方根为 1122 1,,,, b b b b - . 于是在实数域上 ( ) f x 可分解为( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2222 11221122 11111f x x x x x x x x x x a a a a b b b b =+-++-++-++-++ 显然在复数域上 ( ) f x 可分解为( ) ( )( )( )( )( )( )( )( )( ) 112211221 f x x x x x x x x x x a a a a b b b b =+-------- .第二章 行列式例 2.1(兰州大学,2004年) 计算下列行列式的值121 121 121 1231 n n n n n n n n xa a a a a x a a a D a a x a a a a a a x- - - - = L L L M M M M M L 解 将 n D 的第2列到第 1 n +列加到第1列,且提取公因子有 121 21 21 1231 1 1 ()1 1 n n n n nn i n n i n a a a a xa a a D x a a x a a a a a x- - - = - =+ å L L L M M M M M L 121 12121213212 1 00()000 0 n n ni i n n na a a a x a x a a a x a a a a a a a x a - = -- - =+-- ---- å L LL M M M M M L 11()() nni i i i x a x a = = =+- å Õ .例 2.2(中山大学,2009年) 计算n 阶行列式22 111122 2222 22 111122 1...1... ..................1... 1... n n n nn n nn n n n n nn n n nx x x x x x x x D x x x x x x x x - - - ---- - = 解 首先考虑 1 n + 阶范德蒙行列式221 1111 1 221 2222 2 221 1111 1 221 2211... 1... .................. ... () 1... 1 (1)... n n n n n n n n n n n n n n n n n n n n n nn n n x x x x x x x x x x g x x x x x x x x x x x x xx x x-- -- -- ---- - -- -- =213111 3222 ()()...()() .()...()()...()n n n x x x x x x x x x x x x x x x x =---- ---- 从上面 1 n + 阶范德蒙行列式知,多项式 () g x 的 1 n x - 的系数为 21(1) n D D + -=- ;但从上式右端看, 1 n x - 的系数为12 1 (...).()n ji i j nx x x xx £<£ -+++- Õ 二者应相等,故 12 1 (...).() n n ji i j nD x x x xx £<£ =+++- Õ .例 2.3(北京交通大学,2004年)计算n 阶行列式111 23 222341222123 111 122111...11... 1... ............1 (1)... nn n n n n n n n n n nn n C C C C C C D C C C C C C + --- -- --- +- =.解 从最后一行起将每一行减去前面一行便可将行列式降一阶, 再对降一阶的行列式做同样的处理,不断这样下去可得 1 D = .例 2.4(大连理工大学,2005年) n 阶行列式21...11 13 (11) (1)1...11n =+ .解 答案是 1 1!(1) ni n i= + å . 这是因为原式 21...1111...11 13 (1102)...11 (1)1...1101...11n n ==++ 将上述行列式的第二行到 1 n + 行分别减去第一行,可得原式 11...11 11...00 (1)...n- =- 然后依次将第二列乘以1,第三列乘以 1 2 ,........,第 1 n + 列乘以 1n都加到第一列可得1 11 11...1 (11)2 101...00 !(1) ............... 00...0 ni n n i n= ++++ =+ å .例 2.5(南开大学,2003年) 计算下列行列式的值1112121 1212222 1122 ... ... ............... n n n n n n n n n na b c a b c a b c a b c a b c a b c D a b c a b c a b c +++ +++ =+++ 解法 1 将 n D 按第一行拆成两个n 阶行列式相加,并由于 3 n ³ ,故得1211121 12122221212222 11221122 ...... ...... .............................. n n n n n nn n n n n nn n n n n a a a b c b c b c a b c a b c a b c a b c a b c a b c D a b c a b c a b c a b c a b c a b c++++++ =+++++++ 000=+= 解法 2 将原n 阶行列式加边成一个 1 n + 阶行列式11112121 21212222 112 100...0 ... ... ............... ... n nn n nnn n n n n x a b c a b c a b c D x a b c a b c a b c x a b c a b c a b c+++ =+++ +++由于 3 n ³ ,故对上面的 1 n + 阶行列式按第一行展开可知,其每个元素的余子式 都是一个至少有两列元素对应成比例的n 阶行列式,从而都等于零. 因此 0 D = .例 2.6(浙江大学,2004年) 计算n 阶行列式... ... .................. ... ... ... n b b b b a b b b a b D b b a b b b a b b b a b b b b=解 ......() ......0 .................................... ......0 ......0 ......0 n b b b b a b b b b a b b b b b a b b b b a b D b b a b b b b a b b b a b b b b a b b b abbbb a b b b b -+ + == + + + 11 ... ... .................. (1)() ... ... ...n n b b b b b b b b a b a b D b b a b b b a b b b a bbbb+ - =--+(3) 1121 (1)()(1)()n n n n n a b D b a b + +- - =--+-- 注意到 222 D b a=- 递推可得(3) 1 2(1)()((1)) n n n n D a b a n b + - =--+- .例 2.7(复旦大学,2005年) 设 12 ...,0,1,2,... k k kk n s x x x k =+++= , 计算 1 n + 阶行列式11 121122 121 ...1 ... .................. ... n nn n n n n nnn n s s s s s s xD s s s xs s s x- - -- -- = 解 根据 k s 的定义、行列式的乘法以及范德蒙行列式知,所给的 1 n + 阶行列 式D可表示成两个 1 n + 阶行列式相乘111112 221111 112 12 11...11 1...0 ...1...0 ................................ 1...0 ... 00 (01)n n nn n n n n n n n n nnnn n x x x x x x x x D x x x x x x x x x x - - ---- - = 2 11 ()(())nj ji i i j nx x xx =£<£ =-- ÕÕ 211 ()() ni ij i i j nx x xx =£<£ =-- ÕÕ .例 2.8(华东师范大学,2008年) 计算n 阶行列式1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 32 1 L L M M M M M L L L n n n n n n D n- - - - - = ∙ 解 将第2列,第 3列,…,第n 列都加到第 1 列上11 11 01 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 32 2 ) 1 ( L L M M M M M L LL nn nn n n n n D n - - - - - + =111 1 1 1 1 1 11 11 1 1 11 2) 1 ( LL M M MM L L n n n n n n - - - - + = 1111 1 1 1 1 11 11 1 1 1 1 2) 1 ( LL M M MM L L - - - - - - - + = n n n n n111 10 0 0 0 0 00 0 0 2) 1 ( L L M M M ML L - - - - + = n n n n n 2)1 ,2 , 2 , 1 ( ) ( ) 1 ( ) 1 ( 2) 1 ( - - - - × - - + =n n n n n n L t 21 2)2 )( 1 ( ) ( ) 1 ( )1 (2 ) 1 ( - - - - - × - - + = n n n n n n n 2)1 ( )1 ( 1 2)1 ( + ×- = - - n n n n n 1) 2 )]( 1 ( 2 [ - - - = = n x n x 例 2.9(大连理工大学, 2004年) 计算n 阶行列式1 1 1 12 1 2 1 1 12 1 1 1 1 L M M M M M L L nn n D n - - - =解 将第2行,第 3行,…,第n 行都加到第 1 行上1 1 1 12 1 2 1 1 11 1 1 1 1 L M M M M M L L n n D n - - =0 01 0 1 0 0 0 1 1 1 1 1 L M M M M M L L nn - - =1 2) 1 ( )1 ,2 , , 1 , ( 1 ) 1 ( ) 1 ( ) 1 ( ) 1 ( - - - - - - = - - = n n n n n n n n L t .例 2.10(北京航空航天大学, 2004年) 计算下列行列式的值.12 12 12... .................. n n n n a a a a a a D a a a l l l+ + =+ 解 将行列式的所有列加到第一列, 并提取公因子 12 (...) n a a a l ++++ 可得1212 1212 1 1212...... ......().............................. n n nn n i i n n a a a a a a a a a a a a a a a a a a a l l l l l l l= ++ ++ =+ ++ å 然后将第 2 列到第n 列依次减去第一列乘以 12 ,,..., n a a a 得到一个下三角的行列式, 易得12 12 1112... ...()............... n nn n i i n a a a a a a a a a a l l ll l- = + + =+ + å 例 2.11(上海交通大学,2004年)求下面多项式的所有根23 2 3 23 2 3 3 2 3 2 22 23 2 2 2 2 3 ) ( nn n n nnna x a a a a a a a a x a a a a a a a a x a a a a x x f - - - - - - - - - - - - - - - - - - - = L MM M M L L L 解 将第一列的 2 a - 倍,3 a - 倍,L , n a - 倍分别加到第 2 列,第3列, L ,第n 列2323 221 3333 100100 ()010(2)010 0101n n n nnx a a a x a a a a a f x a x a a a - ------- -- =-=-- -- L L L L L L M M M M M M M M LL第2列的 2 a 倍,第 3列的 3 a倍,L ,第n 列的 n a 倍都加到第一列 22223 13 0100 ()(2)0010 001n n n x a a a a a f x x - ------ =- L L L L M M M M L1222 (2)(3)n n x x a a - =---- L 所以, 2 x = 是 () f x 的 1 n - 重根, 222 3 n a a +++ L 是 () f x的单根. 例 2.12 (北京交通大学,2005年)计算 1 n + 阶行列式11111 (1)(2)...()(1)(2)...()............... 12... 111 (1)n n n nn n n n n x x x x n x x x x n D x x x x n ---- + +++ +++ = +++ 解 注意到依次把第一行和第 1 n + 行交换次序,第2行和第n 行交换次序, ...,可得2 1 1111111...1 12... (1) ............... (1)(2)...()(1)(2)...() nn n n n n n n n nx x x x n D x x x x n x x x x n + ---- +++ =-+++ +++ 21 (1)(()()) n i j n x j x i £<£ =-+-+ Õ 21 (1)()n i j nj i £<£ =-- Õ 第三章 线 性 方 程 组例 3.1(清华大学,2006 年)设 12 ,,, s a a a L 是一组线性无关的向量,则122311 ,,,, s s s a a a a a a a a - ++++ L 是否线性无关? 证明之.证明 若 112223111()()()()0 s s s s s k k k k a a a a a a a a -- ++++++++= L 将上式展开并利用 12 ,,, s a a a L 的线性无关,可得关于 121 ,,, s s k k k k - L 的线性方程 组为1 2 1 100...10 110...00 ... 011...0... ...............0 00...110 s s k k k k - æö æöæö ç÷ ç÷ç÷ ç÷ ç÷ç÷ ç÷ ç÷ç÷= ç÷ ç÷ç÷ ç÷ ç÷ç÷ ç÷ç÷ ç÷ èøèø èø 令其系数矩阵为 A ,显然有 1 1(1) s A + =+- .当 S 为偶数时 , 0 A = , 则方程组有非零解 , 这是122311 ,,,, s s s a a a a a a a a - ++++ L 线性相关.当 S 为奇数时 , 0 A ¹ , 则方程组仅有零解 , 这是122311 ,,,, s s s a a a a a a a a - ++++ L 线性无关.例3.2 (北京科技大学, 2005年) 设 0 h 是线性方程组的一个解, 而 12 th h h L , , , 是它的导出方程组的一个基础解系, 1021010 ,,..., t t g h g h h g h h + ==+=+ .证明:线性方程组的任一解g , 都可表成 112211 ... t t g m g m g m g ++ =+++ , 其中 121 (1)t m m m + +++= . 证明 设 0211 ... t t g h m h m h + =+++ ,令 121 1... t m m m - =--- , 即 121 ...1 t m m m - +++= ,则由于 1021010 ,,..., t t g h g h h g h h + ==+=+ ,1210211 (...)... t t tg m m m h m h m h ++ =++++++ 1021010 ()...() t t m h m h h m h h + =+++++ 112211... t t m g m g m g ++ =+++ 例 3.3(哈尔滨工业大学,2005 年)设 12 ,,, r a a a L 是一组线性无关的向量,1,1,2,..., ri ij j j k i r b a = == å ,证明: 12 ,,, r b b b L 线性相关的充要条件是矩阵11121 21222 12... ... ............ ... r r r r rr k k k k k k K k k k æöç÷ ç÷ = ç÷ ç÷ èø不可逆.证明 12 ,,, r b b b L 线性无关Û 10 ri i b = = å 仅有零解Û 10 rij i j j k x a = = å 仅有零解Û(由 12 ,,, r a a a L 线性无关性仅有零解)方程组 ' 0 K X = 仅有零解Û ' K 可逆Û矩阵 11121 21222 12... ... ............ ... r r r r rr k k k kk k K k k k æöç÷ ç÷ = ç÷ ç÷ èø是可逆的.例 3.4(上海大学,2005 年)设b 是非齐次线性方程组AX b = 的一个解,12 ,,, n r a a a - L 是其导出组的一个基础解系,证明:(1) 12 ,,,, n r a a a b - L 线性无关.(2) 12 ,,,, n r b a b a b a b - +++ L 线性无关.证明 (1) 假定 12 ,,,, n r a a a b - L 线性相关,而 12 ,,, n r a a a - L 线性无关,那么b 可由 12 ,,, n r a a a - L 线性表出,则b 是导出组的一个解与b 是AX b = 的一个解矛 盾.(2)令( ) ( ) ( ) 1122 0n r n r x x x x b a b a b a b -- +++++++= L 于是( ) 112212 0n r n r n r x x x x x x x a a a b --- ++++++++= L L 由 12 ,,,, n r a a a b - L 线性无关,则12 0n r x x x - ==== L 且12 0 n r x x x x - ++++= L ,于是 12 0 n r x x x x - ===== L ,故(2)成立.例 3.5(东北大学, 2003年) 设 1 2 ... r A a aa æö ç÷ ç÷ = ç÷ ç÷ èø是一个r n ´ 阶矩阵() r n < 且秩为r ,已知:b 是 0 AX = 的非零解,讨论 12 ,,, r a a a L 与b 的线性相关性.证明 由于对矩阵A , 有 () r A r = , 记 12 ,,, r U a a a =<> L . 显然有 12 ,,, ra a a L 为空间U 的一组基,由于b 是方程组 0 AX = 的一个非零解,所以有 T b 与12 ,,, r a a a L 相正交,于是有 U b ^^ Î ,对于 12 ,,, r a a a L 与 T b 的线性组合1122 0T r r l l l l a a a b ++++= L 两边同时与 T b 做内积,注意到 T U b ^ ,可得(,)0T T l b b = 由于 0 T b ¹ ,可得 0 l = ,于是1122 0r r l l l a a a +++= L 由 12 ,,, r a a a L 的线性无关性可得0(1,2,...,)i l i r == 即 12 ,,,, r a a a b L 的线性无关.例 3.6(浙江大学,2004 年) 令 12 ,,, s a a a L 是 n R 中s 个线性无关的向量, 证明:存在含n 个未知量的齐次线性方程组,使得 12 ,,, s a a a L 是它的一个基础解 系.证明 以列向量 12 ,,, s a a a L 的转置为行构成矩阵A1 2 TT T s A a a a æö ç÷ ç÷= ç÷ ç÷ ç÷ èøM 考虑以A 为系数矩阵的齐次线性方程组AX = 它的基础解系由 n s - 个 n 维列向量组成,设基础解系为 12 ,,, n s b b b - L 以12 ,,, T T T n s b b b - L 为行构成矩阵B ,则以B 为系数矩阵的齐次线性方程组 0 BX = 满足要求.因为 12 ,,, n s b b b - L 是 0 AX = 的解,则 0,1,,;1,, T j i s j n s a b ===- L L .它同 时说明,作为 n 维向量, 12 ,,, s a a a L 是齐次线性方程组 0 BX = 的解,而() r B n s =- .故 12 ,,, s a a a L 是 0 BX = 的一个基础解系.例 3.7(西安交通大学,2005年)讨论 , a b 为何值时,如下方程组有唯一解?无解?无穷多解? 当有无穷多解时,求出它的通解.1234 234 234 1234 0 221 (3)2 321 x x x x x x x x a x x b x x x ax +++= ì ï ++= ï í-+--= ï ï +++=- î解 将增广矩阵进行初等行变换化为行阶梯形矩阵,有1111011110 0122101221 01320132 321101231 A a b a b a a æöæö ç÷ç÷ ç÷ç÷ =® ç÷ç÷ ------ ç÷ç÷ ---- èøèø11110 01221 00101 00010 a b a æöç÷ ç÷ ® ç÷ -+ ç÷- èø.(1)当 1 a ¹ 时方程组有唯一解. (2)当 1 a = 且 1 b ¹- 时方程组无解. (3)当 1 a = 且 1 b =- 时方程组有无穷多解. 解方程组1234 234 0 221 x x x x x x x+++= ì í++= î 方程组的特解为 0 1 1 0 0 a - æöç÷ç÷ = ç÷ ç÷ èø,导出组的基础解系为 12 11 22 , 10 00 h h æöæö ç÷ç÷ -- ç÷ç÷ == ç÷ç÷ ç÷ç÷ èøèø, 于是通解为 01122 k k a a h h =++ .例 3.8(东南大学,2005年) 问:参数 , a b 取何值时,线性方程组1234 1234 234 1234 1 32 223 54(3)3 x x x x x x x x a x x xx x a x x b +++= ì ï+++= ï í++= ï ï ++++= î有解?当线性方程组有解时,求出其通解.解 将增广矩阵做初等行变换可化为10112 01223 0002 0000 a b a --- æöç÷ç÷ç÷ - ç÷èø. 显然若要方程组有解,必须有 0 a = 且 2 b = , 这时增广矩阵变为10112 01223 0002 0000 a b a --- æöç÷ç÷ ç÷- ç÷èø 方程组的一个特解为 ' (2,3,0,0) - ,基础解系为 ''(1,2,1,0),(1,2,0,1) -- ,于是通解为12 211 322 010 001 x C C - æöæöæöç÷ç÷ç÷ -- ç÷ç÷ç÷ =++ ç÷ç÷ç÷ ç÷ç÷ç÷ èøèøèø. 例 3.9(东南大学,2004年) 已知线性方程组1122 1122 1122 () 0()...0 ........................... ...()0 n n n n n na b x a x a x a x a b x a x a x a x a b x ++++= ì ï++++= ï íï ï ++++= î (*)其中 10 ni i a = ¹ å .试讨论 12 ,,, n a a a L 和b 满足什么条件时,(1)方程组仅有零解.(2)方程组有非零解,此时用基础解系表示所有解.解 由于方程组(*)的系数行列式为2 1 12 12 2 111 ............ ............... ... nin i n n n in i nn nin n i b a a a a b a a a a b a b a a b a a a a bb a a a b = = = + + + ++ =+ ++ å å å .2 2 1111 1100 1 10()()() ............ ............1 (1)0... n nnnn n i i i i i i nn a a a b a bb a b a b a ba a bb- === + =+=+=+ + ååå(1)当 0 b ¹ ,且 1()0 ni i b a = +¹ å 时,方程组(*)的系数行列式不等于零. 于是此方程组只有唯一零解.(2) 当 0 b ¹ ,且 1()0 ni i b a = += å 时,方程组(*)的系数行列式为零. 因此方程组(1)有非零解,它的基础解系为 '(1,1,...,1) ,此时方程组的一切解可表为' (1,1,...,1), k k R Î .(3) 当 0 b = 时,方程组的系数行列式为零. 此时方程组(*)有非零解,并且方 程组等价于1122 0n n a x a x a x +++= (**)由于 10 ni i a = ¹ å ,故在 12 ,,, n a a a L 中必有一个不为零,不妨设 0 ia ¹ ,则有 11 1111 ....... i i n i i i n i i i i a a a a x x x x x a a a a-+ -+ =------ 其中 111 ,...,,,..., i i n x x x x -+ 为自由未知量,因此原方程组的一个基础解系为' 1 1 (1,0,...,0,,0, 0i aah =- ..................................' 11 (0,0,...,1,,0,...,0) i i i a a h - - =-' 11 (0,0,...,0,,1,...,0) i i i a ah + + =-..................................' (0,0,...,0,,0,...,1) nn i a ah =-此时,方程组(*)的一切解可表为111111 ...() i i i i n n i X k k k k k Rh h h h --++ =+++++Î L . 例 3.10(大连理工大学,2004年)设 A 是n 阶矩阵,若 ()1 r A n =- ,且代数 余子式 11 0 A ¹ ,则齐次线性方程组 0 AX = 的通解是.。
高等代数例题(全部)
⾼等代数例题(全部)⾼等代数例题第⼀章多项式1.44P 2 (1)m 、p 、q 适合什么条件时,有231x mx x px q +-++2.45P 7 设32()(1)22f x x t x x u =++++,3()g x x tx u =++的最⼤公因式是⼀个⼆次多项式,求t 、u 的值。
3.45P 14 证明:如果((),())1f x g x =,那么(()(),()())1f x g x f x g x += 4.45P 18 求多项式3x px q ++有重根的条件。
5.46P 24 证明:如果(1)()n x f x -,那么(1)()n n x f x -6.46P 25 证明:如果23312(1)()()x x f x xf x +++,那么1(1)()x f x -,2(1)()x f x - 7.46P 26 求多项式1nx -在复数域内和实数域内的因式分解。
8.46P 28 (4)多项式1p x px ++ (p 为奇素数)在有理数域上是否可约?9.47P 1 设1()()()f x af x bg x =+,1()()()g x cf x dg x =+,且0ad bc -≠。
求证:11((),())((),())f x g x f x g x =。
10.48P 5 多项式()m x 称为多项式()f x ,()g x 的⼀个最⼩公倍式,如果(1)()()f x m x ,()()g x m x ;(2)()f x ,()g x 的任意⼀个公倍式都是()m x 的倍式。
我们以[(),()]f x g x 表⽰⾸项系数为1的那个最⼩公倍式。
证明:如果()f x ,()g x 的⾸项系数都为1,那么()()[(),()]((),())f xg x f x g x f x g x =。
11.设 m 、n 为整数,2()1g x x x =++除33()2mn f x xx =+-所得余式为。
高等代数考研试题精选
高等代数考研试题精选高等代数是数学专业研究的一门重要基础课程,也是考研数学科目中的一项重要内容。
本文将为大家精选一些高等代数考研试题,涵盖了代数结构、线性空间、线性变换、特征值与特征向量等多个方面的知识点。
1. 代数结构:1.1 群的定义及性质:群是一个集合G与一个二元运算*构成的代数结构,满足以下四个性质:(1) 封闭性:对于任意的a,b∈G,有a*b∈G。
(2) 结合律:对于任意的a,b,c∈G,有(a*b)*c=a*(b*c)。
(3) 存在单位元:存在一个元素e∈G,对于任意的a∈G,有a*e=e*a=a。
(4) 存在逆元:对于任意的a∈G,存在一个元素a'∈G,使得a*a'=a'*a=e。
1.2 环的定义及性质:环是一个集合R与两个二元运算+和*构成的代数结构,满足以下八个性质:(1) (R, +)构成一个交换群。
(2) *运算封闭于R,即对于任意的a,b∈R,有a*b∈R。
(3) *运算满足结合律,即对于任意的a,b,c∈R,有(a*b)*c=a*(b*c)。
(4) *运算对于+运算满足左分配律,即对于任意的a,b,c∈R,有a*(b+c)=a*b+a*c。
(5) *运算对于+运算满足右分配律,即对于任意的a,b,c∈R,有(a+b)*c=a*c+b*c。
(6) 存在加法单位元0,使得对于任意的a∈R,有a+0=0+a=a。
(7) 对于任意的a∈R,存在加法逆元-a,使得a+(-a)=(-a)+a=0。
(8) *运算满足交换律,即对于任意的a,b∈R,有a*b=b*a。
2. 线性空间:2.1 线性空间的定义及性质:线性空间是一个非空集合V,配备了两种运算:加法和数乘。
满足以下性质:(1) 对于任意的u,v∈V,有u+v=v+u。
(2) 对于任意的u,v,w∈V,有(u+v)+w=u+(v+w)。
(3) 存在加法单位元0∈V,使得对于任意的v∈V,有v+0=0+v=v。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高等代数》试题库一、 选择题1.在[]F x 里能整除任意多项式的多项式是()。
A .零多项式B .零次多项式C .本原多项式D .不可约多项式2.设()1g x x =+是6242()44f x x k x kx x =-++-的一个因式,则=k ()。
A .1B .2C .3D .43.以下命题不正确的是()。
A .若()|(),()|()f x g x f x g x 则;B .集合{|,}F a bi a b Q =+∈是数域;C .若((),'())1,()f x f x f x =则没有重因式;D .设()'()1p x f x k -是的重因式,则()()p x f x k 是的重因式4.整系数多项式()f x 在Z 不可约是()f x 在Q 上不可约的()条件。
A .充分B .充分必要C .必要D .既不充分也不必要5.下列对于多项式的结论不正确的是()。
A .如果)()(,)()(x f x g x g x f ,那么)()(x g x f =B .如果)()(,)()(x h x f x g x f ,那么))()(()(x h x g x f ±C .如果)()(x g x f ,那么][)(x F x h ∈∀,有)()()(x h x g x fD .如果)()(,)()(x h x g x g x f ,那么)()(x h x f6.对于“命题甲:将(1)n >级行列式D 的主对角线上元素反号,则行列式变为D -;命题乙:对换行列式中两行的位置,则行列式反号”有()。
A .甲成立,乙不成立;B .甲不成立,乙成立;C .甲,乙均成立;D .甲,乙均不成立7.下面论述中,错误的是()。
A .奇数次实系数多项式必有实根;B .代数基本定理适用于复数域;C .任一数域包含Q ;D .在[]P x 中,()()()()()()f x g x f x h x g x h x =⇒=8.设ij D a =,ij A 为ij a 的代数余子式,则112111222212.....................n n n n nn A A A A A A A A A =()。
A .DB .D -C ./D D .(1)n D -9.行列式41032657a --中,元素a 的代数余子式是()。
A .4067-B .4165C .4067--D .4165- 10.以下乘积中()是5阶行列式ij D a =中取负号的项。
A .3145122453a a a a a ;B .4554421233a a a a a ;C .2351324514a a a a a ;D .1332244554a a a a a11.以下乘积中()是4阶行列式ij D a =中取负号的项。
A .11233344a a a a ;B .14233142a a a a ;C .12233144a a a a ;D .23413211a a a a12.设,A B n 均为阶矩阵,则正确的为()。
A .det()det det AB A B +=+B .AB BA =C .det()det()AB BA =D .222()2A B A AB B -=-+13.设A 为3阶方阵,321,,A A A 为按列划分的三个子块,则下列行列式中与A 等值的是()A .133221A A A A A A ---B .321211A A A A A A +++ C .32121A A A A A -+D .311132A A A A A +- 14.设A 为四阶行列式,且2-=A ,则=A A ()A .4B .52C .52-D .815.设A 为n 阶方阵,k 为非零常数,则=)det(kA ()A .)(det A kB .A k detC .A k n detD .A k n det16.设A ,B 为数域F 上的n 阶方阵,下列等式成立的是()。
A .det()det()det()AB A B +=+;B .det()det()kA k A =;C .1det()det()n kA k A -=;D .det()det()det()AB A B =17.设*A 为n 阶方阵A 的伴随矩阵且A 可逆,则结论正确的是()A .**1()||n A A A -=B .**1()||n A A A +=C .**2()||n A A A -=D .**2()||n A A A +=18.如果11AA A A I --==,那么矩阵A 的行列式A 应该有()。
A .0A =;B .0A ≠;C .,1A k k =>;D .,1A k k =<-19.设A ,B 为n 级方阵,m N ∈,则“命题甲:A A -=-;命题乙:()m m m AB A B =”中正确的是()。
A .甲成立,乙不成立;B .甲不成立,乙成立;C .甲,乙均成立;D .甲,乙均不成立20.设*A 为n 阶方阵A 的伴随矩阵,则*A A =()。
A .2n AB .n AC .2n n A -D .21n n A -+21.若矩阵A ,B 满足AB O =,则()。
A .A O =或B O =;B .A O ≠且B O ≠;C .A O =且B O =;D .以上结论都不正确22.如果矩阵A 的秩等于r ,则()。
A .至多有一个r 阶子式不为零;B .所有r 阶子式都不为零;C .所有1r +阶子式全为零,而至少有一个r 阶子式不为零;D .所有低于r 阶子式都不为零23.设n 阶矩阵A 可逆(2)n ≥,*A 是矩阵A 的伴随矩阵,则结论正确的是()。
A .()1n A A A *-*=;B .()1n A A A *+*=;C .()2n A A A *-*=;D .()2n A A A *+*=24.设*A 为n 阶方阵A 的伴随矩阵,则||||*A A =()A .2||n AB .||n AC .2||n n A -D .21||n n A -+ 25.任n 级矩阵A 与?A ,下述判断成立的是()。
A .A A =-;B .AX O =与()A X O -=同解;C .若A 可逆,则11()(1)n A A ---=-;D .A 反对称,-A 反对称26.如果矩阵rankA r =,则()A .至多有一个r 阶子式不为零;B .所有r 阶子式都不为零C .所有1r +阶子式全为零,而至少有一个r 阶子式不为零;D .所有低于r 阶子式都不为零27.设A 为方阵,满足11AA A A I --==,则A 的行列式||A 应该有()。
A .||0A =B .||0A ≠C .||,1A k k =>D .||,1A k k =<-28.A 是n 阶矩阵,k 是非零常数,则kA =()。
A .k A ;B .k A ;C .n k AD .||n k A29.设A 、B 为n 阶方阵,则有().A .A ,B 可逆,则A B +可逆B .A ,B 不可逆,则A B +不可逆C .A 可逆,B 不可逆,则A B +不可逆D .A 可逆,B 不可逆,则AB 不可逆30.设A 为数域F 上的n 阶方阵,满足220A A -=,则下列矩阵哪个可逆()。
A .AB .A I -C .A I +D 2A I -31.B A ,为n 阶方阵,O A ≠,且()0R AB =,则()。
A .OB =;B .()0R B =;C .O BA =;D .()()R A R B n +≤32.A ,B ,C 是同阶方阵,且ABC I =,则必有()。
A .ACB I =;B .BAC I =;C .CAB I =D .CBA I =33.设A 为3阶方阵,且()1R A =,则()。
A .*()3R A =;B .*()2R A =;C .*()1R A =;D .*()0R A =34.设B A ,为n 阶方阵,O A ≠,且O AB =,则().A .OB =B .0=B 或0=AC .O BA =D .()222B A B A +=- 35.设矩阵00400000100000000200A ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,则秩A =()。
A .1B .2C .3D .436.设A 是m n ⨯矩阵,若(),则AX O =有非零解。
A .m n <;B .()R A n =;C .m n >D .()R A m =37.A ,B 是n 阶方阵,则下列结论成立得是()。
A .AB O A O ≠⇔≠且B O ≠;B .0A A O =⇔=;C .0AB A O =⇔=或B O =;D .1||=⇔=A I A38.设A 为n 阶方阵,且()n r A R <=,则A 中().A .必有r 个行向量线性无关B .任意r 个行向量线性无关C .任意r 个行向量构成一个极大无关组D .任意一个行向量都能被其他r 个行向量线性表示39.设A 为34⨯矩阵,B 为23⨯矩阵,C 为43⨯矩阵,则下列乘法运算不能进行的是()。
A .T T A BCB .T ACBC .BACD .ABC40.设A 是n 阶方阵,那么A A '是()A .对称矩阵;B .反对称矩阵;C .可逆矩阵;D .对角矩阵41.若由AC AB =必能推出C B =(C B A ,,均为n 阶方阵),则A 满足()。
A .0A ≠B .O A =C .O A ≠D .0≠AB42.设A 为任意阶)3(≥n 可逆矩阵,k 为任意常数,且0≠k ,则必有=-1)(kA () A .1-A k n B .11--A k n C .1-kA D .11-A k43.A ,B 都是n 阶方阵,且A 与B 有相同的特征值,则()A .A 相似于B ;B .A B =;C .A 合同于B ;D .A B =44.设)(21I B A +=,则A A =2的充要条件是()A .B I =;(B )I B -=;C .I B =2D .I B -=2 45.设n 阶矩阵A 满足220A A I --=,则下列矩阵哪个可能不可逆()A .2A I +B .A I -C .A I +D .A46.设n 阶方阵A 满足220A A -=,则下列矩阵哪个一定可逆()A .2A I -;B .A I -;C .A I +D .A47.设A 为n 阶方阵,且()n r A R <=,则A 中().A .必有r 个列向量线性无关;B .任意r 个列向量线性无关;C .任意r 个行向量构成一个极大无关组;D .任意一个行向量都能被其他r 个行向量线性表示48.设A 是m n ⨯矩阵,若(),则n 元线性方程组0AX =有非零解。