第14章_参数模型功率谱估计_1讲解

合集下载

功率谱计算[解说]

功率谱计算[解说]

功率谱计算功率谱估计在现代信号处理中是一个很重要的课题,涉及的问题很多。

在这里,结合matlab,我做一个粗略介绍。

功率谱估计可以分为经典谱估计方法与现代谱估计方法。

经典谱估计中最简单的就是周期图法,又分为直接法与间接法。

直接法先取N点数据的傅里叶变换(即频谱),然后取频谱与其共轭的乘积,就得到功率谱的估计;间接法先计算N点样本数据的自相关函数,然后取自相关函数的傅里叶变换,即得到功率谱的估计.都可以编程实现,很简单。

在matlab中,周期图法可以用函数periodogram实现。

但是周期图法估计出的功率谱不够精细,分辨率比较低。

因此需要对周期图法进行修正,可以将信号序列x(n)分为n个不相重叠的小段,分别用周期图法进行谱估计,然后将这n段数据估计的结果的平均值作为整段数据功率谱估计的结果。

还可以将信号序列x(n)重叠分段,分别计算功率谱,再计算平均值作为整段数据的功率谱估计。

这2种称为分段平均周期图法,一般后者比前者效果好。

加窗平均周期图法是对分段平均周期图法的改进,即在数据分段后,对每段数据加一个非矩形窗进行预处理,然后在按分段平均周期图法估计功率谱。

相对于分段平均周期图法,加窗平均周期图法可以减小频率泄漏,增加频峰的宽度。

welch法就是利用改进的平均周期图法估计估计随机信号的功率谱,它采用信号分段重叠,加窗,FFT等技术来计算功率谱。

与周期图法比较,welch法可以改善估计谱曲线的光滑性,大大提高谱估计的分辨率。

matlab中,welch法用函数psd实现。

调用格式如下:[Pxx,F] = PSD(X,NFFT,Fs,WINDOW,NOVERLAP)X:输入样本数据NFFT:FFT点数Fs:采样率WINDOW:窗类型NOVERLAP,重叠长度现代谱估计主要针对经典谱估计分辨率低和方差性不好提出的,可以极大的提高估计的分辨率和平滑性。

可以分为参数模型谱估计和非参数模型谱估计。

参数模型谱估计有AR模型,MA模型,ARMA模型等;非参数模型谱估计有最小方差法和MUSIC法等。

功率谱估计

功率谱估计

功率谱估计引言:对信号和系统进行的分析研究、处理有两类方法:一类是在时域内进行,维纳滤波、卡尔曼滤波以及自适应滤波等都属于时域处理方法;另一类方法是频域研究方法。

对于确定性信号,傅里叶变换是在频率分析研究的理论基础,但是在实际生活中大多数信号是随机信号,而随机信号的傅里叶变换是不存在的,在实际应用中,通常通过采集和观测平稳随机过程的一个抽样序列的一段(有限个)数据,根据这有限个已知的数据来估计随机过程的功率谱问题来对随机信号进行分析,这即是频率谱估计。

功率谱估计是数字信号处理的主要内容之一,主要研究信号在频域中的各种特征,目的是根据有限数据在频域内通过用某种有效的方法来估计出其功率谱密度,从而得出信号、噪声及干扰的一些性质来,提取被淹没在噪声中的有用信号。

功率谱估计就是通过信号的相关性估计出接受到信号的功率随频率的变化关系,实际用途有滤波,信号识别(分析出信号的频率),信号分离,系统辨识等。

谱估计技术是现代信号处理的一个重要部分,还包括空间谱估计,高阶谱估计等。

按照Weiner —Khintchine 定理,随机信号的功率谱和其自相关函数服从傅里叶变换关系,可以得出功率谱的一个定义,如公式(1)所示:()jwm m xx jw xx e m re P -∞-∞=∑=)( 公式(1)对于平稳随机信号,服从各态历经性,集合平均可以用时间平均来代替,可以推出功率谱的另一定义。

如公式(2)所示:()])(121[2lim ∑-=-∞→+=N N n jwn N jw xx e n x N E e P 公式(2)频率谱估计主要分为经典谱估计和现代谱估计,经典谱估计是将数据工作区外的未知数据假设为零,相当于数据加窗,主要方法有相关法和周期图法;现代谱估计是通过观测数据估计参数模型再按照求参数模型输出功率的方法估计信号功率谱,主要是针对经典谱估计的分辨率低和方差性能不好等问题提出的,应用最广的是AR 参数模型。

参数法功率谱估计

参数法功率谱估计

参数法功率谱估计一、信号的产生(一)信号组成在本实验中,需要事先产生待估计的信号,为了使实验结果较为明显,我产生了由两个不同频率的正弦信号(频率差相对较大)和加性高斯白噪声组成的信号。

(二)程序N=1024;n=0:N-1;xn=2*cos(2*pi*0.2*n)+ cos(2*pi*0.213*n)+randn(1,1024);这样就产生了加有白噪声的两个正弦信号其波形如下0100200300400500600-8-6-4-2246810(a) 两个正弦信号与白噪声叠加的时域波形二、参数模型法功率谱估计(一)算法原理简介1.参数模型法是现代谱估计的主要内容,思路如下:① 假定所研究的过程)(n x 是由一个白噪声序列)(n 激励一个因果稳定的可逆线性系统)(z H 的输出;② 由已知的)(n x ,或其自相关函数)(m r x 估计)(z H 的参数;③ 由)(z H 的参数来估计)(n x 的功率谱。

2.自回归模型,简称AR 模型,它是一个全极点的模型。

“自回归”的含义是:该模型现在的输出是现在的输入和过去p 个输出的加权和。

此模型可以表现为以下三式:① ∑=+--=p k k n u k n x a n x 1)()()(;② ∑=-+==p k kk z a z A z H 111)(1)(;③ 2121)(∑=-+=p k jwkk jw x e a e P σ。

3.AR 模型的正则方程建立了参数k a 和)(n x 的自相关函数的关系,公式如下:=)(m r x ∑=--p k x k k m r a 1)( 1≥m 时,=)(m r x 21)(σ+-∑=k r a pk x k 0=m 时。

(二)两种AR 模型阶次的算法1.Yule-Walker 算法(自相关法)(1)算法主要思想Yule-Walker 算法通过解Yule-Walker 方程获得AR 模型参数。

从低阶开始递推,直到阶次p ,给出了在每一个阶次时的所有参数。

功率谱估计的方法

功率谱估计的方法

功率谱估计的方法
功率谱估计是信号处理中常用的一种方法,用于分析信号在频域内的特点,通常可以分为以下几种方法:
一、经典方法
1.傅里叶变换法:将时域信号通过傅里叶变换变换到频域,然后计算功率谱密度。

2.自相关法:通过自相关函数反映信号的统计平稳性,然后通过傅里叶变换计算功率谱密度。

3.周期图法:将信号分解为若干个周期波形,然后对每个周期波形进行傅里叶变换计算周期功率谱,最后汇总得到整个信号的功率谱。

二、非经典方法
1. 时-频分析法:如短时傅里叶变换(STFT)、小波变换等,将信号分解为时域和频域两个维度的分量,从而可以分析信号在时间和频率上的变化。

2. 基于协方差矩阵的特征值分解法:通过建立协方差矩阵,在张成空
间中求解特征向量,从而达到计算信号功率谱的目的。

3. 基于频率锁定法:如MUSIC法、ESPRIT法等,是一种利用特定信号空间中的特定模式进行处理的方法。

以上方法各有特点,根据实际需求选择不同的方法可以得到相应的功率谱估计结果。

功率谱估计浅谈讲解

功率谱估计浅谈讲解

功率谱估计浅谈摘要:介绍了几种常用的经典功率谱估计与现代功率谱估计的方法原理,并利用Matlab对随机信号进行功率谱估计,对两种方法做出比较,分别给出其优缺点。

关键词:功率谱;功率谱估计;经典功率谱估计;现代功率谱估计前言功率谱估计是从频率分析随机信号的一种方法,一般分成两大类:一类是经典谱估计;另一类是现代谱估计。

由于经典谱估计中将数据工作区以外的未知数据假设为零,这相当于数据加窗,导致分辨率降低和谱估计不稳定。

现代谱估计则不再简单地将观察区外的未知数据假设为零,而是先将信号的观测数据估计模型参数,按照求模型输出功率的方法估计信号功率谱,回避了数据观测区以外的数据假设问题。

周期图、自相关法及其改进方法(Welch)为经典(非参数)谱估计方法, 其以相关和傅里叶变换为基础,对于长数据记录较适用,但无法根本解决频率分辨率低和谱估计稳定性的问题,特别是在数据记录很短的情况下,这一问题尤其突出。

以随机过程的参数模型为基础的现代参数法功率谱估计具有更高的频率分辨率和更好的适应性,可实现信号检测或信噪分离,对语音、声纳雷达、电磁波及地震波等信号处理具有重要意义,并广泛应用于通信、自动控制、地球物理等领域。

在现代参数法功率谱估计方法中,比较有效且实用的是AR模型法,Burg谱估计法,现代谱估计避免了计算相关,对短数据具有更强的适应性,从而弥补了经典谱估计法的不足,但其也有一些自身的缺陷。

下面就给出这两类谱估计的简单原理介绍与方法实现。

经典谱估计法经典法是基于传统的傅里叶变换。

本文主要介绍一种方法:周期图法。

周期图法由于对信号做功率谱估计,需要用计算机实现,如果是连续信号,则需要变换为离散信号。

下面讨论离散随机信号序列的功率谱问题。

连续时间随机信号的功率谱密度与自相关函数是一对傅里叶变换对,即:()()j x x S R e d +∞-Ω-∞Ω=⎰τττ若()x R m 是()x R Ω的抽样序列,由序列的傅里叶变化的关系,可得()()j j n x x m S e R m e ωω∞-=-∞=∑即()j x S e ω与()x R m 也是一对傅里叶变换对。

《功率谱估计》课件

《功率谱估计》课件

实验数据展示 功率谱估计结果对比 误差分析 实验结论与展望
结果分析:对比不同方法的结果,分析优缺点 实验误差来源:讨论实验误差的来源,如设备、环境等因素 改进方向:提出针对实验误差的改进措施,提高实验精度 未来展望:探讨功率谱估计在未来的应用和发展趋势
功率谱估计的应用 案例
语音信号处理:用于语音分析和编码,提高语音质量 图像和视频信号处理:用于图像和视频的压缩和传输,降低带宽需求 雷达和声呐信号处理:用于目标检测和跟踪,提高定位精度
通信领域:用于调制解调、频 谱管理、频谱监测等
生物医学工程:用于心电图信 号处理、脑电图信号处理等
总结与展望
介绍了功率谱估计的基本概念和原理 分析了功率谱估计的常用方法 探讨了功率谱估计在实际应用中的优势和局限性 总结了本次PPT的主要内容和知识点
功率谱估计技术的进一步优化 拓展应用领域,如语音、图像等 结合深度学习等先进技术,提高估计精度 探索与其他领域的交叉研究,如信号处理、通信等
信号的分类
信号的时域和频域 表示
功率谱估计的基本 概念
功率谱估计的应用 场景
功率谱估计的方法
FFT算法原理 FFT算法优缺点分析
FFT算法实现步骤
FFT算法在功率谱估计中的应 用
最小二乘法的基本 原理
功率谱估计的数学 模型
基于最小二乘法的 实现过程
算法的优缺点及改 进方向
卡尔曼滤波原理
功率谱估计与卡尔 曼滤波结合
《功率谱估计》PPT 课件
汇报人:PPT
目录
添加目录标题
功率谱估计的基本 概念
功率谱估计的方法
功率谱估计的原理 与步骤
功率谱估计的实验 与分析
功率谱估计的应用 案例
添加章节标题

功率谱估计

功率谱估计
已知信号:
W(n)为零均值方差为1的AWGN,n=1,2,3……,128
1.1周期图法:
我们知道随机信号的功率谱和自相关函数是一对傅式变换对:
而自相关函数定义为:
对于平稳随机过程,并由功率谱的偶函数特性得:
实际得到的随机信号只能是它的一个样本的片断,因此只能用有限长的样本序列来估计功率谱,这相当于用一个有限宽度(N)的窗函数 去乘样本序列,于是有(用离散频率K代替ω):
title('周期图法');
xlabel('Hz');
ylabel('dB/Hz');
window1=hamming(128);
noverlap=20; %数据20%的重叠
[Pxx1,f]=pwelch(xn,window1,noverlap,nfft,Fs,'onesided');
plot_Pxx1=10*log10(Pxx1);
仿真结果:
2.现代功率谱估计
现代功率谱估计即参数谱估计方法是通过观测数据估计参数模型再按照求参数模型输出功率的方法估计信号功率谱。主要是针对经典谱估计的分辨率低和方差性能不好等问题提出的。主要方法有最大熵谱分析法(AR模型法)、Pisarenko谐波分解法、Prony提取计点法、Prony谱分解法以及Carpon最大似然法。其中AR模型应用较多,具有代表性。常用的模型有ARMA模型、AR模型、MA模型。
这就是用样本序列片断的DFT来估计功率谱的式子。由于加了矩形窗,使得这种直接的周期图估计平滑性、一致性和分辨率不能满足实际要求,因此有必要对上式作一些修改,这些修改主要有两种方法:
1.分段平均:即将长度为N的数据分成L段(允许有重叠),分别求出每一段的功率谱,然后即以平均。这样L个平均的方插笔每个随机变量的单独方差小L倍。

功率谱估计的经典方法PPT课件

功率谱估计的经典方法PPT课件
无关,PDF和pdf是随时间变化的,则称其为广义平稳随机过程。
吉林大学通信工程学院信息科学实验室
6
时间平均
(11)一个平稳随机过程的一个取样序列的时间平均等于它的集合平
均,则称它是遍历性随机过程。时间平均记为 x(n) ,则取样序列的算术
平均值和时间取样自相关序列定义为
x(n) lim 1
功率谱估计的经典方法
版权所有
吉林大学通信工程学院信息科学实验室
1
离散随机过程
为了描述随机变量,引入了概率分布函数、概率密度函数以及随机变 量的数字特征。这些函数或参数都是针对一维随机变量定义的。统称一 维统计特征。
但对于离散随机过程,因为它是由无限多个随机变量构成的时间序列
xn, n ,因此为完整地描述它,仅知道随机变量的特征是不
Syy(z)

Ryy(m) zm



Rxx(m
p)Rhh (
p)
zm
m
m p





Rxx(n)Rhh ( p)
z n z p

Sxx(z)Shh (z)
m n


S
xx
(
z
)H
(
z
)
H
(
z
1
)
协方差序列的z变换

Sxx(z) Cxx(m) zm , m
称为平稳随机过程的功率谱。在今后的讨论中总假设随机信号的均值为
零,所以有

Sxx(z) Rxx(m) zm , m
由于 Rxx(m) Rxx(m) ,则有 Sxx (z) Sxx (z 1) 。

功率谱估计模型法

功率谱估计模型法

由于系统输入u(n)为白噪声信号,因此:
2
ruu
(m)

E[u(n)u(n

m)]

0
这样rxu(m)为:

rxu (m) 2 h(k) (k m) k 0
2h(m)
m0 else
AR模型估计功率谱密度
而h(m)为系统H(z)的脉冲响应,由于H(z)为因 果系统,因此:
功率谱估计
--参数估计方法
周期图法的不足
估计方法的方差性能差
在功率谱密度计算中没有实现求均值的运算
分辨率低
样本数据x(n)是有限长的,相当于在无限长样本数据 中加载了窗函数(矩形窗、Hanning等)
参数模型功率谱估计
MA模型 AR模型 ARMA模型
平稳随机信号的参数模型
如果一个宽平稳随机信号x(n)通过一个线性时不 变系统(LSI)h(n),则系统输出y(n)也是宽平稳随 机过程,并且y(n)的功率谱密度和x(n)的功率谱 密度满足下式:
Pyy (w) Pxx (w) | Hh (w) |2
其中Pyy、Pxx分别为系统输出、输入的功率谱密 度,而H(w)为系统脉冲响应的傅立叶变换。

a1


0

rxx ( p

2)


a2



0


rxx (0) ap 0
这就是AR模型的正则方程,也称为YuleWalker方程。
AR模型估计功率谱密度
得到AR模型的参数,就可以估计功率谱密度:
PˆAR (w)
Pxx (w) 2 | H(w) |2

功率谱估计

功率谱估计
1 1 N −1 N −1 jω 2 I N (ω ) = X (e ) = ∑ ∑ x(k ) x(n)e jω k e − jω n N N n =0 k =0
2 var[ I N (ω )] = E[ I N (ω )] − E 2 [ I N (ω )]
下面先求周期图的均值,再求其均方值:
1 1 ∞ ∞ jω 2 E[ I N (ω )] = X (e ) = ∑ ∑ E[ x(k ) x(n)]RN (k ) RN (n)e− jω ( n −k ) N N n =−∞ k =−∞
经典谱估计
BT法:1958年,R.Blackmant和J.Tukey提出, 先估计自相关函数,再计算功率谱。 周期图法:1898年,Schuster利用傅里叶级数 去拟合待分析的信号,提出周期图的术语,但 直到FFT出现,周期图法才受到人们的重视。 这种方法直接对观测数据进行FFT,取模平方, 除以N得到功率谱。
11
将 ω = ω1 = ω2 代入上式,得 sin( N ω ) 2 2 E[ I N (ω )]=σ x4 2 + N sin(ω )
sin( N ω ) 2 2 var[ I N (ω )]=E[I N (ω )]-E 2 [I N (ω )]=σ x4 1 + N sin(ω ) 显然,当N趋于无限大时,周期图的方差并不趋于0,而是趋 于功率谱真值的平方,即
N −1 1 N −1 − jω k = ∑ x(k )e ∑ x* (n)e jω n n =0 N k =0
1 N −1 N −1 = ∑ ∑ x(k ) x* (n)e − jω ( k − n ) N k =0 n =0 令 m = k − n,即 k = m + n,则

《功率谱估计》课件

《功率谱估计》课件
《功率谱估计》 PPT课件
目录
• 引言 • 功率谱估计的基本原理 • 常见功率谱估计方法 • 现代功率谱估计方法 • 功率谱估计的性能评估 • 实际应用案例分析
01
引言
功率谱估计的定义
功率谱估计是对信号的频率内容进行描述的方法,通过分析信号在不同频率的功 率分布情况,可以了解信号的特性。
功率谱估计可以分为非参数方法和参数方法两类,其中非参数方法包括傅里叶变 换、Welch方法等,而参数方法则包括AR模型、MA模型、和ARMA模型等。
非参数模型
不假设信号的功率谱具有特定参数形式,而是直接从数据中估计功率谱。
03
常见功率谱估计方法
直接法
定义
直接法是通过测量信号的样本值,利用离散 傅里叶变换(DFT)直接计算信号的频谱。
特点
计算简单,但容易受到频率偏移和相位失真的影响 。
应用场景
适用于信号频率稳定且对相位精度要求不高 的场合。
间接法
THANKS
感谢观看
分辨率与假峰率
分辨率(Resolution)
衡量功率谱估计中能够区分两个相近频率成分的能力。分辨率越高,说明估计的功率谱能够更好地分 辨出相近的频率成分。
假峰率(False Peak Rate)
衡量估计的功率谱中出现的虚假频率峰的概率。假峰率越低,说明估计的功率谱中虚假频率峰的出现 概率越小。
06
特点
能够减小频谱泄漏效应,提高频 谱分辨率。
应用场景
适用于信号持续时间较短或需要 高分辨率频谱分析的场合。
最大熵法
定义
最大熵法是一种基于信息论的方法,通过最 大化熵函数来估计信号的功率谱。
特点
能够提供平滑且连续的功率谱估计,但计算 复杂度较高。

功率谱估计的经典方法

功率谱估计的经典方法

功率谱估计的经典方法周期图法是最早被提出的功率谱估计方法之一、它基于信号的周期性,将信号分解成一系列频率分量,然后计算每个频率分量的功率谱密度。

周期图法主要分为周期自相关法和周期平均法两种。

周期自相关法通过计算信号的自相关函数,然后进行傅里叶变换得到功率谱估计结果。

周期平均法则是通过对多个信号周期进行平均得到功率谱估计结果。

平均法是功率谱估计的另一种常用方法。

它通过对信号进行多次采样,然后计算采样信号的傅里叶变换得到频谱,再对多个频谱进行平均得到功率谱估计结果。

平均法的优点是抗噪声能力强,可以提高功率谱估计的准确性。

自相关法是一种基于信号自身特性的功率谱估计方法。

它通过计算信号的自相关函数,然后进行傅里叶变换得到功率谱估计结果。

自相关法的优点是计算简单,但是对信号的平稳性要求较高。

递归方法是一种实时性较好的功率谱估计方法。

它通过对信号进行递推计算,每次计算结果作为下一次计算的输入,以此来估计信号的功率谱。

递归方法通常会使用窗函数来平滑信号,减小频谱分辨率。

递归方法的优点是计算效率高,可以用于实时信号处理。

除了这些经典方法,还有一些其他的功率谱估计方法,如Yule-Walker方法、Burg方法、最大熵方法等。

每种方法都有其适用的场景和特点,选择合适的方法需要根据具体需求和信号特性进行判断。

在实际应用中,功率谱估计可以用于信号处理、通信系统设计、频谱分析等领域。

它可以帮助我们了解信号的频谱分布特性,对信号进行分析和处理,从而实现更好的信号传输和处理效果。

无论是音频信号、图像信号还是通信信号,功率谱估计都具有重要的意义。

因此,掌握功率谱估计的经典方法是进行信号处理和频谱分析的基础。

功率谱估计概念

功率谱估计概念

功率谱估计概念
功率谱估计是对信号的功率谱密度进行估计的过程,是信号处理中的基本问题之一。

功率谱密度描述了信号中不同频率分量的功率分布,对于分析信号的频域特性、噪声抑制、信号识别等领域具有重要意义。

在许多实际应用中,我们常常需要从采集到的信号数据中估计其功率谱。

这是因为功率谱是描述信号本质特征的重要手段,能帮助我们了解信号中各个频率分量的强度和分布情况。

比如在通信、雷达、音乐、语音处理、生物医学工程等领域,都需要对信号的功率谱进行估计和分析。

传统的功率谱估计方法包括周期图法、自相关法、Burg法等。

但这些方法通常需要较长的数据样本,并且对数据的预处理和窗函数选择敏感,计算复杂度也较高。

随着现代信号处理技术的发展,新的功率谱估计方法不断涌现,如基于小波变换的方法、基于神经网络的方法等。

这些新方法能够更准确地估计信号的功率谱,并且对噪声和干扰具有较强的鲁棒性。

在估计信号的功率谱时,我们需要关注估计的精度、稳定性、计算复杂度等问题。

不同的应用场景对功率谱估计的要求也不同,需要根据实际情况选择合适的方法。

同时,功率谱估计也是信号处理领域中一个富有挑战性的研究方向,仍有许多问题需要进一步研究和探索。

总的来说,功率谱估计是信号处理中的一项重要技术,广泛应用于各个领域。

随着科技的不断发展和进步,相信未来会有更多高效、准确的功率谱估计方法出现,推动相关领域的技术进步和应用创新。

第14章_参数模型功率谱估计(胡,AR模型系数求解算法,MATLAB函数,等)

第14章_参数模型功率谱估计(胡,AR模型系数求解算法,MATLAB函数,等)
b* m 1
ˆ k m
2 e
nm
N 1
| e
N 1
nm
f m 1 2
( n )e
N 1
(n 1) (n 1) |
2
f m 1
( n) | | e
nm
先求: ˆ a ˆ m ( m) k m
b m 1
再用 Levinson 递推求 其它
* ˆ ˆ m (k ) a ˆ m 1 (k ) k m a ˆ m 1 (m k ) a ˆ , k 1,2, , m 1 ˆ ( m) k a m m 2 ˆ ˆ ˆ m 1 m (1 | k m | )
f f f
X 3 : 中间块+下三角:上不加窗、下加窗;
e f ( p ) e f ( N 1) e f ( N 1 p )
14.6 AR模型系数求解算法
AR模型系数求解算法很多,人们目前仍在探 讨新的求解算法。目前,常用的算法是: 1. 自相关法 2. Burg算法 3. 协方差(covariance)方法; 4. 改进的协方差算法(modified ~) , 又称:Marple 算法 5. 最大似然(Maximum Likelihood)估计
各算法之间的主要区别:
1.
e (n), n 的取值范围,即
f
X 0 , X1 , X 2 , X 3
选择那一个?
2. 仅用前向预测,还是前后向都预测?即 令 最小,还是
f

f
b
最小?
ˆx (m) 递 ˆx (m) ,由 r 3. 递推算法:由 x(n) 求 r
推,还是直接由 x(n) 递推
ˆ (n) e(n) x (n) x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性预测
e(n) x(n) xˆ(n)
误差序列
E e2(n) E x(n)
p
k
x(n
k
)
2
k 1
均方误差
令:
0, k 1, 2, , p
k
可以得到使 最小的 1, , p 及 min 。
不求导,使用正交原理:
E{x(n m)[x(n) xˆ(n)]} 0, m 1, 2, , p
e(n)
p
rx (m) k rx (m k), m 1, 2, , p k 1
Wiener-Hopf Eq.
min E{x(n)[x(n) xˆ(n)]}
p
rx (0) krx (k) k 1
min :最小
预测误差功率
p
rx (m) k rx (m k), m 1, 2, , p k 1
第14章 参数模型功率谱估计
14.1 平稳随机信号的参数模型 14.2 AR模型的正则方程与参数计算 14.3 AR模型谱估计的性质与阶次选择 14.4 AR模型的稳定性与信号建模 14.5 关于线性预测 14.6 AR模型系数的求解算法 14.7 MA模型 14.8 ARMA模型 14.9 Pisarenko谐波分解与MUSIC 算法
rx ( p) 1 2
rx ( p 1)
a1
0
rx (
p
2)
a2
0
rx (0)
a
p
0
Toeplitz 自相关阵
2
R
a
O
p
又称 YuleWalker 方程
利用Yule-Walker 方程,可求解出AR模型参数:
a1, a2, , ap, 2
于是模型可以构造,可以实现功率谱估计。
4 Marple S L. Digital Spectrum Analysis with Application. 1987
14.2 AR模型的正则方程与参数计算
目标:找到已知参数和未知参数的关系, 以便求解未知参数:
未知参数: a1, a2, , ap, 2 : p 1个
已知参数: rx (m), m 0,1, p
线性预测的Wiener-Hopf Eq.
注意到:对同一信号 x(n) ,都使用其 rx (m)
得到了两组方程:
来自AR模型: Yule-Walk 方程
来自LP: Wiener-Hopf
方程
结论:对同一信号,二者是相同的,即
k ak k 1, 2, , p
பைடு நூலகம்
min
2
一个 p 阶AR模型的系数可用来构成一个 p 阶的线性预测器,反之亦然。并且:
求解方法:由下面的差分方程入手:
两边同乘 x(n m) ,求均值
p
ak Ex(n m k)x(n) k 1
Eu(n m)x(n)
x(n) 和
u(n) 的
互相关
卷积 关系
因果 系统
结果1: 结果2:
结合 起来
正则方程 (Normal Eq.)
rx (0) rx (1) rx (2) rx (1) rx (0) rx (1) rx (2) rx (1) rx (0) rx ( p) rx ( p 1) rx ( p 2)
为了深入了解AR模型的特点,现探 讨另外一个问题,即线性预测问题:
提法:设 x(n) 在 n 时刻之前的 p 个数据
x(n p), x(n p 1), , x(n 1) 已知
现在希望用它们预测 x(n)
x(n p) x(n p 1)
x(n 1) x(n)
p
xˆ(n) k x(n k) k 1
步骤2
由 x(n) 的先验知识,如 rx (m) ,估计 H (z)
的参数:
H (z) B(z) A(z)
b0 , b1, , bq a1, a2 , , ap
参 数
一旦上述系数被求出,则:H (z)
即是对 x(n) 建立的数学模型。
步骤3
功率谱估计:
随机信 号通过 LSI系 统的输 入输出 关系
p
由于 e(n) x (n) xˆ(n) x(n) k x(n k)
p
k 1
u(n) x(n) ak x(n k)
AR(Auto—Regressive,自回归)模型
若:
并假定:b0 1
则:
全 极 点 模 型
MA(Moving—Average,移动平均)模型 若: 则:
全 零 点 模 型
ARMA(Auto-Regressive MovingAverage,自回归-移动平均) 模型
如果:
ai : i 1 ~ p 不全 bi : i 1 ~ q 为零
LSI系统的输入、输出关系:
差分方程 卷积关系 以上两式是LSI系统的时域表示,无论对确 定性信号还是随机信号都成立。现假定输入、 输出是平稳随机信号(输入是白噪声)。
转移函数的两 种表示形式, 独立于信号。
谱分解 的Z域 表示
待辨识 的参数。
Px (z)
u2H (z)H (z1)
u2
B( z ) B( z 1 ) A(z) A(z1)
14.1 平稳随机信号的参数模型
经典谱估计: 分辨率低(受窗函数长度的限制); 方差性能不好; 方差和分辨率之间的矛盾。
对平稳信号建模: 用于功率谱估计:提高分辨率,减小方差; 也可用于信号的特征提取,预测,编码及 数据压缩 等。
从功率谱估计的角度,对平稳信号建模的步骤:
步骤1
假定所研究的平稳过程 x(n) 是由一白噪声 序列 u(n) 激励一线性系统所产生的输出;
2 Makhoul J. Linear Prediction: a tutorial review. Proc. IEEE, 62(April):561-580,1975
3 Kay S M. Modern Spectrum Estimation: Theory and Application. 1988
则:
极—零模型 ARMA模型
AR模型: 全极模型, 线性,用的最多, 被研究的也最多,性能很好;
MA模型:全零模型,看起来简单; 但是非线性;
ARMA模型:极-零模型,二者的综合。
具体选用那一个模型,一是取决于 信号的特点,二是取决于信号处理任务 的需要,需区别对待。
推荐如下参考文献:
1 Kay S M, Marple S L. Spectrum Analysis : a modern Perspective. Proc. IEEE, 69(Nov):1380-1419,1981
相关文档
最新文档