中考数学复习指导:反比例函数重点题型归纳

合集下载

反比例函数专题知识点归纳 常考(典型)题型 重难点题型(含详细答案)

反比例函数专题知识点归纳 常考(典型)题型  重难点题型(含详细答案)

反比例函数专题知识点归纳+常考(典型)题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (2)1.知识结构 (2)2.反比例函数的概念 (2)3.反比例函数的图象 (2)4.反比例函数及其图象的性质 (2)5.实际问题与反比例函数 (4)三、常考题型 (6)1.反比例函数的概念 (6)2.图象和性质 (6)3.函数的增减性 (8)4.解析式的确定 (10)5.面积计算 (12)6.综合应用 (17)三、重难点题型 (22)1.反比例函数的性质拓展 (22)2.性质的应用 (23)1.求解析式 (23)2.求图形的面积 (23)3. 比较大小 (24)4. 求代数式的值 (25)5. 求点的坐标 (25)6. 确定取值范围 (26)7. 确定函数的图象的位置 (26)二、基础知识点1.知识结构2.反比例函数的概念(k≠0)可以写成y=x−1(k≠0)的形式,注意自变量x 1.y=kx的指数为-1,在解决有关自变量指数问题时应特别注意系数k≠0这一限制条件;(k≠0)也可以写成xy=k的形式,用它可以迅速地求出反2.y=kx比例函数解析式中的k,从而得到反比例函数的解析式;的自变量x≠0,故函数图象与x轴、y轴无交点.3.反比例函数y=kx3.反比例函数的图象的图象时,应注意自变量x的取值在用描点法画反比例函数y=kx不能为0,且x应对称取点(关于原点对称).4.反比例函数及其图象的性质1.函数解析式:y=k(k≠0)x2.自变量的取值范围:x≠03.图象:(1)图象的形状:双曲线.|k|越大,图象的弯曲度越小,曲线越平直.|k|越小,图象的弯曲度越大.(2)图象的位置和性质:①与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.②当k>0时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;③当k<0时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:①图象关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在双曲线的另一支上.②图象关于直线y=±x对称,即若(a,b)在双曲线的一支上,则(b,a)和(-b,-a)在双曲线的另一支上.(4)k的几何意义图1上任意一点,作PA⊥x①如图1,设点P(a,b)是双曲线y=kx轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO|k|).和三角形PBO的面积都是12图2②如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为2|k|.(5)说明:①双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.的关系:②直线y=k1x与双曲线y=k2x当k1k2<0时,两图象没有交点;当k1k2>0时,两图象必有两个交点,且这两个交点关于原点成中心对称.5.实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.三、常考题型1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.y-3=2x C.3xy=1 D.y=x2答案:A为正比例函数B为一次函数C变型后为反比例函数D为二次函数(2)下列函数中,y是x的反比例函数的是().A.y=14x B.y=−1x2C.y=1x−1D.y=1+1x答案:A为反比例函数,k为14B、C、D都不是反比例函数2.图象和性质(1)已知函数y=(k+1)x k2+k−3是反比例函数。

反比例函数重点题型

反比例函数重点题型

反比例函数重点题型1、反比例函数的图像和面积之间的关系; 问题1:反比例函数4y x=经过点A (1,4),过点A 向x 轴、y 轴作垂线,垂足为M 、N ,则矩形AMON 的面积为 ,三角形AOM 的面积为 ,三角形AON 的面积为 .问题2:反比例函数ky x=经过点A (a ,b ),过点A 向x 轴、y 轴作垂线,垂足为M 、N ,则矩形AMON 的面积为 ,三角形AOM 的面积为 ,三角形AON 的面积为 .根据以上规律,完成以下两题:1.如图,P 是反比例函数图像上第二象限内的一点,且矩形PEOF 的面积为3,则反比例函数的解析式是______. 2.反比例函数xky =的图像如图所示,点M 是该函数图像上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为 .第1题图 第2题图1、如图,点A 在反比例函数xky =的图象上,AB 垂直于x 轴,若AOB S ∆=4,那么这个反比例函数的解析式为________________.2、在△AOB 中,AB =OB ,点B 在双曲线上,点A 的坐标为(2,0),ABO S ∆=4,求点B 所在双曲线的函数解析式。

3、如图,已知点A ,B 在双曲线)0(>=x xky 上,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,AC 与BD 交于点P ,P 是AC 的中点,若△ABP 的面积为3,求k 的值.4、两个反比例函数=k y x 和1=y x 在第一象限内的图象如图所示,点P 在=ky x 的图象上,PC ⊥x 轴于点C ,交1=y x 的图象于点A ,PD ⊥y 轴于点D ,交1=y x的图象于点B ,当点P 在=ky x的图象上运动时,以下结论: ①△ODB 与△OCA 的面积相等; ②四边形P AOB 的面积不会发生变化; ③P A 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是________.(把你认为正确结论的序号都填上,少填或错填不给分).2、反比例函数解析式和正比例函数解析式之间的关系;1、已知函数21y y y +=,1y 与x 成反比例,2y 与2-x 成正比例,当1=x 时,1-=y ,当3=x 时,5=y .(1)求y 关于x 的函数的解析式;(2)求当3-=x 时的函数值.2、已知12y y y =+,其中1y 与2x 成正比例,2y 与x 成反比例,并且当12x =时5y =,当1x =时1y =-,求y 与x 之间的函数关系式.3、已知12y y y =-,1y 与2x 成正比例,2y 与1x +成正比例;并且当3x =-时,19y =;当1x =-时2y =,求y 与x 的函数关系式.4、若0<ab ,则正比例函数=y ax 与反比例函数=by x在同一坐标系中的大致图象可能是()xxxx3、反比例函数图像坐标和三角形之间的关系主要围绕着两种图形,一周为等腰直角三角形,一种为等边三角形,围绕这两种图形展开的反比例函数的考察是重点1、如图,等腰直角△POA的直角顶点P 在反比例函数xy4=)0(>x的图像上,A点在x 轴正半轴上,则A点的坐标为2、如图,11POA∆、212P A A∆都是等腰直角三角形,点1P、2P在函数4yx=(0x>)的图像上,斜边1OA、12A A、都在x轴上,则点2P的坐标为3、如图,P是反比例函数kyx=(0)k>在第一象限图像上的一点,点A的坐标为(2, 0).(1)当点P的横坐标逐渐增大时,POA∆的面积将如何变化?(2)若POA∆为等边三角形,求此反比例函数的解析式.A2A1P2P1O xyAOPyx4、如图,P 1是反比例函数在第一象限图像上的一点,点A 1 的坐标为(2,0).(1)当点P 1的横坐标逐渐增大时,△P 1O A 1的面积将逐渐_______(填“增加”、“减小”) (2)若△P 1O A 1与△P 2A 1 A 2 均为等边三角形,求此反比例函数的解析式及A 2点的坐标.5、如图,正方形OAPB 、ADFE 的顶点A 、D 、B 在坐标轴上,点E 在AP 上,点P 、F 在函数xky =的图像上,已知正方形OAPB 的面积为9. (1) 求k 的值和直线OP 的解析式; (2)求正方形ADFE 的边长.6、如图,点A 的坐标为(3,0),点C 的坐标为(0,4),四边形OABC 为矩形,反比例函数=ky x的图像过AB 的中点D ,且和BC 相交于点E ,F 为第一象限的点,AF =12,CF =13. (1)求反比例函数=ky x和直线OE 的函数解析式; (2)求四边形OAFC 的面积.第25题图FED CB AyxOFOA DP EB点C 在y 轴上,反比例函数的图像过BC 边上点M ,与AB 边交于点N ,且BM=3CM .求此反比例函数的解析式及点N 的坐标.过1P 分别作x 轴、y 轴的垂线11PQ 、11P R ,垂足分别1Q 、1R ;过2P 分别作x 轴、y 轴的垂线22P Q 、22P R ,垂足分别为2Q 、2R ,求矩形111OQ PR 和222OQP R 的周长比较它们的大小.4、反比例函数压轴题题型及考察1:如图,已知直线经过点P (,),点P 关于轴的对称点P ′ 在反比例函数()的图像上. (1)求的值;(2)直接写出点P ′ 的坐标; (3)求反比例函数的解析式.2、如图,点P 是一个反比例函数与正比例函数2y x =-的图象的交点,PQ 垂直于x 轴,垂足Q 的坐标为(2,0). (1) 求这个反比例函数的解析式.(2) 如果点M 在这个反比例函数的图象上,且△MPQ 的面积为6,求点M 的坐标.x y 2-=2-a y xky =0≠k a OQ xPyxyO x y 2-=PP 'xk y = 113、已知双曲线上两点A (2,4),C (4,2),且AB ⊥OB ,CD ⊥OD , 求(1)双曲线的函数解析式;(2)△OAB 的面积;(3)△OAC 的面积。

初三反比例函数题型归纳总结

初三反比例函数题型归纳总结

初三反比例函数题型归纳总结
初三反比例函数的题型归纳总结如下:
确定反比例函数表达式:根据题目条件,确定反比例函数的表达式。

这通常包括已知图像上一点的坐标,或者已知x、y的一对对应值。

判断函数图像:通过判断系数、找矛盾、分析函数经过的象限等方法,确定反比例函数的图像。

实际应用问题:反比例函数经常与一次函数、三角函数、相似、全等、圆等相结合,形成实际应用问题。

这类问题通常需要结合具体情境,确定反比例函数的表达式,并解决相应的实际问题。

以上是初三反比例函数的主要题型,掌握这些题型的特点和解法,对于提高反比例函数的学习效果具有重要意义。

反比例函数的图像与性质口诀如下:
反比例函数有特点,双曲线相背离得远。

k为正,图在一、三(象)限,k为负,图在二、四(象)限。

图在一、三函数减,两个分支分别减。

图在二、四正相反,两个分支分别添。

线越长越近轴,永远与轴不沾边。

这个口诀可以帮助你记忆反比例函数的图像和性质。

初三数学反比例函数知识点归纳-复习必备打印背熟

初三数学反比例函数知识点归纳-复习必备打印背熟

反比例函数是什么?反比例函数相关知识1:反比例函数是什么?反比例函数的定义域和值域因为x在分母上,所以x≠0,即自变量X的取值范围为非零实数。

而且常数k≠0,因此y≠0,即因变量y的`取值范围为非零实数。

反比例函数的图像及其性质形状:反比例函数的图象是两条双曲线,每一条曲线都无限向X轴Y轴延伸但不与坐标轴相交。

增减性:当k>0时,双曲线的两支分别位于第一、三象限,在每个象限内y随x的增大而减小;当k<0时,双曲线的两支分别位于第二、四象限,在每个象限内y随x的增大而增大。

对称性:反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x和y=-x,对称中心是坐标原点。

2:反比例函数知识点1、反比例函数的表达式X是自变量,Y是X的函数y=k/x=k?1/xxy=ky=k?x^(-1)(即:y等于x的负一次方,此处X必须为一次方)y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n2、函数式中自变量取值的范围①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。

解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数y=k/x=k?1/xxy=ky=k?x^(-1)y=kx(k为常数(k≠0),x不等于0)3、反比例函数图象反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

4、反比例函数中k的几何意义是什么?有哪些应用?过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值_y的.绝对值=(x_y)的绝对值=|k|研究函数问题要透视函数的本质特征。

反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM?PN=|y|?|x|=|xy|=|k|。

中考考点之反比例函数知识点梳理

中考考点之反比例函数知识点梳理

中考考点之反比例函数知识点梳理重点点拨对反比例函数问题,中考命题需要满足下列要求:(1)结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式。

(2)能画出反比例函数的图像,根据图像和表达式y =xk (k ≠0)探索并理解k >0和k <0时,图像的变化情况。

(3)能用反比例函数解决简单实际问题。

知识梳理解题方法一、反比例函数解析式的确定1.待定系数法:确定解析式的方法仍是待定系数法,由于在反比例函数kyx=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式为kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.二、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①,S△ABC=2S△ACO=|k|;(2)如图②,已知一次函数与反比例函数kyx=交于A、B两点,且一次函数与x轴交于点C,则S△AOB=S△AOC+S△BOC=1||2AOC y⋅+1||2BOC y⋅=1(||||)2A BOC y y⋅+;(3)如图③,已知反比例函数kyx=的图象上的两点,其坐标分别为()A Ax y,,()B Bx y,,C为AB延长线与x轴的交点,则S△AOB=S△AOC–S△BOC=1||2AOC y⋅–1||2BOC y⋅=1(||||)2A BOC y y⋅-.。

反比例函数知识点归纳和典型例题

反比例函数知识点归纳和典型例题

反比例函数知识点归纳和典型例题反比例函数是数学中的一个重要概念,它在实际问题的建模和解决中起着重要作用。

本文将对反比例函数的知识点进行归纳,并给出一些典型例题进行解析。

一、定义和性质反比例函数又称为倒数函数,其定义如下:设x和y是实数,且y ≠ 0,若存在一个实数k,使得y = k/x,那么称y是x的反比例函数。

反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。

其一般形式为y = k/x,其中k为常数。

反比例函数具有以下重要性质:1. 定义域:定义除数x不能为0,所以反比例函数的定义域为x ≠ 0。

2. 值域:值域取决于常数k的正负,当k > 0时,值域为(0, +∞),当k < 0时,值域为(-∞, 0)。

3. 对称性:反比例函数关于两个坐标轴都具有对称性。

二、图象和特殊情况反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。

当常数k > 0时,反比例函数的图象在第一象限和第三象限,当常数k< 0时,反比例函数的图象在第二象限和第四象限。

对于一些特殊情况,我们有以下例子:1. 当k > 0时,反比例函数的图象经过点(1, k),且在x轴和y轴上有渐进线。

2. 当k < 0时,反比例函数的图象经过点(-1, k),且在x轴和y轴上有渐进线。

三、典型例题解析下面通过几个典型例题来进一步理解反比例函数的应用。

例题1:已知y和x成反比例关系,且当x = 2时,y = 5,求当x =4时,y的值。

解析:根据反比例函数的定义,有y = k/x。

代入已知条件x = 2时,y = 5,得到5 = k/2,解得k = 10。

因此,当x = 4时,y = 10/4 = 2.5。

例题2:如果一根细木杆以每分钟1.5cm的速度缩短,那么多少分钟后长度为60cm?解析:设时间为t分钟,根据题意可以列出反比例函数y = k/x。

已知当t = 0时,y = 100,即杆子的初始长度是100cm。

(完整版)中考——反比例函数知识点【经典】总结

(完整版)中考——反比例函数知识点【经典】总结

反比例函数一、基础知识1.定义:一般地,形如(为常数,)的函数称为反比例函数。

还可以写成xk y =k o k ≠x ky =kxy =1-2.反比例函数解析式的特征:⑴等号左边是函数,等号右边是一个分式。

分子是不为零的常数(也叫做比例系数),分y k k 母中含有自变量,且指数为1.x ⑵比例系数0≠k ⑶自变量的取值为一切非零实数。

x ⑷函数的取值是一切非零实数。

y 3.反比例函数的图像⑴图像的画法:描点法①列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数)②描点(有小到大的顺序)③连线(从左到右光滑的曲线)⑵反比例函数的图像是双曲线,(为常数,)中自变量,函数值,所xky =k 0≠k 0≠x 0≠y 以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。

⑶反比例函数的图像是是轴对称图形(对称轴是或)。

x y =x y -=⑷反比例函数()中比例系数的几何意义是:过双曲线 ()上任意引x k y =0≠k k xky =0≠k 轴轴的垂线,所得矩形面积为。

x y k 4.反比例函数性质如下表:的取值k 图像所在象限函数的增减性ok >一、三象限在每个象限内,值随的增大而减小y xo k <二、四象限在每个象限内,值随的增大而增大y x 5. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出)k 6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数中的两个变量必成反比例关系。

xky =7. 反比例函数的应用题型总结:一.反比例函数的图象与性质【例1】对与反比例函数,下列说法不正确的是( )xy 2=A .点()在它的图像上 1,2--B .它的图像在第一、三象限C .当时,0>x 的增大而增大随x yD .当时,0<x 的增大而减小随x y 【例2】已知反比例函数的图象经过点(1,-2),则这个函数的图象一定经过( ()0ky k x=≠)A 、(2,1)B 、(2,-1)C 、(2,4)D 、(-1,-2)【例3】在同一直角坐标平面内,如果直线与双曲线没有交点,那么和的关系x k y 1=xk y 2=1k 2k 一定是( )A. +=0B. ·<0C. ·>0D.=1k 2k 1k 2k 1k 2k 1k 2k 【例4 】已知,且反比例函数的图象在每个象限内,随的增大而增大,如果点3=b xby +=1y x 在双曲线上,求a 是多少?()3,a xb y +=1【例5】两个反比例函数y=k x 和y=1x 在第一象限内的图像如图3所示, 点P 在y=kx的图像上,PC⊥x 轴于点C ,交y=1x 的图像于点A ,PD⊥y 轴于点D ,交y=1x的图像于点B , 当点P 在y=kx的图像上运动时,以下结论: ①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是_______(把你认为正确结论的序号都填上, 少填或错填不给分).二.反比例函数的判定l t y ABC【例1】若与成反比例,与成正比例,则是的( )y x x z y z A 、正比例函数 B 、反比例函数 C 、一次函数 D 、不能确定【例2】如果矩形的面积为6cm 2,那么它的长cm 与宽cm 之间的函数图象大致为( )y x 三.反比例函数的解析式特征(的指数,值与图像分布关系):x k 【例1】如果函数的图像是双曲线,且在第二,四象限内,那么的值是多少?222-+=k k kxy 【例2】如果函数22(1)my m x -=-为反比例函数,则m 的值是 ( )A 、1-B 、0C 、21 D 、1四.比较反比例函数图象上点的横纵坐标大小关系:【例1】在反比例函数的图像上有三点,,,,,。

中考数学压轴题之反比例函数(中考题型整理,突破提升)及详细答案

中考数学压轴题之反比例函数(中考题型整理,突破提升)及详细答案
y1= 中,当 x=1 时,y=4, ∴ P(1,4). 设直线 AP 的函数关系式为 y=mx+n, 把点 A(﹣4,﹣1)、P(1,4)代入 y=mx+n,


解得

故直线 AP 的函数关系式为 y=x+3,
则点 C 的坐标(0,3),OC=3,
∴ S△ AOP=S△ AOC+S△ POC
= OC•AR+ OC•PS
又∵ 点 F 在反比例函数
(k>0)的图象上,∴ k=12,
∴ 该函数的解析式为 y= (x>0)
(2)解:由题意知 E,F 两点坐标分别为 E( ,4),F(6,
∴ 当 k=12 时,S 有最大值.S 最大=3
【解析】【分析】)当 F 为 AB 的中点时,点 F 的坐标为(3,1),由此代入求得函数解
C 与 D 横纵坐标乘积相等,求出 b 的值确定出 B 坐标,进而求出 k 的值,确定出双曲线解 析式;(3)抓住两个关键点,将 A 坐标代入双曲线解析式求出 b 的值;将 C 坐标代入双 曲线解析式求出 b 的值,即可确定出平行四边形与双曲线总有公共点时 b 的范围.
5.如图,正比例函数和反比例函数的图象都经过点 A(3,3),把直线 OA 向下平移后, 与反比例函数的图象交于点 B(6,m),与 x 轴、y 轴分别交于 C、D 两点.
(1)求 m 的值; (2)求过 A、B、D 三点的抛物线的解析式; (3)若点 E 是抛物线上的一个动点,是否存在点 E,使四边形 OECD 的面积 S1
, 是四边
形 OACD 面积 S 的 ?若存在,求点 E 的坐标;若不存在,请说明理由. 【答案】(1)解:∵ 反比例函数的图象都经过点 A(3,3),

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)知识点总结1. 反比例函数k 的集合意义:①过反比例函数图像上任意一点作坐标轴的垂线,两垂线与坐标轴构成一个矩形,矩形的面积等于k 。

②过反比例函数图像上任意一点作其中一条坐标轴的垂线,并连接这个点与原点,则构成一个三角形。

这个三角形的面积等于2k 。

2. 待定系数法求反比例函数解析式:在反比例函数中只有一个系数k ,所以只需要在图像上找一个对应的点即可求出k 的值,从而求出反比例函数解析式。

3. 反比例函数与一次函数的不等式问题: 若反比例函数()0≠=k x ky 与一次函数()0≠+=k b kx y 有交点,则不等式b kx xk +>的解集取反比例函数图像在一次函数图像上方的部分所对应的自变量取值范围;等式b kx xk+<的解集取反比例函数图像在一次函数图像下方的部分所对应的自变量取值范围。

反比例函数与一次函数的交点把自变量分成三部分。

练习题1、(2022•日照)如图,矩形OABC 与反比例函数y 1=xk1(k 1是非零常数,x >0)的图像交于点M ,N ,与反比例函数y 2=xk2(k 2是非零常数,x >0)的图像交于点B ,连接OM ,ON .若四边形OMBN 的面积为3,则k 1﹣k 2=( )A .3B .﹣3C .23 D .﹣23【分析】根据矩形的性质以及反比例函数系数k 的几何意义即可得出结论. 【解答】解:∵y 1、y 2的图像均在第一象限, ∴k 1>0,k 2>0,∵点M 、N 均在反比例函数y 1=(k 1是非零常数,x >0)的图像上,∴S △OAM =S △OCN =k 1,∵矩形OABC 的顶点B 在反比例函数y 2=(k 2是非零常数,x >0)的图像上,∴S 矩形OABC =k 2,∴S 四边形OMBN =S 矩形OABC ﹣S △OAM ﹣S △OCN =3, ∴k 2﹣k 1=3, ∴k 1﹣k 2=﹣3, 故选:B .2、(2022•牡丹江)如图,等边三角形OAB ,点B 在x 轴正半轴上,S △OAB =43,若反比例函数y =xk(k ≠0)图像的一支经过点A ,则k 的值是( )A .233 B .23C .433 D .43【分析】根据正三角形的性质以及反比例函数系数k 的几何意义,得出S △AOC =S △AOB =2=|k |,即可求出k 的值.【解答】解:如图,过点A 作AC ⊥OB 于点C , ∵△OAB 是正三角形, ∴OC =BC ,∴S △AOC =S △AOB =2=|k |,又∵k >0, ∴k =4,故选:D .3、(2022•郴州)如图,在函数y =x2(x >0)的图像上任取一点A ,过点A 作y 轴的垂线交函数y =﹣x8(x <0)的图像于点B ,连接OA ,OB ,则△AOB 的面积是( )A .3B .5C .6D .10【分析】根据反比例函数系数k 的几何意义进行计算即可. 【解答】解:∵点A 在函数y =(x >0)的图像上, ∴S △AOC =×2=1,又∵点B 在反比例函数y =﹣(x <0)的图像上, ∴S △BOC =×8=4, ∴S △AOB =S △AOC +S △BOC =1+4 =5, 故选:B .4、(2022•黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数y =x 3的图像上,顶点A 在反比例函数y =xk的图像上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )A .2B .1C .﹣1D .﹣2【分析】设B (a ,),根据四边形OBAD 是平行四边形,推出AB ∥DO ,表示出A 点的坐标,求出AB =a ﹣,再根据平行四边形面积公式列方程,解出即可.【解答】解:设B (a ,), ∵四边形OBAD 是平行四边形, ∴AB ∥DO , ∴A (,),∴AB =a ﹣,∵平行四边形OBAD 的面积是5, ∴(a ﹣)=5,解得k =﹣2, 故选:D .5、(2022•十堰)如图,正方形ABCD 的顶点分别在反比例函数y =xk 1(k 1>0)和y =xk 2(k 2>0)的图像上.若BD ∥y 轴,点D 的横坐标为3,则k 1+k 2=( )A .36B .18C .12D .9【分析】连接AC交BD于E,延长BD交x轴于F,连接OD、OB,设AE=BE=CE=DE =m,D(3,a),根据BD∥y轴,可得B(3,a+2m),A(3+m,a+m),即知k1=3(a+2m)=(3+m)(a+m),从而m=3﹣a,B(3,6﹣a),由B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,得k1=3(6﹣a)=18﹣3a,k2=3a,即得k1+k2=18﹣3a+3a=18.【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图像上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B .6、(2022•邵阳)如图是反比例函数y =x1的图像,点A (x ,y )是反比例函数图像上任意一点,过点A 作AB ⊥x 轴于点B ,连接OA ,则△AOB 的面积是( )A .1B .C .2D .【分析】由反比例函数的几何意义可知,k =1,也就是△AOB 的面积的2倍是1,求出△AOB 的面积是.【解答】解:∵A (x ,y ), ∴OB =x ,AB =y ,∵A 为反比例函数y =图像上一点, ∴xy =1,∴S △ABO =AB •OB =xy =1=,故选:B .7、(2022•内江)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数y =x 8和y =xk的图像交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣22【分析】利用k 的几何意义解题即可. 【解答】解:∵直线l ∥y 轴, ∴∠OMP =∠OMQ =90°,∴S △OMP =×8=4,S △OMQ =﹣k . 又S △POQ =15, ∴4﹣k =15, 即k =11,∴k =﹣22. 故选:D .8、(2022•东营)如图,△OAB 是等腰直角三角形,直角顶点与坐标原点重合,若点B 在反比例函数y =x1(x >0)的图像上,则经过点A 的函数图像表达式为 .【分析】作AD ⊥x 轴于D ,BC ⊥x 轴于C ,根据△OAB 是等腰直角三角形,可证明△BOC ≌△OAD ,利用反比例函数k 的几何意义得到S △OBC =,则S △OAD =,所以|k |=,然后求出k 得到经过点A 的反比例函数解析式. 【解答】解:如图,作AD ⊥x 轴于D ,BC ⊥x 轴于C , ∴∠ADO =∠BCO =90°,∵∠AOB =90°, ∴∠AOD +∠BOC =90°, ∴∠AOD +∠DAO =90°, ∴∠BOC =∠DAO , ∵OB =OA ,∴△BOC ≌△OAD (AAS ),∵点B 在反比例函数y =(x >0)的图像上, ∴S △OBC =, ∴S △OAD =, ∴k =﹣1,∴经过点A 的反比例函数解析式为y =﹣. 故答案为:y =﹣.9、(2022•盐城)已知反比例函数的图像经过点(2,3),则该函数表达式为 . 【分析】利用反比例函数的定义列函数的解析式,运用待定系数法求出函数的解析式即可. 【解答】解:令反比例函数为y =(k ≠0), ∵反比例函数的图像经过点(2,3), ∴3=, k =6,∴反比例函数的解析式为y =. 故答案为:y =.10、(2022•湖北)在反比例函数y =xk 1−的图像的每一支上,y 都随x 的增大而减小,且整式x 2﹣kx +4是一个完全平方式,则该反比例函数的解析式为 . 【分析】由整式x 2﹣kx +4是一个完全平方式,可得k =±4,由反比例函y =的图像的每一支上,y 都随x 的增大而减小,可得k ﹣1>0,解得k >1,则k =4,即可得反比例函数的解析式.【解答】解:∵整式x 2﹣kx +4是一个完全平方式,∴k =±4, ∵反比例函数y =的图像的每一支上,y 都随x 的增大而减小,∴k ﹣1>0, 解得k >1, ∴k =4,∴反比例函数的解析式为y =. 故答案为:y =.35.(2022•陕西)已知点A (﹣2,m )在一个反比例函数的图像上,点A '与点A 关于y 轴对称.若点A '在正比例函数y =21x 的图像上,则这个反比例函数的表达式为 .【分析】根据轴对称的性质得出点A '(2,m ),代入y =x 求得m =1,由点A (﹣2,1)在一个反比例函数的图像上,从而求得反比例函数的解析式. 【解答】解:∵点A '与点A 关于y 轴对称,点A (﹣2,m ), ∴点A '(2,m ),∵点A '在正比例函数y =x 的图像上, ∴m ==1,∴A (﹣2,1),∵点A (﹣2,1)在一个反比例函数的图像上, ∴反比例函数的表达式为y =﹣, 故答案为:y =﹣.11、(2022•攀枝花)如图,正比例函数y =k 1x 与反比例函数y =xk 2的图像交于A (1,m )、B 两点,当k 1x ≤xk2时,x 的取值范围是( )A .﹣1≤x <0或x ≥1B .x ≤﹣1或0<x ≤1C .x ≤﹣1或x ≥1D .﹣1≤x <0或0<x ≤1【分析】根据反比例函数的对称性求得B 点的坐标,然后根据图像即可求得. 【解答】解:∵正比例函数y =k 1x 与反比例函数y =的图像交于A (1,m )、B 两点,∴B (﹣1,﹣m ), 由图像可知,当k 1x ≤时,x 的取值范围是﹣1≤x <0或x ≥1,故选:A .37.(2022•东营)如图,一次函数y 1=k 1x +b 与反比例函数y 2=xk 2的图像相交于A ,B 两点,点A 的横坐标为2,点B 的横坐标为﹣1,则不等式k 1x +b <xk2的解集是( )A .﹣1<x <0或x >2B .x <﹣1或0<x <2C .x <﹣1或x >2D .﹣1<x <2【分析】根据两函数图像的上下位置关系结合交点横坐标,即可得出不等式k 1x +b <的解集,此题得解.【解答】解:观察函数图像可知,当﹣1<x <0或x >2时,一次函数y 1=k 1x +b 的图像在反比例函数y 2=的图像的下方,∴不等式k 1x +b <的解集为:﹣1<x <0或x >2,故选:A .12、(2022•朝阳)如图,正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =xk(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点,则不等式ax >xk的解集为( )A .x <﹣2或x >2B .﹣2<x <2C .﹣2<x <0或x >2D .x <﹣2或0<x <2【分析】根据关于原点对称的点的坐标特征求得B (2,﹣m ),然后根据函数的图像的交点坐标即可得到结论.【解答】解:∵正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点, ∴B (2,﹣m ),∴不等式ax >的解集为x <﹣2或0<x <2, 故选:D .13、(2022•无锡)一次函数y =mx +n 的图像与反比例函数y =xm的图像交于点A 、B ,其中点A 、B 的坐标为A (﹣m1,﹣2m )、B (m ,1),则△OAB 的面积是( ) A .3B .413C .27D .415【分析】根据反比例函数图像上点的坐标特征求出m ,进而求出点A 、B 的坐标,根据三角形的面积公式计算即可.【解答】解:∵点A (﹣,﹣2m )在反比例函数y =上, ∴﹣2m =,解得:m =2,∴点A 的坐标为:(﹣,﹣4),点B 的坐标为(2,1), ∴S △OAB =××5﹣××4﹣×2×1﹣×1=,故选:D .14、(2022•荆州)如图是同一直角坐标系中函数y 1=2x 和y 2=x2的图像.观察图像可得不等式2x >x2的解集为( )A .﹣1<x <1B .x <﹣1或x >1C .x <﹣1或0<x <1D .﹣1<x <0或x >1【分析】结合图像,数形结合分析判断.【解答】解:由图像,函数y 1=2x 和y 2=的交点横坐标为﹣1,1, ∴当﹣1<x <0或x >1时,y 1>y 2,即2x >, 故选:D .15、(2022•怀化)如图,直线AB 交x 轴于点C ,交反比例函数y =xa 1−(a >1)的图像于A 、B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为( )A.8B.9C.10D.11【分析】设点B的坐标为(m,),然后根据三角形面积公式列方程求解.【解答】解:设点B的坐标为(m,),∵S△BCD=5,且a>1,∴×m×=5,解得:a=11,故选:D.16、(2022•宁夏)在显示汽车油箱内油量的装置模拟示意图中,电压U一定时,油箱中浮子随油面下降而落下,带动滑杆使滑动变阻器滑片向上移动,从而改变电路中的电流,电流表的示数对应油量体积,把电流表刻度改为相应油量体积数,由此知道油箱里剩余油量.在不考虑其他因素的条件下,油箱中油的体积V与电路中总电阻R总(R总=R+R0)是反比例关系,电流I与R总也是反比例关系,则I与V的函数关系是()A.反比例函数B.正比例函数C.二次函数D.以上答案都不对【分析】由油箱中油的体积V与电路中总电阻R总是反比例关系,电流I与R总是反比例关系,可得V=I(为常数),即可得到答案.【解答】解:由油箱中油的体积V与电路中总电阻R总是反比例关系,设V•R总=k(k为常数),由电流I与R总是反比例关系,设I•R总=k'(k为常数),∴=,∴V=I(为常数),∴I与V的函数关系是正比例函数,故选:B.17、(2022•宜昌)已知经过闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系.根据下表判断a和b的大小关系为()A.a>b B.a≥b C.a<b D.a≤b【分析】根据等量关系“电流=”,即可求解.【解答】解:∵闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系,∴40a=80b,∴a=2b,∴a>b,故选:A.18、(2022•丽水)已知电灯电路两端的电压U为220V,通过灯泡的电流强度I(A)的最大限度不得超过0.11A.设选用灯泡的电阻为R(Ω),下列说法正确的是()A.R至少2000ΩB.R至多2000ΩC.R至少24.2ΩD.R至多24.2Ω【分析】利用已知条件列出不等式,解不等式即可得出结论.【解答】解:∵电压U一定时,电流强度I(A)与灯泡的电阻为R(Ω)成反比例,∴I=.∵已知电灯电路两端的电压U为220V,∴I=.∵通过灯泡的电流强度I(A)的最大限度不得超过0.11A,∴≤0.11,∴R≥2000.故选:A.19、(2022•郴州)科技小组为了验证某电路的电压U(V)、电流I(A)、电阻R(Ω)三者之间的关系:I=U,测得数据如下:那么,当电阻R=55Ω时,电流I=A.【分析】由表格数据求出反比例函数的解析式,再将R=55Ω代入即可求出答案.【解答】解:把R=220,I=1代入I=得:1=,解得U=220,∴I=,把R=55代入I=得:I==4,故答案为:4.20、(2022•山西)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图像如图所示.当S=0.25m2时,该物体承受的压强p的值为Pa.【分析】设p=,把(0.1,1000)代入得到反比例函数的解析式,再把S=0.25代入解析式即可解决问题.【解答】解:设p=,∵函数图像经过(0.1,1000),∴k=100,∴p=,当S=0.25m2时,物体所受的压强p==400(Pa),故答案为:400.。

反比例函数重难点题型

反比例函数重难点题型

反比例函数重难点题型1. 概述反比例函数是数学中的一种重要函数类型。

本文将讨论反比例函数的重点难点题型,并提供解题方法和技巧。

2. 难点一:变量的理解在解题过程中,理解变量的含义是至关重要的。

反比例函数的一般形式为 y = k/x,其中 k 是常数。

要理解变量的含义,我们需要注意以下几点:- k 的取值范围:在题目中,通常会给定 k 的取值范围,我们需要确保我们的解答在这个范围内。

- x 的取值范围:确定x 的取值范围有助于我们理解问题背景,并选择适当的解题方法。

3. 难点二:题目解读与转化在解决反比例函数的题目时,我们需要仔细解读题目要求,并将其转化为数学表达式。

以下是一些常见的解题技巧:- 明确问题:弄清楚题目要求我们求解的是什么,是x 还是y?这有助于确定我们的解题方向。

- 转化为反比例函数:如果题目描述了一种倒数关系,我们可以将其转化为反比例函数进行求解。

4. 难点三:解题方法解决反比例函数题目的方法有多种,我们需要选择最合适的方法。

以下是几种常用的解题方法:- 建立比例:可以通过建立比例,利用已知条件求解未知量。

例如,已知 x 和 y 满足 y = k/x,且已知 x = 5 时,求解 y 的值。

- 绘制图象法:通过绘制反比例函数的图象,可以更直观地理解函数的性质,并求解特定问题。

例如,通过绘制函数图象找到函数的零点或极值点。

5. 难点四:注意事项在解题过程中,我们需要注意以下事项,以避免常见错误:- 分母为零的情况:反比例函数中分母不能为零,因此我们需要排除这种情况,以免出现错误。

- 保留结果的合理性:在计算结果时,我们需要对结果进行合理性判断,确保结果符合题目要求和变量的取值范围。

6. 总结反比例函数是一种重要的数学概念,掌握解题方法和技巧可以帮助我们更好地解决相关题目。

通过理解变量的含义、准确解读题目、选择合适的解题方法,并注意一些细节问题,我们可以提高解题的准确性和效率。

以上就是反比例函数重难点题型的文档内容。

中考考点梳理:反比例函数12个必考点全梳理(练习版)

中考考点梳理:反比例函数12个必考点全梳理(练习版)

考点梳理:初中反比例函数章节必考点全梳理(精编Word)必考点1:反比例函数的概念掌握一般地,形如y=kx(k≠0)的函数称为反比例函数,反比例函数的等价形式①y=kx(k≠0)②y=kx﹣1(k≠0)③xy=k(k≠0)例题1下列函数:①y=x﹣2,②y=3x,③y=x﹣1,④y=2x+1,y是x的反比例函数的个数有()A.0个B.1个C.2个D.3个变式1若函数y=(m2﹣3m+2)x|m|﹣3是反比例函数,则m的值是()A.1B.﹣2C.±2D.2变式2已知函数y=(m+1)x m2−2是反比例函数,则m的值为.变式3下列函数中,y是x的反比例函数有()(1)y=3x;(2)y=−2x;(3)y=x3;(4)﹣xy=3;(5)y=2x+1;(6)y=1x2;(7)y=2x﹣2;(8)y=kx.A.(2)(4)B.(2)(3)(5)(8)C.(2)(7)(8)D.(1)(3)(4)(6)必考点2:反比例函数的图象(结合一次、二次函数)对于一次函数的图象、反比例函数的图象以及二次函数的图象,掌握一次函数、反比例函数、二次函数图象与系数的关系是解题的关键.例题2若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=cx在同一平面直角坐标系中的图象大致是()A.B.C.D.变式4一次函数y=ax+b与反比例函数y=cx的图象如图所示,则二次函数y=ax2+bx+c的大致图象是()A.B.C.D.变式5函数y=kx与y=ax2+bx+c的图象如图所示,则函数y=kx﹣b的大致图象为()A.B.C.D.变式6抛物线y=ax2+bx+c的图象如图所示,那么一次函数y=bx+b2﹣4ac与反比例函数y= (a+b+c)(a−b+c)x在同一坐标系内的图象大致是()A.B.C.D.必考点3:反比例函数图象上点的坐标特征(比较大小)反比例函数图象上点的坐标特征:当k>0时,图象分别位于第一、三象限,横纵坐标同号;当k<0时,图象分别位于第二、四象限,横纵坐标异号.例题3若(﹣1,y1),(2,y2),(3,y3)三点均在反比例函数y=m2+1x的图象上,则下列结论中正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y1变式7函数y=−k2−1x(k为常数)的图象经过点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3变式8已知点A(x1,2),B(x2,4),C(x3,﹣1)都在反比例函数y=kx(k<0)的图象上,则x1,x2,x3的大小关系是()A.x3<x1<x2B.x2<x1<x3C.x1<x3<x2D.x1<x2<x3变式9若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=kx(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a>1必考点4: 反比例函数图象上点的坐标特征(与四边形结合)反比例函数图象上点的坐标特征:当k >0时,图象分别位于第一、三象限,横纵坐标同号;当k <0时,图象分别位于第二、四象限,横纵坐标异号.例题4 在平面直角坐标系中,矩形ABCD 的顶点A (1,0),D (0,2),点B 在第一象限,BD ∥x 轴,若函数y =kx(k >0,x >0)的图象经过矩形ABCD 的对角线的交点,则k 的值为( )A .4B .5C .8D .10变式10 如图,在平面直角坐标系中,A 是反比例函数y =kx (k >0,x >0)图象上一点,B 是y 轴正半轴上一点,以OA 、AB 为邻边作▱ABCO .若点C 及BC 中点D 都在反比例函数y =−4x(x <0)图象上,则k 的值为( )A .6B .8C .10D .12变式11 如图,在平面直角坐标系中,四边形ABCD 是菱形,AB ∥x 轴,CD 与y 轴交于点E ,反比例函数y =k x(x >0)图象经过顶点B 、C ,已知点B 的横坐标为5,AE =2CE ,则点C 的坐标为( )A .(2,203) B .(2,83)C .(3,203) D .(3,83)变式12如图,在平面直角坐标系中,一次函数y=43x+4的图象与x轴、y轴分别相交于点B,点A,以线段AB为边作正方形ABCD,且点C在反比例函数y=kx(x<0)的图象上,则k的值为()A.﹣12B.﹣42C.42D.﹣21必考点5: 反比例函数系数k 的几何意义(面积)反比例函数y =kx (k ≠0)系数k 的几何意义:从反比例函数y =kx (k ≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.例题5 如图,两个反比例函数y =4x 和y =2x 在第一象限内的图象分别是C 1和C 2,设点P 在C 1上,P A ⊥x 轴于点A ,交C 2于点B ,则△POB 的面积为( )A .1B .2C .4D .无法计算变式13 如图直线y =mx 与双曲线y =k x 交于点A 、B ,过A 作AM ⊥x 轴于M 点,连接BM ,若S △AMB =2,则k 的值是( )A .1B .2C .3D .4变式14 如图,点A 与点B 分别在函数y =k1x (k 1>0)与y =k2x (k 2<0)的图象上,线段AB 的中点M 在y 轴上.若△AOB 的面积为2,则k 1﹣k 2的值是( )A .2B .3C .4D .5变式15如图,是反比例函数y=k1x和y=k2x(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2﹣k1的值为.必考点6: 反比例函数系数k 的几何意义(规律题)反比例函数y =kx (k ≠0)系数k 的几何意义:从反比例函数y =kx (k ≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.例题6 如图,已知A 1,A 2,A 3,…A n ,…是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n ﹣1A n …=1,分别过点A 1,A 2,A 3,…A n ,…作x 轴的垂线交反比例函数y =1x (x >0)的图象于点B 1,B 2,B 3,…,B n ,…,过点B 2作B 2P 1⊥A 1B 1于点P 1,过点B 3作B 3P 2⊥A 2B 2于点P 2…,记△B 1P 1B 2的面积为S 1,△B 2P 2B 3的面积为S 2…,△B n P n B n +1的面积为S n .则S 1+S 2+S 3+…+S 20= .变式16 【变式6-1】(2019•蜀山区一模)如图,点B 在反比例函数y =2X(x >0)的图象上,过点B 分别与x 轴和y 轴的垂线,垂足分别是C 0和A ,点C 0的坐标为(1,0),取x 轴上一点C 1(32,0),过点C 1作x 轴的垂线交反比例函数图象于点B 1,过点B 1作线段B 1A 1⊥BC 0交于点A 1,得到矩形A 1B 1C 1C 0,依次在x 轴上取点C 2 (2,0),C 3(52,0)…,按此规律作矩形,则矩形A n B n ∁n C n ﹣1(n 为正整数)的面积为 .变式17如图,在反比例函数的图象y=4x(x>0)上,有点P1,P2,P3,P4,…,点P1横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1,P2,P3,P4,…分别作x轴,y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,…则S1+S2+S3+…+S n=.变式18如图,已知反比例函数y=1x的图象,当x取1,2,3,…n时,对应在反比例图象上的点分别为M1、M2、M3…M n,则S△P1M1M2+S△P2M2M3+…S△Pn﹣1Mn﹣1Mn=.必考点7: 待定系数法求反比例函数解析式反比例函数y =kx (k ≠0)系数k 的几何意义:从反比例函数y =kx (k ≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.例题7 已知反比例函数y =kx(k ≠0),当x =﹣3时,y =43. (1)求y 关于x 的函数表达式. (2)当y =﹣4时,求自变量x 的值.变式19 已知y 与x ﹣1成反比例,且当x =4时,y =1. (1)求y 与x 的函数关系式;(2)判断点(﹣2,﹣1)是否在该函数图象上.变式20已知y=y1﹣y2,y1与x成反比例,y2与x﹣2成正比例,当x=3时,y=5;当x=1时,y=﹣1.(1)y与x的函数表达式;(2)当x=﹣1时,求y的值.变式21已知y=y1+y2,y1与x2成正比例,y2与x+1成反比例,当x=0时,y=2;当x=1时,y=2.求y 与x的函数关系式,并写出自变量的取值范围.必考点8:反比例函数与一次函数交点问题例题8如图,等腰直角△ABC位于第二象限,BC=AC=2,直角顶点C在直线y=﹣x上,且点C的横坐标为﹣3,边BC,AC分别平行于x轴、y轴.若双曲线y=kx与△ABC的边AB有2个公共点,则k的取值范围为.变式22如图,直线y=1与反比例函数y=kx(x<0),y=2x(x>0)的图象分别交于点A和点B,线段AB的长是8,若直线y=n(x+2)(n≠0)与y=2x(x>0)的图象有交点,与y=kx(x<0)无交点,则n的取值范围为()A.﹣6<n<0B.0<n<6 C.﹣6<n<0或0<n<6D.0<n<2变式23在平面直角坐标系xOy中,过点A(﹣5,0)作垂直于x轴的直线AB,直线y=x+b与双曲线y=−4 x相交于点P(x1,y1)、Q(x2,y2),与直线AB相交于点R(x3,y3).若y1>y2>y3时,则b的取值范围是()A.b>4B.b>4或b<﹣4C.−295<b<﹣4或b>4D.4<b<295或b<﹣4变式24平面直角坐标系中,函数y=4x(x>0)的图象G经过点A(4,1),与直线y=14x+b的图象交于点B,与y轴交于点C.其中横、纵坐标都是整数的点叫做整点.记图象G在点A、B之间的部分与线段OA、OC、BC围成的区域(不含边界)为W.若W内恰有4个整点,结合函数图象,b的取值范围是()A.−54≤b<1或74<b≤114B.−54≤b<1或−74<b≤114C.−54≤b<﹣1或−74<b≤114D.−54≤b<﹣1或74<b≤114必考点9:反比例与一次函数综合例题9如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A(1,4)、B(4,n).(1)求这两个函数的表达式;(2)请结合图象直接写出不等式kx+b≤mx的解集;(3)若点P为x轴上一点,△ABP的面积为6,求点P的坐标.变式25如图,一次函数y=kx+b与反比例函数y=mx的图象交于点A(1,6),B(3,n)两点.与x轴交于点C.(1)求一次函数的表达式;(2)若点M在x轴上,且△AMC的面积为6,求点M的坐标.(3)在y轴上找一点P,使P A+PB的值最小,直接写出满足条件的点P的坐标是.变式26如图,在平面直角坐标系中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=mx(m≠0)的图象相交于第一、三象限内的A(3,5),B(a,﹣3)两点,与x轴交于点C.(1)求该反比例函数和一次函数的解析式;(2)在y轴上找一点P使PB﹣PC最大,求PB﹣PC的最大值及点P的坐标;(3)直接写出不等式kx+b>mx的解集.变式27 如图,一次函数y =kx +b 的图象与反比例函数y =mx(x >0)的图象在第一象限交于点A ,B ,且该一次函数的图象与y 轴正半轴交于点C ,过A ,B 分别作y 轴的垂线,垂足分别为E ,D .已知A (4,1),CE =4CD .(1)求反比例函数的解析式. (2)求一次函数的解析式. (3)根据图象直接写出m x<kx +b 时x 的取值范围.(4)若点M 为一次函数图象上的动点,过点M 作MN ∥y 轴,交反比例函数y =m x(x >0)的图象于点N ,连结ME ,NE ,当△MNE 的面积为98时,直接写出点M 的横坐标.必考点10:反比例函数的应用例题10为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要19min;完成2间办公室和1间教室的药物喷洒要11min.(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?(2)消毒药物在一间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示:校医进行药物喷洒时y与x的函数关系式为y=2x,药物喷洒完成后y与x成反比例函数关系,两个函数图象的交点为A(m,n).当教室空气中的药物浓度不高于1mg/m3时,对人体健康无危害,校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.变式28学校的学生专用智能饮水机里水的温度y(℃)与时间x(分)之间的函数关系如图所示,当水的温度为20℃时,饮水机自动开始加热,当加热到100℃时自动停止加热(线段AB),随后水温开始下降,当水温降至20℃时(BC为双曲线的一部分),饮水机又自动开始加热……根据图中提供的信息,解答下列问题:(1)分别求出饮水机里水的温度上升和下降阶段y与x之间的函数表达式.(2)下课时,同学们纷纷用水杯去盛水喝.此时,饮水机里水的温度刚好达到100℃.据了解,饮水机1分钟可以满足12位同学的盛水要求,学生喝水的最佳温度在30℃~45℃,请问在大课间30分钟时间里有多少位同学可以盛到最佳温度的水?变式29实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y(毫克/百亳升)与时间x(时)变化的图象,如图(图象由线段OA与部分双曲线AB组成).国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于“酒后驾驶”,不能驾车上路.(1)求部分双曲线AB的函数解析式;(2)参照上述数学模型,假设某驾驶员晚上22:30在家喝完50毫升该品牌白酒,第二天早上7:00能否驾车去上班?请说明理由.变式30饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热,此过程中水温y(℃)与开机时间x(分)满足一次函数关系,当加热到100℃时自动停止加热,随后水温开始下降,此过程中水温y (℃)与开机时间x(分)成反比例关系,当水温降至20℃时,饮水机又自动开始加热……,重复上述程序(如图所示),根据图中提供的信息,解答问题:(1)当0≤x<8时,求水温y(℃)与开机时间x(分)的函数关系式.(2)求图中t的值;(3)若在通电开机后即外出散步,请你预测散步42分钟回到家时,饮水机内水的温度约为多少℃?必考点11:反比例函数存在性问题(三角形)例题11如图,反比例函数y1=kx和一次函数y2=mx+n相交于点A(1,3),B(﹣3,a),(1)求一次函数和反比例函数解析式;(2)连接OA,试问在x轴上是否存在点P,使得△OAP为以OA为腰的等腰三角形,若存在,直接写出满足题意的点P的坐标;若不存在,说明理由.变式31如图,一次函数y=﹣x+3的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;(3)若点P在y轴上,是否存在点P,使△ABP是以AB为一直角边的直角三角形?若存在,求出所有符合条件的P点坐标;若不存在,请说明理由.变式32如图,关于x的一次函数y=k1x+b的图象与反比例函数y=k2x的图象相交于A(﹣2,8),B(4,m)两点.(1)求一次函数与反比例函数的解析式.(2)设一次函数y=k1x+b的图象与x轴,y轴的交点分别为M,N,P是x轴上一动点,当以P,M,N三点为顶点的三角形是等腰三角形时,求点P的坐标.变式33如图,函数y=kx(x>0)的图象过点A(n,2)和B(85,2n﹣3)两点.(1)求n和k的值;(2)将直线OA沿x轴向左移动得直线DE,交x轴于点D,交y轴于点E,交y=kx(x>0)于点C,若S△ACO=6,求直线DE解析式;(3)在(2)的条件下,第二象限内是否存在点F,使得△DEF为等腰直角三角形,若存在,请直接写出点F的坐标;若不存在,请说明理由.必考点12: 反比例函数存在性问题(四边形)例题12 已知,矩形OCBA 在平面直角坐标系中的位置如图所示,点C 在x 轴的正半轴上,点A 在y 轴的正半轴上,已知点B 的坐标为(2,4),反比例函数y =m x (x >0)的图象经过AB 的中点D ,且与BC 交于点E ,顺次连接O ,D ,E .(1)求线段DE 的长;(2)在线段OD 上存在一点M ,当△MOE 的面积等于34时,求点M 的坐标; (3)平面直角坐标系中是否存在一点N ,使得O 、D 、E 、N 四点构成平行四边形?若存在,请直接写出N 的坐标;若不存在,请说明理由.变式34如图1,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B在反比例函数y=kx(k>0)的第一象限内的图象上,OA=4,OC=3,动点P在y轴的右侧,且满足S△PCO=38S矩形OABC.(1)若点P在这个反比例函数的图象上,求点P的坐标;(2)连接PO、PC,求PO+PC的最小值;(3)若点Q是平面内一点,使得以B、C、P、Q为顶点的四边形是菱形,请你直接写出满足条件的所有点Q的坐标.变式35如图,四边形OBAC是矩形,OC=2,OB=6,反比例函数y=kx的图象过点A.(1)求k的值.(2)点P为反比例图象上的一点,作PD⊥直线AC,PE⊥x轴,当四边形PDCE是正方形时,求点P的坐标.(3)点G为坐标平面上的一点,在反比例函数的图象上是否存在一点Q,使得以A、B、Q、G为顶点组成的平行四边形面积为14?若存在,请求出点G的坐标;若不存在,请说明理由.变式36如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(0,﹣6)、D(﹣3,﹣7),点B、C在第三象限内.(1)点B的坐标;(2)将正方形ABCD以每秒2个单位的速度沿y轴向上平移t秒,若存在某一时刻t,使在第二象限内点B、D两点的对应点B'、D'正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问:是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B'、D'四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点Q的坐标;若不存在,请说明理由.。

(反比例函数在中考中的常见题型)

(反比例函数在中考中的常见题型)

中考数学复习教材回归知识讲解+例题解析+强化训练反比例函数在中考中的常见题型◆知识讲解1.反比例函数的图像是双曲线,故也称双曲线y=kx(k≠0).2.反比例函数y=kx(k≠0)的性质(1)当k>0时⇔函数图像的两个分支分别在第一,三象限内⇔在每一象限内,y随x的增大而减小.(2)当k<0时⇔函数图像的两个分支分别在第二,四象限内⇔在每一象限内,y随x的增大而增大.(3)在反比例函数y=kx中,其解析式变形为xy=k,故要求k的值,•也就是求其图像上一点横坐标与纵坐标之积,•通常将反比例函数图像上一点的坐标当作某一元二次方程的两根,运用两根之积求k的值.(4)若双曲线y=kx图像上一点(a,b)满足a,b是方程Z2-4Z-2=0的两根,求双曲线的解析式.由根与系数关系得ab=-2,又ab=k,∴k=-2,故双曲线的解析式是y=2x-.(5)由于反比例函数中自变量x和函数y的值都不能为零,所以图像和x轴,y•轴都没有交点,但画图时要体现出图像和坐标轴无限贴近的趋势.◆例题解析例1如图,在直角坐标系中,O为原点,点A在第一象限,它的纵坐标是横坐标的3倍,反比例函数y=12x的图像经过点A,(1)求点A的坐标;(2)如果经过点A的一次函数图像与y轴的正半轴交于点B,且OB=AB,•求这个一次函数的解析式.【分析】(1)用含一个字母a 的代数式表示点A 的横坐标,纵坐标,把点A 的坐标代入y=12x可求得a 的值,从而得出点A 的坐标. (2)设点B 的坐标为(0,m ),根据OB=AB ,可列出关于m 的一个不等式,•从而求出点B 的坐标,进而求出经过点A ,B 的直线的解析式. 【解答】(1)由题意,设点A 的坐标为(a ,3a ),a>0. ∵点A 在反比例函数y=12x 的图像上,得3a=12a,解得a 1=2,a 2=-2,经检验a 1=2,a 2=-2•是原方程的根,但a 2=-2不符合题意,舍去. ∴点A 的坐标为(2,6).(2)由题意,设点B 的坐标为(0,m ). ∵m>0,∴m=22(6)2m -+.解得m=103,经检验m=103是原方程的根, ∴点B 的坐标为(0,1013).设一次函数的解析式为y=kx+1013.由于这个一次函数图像过点A (2,6),∴6=2k+103,得k=43.∴所求一次函数的解析式为y=43x+103.例2 如图,已知Rt △ABC 的顶点A 是一次函数y=x+m 与反比例函数y=mx的图像在第一象限内的交点,且S △AOB =3.(1)该一次函数与反比例函数的解析式是否能完全确定?如能确定,•请写出它们的解析式;如不能确定,请说明理由.(2)如果线段AC 的延长线与反比例函数的图像的另一支交于D 点,过D 作DE ⊥x •轴于E ,那么△ODE 的面积与△AOB 的面积的大小关系能否确定?(3)请判断△AOD 为何特殊三角形,并证明你的结论.【分析】△AOB 是直角三角形,所以它的面积是两条直角边之积的12,•而反比例函数图像上任一点的横坐标,纵坐标之积就是反比例函数中的系数.由题意不难确定m ,则所求一次函数,反比例函数的解析式就确定了.由反比例函数的定义可知,过反比例函数图像上任一点作x 轴,y 轴的垂线,•该点与两垂足及原点构成的矩形的面积都是大小相等的. 【解答】(1)设B (x ,0),则A (x 0,mx ),其中0>0,m>0. 在Rt △ABO 中,AB=mx ,OB=x 0. 则S △ABO =12·x 0·0m x =3,即m=6.所以一次函数的解析式为y=x+6;反比例函数的解析式为y=6x.(2)由66y xyx=+⎧⎪⎨=⎪⎩得x2+6x-6=0,解得x1=-3+15,x2=-3-15.∴A(-3+15,3+15),D(-3-15,3-15).由反比例函数的定义可知,对反比例函数图像上任意一点P(x,y),有y=6x.即xy=6.∴S△DEO =12│x D y D│=3,即S△DEO =S△ABO.(3)由A(-3+15,3+15)和D(-3-15,3-15)可得AO=43,DO=43,即AO=DO.由图可知∠AOD>90°,∴△AOD为钝角等腰三角形.【点评】特殊三角形主要指边的关系和角的关系.通过对直观图形的观察,借助代数运算验证,便不难判断.◆强化训练一、填空题1.如图1,直线y=kx(k>0)与双曲线y=4x交于A(x1,y1),B(x2,y2)两点,•则2x1y2-7x2y1的值等于_______.图1 图2 图32.(2006,重庆)如图2,矩形AOCB 的两边OC ,OA 分别位于x 轴,y 轴上,点B 的坐标为B (-203,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图像上,那么该函数的解析式是______.3.近视眼镜的度数y (度)与镜片焦距x (m )成反比例,已知400•度近视眼镜镜片的焦距为0.25m ,则y 与x 的函数关系式为_______.4.若y=2131a a a x--+中,y 与x 为反比例函数,则a=______.若图像经过第二象限内的某点,则a=______. 5.反比例函数y=kx的图像上有一点P (a ,b ),且a ,b 是方程t 2-4t -2=0的两个根,则k=_______;点P 到原点的距离OP=_______.6.已知双曲线xy=1与直线y=-x+b 无交点,则b 的取值范围是______. 7.反比例函数y=kx的图像经过点P (a ,b ),其中a ,b 是一元二次方程x 2+kx+4=0的两个根,那么点P 的坐标是_______. 8.两个反比例函数y=k x 和y=1x 在第一象限内的图像如图3所示,•点P 在y=kx的图像上,PC ⊥x 轴于点C ,交y=1x 的图像于点A ,PD ⊥y 轴于点D ,交y=1x的图像于点B ,•当点P 在y=kx的图像上运动时,以下结论:①△ODB 与△OCA 的面积相等; ②四边形PAOB 的面积不会发生变化; ③PA 与PB 始终相等④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是_______(把你认为正确结论的序号都填上,•少填或错填不给分). 二、选择题9.如图4所示,等腰直角三角形ABC 位于第一象限,AB=AC=2,直角顶点A 在直线y=x 上,其中A 点的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴,y 轴,•若双曲线y=kx(k ≠0)与△ABC 有交点,则k 的取值范围是( ) A .1<k<2 B .1≤k ≤3 C .1≤k ≤4 D .1≤k<4图4 图5 图6 10.反比例函数y=kx(k>0)的第一象限内的图像如图5所示,P 为该图像上任意一点,PQ 垂直于x 轴,垂足为Q ,设△POQ 的面积为S ,则S 的值与k 之间的关系是( ) A .S=4k B .S=2kC .S=kD .S>k 11.如图6,已知点A 是一次函数y=x 的图像与反比例函数y=2x的图像在第一象限内的交点,点B 在x 轴的负半轴上,且OA=OB ,那么△AOB 的面积为( )A .2B .22C .2D .22 12.函数y=mx与y=mx -m (m ≠0)在同一平面直角坐标系中的图像可能是( )13.如果不等式mx+n<0的解集是x>4,点(1,n )在双曲线y=2x上,那么函数y=(n -1)x+2m 的图像不经过( )A .第一象限B .第二象限C .第三象限D .第四象限14.正比例函数y=2kx 与反比例函数y=1k x在同一坐标系中的图像不可能是( )15.已知P 为函数y=2x的图像上一点,且P 到原点的距离为3,则符合条件的P 点数为( •)A .0个B .2个C .4个D .无数个16.如图,A ,B 是函数y=1x的图像上关于原点O 对称的任意两点,AC 平行于y 轴,•交x 轴于点C ,BD 平行于y 轴,交x 轴于点D ,设四边形ADBC 的面积为S ,则( ) A .S=1 B .1<S<2 C .S=2 D .S>2 三、解答题17.已知:如图,反比例函数y=-8x与一次函数y=-x+2的图像交于A ,B 两点,求: (1)A ,B 两点的坐标; (2)△AOB 的面积.18.如图,已知一次函数y=kx+b 的图像与反比例函数y=-8x的图像交于A ,B 两点,且点A 的横坐标和点B 的纵坐标都是-2,求: (1)一次函数的解析式; (2)△AOB 的面积.19.已知函数y=kx的图像上有一点P (m ,n ),且m ,n 是关于x 方程x 2-4ax+4a 2-6a -8=0•的两个实数根,其中a 是使方程有实根的最小整数,求函数y=kx的解析式.20.在平面直角坐标系Oxy 中,直线y=-x 绕点O 顺时针旋转90•°得到直线L .直线L 与反比例函数y=kx的图像的一个交点为A (a ,3),试确定反比例函数的解析式.21.如图所示,已知双曲线y=kx与直线y=14x相交于A,B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线y=kx上的动点.过点B作BD∥y轴交x轴于点D.•过N(0,-n)作NC∥x轴交双曲线y=kx于点E,交BD于点C.(1)若点D的坐标是(-8,0),求A,B两点的坐标及k的值;(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式;(3)设直线AM,BM分别与y轴相交于P,Q两点,且MA=pMP,MB=qMQ,求p-q 的值.22.如图,在等腰梯形ABCD中,CD∥AB,CD=6,AD=10,∠A=60°,以CD•为弦的弓形弧与AD相切于D,P是AB上的一个动点,可以与B重合但不与A重合,DP•交弓形弧于Q.(1)求证:△CDQ∽△DPA;(2)设DP=x,CQ=y,试写出y关于x的函数关系式,并写出自变量x的取值范围;(3)当DP之长是方程x2-8x-20=0的一根时,求四边形PBCQ的面积.答案:1.20 2.y=-12x3.y=100x 4.2或-1;-15.-2;25 6.0≤b<4 7.(-2,-2)8.①②④ 9.C 10.B 11.C 12.C 13.B 14.D 15.A 16.C17.(1)由82y x y x ⎧=-⎪⎨⎪=-+⎩,解得1142x y =⎧⎨=-⎩,1124x y =-⎧⎨=⎩ ∴A (-2,4),B (4,-2).(2)当y=0时,x=2,故y=-x+2与x 轴交于M (2,0),∴OM=2.∴S △AOB =S △AOM +S △BOM =12OM ·│y A │+12OM ·│y B │=12·2·4+12·2·2=4+2=6. 18.(1)y=-x+2 (2)S △AOB =619.由△=(-4a )2-4(4a 2-6a -8)≥0得a ≥-43, 又∵a 是最小整数, ∴a=-1.∴二次方程即为x 2+4x+2=0,又mn=2,而(m ,n )在y=k x 的图像上,∴n=km,∴mn=k ,∴k=2,∴y=2x. 20.依题意得,直线L 的解析式为y=x . ∵A (a ,3)在直线y=x 上, 则a=3.即A (3,3). 又∵A (3,3)在y=kx的图像上, 可求得k=9.∴反比例函数的解析式为y=9x. 21.(1)∵D (-8,0),∴B 点的横坐标为-8,代入y=14x 中,得y=-2. ∴B 点坐标为(-8,-2),而A ,B 两点关于原点对称,∴A (8,2). 从而k=8×2=16.(2)∵N (0,-n ),B 是CD 的中点,A ,B ,M ,E 四点均在双曲线上,∴mn=k ,B (-2m ,-2n ),C (-2m ,-n ),E (-m ,-n ). S 矩形DCNO =2mn=2k ,S △DBO =12mn=12k ,S △OEN =12mn=12k , ∴S 四边形OBCE =S 矩形DCNO -S △DBO -S △OEN =k .∴k=4.由直线y=14x 及双曲线y=4x,得A (4,1),B (-4,-1), ∴C (-4,-2),M (2,2).设直线CM 的解析式是y=ax+b ,由C ,M 两点在这条直线上,得42,2 2.a b a b -+=-⎧⎨+=⎩解得a=b=23. ∴直线CM 的解析式是y=23x+23. (3)如图所示,分别作AA 1⊥x 轴,MM 1⊥x 轴,垂足分别为A 1,M 1.设A 点的横坐标为a ,则B 点的横坐标为-a ,于是p=111A M MA a m MP M O m -==. 同理q=MB MQ =m a m+,∴p-q=a mm--m am+=-2.22.(1)证∠CDQ=∠DPA,∠DCQ=∠PDA.(2)y=60x(8≤x≤185).(3)S四边形PBCQ=48-93.Welcome To Download !!!欢迎您的下载,资料仅供参考!。

中考数学专题复习:反比例函数经典

中考数学专题复习:反比例函数经典

中考专题复习一、反比例函数的对称性1、直线y=ax(a>0)与双曲线y= 3/x交于A(x1,y1)、B(x2,y2)两点,则2、如图1,直线y=kx(k>0)与双曲线y= 2/x交于A,B两点,若A,B两点的坐标分别为A(x1,y1),B(x2,y2),则x1y2+x2y1的值为( )A、—8B、4C、-4D、0图1 图2 图3 图4二、反比例函数中“K”的求法1、如图2,直线l是经过点(1,0)且与y轴平行的直线.Rt△ABC中直角边AC=4,BC=3.将BC边在直线l上滑动,使A,B在函数 y=k/x的图象上.那么k 的值是()A、3B、6C、12D、 15/42、如图3,已知点A、B在双曲线y= k/x(x>0)上,AC⊥x轴于点C,BD⊥y轴于3、如图4,双曲线y= k/x(k>0)经过矩形OABC的边BC的中点E,交AB于点D.若梯形ODBC的面积为3,则双曲线的解析式为()A、y=1/xB、y=2/xC、y=3/xD、y=6/x三、反比例函数“K"与面积的关系1、如图5,已知双曲线 y1=1/x(x>0), y2=4/x(x>0),点P为双曲线y2=4/x上的一点,且PA⊥x轴于点A,PB⊥y轴于点B,PA、PB分别次双曲线y1=1/x于D、C 两点,则△PCD的面积为( )图5 图6 图72、如图6,直线l和双曲线 y=k/x(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、0P,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则() A、S1<S2<S3B、S1>S2>S3C、S1=S2>S3D、S1=S2<S33、如图7,已知直线y=-x+3与坐标轴交于A、B两点,与双曲线 y=k/x交于C、D4、反比例函数y= 6/x 与y= 3/x在第一象限的图象如图8所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为( )A、 3/2B、2C、3D、1图8 图9 图10 图115、如图9,已知梯形ABCO的底边AO在x轴上,BC∥AO,AB⊥AO,过点C的双曲线y=k/x交OB于D,且OD:DB=1:2,若△OBC的面积等于3,则k的值()A、等于2B、等于 3/4C、等于 24/5D、无法确定6、如图10,反比例函数y=k/x(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为6,则k的值为()A、1B、2C、3D、47、如图11,梯形AOBC的顶点A,C在反比例函数图象上,OA∥BC,上底边OA在直线y=x上,下底边BC交x轴于E(2,0),则四边形AOEC的面积为()A、根号3B、 3C、根号3-1D、根号3+18、如图,A、B是双曲线y= k/x(k>0)上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC=6.则k=图1 图2 图3四、反比例函数与一次函数综合:1、如图1,若正方形OABC的顶点B和正方形ADEF的顶点E都在函数y= 1/x(x>0)2、如图2,过y轴上任意一点P,作x轴的平行线,分别与反比例函数 y=—4/x和y=2/x 的图象交于A 点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为( )A、3B、4C、5D、63、如图3,直线y=-x+b(b>0)与双曲线y= k/x(x>0)交于A、B两点,连接OA、OB,AM⊥y轴于M,BN⊥x轴于N;有以下结论:①OA=OB;②△AOM≌△BON;③若∠AOB=45°,则S△AOB=k;④当AB= 2时,ON—BN=1;其中结论正确的个数为()A、1B、2C、3D、44、如图4,直线y=6-x交x轴、y轴于A、B两点,P是反比例函数 y=4/x(x>0)图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F.则AF•BE=() A、8 B、6 C、4 D、 6倍根号2图4 图55、如图5,反比例函数 y=k/x(k>0)与一次函数 y=1/2x+b的图象相交于两点A(x1,y1),B(x2,y2),线段AB交y轴与C,当|x1-x2|=2且AC=2BC时,k、b的值分别为( )A、k= 1/2,b=2B、k= 4/9,b=1C、k= 1/3,b= 1/3D、k= 4/9,b= 1/3五、综合(函数与几何)1、如图,▱ABCD的顶点A、B的坐标分别是A(-1,0),B(0,—2),顶点C、D在双曲线y= k/x上,边AD交y轴于点E,且四边形BCDE的面积是△ABE面积的5倍,则k=.2、如图,已知C、D是双曲线,y= m/x在第一象限内的分支上的两点,直线CD分别交x轴、y轴于A、B两点,设C、D的坐标分别是(x1,y1)、(x2,y2),连接OC、OD.(1)求证:y1<OC<y1+ m/y1;(2)若∠BOC=∠AOD=a,tana= 1/3,OC= 根号10,求直线CD的解析式;(3)在(2)的条件下,双曲线上是否存在一点P,使得S△POC=S△POD?若存在,请给出证明;若不存在,请说明理由.3、如图,将一矩形OABC放在直角坐际系中,O为坐标原点.点A在x轴正半轴上.点E 是边AB上的一个动点(不与点A、N重合),过点E的反比例函数y=k/x(x>0)的图象与边BC交于点F.(1)若△OAE、△OCF的而积分别为S1、S2.且S1+S2=2,求k的值;(2)若OA=2.0C=4.问当点E运动到什么位置时.四边形OAEF的面积最大.其最大值为多少?4、如图,已知直线l经过点A(1,0),与双曲线y= m/x(x>0)交于点B(2,1).过点P (p,p-1)(p>1)作x轴的平行线分别交双曲线y= m/x(x>0)和y=- m/x(x<0)于点M、N.(1)求m的值和直线l的解析式;(2)若点P在直线y=2上,求证:△PMB∽△PNA;(3)是否存在实数p,使得S△AMN=4S△AMP?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.5、如图,四边形OABC是面积为4的正方形,函数y=k/x(x>0)的图象经过点B、E,F;(1)求k的值;(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数y=k/x(x>0)的图象交于点E、F,求线段EF所在直线的解析式.。

初中数学反比例函数知识点与题型总结大全

初中数学反比例函数知识点与题型总结大全

一、概述反比例函数是初中数学中的重要知识点之一。

掌握反比例函数的知识,对于学生理解数学规律和解决实际问题具有重要意义。

本文将系统总结反比例函数的相关知识点和常见题型,帮助学生更好地掌握这一部分内容。

二、反比例函数的定义1. 反比例函数的概念反比例函数是指两个变量之间的关系,当一个变量的值增加时,另一个变量的值减少。

通常用y=k/x(k≠0)来表示,其中k为比例系数。

2. 反比例函数的特点(1)反比例函数图像呈现出一条经过原点且斜率逐渐减小、趋近于x轴的曲线。

(2)当x增大时,y减小;当x减小时,y增大。

(3)反比例函数的图像经过点(1,k)和(k,1),其中k为比例系数。

三、反比例函数的性质1. 零点问题反比例函数y=k/x的零点为x≠0,y=0时的值。

2. 单调性问题当x1<x2时,y1>y2;当x1>x2时,y1<y2。

即当x增大时,y减小;当x减小时,y增大。

3. 渐近线问题反比例函数的图像有两个渐近线,分别为x轴和y轴。

四、反比例函数的图像与性质1. 反比例函数的图像(1)当k>0时,反比例函数图像位于第一象限和第三象限。

(2)当k<0时,反比例函数图像位于第二象限和第四象限。

2. 反比例函数图像的特点(1)当k>0时,图像呈现出y轴的镜像关系;当k<0时,图像呈现出x轴的镜像关系。

(2)当k的绝对值增大时,图像离x轴和y轴越远。

五、反比例函数的题型1. 反比例函数的应用题(1)水管填水:如何选择合适的水管来填满一个容器。

(2)工人齐心协力地工作,完成相同的工作需要的时间和工人数量。

(3)如何选择合适的空调功率。

2. 实际问题的数学抽象(1)根据实际问题找出反比例函数的表达式。

(2)利用反比例函数解决实际问题,如何做到最大效益。

3. 反比例函数的图像题(1)根据给定的k值绘制反比例函数的图像。

(2)根据图像判断k值的大小和符号。

六、结语反比例函数作为初中数学中的一个重要知识点,涉及到很多实际问题的解决。

专题20反比例函数(3个知识点4种题型1种中考考法)(解析版)-初中数学北师大版9年级上册

专题20反比例函数(3个知识点4种题型1种中考考法)(解析版)-初中数学北师大版9年级上册

专题20反比例函数(3个知识点4种题型1种中考考法)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.反比例函数的概念及表达式(重点)知识点2.反比例函数表达式的确定(重点)知识点3.根据实际问题列反比例函数的表达式(重点)【方法二】实例探索法题型1.根据反比例函数的概念求未知字母的值题型2.反比例关系的应用题型3.反比例函数关系的判断及应用题型4.应用几何图形中的数量关系建立反比例函数关系【方法三】仿真实战法考法.反比例函数的概念【方法四】成果评定法【学习目标】1.理解反比例函数的概念,会判断一个函数是不是反比例函数。

2.能结合具体问题确定反比例函数的表达式,并会确定实际问题中自变量的取值范围,求出函数值。

【知识导图】【倍速学习四种方法】【方法一】脉络梳理法知识点1.反比例函数的概念及表达式(重点)如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例.即xy k =,或表示为ky x=,其中k 是不等于零的常数.一般地,形如ky x=(k 为常数,0k ≠)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.注意:(1)在k y x =中,自变量x 是分式k x 的分母,当0x =时,分式kx无意义,所以自变量x 的取值范围是,函数y 的取值范围是0y ≠.故函数图象与x 轴、y 轴无交点.(2)k y x =()可以写成()的形式,自变量x 的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件.(3)k y x=()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数k ,从而得到反比例函数的解析式.【例1】(2023春•邗江区期末)下列式子中,表示y 是x 的反比例函数的是()A .xy =1B .y =C .y =D .y =【答案】A【解答】解:A 、由原式得到y =,符合反比例函数的定义.故本选项正确;B 、该函数式表示y 与x 2成反比例关系,故本选项错误;C 、该函数式表示y 与x 成正比例关系,故本选项错误;D 、该函数不属于反比例函数,故本选项错误;故选:A .【变式】(2022秋•怀化期末)下列函数不是反比例函数的是()A .y =3x﹣1B .y =﹣C .xy =5D .y =【答案】B【解答】解:A 、y =3x ﹣1=是反比例函数,故本选项错误;B 、y =﹣是正比例函数,故本选项正确;C 、xy =5是反比例函数,故本选项错误;D 、y =是反比例函数,故本选项错误.故选:B .知识点2.反比例函数表达式的确定(重点)待定系数法求反比例函数解析式一般步骤:【例2】(2022秋·九年级单元测试)已知y =y 1-y 2,y 1与x 成反比例,y =5;当x =1时,y =-1;求当x =-1时,y 的值.【答案】3-【分析】设出解析式,利用待定系数法求得解析式,代入x 【详解】设1ay x=,()22y b x =-,(a 、b 不等于0)∵12y y y =-,a【方法二】实例探索法题型1.根据反比例函数的概念求未知字母的值一、单选题解得62 km=⎧⎨=⎩,故选:B.【点睛】此题考查了反比例函数,熟练掌握反比例函数的性质是解题的关键.2.(2022秋•岳阳县期末)若函数y=(m+4)x|m|﹣5是反比例函数,则m的值为()A.4B.﹣4C.4或﹣4D.0【答案】A【解答】解:由题意得,|m|﹣5=﹣1,且m+4≠0,解得:m=4.故选:A.3.(2022秋•惠来县期末)函数y=x k﹣1是反比例函数,则k=()A.3B.2C.1D.0【答案】D【解答】解:由题意得:k﹣1=﹣1,解得:k=0,故选:D.k6,104【答案】()【点睛】本题主要考查了坐标系的新定义问题,理解“雁点”的定义,是解题的关键.题型3.反比例函数关系的判断及应用48【方法三】仿真实战法考法.反比例函数的概念1.(2023•临沂)正在建设中的临滕高速是我省“十四五”重点建设项目.一段工程施工需要运送土石方总量为105m3,设土石方日平均运送量为V(单位:m3/天),完成运送任务所需要的时间为t(单位:天),则V与t满足()A.反比例函数关系B.正比例函数关系C.一次函数关系D.二次函数关系【分析】列出V与t的关系式,根据反比例函数的定义可得答案.【解答】解:根据题意得:Vt=105,∴V=,V与t满足反比例函数关系;故选:A.【点评】本题考查反比例函数的应用,解题的关键是读懂题意,掌握反比例函数的定义.2.(2018•柳州)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2B.a≠﹣2C.a≠±2D.a=±2【分析】根据反比例函数解析式中k是常数,不能等于0解答即可.【解答】解:根据反比例函数解析式中k是常数,不能等于0,由题意可得:|a|﹣2≠0,解得:a≠±2,故选:C.【点评】此题主要考查了反比例函数,关键是根据反比例函数关系式中k的取值范围解答.【方法四】成果评定法一、单选题A.①②B.【答案】B【分析】分别求出三个问题中变量【详解】解:①∵正方形的周长为二、填空题【答案】2(答案不唯一)【分析】根据矩形写出B ,取值范围.【详解】解:∵矩形ABCD ∴()1,1B ,()3,4D ,三、解答题。

反比例函数知识点与题型归纳非常全面

反比例函数知识点与题型归纳非常全面

反比例函数讲义第1节 反比例函数■例1下列函数中是反比例关系的有___________________填序号; ①3x y -= ②131+=x y ③x y 2-= ④2211x y -= ⑤xy 23-= ⑥21=xy ⑦28xy = ⑧1-=x y ⑨2=x y ⑩x ky =k (为常数,)0≠k■ 例2由欧姆定律可知,电压不变时,电流强度I 与电阻R 成反比例,已知电压不变,电阻R=欧姆,电流强度I=安培;(1) 求I 与R 的函数关系式; (2) 当R=5欧姆时,求电流强度;本节作业:1、小明家离学校,小明步行上学需x min,那么小明的步行速度min)/(m y 可以表示为xy 1500=;水名地面上重1500N 的物体,与地面的接触面积为x 2m ,那么该物体对地面的压强)/(2m N y 可以表示为x y 1500=;函数表达式xy 1500=还可以表示许多不同情境中变量之间的函数关系,请你再列举一例; 2、某工人打算利用一块不锈钢条加工一个面积为2m 的矩形模具,假设模具的长与宽分别为y 与x ;1你能写出y 与x 之间的函数表达式吗 变量y 与x 之间是什么函数2若想使模具的长比宽多,已知每米这种不锈钢条6元钱,求加工这个模具共花多少钱3、若函数满足023=+xy,则y 与x 的函数关系式为______________,你认为y 是x 的______________函数;4、已知y =21y y +,1y 与x 成正比例,2y 与x 成反比例,并且当x =2时,y = —4;当x = —1时,y =5,求出y 与x 的函数关系式;5、已知y 是x 的函数,且其对应数据如下表所示,你认为y 是x 的正比例函数还是反比例函数你能写出函数的表达式,并填上表格中的空缺吗6、函数xky =的图象经过点A1,—2,则k 的值为 ; A .21 B. 21- C. 2 D. —27、若函数132)1(+++=m mx m y 是反比例函数,则m 的值为 ;A .m = —2 B. m = 1 C. m = 2或m = 1 D. m = —2,或m = —1 8、若甲、乙两城市间的路程为1000千米,车速为每小时x 千米,从甲市到乙市所需的时间为y 小时,那么y 与x 的函数表达式是_______________________不必写出x 的取值范围,y 是x 的__________函数;9、已知y 是x 的反比例函数,当x =5时,y = —1,那么,当y =3时,x =_________;当x =3时,y =________;第2节 反比例函数的图象与性质1、 反比例函数的图象及其画法 反比例函数图象的画法——描点法:(1) 列表——自变量取值应以0但)0(≠x 为中心,向两边取三对或三对以上互为相反数的数,再求出对应的y 的值;(2) 描点——先描出一侧,另一侧可根据中心对称点的性质去找;(3) 连线——按照从左到右的顺序连接各点并延伸,注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交;反比例函数xky =的图象是由两支曲线组成的;当0>k 时,两支曲线分别位于第一、三象限内,当0<k 时,两支曲线分别位于第二、四象限内;小注:1这两支曲线通常称为双曲线;2这两支曲线关于原点对称; 3反比例函数的图象与x 轴、y 轴没有公共点; 例1:画出反比例函数x y 6=与xy 6-=的图象; 解:1列表:2描点:(3) 连线;1 反比例函数的性质反比例函数 xky =)0(≠k k 的符号k >0k<0图象 双曲线x 、y 取值范围 x 的取值范围x ≠0 y 的取值范围y ≠0 x 的取值范围x ≠0 y 的取值范围y ≠0 位置第一,三象限内第二,四象限内增减性 每一象限内,y 随x 的增大而减小 每一象限内,y 随x 的增大而增大渐近性 反比例函数的图象无限接近于x,y 轴,但永远达不到x,y 轴,画图象时,要体现出这个特点.对称性 反比例函数的图象是关于原点成中心对称的图形.反比例函数的图象也是轴对称图形.例2 已知 2(1)m y m x -=+是反比例函数,则函数的图象在A 、一、三象限B 、二、四象限C 、一、四象限D 、三、四象限例3 函数2y kx =-与ky x=k ≠0在同一坐标系内的图象可能是例4 已知反比例函数xky =的图象经过点P 一l,2,则这个函数的图象位于 A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限3反比例函数xky =)0(≠k 中的比例系数k 的几何意义难点k 的几何含义:反比例函数y =k x k ≠0中比例系数k 的几何意义,即过双曲线y =kxk ≠0上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B,则所得矩形OAPB 的面积为 .例5 A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则A . 2S =B . 4S =C .24S <<D .4S >例6如图A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k =4反比例函数与正比例函数图象的交点凡是交点问题就联立方程例7如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(21)(1)A B n -,,,两点.1试确定上述反比例函数和一次函数的表达式; 2求AOB △的面积.O BxyC A 图1OyxBA本节练习一、选择题每小题6分,共36分1. 已知2(1)my m x-=+是反比例函数,则函数的图象在A、一、三象限B、二、四象限C、一、四象限D、三、四象限2.若反比例函数kyx=的图象经过点(12)-,,则这个函数的图象一定经过点A、(21)--,B、122⎛⎫-⎪⎝⎭,C、(21)-,D、122⎛⎫⎪⎝⎭,3.反比例函数5nyx+=的图象经过点2,3,则n的值是A、-2B、-1C、0D、14.反比例函数1kyx-=的图象在每个象限内,y随x的增大而减小,则k的值可为A、1- B、0 C、1 D、25.如果两点1P1,1y和2P2,2y都在反比例函数1yx=的图象上,那么A.2y<1y<0B.1y<2y<0C.2y>1y>0 D.1y>2y>06.函数(0)ky kx=≠的图象如图所示,那么函数y kx k=-的图象大致是A B C D二、填空题每小题6分,共24分7.如果反比例函数kyx=0k≠的图象经过点1,-2,则这个函数的表达式是_________.当0x<时,y随x的增大而______ 填“增大”或“减小8.如图7,双曲线xky=与直线mxy=相交于A、B两点,B点坐标为-2,-3,则A点坐标为_________.9. 如图8,点A 在反比例函数xky =的图象上,AB 垂直于x 轴,若4=∆AOB S ,那么这个反比例函数的解析式为__________.图810.老师给出一个函数,甲、乙各指出了这个函数的一个性质:甲:第一、三象限有它的图象; 乙:在每个象限内,y 随x 的增大而减小. 请你写一个满足上述性质的函数______________________三、解答题每小题,共40分11. 20分如图,一次函数b kx y +=的图象与反比例函数xmy =图象交于A -2,1、B1,n 两点.1求反比例函数和一次函数的解析式;2根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.12. 20分如图,已知反比例函数1(0)my m x=≠的图象经过点(21)A -,,一次函数2(0)y kx b k =+≠的图象经过点(03)C ,与点A ,且与反比例函数的图象相交于另一点B .1分别求出反比例函数与一次函数的解析式;2求点B 的坐标.第3节 反比例函数的应用 本节内容:运用函数的图象和性质解答实际问题例题1 .面积一定的梯形,其上底长是下底长的21,设下底长x =10 cm 时,高y =6 cm 1求y 与x 的函数关系式; 2求当y =5 cm 时,下底长多少16.一定质量的二氧化碳,当它的体积V=6 m 3时,它的密度ρ= kg/m 3. 1求ρ与V 的函数关系式.2当气体体积是1 m 3时,密度是多少3当密度为 kg/m 3时,气体的体积是多少例题2如图,Rt △AOB 的顶点A 是一次函数y =-x +m +3的图象与反比例函数y =xm的图象在第二象限的交点,且S △AOB =1,求点A 的坐标.例题3某厂要制造能装250mL1mL=1 cm 3饮料的铝制圆柱形易拉罐,易拉罐的侧壁厚度和底部厚度都是 cm,顶部厚度是底部厚度的3倍,这是为了防止“砰”的一声打开易拉罐时把整个顶盖撕下来,设一个底面半径是x cm 的易拉罐用铝量是y cm 3.用铝量=底面积×底部厚度+顶部面积×顶部厚度+侧面积×侧壁厚度,求y 与x 间的函数关系式.综合检测题一、填空题:1、u 与t 成反比,且当u =6时,81=t ,这个函数解析式为 ; 2、函数2x y -=和函数xy 2=的图像有 个交点; 3、反比例函数x k y =的图像经过-23,5点、a ,-3及10,b 点,则k = ,a = ,b = ;4、若函数()()414-+-=m x m y 是正比例函数,那么=m ,图象经过 象限;5、若反比列函数1232)12(---=k kx k y 的图像经过二、四象限,则k = _______6、已知y -2与x 成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ;7、已知正比例函数kx y =与反比例函数3y x=的图象都过A m ,1,则m = ,正比例函数与反比例函数的解析式分别是 、 ; 8、 设有反比例函数y k x=+1,(,)x y 11、(,)x y 22为其图象上的两点,若x x 120<<时,y y 12>,则k 的取值范围是___________9、右图3是反比例函数xk y =的图象,则k 与0的大小关系是k 0.10、函数xy 2-=的图像,在每一个象限内,y 随x 的增大而 ; 11、反比例函数()0>=k xky 在第一象限内的图象如图,点M 是图像上一点,MP 垂直x 轴于点P,如果△MOP 的面积为1,那么k 的值是 ; 12、()7225---=m mx m y 是y 关于x 的反比例函数,且图象在第二、四象限,则m 的值为 ;二、选择题: 分数3分×14=42分,并把答案填在第12题后的方框内 1、下列函数中,反比例函数是 A 、 1)1(=-y x B 、 11+=x y C 、 21xy = D 、 x y 31=2、已知反比例函数的图像经过点a ,b ,则它的图像一定也经过yO PMA 、 -a ,-bB 、 a ,-bC 、 -a ,bD 、 0,0 3、如果反比例函数xky =的图像经过点-3,-4,那么函数的图像应在 A 、 第一、三象限B 、 第一、二象限C 、 第二、四象限D 、 第三、四象限 4、若y 与-3x 成反比例,x 与z4成正比例,则y 是z 的 A 、 正比例函数B 、 反比例函数C 、 一次函数 D 、 不能确定 5、若反比例函数22)12(--=m x m y 的图像在第二、四象限,则m 的值是A 、 -1或1B 、小于21的任意实数 C 、 -1 D、 不能确定 6、函数x k y =的图象经过点-4,6,则下列各点中不在xky =图象上的是A 、 3,8B 、 3,-8C 、 -8,-3D 、 -4,-67、正比例函数kx y =和反比例函数ky =在同一坐标系内的图象为8、如上右图,A 为反比例函数xky =图象上一点,AB垂直x 轴于B 点,若S △AOB =3,则k的值为 A 、6B 、3C 、23 D 、不能确定9、如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数关系用图象表示大致A10、在同一直角坐标平面内,如果直线x k y 1=与双曲线xk y 2=没有交点,那么1k 和2k 的关系一定是 A 1k <0,2k >0B 1k >0,2k <0C 1k 、2k 同号D 1k 、2k 异号11、已知变量y 与x 成反比例,当x =3时,y =―6;那么当y =3时,x 的值是 A 6 B ―6 C 9 D ―912、当路程s 一定时,速度v 与时间t 之间的函数关系是A 正比例函数B 反比例函数C 一次函数D 二次函数 13、2001北京西城在同一坐标系中,函数x ky =和3+=kx y 的图像大致是14、已知反比例函数)0(<=k xky 的图像上有两点A 1x ,1y ,B 2x ,2y ,且21x x <,则21y y -的值是A 、 正数B 、 负数C 、 非正数D 、 不能确定 三、解答题:第1、2小题各7分、第3小题8分,共22分1、在某一电路中,保持电压不变,电流I 安培与电阻R 欧姆成反比例,当电阻R=5欧姆时,电流I=2安培;1求I 与R 之间的函数关系式 2当电流I=安培时,求电阻R 的值;2、如图,Rt △ABO 的顶点A 是双曲线xky =与直线)1(+--=k x y 在第二象限的交点, AB ⊥x 轴于B 且S △ABO =23 1求这两个函数的解析式2求直线与双曲线的两个交点A,C 的坐标和△AOC 的面积;3、如图,一次函数b kx y +=的图像与反比例函数xmy =的图像相交于A 、B 两点, 1利用图中条件,求反比例函数和一次函数的解析式2根据图像写出使一次函数的值大于反比例函数的值的x 的取值范围2001江苏苏州。

中考一轮复习反比例函数(知识点梳理+典型例题 )

中考一轮复习反比例函数(知识点梳理+典型例题 )

反比例函数一、反比例函数的概念:一般地,形如 y = xk ( k 是常数, k≠0 ) 的函数叫做反比例函数。

注意:(1)常数 k 称为比例系数,k 是非零常数;(2)解析式有三种常见的表达形式:① y = xk (k ≠ 0) , ② 指数形式:1(0)y kx k -=≠; ③ 乘积形式:(0)xy k k =≠ ※反比例函数解析式可写成xy= k (k≠0)它表明反比例函数中自变量x 与其对应函数值y 之积,总等于常数k(3)自变量x 的取值范围是0x ≠,函数y 的取值范围是0y ≠。

例:点A (-1,1)是反比例函数m y x=的图象上一点,则m 的值为( ) A. 0 B. -2 C. -1 D. 1二、反比例函数的图象(1)形状与位置:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

(2)变化趋势:由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴(坐标轴又称为双曲线的渐近线)。

三、反比例函数的性质(1)对称性:反比例函数的图像是关于原点对称的中心对称图形,同时也是轴对称图形,有两条对称轴,分别是一、三象限和二、四象限的角平分线,即直线y x =±。

(注:过原点的直线与双曲线的两个交点关于原点对称)(2)双曲线的位置:当k>0时,双曲线位于一、三象限(x ,y 同号);当k<0时,双曲线位于二、四象限(x ,y 同号异号),反之也成立。

(3)增减性: 当k>0时,双曲线走下坡路,在同一象限内,y 随x 的增大而减小;当k<0时,双曲线走上坡路,在同一象限内,y 随x 的增大而增大。

反之也成立。

※注:① 在利用反比例函数的增减性比较坐标大小时,一定通过画图解决,这是一个易错点);② 在反比例函数y 随x 的变化情况中一定注明在每一个象限内例1 已知反比例函数x y 2-=,下列结论不正确的是( )A .图象必经过点(-1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-2例2 若ab >0,则一次函数y=ax+b 与反比例函数y=ab x在同一坐标系数中的大致图象是( ) A .B .C . D .例3 若点(﹣3,y 1),(﹣2,y 2),(﹣1,y 3)在反比例函数y=﹣图象上,则下列结论正确的是( )A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 1变式训练:1.正比例函数y=kx 和反比例函数21k y x+=-(k 是常数且k≠0)在同一平面直角坐标系中的图象可能是( ) A .B .C .D . 2.反比例函数y=m x的图象如图所示,以下结论: ①常数m <-1; ②在每个象限内,y 随x 的增大而增大; ③若A (-1,h ),B (2,k )在图象上,则h <k ; ④若P (x ,y )在图象上,则P′(-x ,-y )也在图象上.其中正确的是( )A .①②B .②③C .③④D .①④3.已知点A (1,m ),B (2,n )在反比例函数(0)k y k x=<的图象上,则( ) A. 0m n << B. 0n m << C. 0m n >> D. 0n m >>(4)k 的几何意义:如图,设点P (a ,b )是反比例函数y=xk 上任意一点,作PA ⊥x 轴于A 点,PB ⊥y 轴于B 点,则矩形PBOA 的面积是k (三角形PAO 和三角形PBO 的面积都是k 21;面积是正数,所以k 要加绝对值)例1 如图,点A 是反比例函数(x >0)图象上一点,过点A 作x 轴的平行线,交反比例函数(x >0)的图象于点B ,连接OA 、OB ,若△OAB 的面积为2,则k 的值为______.例2 反比例函数y=(a >0,a 为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC ⊥x 轴于点C ,交y=的图象于点A ;MD ⊥y 轴于点D ,交y=的图象于点B ,当点M 在y=的图象上运动时,以下结论:①S △ODB =S △OCA ; ②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点.其中正确结论的个数是( )A .0B .1C .2D .3变式训练:1、如图,点A 是反比例函数y=k x(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为6,则k 的值为( )A. 6B. 3C. ﹣6D. ﹣32、如图,直线(0)x t t =>与反比例函数k y x =(x >0)、1y x-=(x >0)的图象分别交于B 、C 两点,A 为y 轴上任意一点,△ABC 的面积为3,则k 的值为( )A. 2B. 3C. 4D. 53、如图,已知双曲线y =k x(k>0)与直角三角形OAB 的直角边AB 相交于点C ,且BC =3AC ,若△OBC 的面积为3,则k =_________.4.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y=的图象上,则k 的值为 .四、直线与双曲线相交(1)交点坐标即为直线关系式和双曲线关系式联立所得方程组的解。

九年级数学反比例函数知识点归纳总结

九年级数学反比例函数知识点归纳总结

一、反比例函数的定义:
反比例函数是指其表达式可以表示为y=k/x(k≠0),其中k为常数,x≠0。

二、反比例函数的一般式:
1.y=k/x
2.k为比例系数,表示常数项。

三、反比例函数的图像特点:
1.垂直于y轴;
2.不过原点,但会经过x轴的正半轴和y轴的正半轴;
3.上升(k>0)或下降(k<0)。

四、反比例函数的性质:
1.定义域:x≠0,值域:y≠0
2.渐近线:x轴和y轴是反比例函数的渐近线。

3.对称性:关于y轴对称。

4.单调性:k>0时,单调递减;k<0时,单调递增。

五、反比例函数图像的平移:
1.y=k/(x-h):左右平移h个单位;
2.y=k/(x)+v:上下平移v个单位。

六、反比例函数与直线的关系:
1. 反比例函数与直线y=kx的图像在一起;
2. 直线y=kx可以看做反比例函数的简化形式,即k=1
七、反比例函数的应用:
1.反比例函数在实际中常用于描述两个变量之间的比例关系,如一方
的量增大,另一方的量就会减小的规律。

2.可以用反比例函数解决实际问题,如物品的价格与销量之间的关系、速度与时间之间的关系等。

反比例函数篇(解析版)--中考数学必考考点总结+题型专训

反比例函数篇(解析版)--中考数学必考考点总结+题型专训

知识回顾微专题反比例函数--中考数学必考考点总结+题型专训考点一:反比例函数之定义、图像与性质1.反比例函数的定义:形如()0≠=k xky 的函数叫做反比例函数。

有时也用k xy =或1-=kx y 表示。

2.反比例函数的图像:反比例函数的图像是双曲线。

3.反比例函数的性质与图像:反比例函数()0≠=k xky k 的符号>k 0<k 所在象限一、三象限二、四象限大致图像增减性在一个支上(每一个象限内),y 随x 的增大而减小。

在一个支上(每一个象限内),y随x 的增大而增大。

对称性图像关于原点对称1.(2022•黔西南州)在平面直角坐标系中,反比例函数y =xk(k ≠0)的图象如图所示,则一次函数y =kx +2的图象经过的象限是()A .一、二、三B .一、二、四C .一、三、四D .二、三、四【分析】先根据反比例函数的图象位于二,四象限,可得k <0,由一次函数y =kx +2中,k <0,2>0,可知它的图象经过的象限.【解答】解:由图可知:k <0,∴一次函数y =kx +2的图象经过的象限是一、二、四.故选:B .2.(2022•上海)已知反比例函数y =xk(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能在这个函数图象上的为()A .(2,3)B .(﹣2,3)C .(3,0)D .(﹣3,0)【分析】根据反比例函数的性质判断即可.【解答】解:因为反比例函数y =(k ≠0),且在各自象限内,y 随x 的增大而增大,所以k <0,A .2×3=6>0,故本选项不符合题意;B .﹣2×3=﹣6<0,故本选项符合题意;C .3×0=0,故本选项不符合题意;D .﹣3×0=0,故本选项不符合题意;故选:B .3.(2022•广东)点(1,y 1),(2,y 2),(3,y 3),(4,y 4)在反比例函数y =x4图象上,则y 1,y 2,y 3,y 4中最小的是()A .y 1B .y 2C .y 3D .y 4【分析】根据k >0可知增减性:在每一象限内,y 随x 的增大而减小,根据横坐标的大小关系可作判断.【解答】解:∵k =4>0,∴在第一象限内,y 随x 的增大而减小,∵(1,y 1),(2,y 2),(3,y 3),(4,y 4)在反比例函数y =图象上,且1<2<3<4,∴y 4最小.故选:D .4.(2022•云南)反比例函数y =x6的图象分别位于()A .第一、第三象限B .第一、第四象限C .第二、第三象限D .第二、第四象限【分析】根据反比例函数的性质,可以得到该函数图象位于哪几个象限,本题得以解决.【解答】解:反比例函数y =,k =6>0,∴该反比例函数图象位于第一、三象限,故选:A .5.(2022•镇江)反比例函数y =xk(k ≠0)的图象经过A (x 1,y 1)、B (x 2,y 2)两点,当x 1<0<x 2时,y 1>y 2,写出符合条件的k 的值(答案不唯一,写出一个即可).【分析】先根据已知条件判断出函数图象所在的象限,再根据系数k 与函数图象的关系解答即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过A (x 1,y 1)、B (x 2,y 2)两点,当x 1<0<x 2时,y 1>y 2,∴此反比例函数的图象在二、四象限,∴k <0,∴k 可为小于0的任意实数,例如,k =﹣1等.故答案为:﹣1.6.(2022•福建)已知反比例函数y =xk的图象分别位于第二、第四象限,则实数k 的值可以是.(只需写出一个符合条件的实数)【分析】根据图象位于第二、四象限,易知k <0,写一个负数即可.∴k <0,∴k 取值不唯一,可取﹣3,故答案为:﹣3(答案不唯一).7.(2022•成都)在平面直角坐标系xOy 中,若反比例函数y =xk 2的图象位于第二、四象限,则k 的取值范围是.【分析】根据反比例函数的性质列不等式即可解得答案.【解答】解:∵反比例函数y =的图象位于第二、四象限,∴k ﹣2<0,解得k <2,故答案为:k <2.8.(2022•襄阳)二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +c 和反比例函数y =xa在同一平面直角坐标系中的图象可能是()A .B .C .D .【分析】根据二次函数图象开口向下得到a <0,再根据对称轴确定出b ,根据与y 轴的交点确定出c <0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【解答】解:∵二次函数图象开口方向向下,∴a <0,∵对称轴为直线x =﹣>0,∴b >0,∵与y 轴的负半轴相交,∴c <0,∴y =bx +c 的图象经过第一、三、四象限,反比例函数y =图象在第二四象限,只有D 选项图象符合.故选:D .9.(2022•菏泽)根据如图所示的二次函数y =ax 2+bx +c 的图象,判断反比例函数y =xa与一次函数y =bx +c 的图象大致是()A.B.C.D.【分析】先根据二次函数的图象,确定a、b、c的符号,再根据a、b、c的符号判断反比例函数y=与一次函数y=bx+c的图象经过的象限即可.【解答】解:由二次函数图象可知a>0,c<0,由对称轴x=﹣>0,可知b<0,所以反比例函数y=的图象在一、三象限,一次函数y=bx+c图象经过二、三、四象限.故选:A.c 10.(2022•安顺)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax+b和反比例函数y=x(c≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【分析】直接利用二次函数图象经过的象限得出a,b,c的取值范围,进而利用一次函数与反比例函数的性质得出答案.【解答】解:∵二次函数y=ax2+bx+c的图象开口向上,∴a>0,∵该抛物线对称轴位于y轴的右侧,∴a、b异号,即b<0.∵抛物线交y轴的负半轴,∴c <0,∴一次函数y =ax +b 的图象经过第一、三、四象限,反比例函数y =(c ≠0)在二、四象限.故选:A .11.(2022•西藏)在同一平面直角坐标系中,函数y =ax +b 与y =axb(其中a ,b 是常数,ab ≠0)的大致图象是()A .B .C .D .【分析】根据a 、b 的取值,分别判断出两个函数图象所过的象限,要注意分类讨论.【解答】解:若a >0,b >0,则y =ax +b 经过一、二、三象限,反比例函数y =(ab ≠0)位于一、三象限,若a >0,b <0,则y =ax +b 经过一、三、四象限,反比例函数数y =(ab ≠0)位于二、四象限,若a <0,b >0,则y =ax +b 经过一、二、四象限,反比例函数y =(ab ≠0)位于二、四象限,若a <0,b <0,则y =ax +b 经过二、三、四象限,反比例函数y =(ab ≠0)位于一、三象限,故选:A .12.(2022•张家界)在同一平面直角坐标系中,函数y =kx +1(k ≠0)和y =xk(k ≠0)的图象大致是()A .B .C .D .【分析】分k >0或k <0,根据一次函数与反比例函数的性质即可得出答案.【解答】解:当k >0时,一次函数y =kx +1经过第一、二、三象限,反比例函数y =位于第一、三象限;当k <0时,一次函数y =kx +1经过第一、二、四象限,反比例函数y =位于第二、四象限;故选:D .13.(2022•绥化)已知二次函数y =ax 2+bx +c 的部分函数图象如图所示,则一次函数y =ax +b 2﹣4ac 与反比例函数y =xcb a ++24在同一平面直角坐标系中的图象大致是()A .B .C .D .【分析】由二次函数y =ax 2+bx +c 的部分函数图象判断a ,b 2﹣4ac 及4a +2b +c 的符号,即可得到答案.【解答】解:∵二次函数y =ax 2+bx +c 的部分函数图象开口向上,∴a >0,∵二次函数y =ax 2+bx +c 的部分函数图象顶点在x 轴下方,开口向上,∴二次函数y =ax 2+bx +c 的图象与x 轴有两个交点,b 2﹣4ac >0,∴一次函数y =ax +b 2﹣4ac 的图象位于第一,二,三象限,由二次函数y =ax 2+bx +c 的部分函数图象可知,点(2,4a +2b +c )在x 轴上方,∴4a +2b +c >0,∴y =的图象位于第一,三象限,据此可知,符合题意的是B ,故选:B .14.(2022•贺州)已知一次函数y =kx +b 的图象如图所示,则y =﹣kx +b 与y =xb的图象为()A .B .C .D .【分析】本题形数结合,根据一次函数y =kx +b 的图象位置,可判断k 、b 的符号;再由一次函数y =﹣kx +b ,反比例函数y =中的系数符号,判断图象的位置.经历:图象位置﹣系数符号﹣图象位置.【解答】解:根据一次函数y =kx +b 的图象位置,可判断k >0、b >0.所以﹣k <0.再根据一次函数和反比例函数的图像和性质,故选:A .15.(2022•广西)已知反比例函数y =xb(b ≠0)的图象如图所示,则一次函数y =cx ﹣a (c ≠0)和二次函数y =ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图象可能是()A .B .C .D .【分析】本题形数结合,根据反比例函数y =(b ≠0)的图象位置,可判断b >0;再由二次函数y =ax 2+bx +c (a ≠0)的图象性质,排除A ,B ,再根据一次函数y =cx ﹣a (c ≠0)的图象和性质,排除C .【解答】解:∵反比例函数y =(b ≠0)的图象位于一、三象限,∴b >0;∵A 、B 的抛物线都是开口向下,∴a <0,根据同左异右,对称轴应该在y 轴的右侧,故A 、B 都是错误的.∵C 、D 的抛物线都是开口向上,∴a >0,根据同左异右,对称轴应该在y 轴的左侧,∵抛物线与y 轴交于负半轴,∴c <0由a >0,c <0,排除C .故选:D .16.(2022•滨州)在同一平面直角坐标系中,函数y =kx +1与y =﹣xk(k 为常数且k ≠0)的图象大致是()A .B .C .D .【分析】根据一次函数和反比例函数的性质即可判断.【解答】解:当k >0时,则﹣k <0,一次函数y =kx +1图象经过第一、二、三象限,反比例函数图象在第二、四象限,所以A 选项正确,C 选项错误;当k <0时,一次函数y =kx +1图象经过第一、二,四象限,所以B 、D 选项错误.故选:A .17.(2022•德阳)一次函数y =ax +1与反比例函数y =﹣xa在同一坐标系中的大致图象是()A .B .C .D .【分析】根据一次函数与反比例函数图象的特点,可以从a >0,和a <0,两方面分类讨论得出答案.【解答】解:分两种情况:(1)当a >0,时,一次函数y =ax +1的图象过第一、二、三象限,反比例函数y =﹣图象在第二、四象限,无选项符合;(2)当a <0,时,一次函数y =ax +1的图象过第一、二、四象限,反比例函数y =﹣图象在第一、三象限,故B 选项正确.故选:B .18.(2022y =xk(k ≠0)的图象经过点(﹣2,4),那么该反比例函数图象也一定经过点()A .(4,2)B .(1,8)C .(﹣1,8)D .(﹣1,﹣8)【分析】先把点(﹣2,4)代入反比例函数的解析式求出k 的值,再对各选项进行逐一判断即可.【解答】解:∵反比例函数y =(k ≠0)的图象经过点(﹣2,4),∴k =﹣2×4=﹣8,A 、∵4×2=8≠﹣8,∴此点不在反比例函数的图象上,故本选项错误;B 、∵1×8=8≠﹣8,∴此点不在反比例函数的图象上,故本选项错误;C 、﹣1×8=﹣8,∴此点在反比例函数的图象上,故本选项正确;D 、(﹣1)×(﹣8)=8≠﹣8,∴此点不在反比例函数的图象上,故本选项错误.故选:C .19.(2022•襄阳)若点A (﹣2,y 1),B (﹣1,y 2)都在反比例函数y =x2的图象上,则y 1,y 2的大小关系是()A .y 1<y 2B .y 1=y 2C .y 1>y 2D .不能确定【分析】根据反比例函数图象上点的坐标特征即可求解.【解答】解:∵点A (﹣2,y 1),B (﹣1,y 2)都在反比例函数y =的图象上,k =2>0,∴在每个象限内y 随x 的增大而减小,∵﹣2<﹣1,∴y 1>y 2,故选:C .20.(2022•海南)若反比例函数y =xk(k ≠0)的图象经过点(2,﹣3),则它的图象也一定经过的点是()A .(﹣2,﹣3)B .(﹣3,﹣2)C .(1,﹣6)D .(6,1)【分析】将(2,﹣3)代入y =(k ≠0)即可求出k 的值,再根据k =xy 解答即可.【解答】解:∵反比例函数y =(k ≠0)的图象经过点(2,﹣3),∴k =2×(﹣3)=﹣6,A 、﹣2×(﹣3)=6≠﹣6,故A 不正确,不符合题意;B 、(﹣3)×(﹣2)=6≠﹣6,故B 不正确,不符合题意;C 、1×(﹣6)=﹣6,故C 正确,符合题意,D 、6×1=6≠﹣6,故D 不正确,不符合题意.故选:C .21.(2022•武汉)已知点A (x 1,y 1),B (x 2,y 2)在反比例函数y =x6的图象上,且x 1<0<x 2,则下列结论一定正确的是()A .y 1+y 2<0B .y 1+y 2>0C .y 1<y 2D .y 1>y 2【分析】先根据反比例函数y =判断此函数图象所在的象限,再根据x 1<0<x 2判断出A (x 1,y 1)、B(x 2,y 2)所在的象限即可得到答案.【解答】解:∵反比例函数y =中的6>0,∴该双曲线位于第一、三象限,且在每一象限内y 随x 的增大而减小,∵点A (x 1,y 1),B (x 2,y 2)在反比例函数y =的图象上,且x 1<0<x 2,∴点A 位于第三象限,点B 位于第一象限,∴y 1<y 2.故选:C .22.(2022•天津)若点A (x 1,2),B (x 2,﹣1),C (x 3,4)都在反比例函数y =x8的图象上,则x 1,x 2,x 3的大小关系是()A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 1<x 3<x 2D .x 2<x 1<x 3【分析】根据函数解析式算出三个点的横坐标,再比较大小.【解答】解:点A (x 1,2),B (x 2,﹣1),C (x 3,4)都在反比例函数y =的图象上,∴x 1==4,x 2==﹣8,x 3==2.∴x 2<x 3<x 1,故选:B .23.(2022•淮安)在平面直角坐标系中,将点A (2,3)向下平移5个单位长度得到点B ,若点B 恰好在反比例函数y =xk的图象上,则k 的值是.【分析】点A (2,3)向下平移5个单位长度得到点B (2,﹣2),代入y =利用待定系数法即可求得k 的值.【解答】解:将点A (2,3)向下平移5个单位长度得到点B ,则B (2,﹣2),∵点B 恰好在反比例函数y =的图像上,∴k =2×(﹣2)=﹣4,故答案为:﹣4.24.(2022•北京)在平面直角坐标系xOy 中,若点A (2,y 1),B (5,y 2)在反比例函数y =xk(k >0)的图象上,则y 1y 2(填“>”“=”或“<”).【分析】先根据函数解析式中的比例系数k 确定函数图象所在的象限,再根据各象限内点的坐标特征及函数的增减性解答.【解答】解:∵k >0,∴反比例函数y =(k >0)的图象在一、三象限,∵5>2>0,知识回顾微专题∴点A (2,y 1),B (5,y 2)在第一象限,y 随x 的增大而减小,∴y 1>y 2,故答案为:>.考点二:反比例函数之综合应用1.反比例函数k 的集合意义:①过反比例函数图像上任意一点作坐标轴的垂线,两垂线与坐标轴构成一个矩形,矩形的面积等于k 。

(完整版)反比例函数知识点归纳总结与典型例题

(完整版)反比例函数知识点归纳总结与典型例题

反比例函数知识点归纳总结与典型例题(一)反比例函数的概念:知识要点:1、一般地,形如y = — ( k是常数,k = 0 )的函数叫做反比例函数。

x注意:(1)常数k称为比例系数,k是非零常数;(2)解析式有三种常见的表达形式:(A) y = k (k w 0) , (B) xy = k (k 丰 0) (C) y=kx-1 (kw0)x例题讲解:有关反比例函数的解析式1 1 1 x 1 (1)下列函数,① x(y 2) 1②.y ——③y /④.y ——⑤y —⑥y —;其中是y关x 1 x 2x 2 3x 于x的反比例函数的有:。

a2 2 ....... …(2)函数y (a 2)x 是反比例函数,则a的值是( )A.—1B. — 2C. 2D.2 或—21 .................(3)若函数y 七彳勤是常数)是反比例函数,则m=,解析式为 .xk(4)反比例函数y — (k 0)的图象经过(一2, 5)和(J2 , n),x求1) n的值;2)判断点B ( 4J2 , 短)是否在这个函数图象上,并说明理由(二)反比例函数的图象和性质:知识要点:1、形状:图象是双曲线。

2、位置:(1)当k>0时双曲线分另位于第象限内;(2)当k<0时,双曲线分另位于第象限I 3、增减性:(1)当k>0 时,,y 随x的增大而 ;(2)当k<0时,,y随x的增大而。

4、变化趋势:双曲线无限接近于x、y轴,但永远不会与坐标轴相交5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点; (2)对于k取互为相反数的两个反比例函数(如:y = 6和丫= ―)来说,它们是关于x轴,y轴。

x x例题讲解:反比例函数的图象和性质:(1)写出一个反比例函数,使它的图象经过第二、四象限m2 2⑵若反比例函数v (2m 1)x的图象在第二、四象限,则m的值是( )A—1或1; B、小于-的任意实数;C、一1; D、不能确定2(3)下列函数中,当x 0时,y随x的增大而增大的是( )1 一一4 _ 1A y 3x 4B y - x 2 C. y - D. y ——.3 x 2x2 ____ ,. 一 . 一(4)已知反比例函数y ——的图象上有两点A ( x1,y1),B ( x2, y2),且x1 x2,则y i y 的值是()A.正数B.负数C.非正数D.不能确定2 .(5)右点(x i, y 1)、(X 2, y 2)和(X 3,y 3)分别在反比例函数 y —的图象上,且X iX 2 0 X 3,x则下列判断中正确的是()A . y i y y 3B . y 3 y i y 2C . y 2 y 3 y iD . y 3 y y ik 1 ................... 一 ...(6)在反比例函数 y --- 的图象上有两点(x1,y 1)和(x 2, y 2),右x 10 x 2时,y i y 2 ,则k 的x取值范围是.(7)老师给出一个函数,甲、乙、丙三位同学分别指出了这个函数的一个性质:甲:函数的图象经过第二象限;乙:函数的图象经过第四象限;丙:在每个象限内,y 随x 的增大而增大.请你根据他们的叙述构造满足上述性质的一个函数 :.(三)反比例函数与面积结合题型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数重点题型归纳
反比例函数是一种重要的函数,在中考试题中,涉及反比例函数有关的题目较多,下面将重点题型归纳如下:
一、确定函数关系式
例1 在一个可以改变容积的密闭容器内,装有一定质量的某种气体,当改变容积V 时,气体的密度ρ也随之改变.在一定范围内,密度ρ是容积V 的反比例函数.当容积为5m 3时,密度是1.4kg/m 3,则ρ与V 的函数关系式为_______________.
分析:本题是一道与物理知识相关中考试题,解决本题不仅需要数学知识,而且需要的物理知识作基础.解决本题可设出ρ与V 的函数关系式ρ=
V
m ,其中m 表示气体的质量.只要将V=5,ρ=1.4代入关系式求到m 即可. 解:设出ρ与V 的函数关系式ρ=
V
m , 把V=5,ρ=1.4代入关系式,得1.4=5
m ,解得m=7, 所以ρ与V 的函数关系式为ρ=V 7. 提示:确定反比例函数关系式问题常和物理知识有关,这就要我们不要孤立学科之间的联系,而要注重不同学科之间知识的渗透.
例2一司机驾驶汽车从甲地去乙地,以80千米/时的平均速度用6小时到达目的地.
(1)当他按原路匀速返回时,求汽车速度v(千米/时)与时间t(小时)之间的函数关系式;(2)如果该司机匀速返回时,用了4.8小时,求返回时的速度.
分析:本题是一道与行程问题有关的考题.根据实际问题可知甲、乙两地的路程为80×6=480千米是一个定值,当路程一定时,汽车速度v(千米/时)与时间t(小时)成反比例.即汽车速度v(千米/时)是时间t(小时)的反比例函数.
解:(1)因为s=80×6=480千米,所以汽车速度v(千米/时)与时间t(小时)之间的函数关系式t
V 480=. (2)当t=4.8小时,速度t V 480=
=100(千米/时) 提示:本题是一道非常简单的试题,解决问题需要正确理解往返的路程相等.
二、根据实际问题选择图象
例3 已知矩形的面积为24,则它的长y 所宽x 之间的关系用图象大致可以表示为
( ).
分析:根据实际问题选择图象,首先要写出函数的关系式,判断出函数是什么函数,然后再根据实际问题确定函数自变量的取值范围,根据范围确定函数图象所在的象限.
解:函数的关系式为y=x
24(x>0),因为函数是反比例函数,所以它的图象是双曲线,又因为x>0,所以此函数的图象是双曲线的在第一象限的一个分支.故选(D).
评注:本题易出现漏掉自变量范围的确定,而错误地选择(C).
三、根据性质确定字母取值
例4 已知函数y = 3x
(x>0),那么 ( ) A .函数图象在一象限内,且y 随x 的增大而减小;
B .函数图象在一象限内,且y 随x 的增大而增大;
C .函数图象在二象限内,且y 随x 的增大而减小;
D .函数图象在二象限内,且y 随x 的增大而增大 分析:本题主要考查反比例函数x
k y =的性质.当k>0时,函数图象在一、三象限,在每个象限内,y 随x 的增大而减小;k<0时,函数图象在二、四象限,在每个象限内,y 随x 的增大而增大.
解:选A.
提示:和反比例函数性质有关的问题还有比较大小,确定字母的取值等类型题.
四、根据图象确定函数关系式
例 5 某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺了若干块木块,构筑成一条临时近道.木板对地面的
压强()Pa p 是木板面积()
2m S 的反比例函数,其图象如图所示. (1)请直接写出这一函数表达式和自变量取值范围; (2)当木板面积为20.2m 时,压强是多少?
(3)如果要求压强不超过6000Pa ,木板的面积至少要多大?
分析:本题是一道根据图象确定反比例函数关系式,并根据关系式解决实际问题的题目,从图象看图象经过点(1.5,400),根据这个信息,只要设出函数关系式将点的坐标代入计算即可.
解:(1)()6000p S S
=
> (2)当0.2S =时,60030000.2
p ==.即压强是3000Pa . (3)由题意知,600600≤S ,所以S≥0.1. 即木板面积至少要有20.1m .
提示:根据函数图象求函数关系式,需要先设出函数关系式,然后确定函数图象一点的坐标.代入计算即可.
五、反比例函数与一次函数综合题
例6 已知一次函数y=x+m 与反比例函数y=
x 2的图象在第一象限的交点为P(x 0,2). (1) 求x 0及m 的值;
(2) 求一次函数的图象与两坐标轴的交点坐标.
分析:本题是一道一次函数与反比例函数综合题,要求交点的坐标,因为已知交点的总坐标,所以只要把这一点的坐标代入反比例函数关系式,确定x 0的值,然后在将点的坐标代入一次函数关系式即可求到m 的值.
解:(1)因为 点P(x 0,2)在反比例函数y=
2x
的图象上, 所以 2=02x ,解得x 0=1. 所以 点P 的坐标为(1,2).
又因为 点P 在一次函数y=x+m 的图象上,
所以 2=1+m ,解得m=1.
所以 x 0和m 的值都为1 .
(2) 由(1)知,一次函数的解析式为y=x+1,
取y=0,得x= -1;
取x=0,得y=1 .
所以 一次函数的图象与x 轴的交点坐标为(-1,0)、与y 轴的交点坐标为(0,1). 提示:解决反比例函数与一次函数综合题,需要两个函数联合起来解决问题.
中考反比例函数问题考什么
反比例函数是中考的热点题型之一,考察的知识点归纳起来主要有以下几点:
一、考察定义
例1、 若点(2,1)在双曲线k y x
=上,则k 的值为_______. 解析:因为点(2,1)在该函数图像上,所以将其代入该函数的解析式可求得:k=2,于是该函数的解析式为:x
y 2=. 点评:将函数图像上点的坐标代入其解析式,是求解这类问题常用的方法.
二、考察图像
例2、 已知一个矩形的面积为24cm 2,其长为ycm ,宽为xcm ,则y 与x 之间的函数关系的图象大致是( )
A B C D
解析:由题意知24=yx ,进一步可求得:x y 24=
(x>0),又因x>0,所以该函数的图像如选项D 所示.
点评:求解此类问题应先根据题意确定函数解析式,再根据自变量的取值范围及函数的性质去确定图像.
三、考察性质
例3、 若M ⎪⎭⎫ ⎝⎛-1,21y 、N ⎪⎭
⎫ ⎝⎛-2,41y 、P ⎪⎭⎫ ⎝⎛3,21y 三点都在函数x k y =(k<0
)的
图象上,则321y y y 、、的大小关系为( )
A 、2y >3y >1y
B 、2y >1y >3y
C 、3y >1y >2y
D 、3y >2y >1y 解析:因为该函数的比例系数k<0,该函数的图像经过二、四象限,其
图像如右图所示,因点M 、N 、P 三点的横坐标之间的关系为:214121<-<-,结合函数图形可知对应这三点的纵坐标的关系为:2y >1y >3y ,故选B .
点评:求解此类题须先画出相应的函数图像,并在函数图像上确定所比较的点的大致位置,集合函数图像即可简洁的确定选项.
四、考察一次函数(正比例函数)和反比例函数的联系
例4、 正比例函数y x =与反比例函数1y x
=的图象和交于A 、C 两点,AB x ⊥轴于,B CD x ⊥轴于D (如右图),则
四边形ABCD 的面积为( )
(A)1 (B)32
(C)2 (D)52
解析:因为正比例函数y x =图像上的点的横纵坐标都相等,由此可求得点A 的坐标为(1,1),又结合反比例函数的性质可知:点C (-1,-1),由此可求得:S △ABC =S △CBD =1,则四边形ABCD 的面积为2,故知本题选C .
点评:求解此类题应充分的结合两种函数的性质和解析式确定有关的点的坐标,再根据求出的点的坐标进一步求解.。

相关文档
最新文档