第14章_参数模型功率谱估计_1讲解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 Makhoul J. Linear Prediction: a tutorial review. Proc. IEEE, 62(April):561-580,1975
3 Kay S M. Modern Spectrum Estimation: Theory and Application. 1988
第14章 参数模型功率谱估计
14.1 平稳随机信号的参数模型 14.2 AR模型的正则方程与参数计算 14.3 AR模型谱估计的性质与阶次选择 14.4 AR模型的稳定性与信号建模 14.5 关于线性预测 14.6 AR模型系数的求解算法 14.7 MA模型 14.8 ARMA模型 14.9 Pisarenko谐波分解与MUSIC 算法
4 Marple S L. Digital Spectrum Analysis with Application. 1987
14.2 AR模型的正则方程与参数计算
目标:找到已知参数和未知参数的关系, 以便求解未知参数:
未知参数: a1, a2, , ap, 2 : p 1个
已知参数: rx (m), m 0,1, p
AR(Auto—Regressive,自回归)模型
若:
并假定:b0 1
则:
全 极 点 模 型源自文库
MA(Moving—Average,移动平均)模型 若: 则:
全 零 点 模 型
ARMA(Auto-Regressive MovingAverage,自回归-移动平均) 模型
如果:
ai : i 1 ~ p 不全 bi : i 1 ~ q 为零
LSI系统的输入、输出关系:
差分方程 卷积关系 以上两式是LSI系统的时域表示,无论对确 定性信号还是随机信号都成立。现假定输入、 输出是平稳随机信号(输入是白噪声)。
转移函数的两 种表示形式, 独立于信号。
谱分解 的Z域 表示
待辨识 的参数。
Px (z)
u2H (z)H (z1)
u2
B( z ) B( z 1 ) A(z) A(z1)
则:
极—零模型 ARMA模型
AR模型: 全极模型, 线性,用的最多, 被研究的也最多,性能很好;
MA模型:全零模型,看起来简单; 但是非线性;
ARMA模型:极-零模型,二者的综合。
具体选用那一个模型,一是取决于 信号的特点,二是取决于信号处理任务 的需要,需区别对待。
推荐如下参考文献:
1 Kay S M, Marple S L. Spectrum Analysis : a modern Perspective. Proc. IEEE, 69(Nov):1380-1419,1981
求解方法:由下面的差分方程入手:
两边同乘 x(n m) ,求均值
p
ak Ex(n m k)x(n) k 1
Eu(n m)x(n)
x(n) 和
u(n) 的
互相关
卷积 关系
因果 系统
结果1: 结果2:
结合 起来
正则方程 (Normal Eq.)
rx (0) rx (1) rx (2) rx (1) rx (0) rx (1) rx (2) rx (1) rx (0) rx ( p) rx ( p 1) rx ( p 2)
14.1 平稳随机信号的参数模型
经典谱估计: 分辨率低(受窗函数长度的限制); 方差性能不好; 方差和分辨率之间的矛盾。
对平稳信号建模: 用于功率谱估计:提高分辨率,减小方差; 也可用于信号的特征提取,预测,编码及 数据压缩 等。
从功率谱估计的角度,对平稳信号建模的步骤:
步骤1
假定所研究的平稳过程 x(n) 是由一白噪声 序列 u(n) 激励一线性系统所产生的输出;
p
由于 e(n) x (n) xˆ(n) x(n) k x(n k)
p
k 1
u(n) x(n) ak x(n k)
线性预测的Wiener-Hopf Eq.
注意到:对同一信号 x(n) ,都使用其 rx (m)
得到了两组方程:
来自AR模型: Yule-Walk 方程
来自LP: Wiener-Hopf
方程
结论:对同一信号,二者是相同的,即
k ak k 1, 2, , p
min
2
一个 p 阶AR模型的系数可用来构成一个 p 阶的线性预测器,反之亦然。并且:
为了深入了解AR模型的特点,现探 讨另外一个问题,即线性预测问题:
提法:设 x(n) 在 n 时刻之前的 p 个数据
x(n p), x(n p 1), , x(n 1) 已知
现在希望用它们预测 x(n)
x(n p) x(n p 1)
x(n 1) x(n)
p
xˆ(n) k x(n k) k 1
步骤2
由 x(n) 的先验知识,如 rx (m) ,估计 H (z)
的参数:
H (z) B(z) A(z)
b0 , b1, , bq a1, a2 , , ap
参 数
一旦上述系数被求出,则:H (z)
即是对 x(n) 建立的数学模型。
步骤3
功率谱估计:
随机信 号通过 LSI系 统的输 入输出 关系
e(n)
p
rx (m) k rx (m k), m 1, 2, , p k 1
Wiener-Hopf Eq.
min E{x(n)[x(n) xˆ(n)]}
p
rx (0) krx (k) k 1
min :最小
预测误差功率
p
rx (m) k rx (m k), m 1, 2, , p k 1
rx ( p) 1 2
rx ( p 1)
a1
0
rx (
p
2)
a2
0
rx (0)
a
p
0
Toeplitz 自相关阵
2
R
a
O
p
又称 YuleWalker 方程
利用Yule-Walker 方程,可求解出AR模型参数:
a1, a2, , ap, 2
于是模型可以构造,可以实现功率谱估计。
线性预测
e(n) x(n) xˆ(n)
误差序列
E e2(n) E x(n)
p
k
x(n
k
)
2
k 1
均方误差
令:
0, k 1, 2, , p
k
可以得到使 最小的 1, , p 及 min 。
不求导,使用正交原理:
E{x(n m)[x(n) xˆ(n)]} 0, m 1, 2, , p
相关文档
最新文档