七年级下册数学专题复习1.3 平面直角坐标系重难点题型
精编7年级数学下册难点探究专题平面直角坐标系中的变化规律(带答案解析)
难点探究专题:平面直角坐标系中的变化规律——掌握不同规律,以不变应万变◆类型一 沿坐标轴方向运动的点的坐标规律探究1.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2016次运动后,动点P 的坐标是________.2.(2017·阿坝州中考)如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位,依次得到点P 1(0,1),P 2(1,1),P 3(1,0),P 4(1,-1),P 5(2,-1),P 6(2,0),…,则点P 2017的坐标是________.◆类型二 绕原点呈“回”字形运动的点的坐标规律探究3.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.如图,由里向外数第2个正方形开始,分别是由第1个正方形各顶点的横坐标和纵坐标都乘2,3,…得到的,请你观察图形,猜想由里向外第10个正方形四条边上的整点个数共有( )A .10个B .20个C .40个D .80个第3题图 第4题图4.(2017·温州中考)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧P 1P 2︵,P 2P 3︵,P 3P 4︵,…得到斐波那契螺旋线,然后顺次连接P 1P 2,P 2P 3,P 3P 4,…得到螺旋折线(如图),已知点P 1(0,1),P 2(-1,0),P 3(0,-1),则该折线上的点P 9的坐标为( )A .(-6,24)B .(-6,25)C.(-5,24) D.(-5,25)◆类型三图形变化中的点的坐标探究5.(2017·河南模拟)如图,点A(2,0),B(0,2),将扇形AOB沿x轴正方向做无滑动的滚动,在滚动过程中点O的对应点依次记为点O1,点O2,点O3…,则O10的坐标是()A.(16+4π,0) B.(14+4π,2)C.(14+3π,2) D.(12+3π,0)6.如图,在直角坐标系中,第一次将三角形OAB变换成三角形OA1B1,第二次将三角形OA1B1变换成三角形OA2B2,第三次将三角形OA2B2变换成三角形OA3B3.已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换后的三角形有何变化,找出规律,按此变换规律再将三角形OA3B3变换成三角形OA4B4,则A4的坐标是__________,B4的坐标是__________;(2)若按(1)中找到的规律将三角形OAB进行了n次变换,得到三角形OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测点A n的坐标是__________,点B n的坐标是__________.参考答案与解析1.(2016,0)解析:结合图象可知,当运动次数为偶数次时,P点运动到x轴上,且横坐标与运动次数相等.∵2016为偶数,∴运动2016次后,动点P的坐标是(2016,0).2.(672,1)解析:由已知得P7(2,1),P13(4,1),所以P6n+1(2n,1).因为2017÷6=336……1,所以P2017(336×2,1),即P2017(672,1).3.C解析:每个正方形四个顶点一定为整点,由里向外第n个正方形每条边上除顶可见,第n个正方形每条边上除顶点外还有(n-1)个整点,四条边上除顶点外有4(n-1)个整点,加上4个顶点,共有4(n-1)+4=4n(个)整点.当n=10时,4n=4×10=40,即由里向外第10个正方形的四条边上共有40个整点.故选C.4.B解析:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离为21+5=26,所以P9的坐标为(-6,25),故选B.5.C6.(1)(16,3)(32,0)(2)(2n,3)(2n+1,0)解析:(1)∵A1(2,3),A2(4,3),A3(8,3),∴A4的横坐标为24=16,纵坐标为3.故点A4的坐标为(16,3).又∵B1(4,0),B2(8,0),B3(16,0),∴B4的横坐标为25=32,纵坐标为0.故点B4的坐标为(32,0).(2)由A1(2,3),A2(4,3),A3(8,3),可以发现它们各点坐标的关系为横坐标是2n,纵坐标都是3.故点A n的坐标为(2n,0).由B1(4,0),B2(8,0),B3(16,0),可以发现它们各点坐标的关系为横坐标是2n+1,纵坐标都是0.故点B n的坐标为(2n+1,0).。
七年级数学平面直角坐标系重点题型及重要知识点的整理
七年级数学平面直角坐标系重点题型及重要知识点的整理单选题1、如果点P(m ,1−2m)在第四象限,那么m 的取值范围是( ).A .0<m <12B .−12<m <0C .m <0D .m >12 答案:D解析:横坐标为正,纵坐标为负,在第四象限.解:∵点P (m ,1-2m )在第四象限,∴m >0,1-2m <0,解得:m >12, 故选:D .小提示:坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m 的取值范围.2、为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置,如图是利用平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示点A 的坐标为(1,−1),表示点B 的坐标为(3,2),则表示其他位置的点的坐标正确的是( )A .C (−1,0)B .D (−3,1)C .E (−2,−5)D .F (5,2)答案:B解析:正确建立平面直角坐标系,根据平面直角坐标系,找出相应的位置,然后写出坐标即可.建立平面直角坐标系,如图:则C(0,0),D(−3,1),E(−5,−2),F(5,−2) .表示正确的点的坐标是点D.故选B.小提示:本题主要考查坐标确定位置,确定坐标原点和x,y轴的位置及方向,正确建立平面直角坐标系是解题关键.3、点P的坐标是(2-a,3a+6),且点P到两坐标轴的距离相等,则点P坐标是()A.(3, 3)B.(3,-3)C.(6,-6)D.(3,3)或(6,−6)答案:D解析:由点P到两坐标轴的距离相等,建立绝对值方程|2−a|=|3a+6|,再解方程即可得到答案.解:∵点P到两坐标轴的距离相等,∴|2−a|=|3a+6|,∴2−a=3a+6或2−a+3a+6=0,当2−a=3a+6时,−4a=4,∴a=−1,∴P(3,3),当2−a+3a+6=0时,∴a=−4,∴P(6,−6),综上:P的坐标为:P(3,3)或P(6,−6).故选D.小提示:本题考查的是平面直角坐标系内点的坐标特点,点到坐标轴的距离与坐标的关系,一元一次方程的解法,掌握以上知识是解题的关键.4、在平面直角坐标系中,由点A(a,3),B(a+4,3),C(b,﹣3)组成的△ABC的面积是()A.6B.12C.24D.不确定答案:B解析:根据A和B两点的纵坐标相等,可得线段AB的长,再根据点C的纵坐标,可得以AB为底的△ABC的高,从而△ABC的面积可求.解:∵点A(a,3),B(a+4,3),∴AB=4,∵C(b,﹣3),∴点C在直线y=﹣3上,∵AB:y=3与直线y=﹣3平行,且平行线间的距离为6,∴S=1×4×6=12,2故选:B.小提示:本题考查了平面直角坐标系中点的坐标以及三角形的面积计算,解题的关键是根据点的坐标的特点求出AB的值以及点C到AB的距离.5、在平面直角坐标系中,一只电子青蛙从原点出发,每次可以向上或向下或向左或向右跳动一个单位长度,若跳三次,则到达的终点有几种可能()A.12B.16C.20D.64答案:B解析:根据题意,画出坐标系,把所有的情况都标在坐标系中即可得出答案.如图所示到达的终点共有16种可能的结果.故选:B..小提示:本题主要考查点的平移,能够做到不重不漏是解题的关键.6、如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是( )A .(2,0)B .(−1,1)C .(−2,1)D .(−1,−1)答案:D解析:利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.∵ 矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,∴物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×13=4,物体乙行的路程为12×23=8,在BC 边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×13=8,物体乙行的路程为12×2×23=16,在DE 边相遇; ③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×13=12,物体乙行的路程为12×3×23=24,在A 点相遇;…此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵2012÷3=670…2,=8,物体乙行的故两个物体运动后的第2012次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×13路程为12×2×2=16,在DE边相遇,3此时相遇点的坐标为:(-1,-1),故选:D.小提示:本题考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题.解本题的关键是找出规律每相遇三次,甲乙两物体回到出发点.7、课间操时,小华、小军、小刚的位置如图所示,小军对小刚说,如果我的位置用(–1,0)表示,小华的位置用(–3,–1)表示,那么小刚的位置可以表示成()A.(1,2)B.(1,3)C.(0,2)D.(2,2)答案:A解析:如图,根据题意作出直角坐标系,即可得出小刚的位置.如图,小刚的位置可以表示为(1,2)小提示:此题主要考查直角坐标系的定义,解题的关键是根据题意画出直角坐标系.8、如图,笑脸盖住的点的坐标可能为()A.(5,2)B.(−6,3)C.(−4,−6)D.(3,−4)答案:B解析:根据图形得出笑脸的位置,进而得出答案.解:由图形可得:笑脸盖住的点在第二象限,故笑脸盖住的点的坐标可能为(−6,3).故选:B.小提示:此题主要考查了点的坐标,得出笑脸的横纵坐标符号是解题关键.填空题9、如图是玉渊潭公园部分景点的分布示意图,在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,当表示西桥的点的坐标为(−6,1),表示中堤桥的点的坐标为(1,2)时,表示留春园的点的坐标为___.答案:(9,-1)解析:根据表示西桥的点的坐标为(−6,1),表示中堤桥的点的坐标为(1,2)建立平面直角坐标系,确定坐标原点的位置,进而可确定表示留春园的点的坐标.解:根据题意可建立如下所示平面直角坐标系,则表示留春园的点的坐标为(9,−1),故答案为(9,−1).小提示:此题考查坐标确定位置,解题的关键就是确定坐标原点和x,y轴的位置.10、平面直角坐标系中,若点A(5,1−2m)在x轴上,则m的值为______.答案:12解析:根据x轴上的点坐标纵坐标等于0,即可求出结果.解:∵点A在x轴上,∴它的纵坐标等于0,即1−2m=0,解得m=1.2.故答案是:12小提示:本题考查平面直角坐标系中点坐标的特点,解题的关键是掌握坐标轴上点坐标的特点.11、在平面直角坐标系中,已知点A(1,3),点B(1,5),那么AB=__________.答案:2解析:点A与点B的横坐标相同,则AB∥y轴,从而线段AB的长度等于5减去3,计算即可.解:∵点A(1,3),点B(1,5),∴AB∥y轴,∴AB=5-3=2.所以答案是:2.小提示:本题考查了坐标与图形性质,明确横坐标相同的两个点所在的直线平行于x轴是解题的关键.12、我们规定向东和向北方向为正,如向东走4米,再向北走6米,记作(4,6),则向西走5米,再向北走3米记作_________;数对(−2,−6)表示___________.答案:(−5,3);向西走2米,再向南走6米解析:由规定向东和向北方向为正,可得向西,向南方向为负,同时可得向东与向西写在有序数对的第一个,从而可得答案.解:由题意得:向西走5米,再向北走3米记作:(−5,3),数对(−2,−6)表示向西走2米,再向南走6米,所以答案是:(−5,3);向西走2米,再向南走6米.小提示:本题考查的是利用有序数对表示行进路线,正确的理解题意是解题的关键.13、(1)原点O 的坐标是_________,x 轴上的点的坐标的特点是__________,y 轴上的点的坐标的特点是_____________,点M (a,0)在_____________轴上.(2)已知mn =0,则点(m,n )在___________.(3)点A (1,−2)在第________象限;点P (0,5)的位置在______轴上;(4)若点P (a +5,a −2)在x 轴上,则a =________;(5)如果点P (a,−b )在第二象限,则点Q (−a 2,3b )在第______象限.答案: (0,0) 纵坐标为0 横坐标为0 x x 轴上或y 轴上 四 y 2 三解析:(1)根据原点的坐标为(0,0)以及x 轴和y 轴上的点的坐标特点进行求解即可;(2)分别讨论当m =0,n ≠0时,当m ≠0,n =0时,;当m =0,n =0时三种情况讨论求解即可;(3)根据A 、P 的坐标进行判断即可;(4)根据在x 轴上的点的纵坐标为0进行求解即可;(5)先根据P 在第二象限求出{a <0b <0 从而得到{−a 2<03b <0即可求解.解:(1)原点O 的坐标是(0,0),x 轴上的点的坐标的特点是纵坐标为0,y 轴上的点的坐标的特点是横坐标为0,点M (a,0)在x 轴上.(2)∵mn =0,∴当m =0,n ≠0时,点(m ,n )在x 轴上;当m ≠0,n =0点(m ,n )在y 轴上;当m =0,n =0时,点(m ,n )在原点,∵原点也可以看做是x 轴或y 轴上的点∴综上所述,点(m ,n )在x 轴或y 轴上;(3)∵A (1,−2),P (0,5),∴点A (1,−2)在第四象限;点P (0,5)的位置在y 轴上;(4)∵点P (a +5,a −2)在x 轴上,∴a −2=0,∴a =2;(5)∵点P (a,−b )在第二象限,∴{a <0−b >0 ,即{a <0b <0∴{−a 2<03b <0, ∴点Q (−a 2,3b )在第三象限,所以答案是:(0,0),纵坐标为0,横坐标为0,x ;x 轴或y 轴上;四,y ;2;三.小提示:本题主要考查了根据点所在的象限求参数,根据点的坐标判断点所在的象限,以及点所在的位置的坐标特征,解题的关键碍于能够熟练掌握相关知识进行求解.解答题14、已知平面直角坐标系中三点A(2,7),B(1,3),C(7,4),现将三角形ABC平移至三角形A′B′C′,其中点A′的坐标是(−4,5).(1)画出平移后的三角形A′B′C′;(2)求BC中点D平移后的对应点坐标.) .答案:(1)见解析;(2)点D′的坐标为(−2,32解析:(1)直接利用平移的性质得出对应点位置即可得出答案;(2)利用(1)中所画图形得出B′、C′的坐标,即可中点D′的坐标.解:解:(1)如图所示:△A′B′C′即为所求;(2)点B′的坐标是;(-5,1),点C′的坐标是:(1,2),则BC 中点D 平移后的对应点D ′的坐标为:(−5+12,1+22),即(−2,32) . 小提示:本题主要考查了平移变换,正确得出平移后对应点位置是解题关键.15、如图是一台雷达探测相关目标得到的结果,若记图中目标C 的位置为(4,240°),则其余各目标的位置分别是多少?答案:A(2,90°);B(5,30°); D(4,300°);E(6,120°)解析:根据目标C 的位置为(4,240°),再按照相同的方法确定其余目标的位置即可.解:∵ 图中目标C 的位置为(4,240°),∴ 目标A 的位置为(2,90°),目标B 的位置为(5,30°),目标D 的位置为(4,300°),目标E 的位置为(6,120°),小提示:本题考查的是利用有序实数对表示位置,理解目标C 的位置为(4,240°)是解题的关键.。
部编数学七年级下册期末难点特训(三)和平面直角坐标系有关的压轴题(解析版)含答案
(1)已知点A的坐标为(﹣3,1),(1)请直接写出点A ,B ,C 的坐标;(2)如图(1),若点D 的坐标为()1,0-,点(),F m n 为线段DE 12,求m 的取值范围;(3)如图(2),若DE 与y 轴的交点G 在B 点上方,点P 为EBO Ð,BPD Ð,PDA Ð之间的数量关系.【答案】(1)()4,0A ,()0,2B ,()0,3C -14Q 将线段AB 平移到DE ,AB DE \=,AB DE ∥,AD =\四边形ABED 的面积25=´=152ABF ABEDS S D \==四边形,ABF ADF ABO ABFD S S S S D D D =+=+Q 四边形11155422(222n m \+´´=´´+´´-Q将线段AB平移到DE \∥,AD BE AB DE∥ADP BFD\Ð=Ð,\Ð=°-Ð=180180 PFB BFD Q,Ð=Ð+ÐEBO BPD BFPEBO BPD\Ð=Ð+°-Ð180Q将线段AB平移到DE \∥,AD BE\Ð+Ð=°,PDA BFD180\Ð=°-Ð,180BFP PDAÐ=Ð+ÐQ,EBO BFP BPF\Ð=°-Ð+180180 EBO PDA如图,当点P 在AD 的延长线与y 轴的交点T 上方时,EBO BEG EGB Ð=Ð+ÐQ ,又BE AD Q ∥,BEG GDT \Ð=Ð,由对顶角得EGB TGD Ð=Ð,PTD TGD TDG Ð=Ð+ÐQ ,PTD EBO \Ð=Ð,PDA PTD TPD Ð=Ð+ÐQ ,PDA EBO BPD\Ð=Ð+Ð综上所述:当点P 在点B 的下方时,180EBO BPD ADP Ð=Ð+°-Ð;当点P 在B 、与AD 的延长线与y 轴的交点之间时,360EBO PDA BPD Ð+Ð+Ð=°;当点P 在AD 的延长线与y 轴的交点T 上方时,PDA EBO BPD Ð=Ð+Ð.【点睛】本题是三角形综合题,考查了平移的性质,三角形面积公式,利用分类讨论思想解决问题是解题的关键.3.如图所示,在平面直角坐标系中,如图①,将线段AB 平移至线段CD ,点A 在x 轴的负半轴,点C 在y 轴的正半轴上,连接AC 、BD .(1)若(3,0)A -、(2,2)B --,(0,2)C ,直接写出点D 的坐标;(2)如图②,在平面直角坐标系中,已知一定点(2,0)M ,两个动点(,21)E a a +、(,23)F b b -+.请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM ,若存在,求点E 、F 的坐标;若不存在,请说明理由;(3)如图③,在直线EF 上有两点A 、C ,分别引两条射线AB 、CD .110BAF Ð=°,//EF OM Q ,EF OM =,\点E 与F 的纵坐标相等,横坐标的差的绝对值为即2123a b +=-+,||a b -=如图①,AB 与CD 在EF 的两侧时,110BAF Ð=°Q ,60DCF Ð=°,18060312031203ACD t t t \Ð=°-°-°´=°-°´=°-°要使//AB CD ,则ACD BAF ÐÐ=,即120°-解得5t =,此时(18060)340°-°¸°=,040t \<<,∴a−6=0,c+8=0,∴a=6,c=−8,∴A(6,0),B(6,−8).当点P到AB的距离为2个单位长度时,运动路程s=6−2=4或s=6+8+2=16,∴4÷2=2s或16÷2=8s,故答案为:2s或8s;(2)①当0≤t≤3时,点P在OA上,此时,P(2t,0);②当3≤t≤7时,点P在AB上,此时PA=2t−6,由于点P在第四象限,纵坐标小于0,则P (6,6−2t);③当7≤t≤10时,点P在BC上,此时PB=2t−OA−AB=2t−14,PC=BC−PB=6−(2t−14)=20−2t,∴P(20−2t,−8);(3)当点P在线段AB上时,分两种情况:①如图3中,结论:∠PEA+∠PFC=160°,理由如下:连接OP,∵∠PFC=∠FPO+∠FOP,∠AEP=∠EOP+∠EPO,∴∠PEA+∠PFC=∠FPO+∠FOP+∠EOP+∠EPO=∠AOF+∠EPF=90°+70°=160°;②如图4中,结论:∠PFC−∠AEP=20°,理由如下:a______,b=______;(1)直接写出=轴上一点,且三角形ABP的面积为12,求点P=,设OC mAE BDQ∥,\ADQ=(1)求B 点的坐标时,小明是这样想的:先设B 点坐标为以()m n ,是方程2x y -=-的解;又因为B 点在直线BC 解,从而m ,n 满足228m n m n -=-ìí+=î,据此可求出B 点坐标为______;C 点坐标为______.(均直接写出结果)(2)若线段BC 上存在一点D ,使12OCD ABC S S =△△(O∵S△ABM+S梯形AMNF=S△FBN,∴1 2×4×4+12(4+FN)×3=12×FN×7,∴FN=7,∴F(-5,-3),过点∠MDQ=90°,△MDQ是等腰直角三角形,过点D作DG⊥x轴于E,过点M作MG⊥DG于G,同理得△BOA≌△AED,△MGD≌△DEQ,∴DE=MG=OA=2,OE=2+6=8,∴OE=8=m+2,∴m=6,∴OQ=OE+EQ=OE+DG=8+2+3m-6=3m+4=22,∴Q(22,0);③如图4,∠MDQ=90°,△MDQ 是等腰直角三角形,过点D作DE⊥x轴于E,过M作MG∥y轴,过点D作DG⊥MG于G,同理得:OA=DE=DG=2,∴m=2+6+2=10,∴OQ=EQ-OE=MG-OE=2+3m-6-8=18,∴Q(-18,0);综上,点Q的坐标为(-3,0)或(22,0)或(-18,0).【点睛】本题是三角形的综合题,考查了坐标与图形性质及非负数的性质,等腰直角三角形的性质和判定,三角形全等的性质和判定等知识,解决本题的关键是作辅助线构建三角形全等.过点过点过点(1)求点A ,B 的坐标;(2)如图1,将AB 平移到A B ¢¢,使点B 的对应点B ¢落在x 轴的正半轴上,在且20ABP Ð=°,试判断PB A ¢¢Ð与B PB ¢Ð之间的数量关系,并说明理由;(3)如图2,线段AB 与y 轴交于点M ,将AB 平移到A B ¢¢,连接MA ¢∵由平移得:AB A B ¢¢∥∴PQ A B ¢¢∥∴QPB PB A ¢¢¢Ð=Ð,20QPB PBA Ð=Ð=°∴PB A QPB B PB QPB B PB PBA ¢¢¢¢¢Ð=Ð=Ð+Ð=Ð+Ð∵ACDB ACOM OMDBS S S =+梯形梯形梯形∴()()(111826246222m ´´+=´++´´解得:4m =如图3,过点A ¢、B ¢构造矩形A GEF ¢∴A B M A GB MEB A GEF S S S S ¢¢¢¢¢¢=---矩形△△△(1118884488222n n =´-´´-´×-´×-64162324n n---+216n =+\Ð∵Q由平移可得:,MN PQ ∥180,MNQ PQN EQP MNE ENQ EQN \Ð+Ð=°=Ð+Ð+Ð+Ð 180,NEQ ENQ EQN Ð+Ð+Ð=°Q,NEQ EQP MNE \Ð=Ð+Ð如图,当E 在NQ 的右边,直线MN 的左边时,(包括E 在这两条直线上),同理可得:180,180,MNQ PQN QNE NEQ NQE Ð+Ð=°Ð+Ð+Ð=° 360,MNE NEQ EQP \Ð+Ð+Ð=°如图,当E 在直线MN 的右边时,记直线MN 与EQ 的交点为F ,同理,当C 点平移后的点不是“自大点时”, 1t …或3t …,\当平移后的正方形边界及其内部的所有点都不是“自大点”时,1t …或7t …,故答案为:1t …或7t ….【点睛】本题主要考查正方形的性质,坐标与图形的平移变化,根据题意,准确找出“自大点”的纵横坐标满足的关系是解答此题的关键.。
最新人教版初中数学七年级下册期末复习(三)《平面直角坐标系》练习题
期末复习(三) 平面直角坐标系考点一确定字母的取值范围【例1】若点P(a,a-2)在第四象限,则a的取值范围是( )A.-2<a<0B.0<a<2C.a>2D.a<0【分析】根据每个象限内的点的坐标特征列不等式(组)求解.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【解答】根据第四象限内的点横坐标为正,纵坐标为负,得0,20,aa>-<⎧⎨⎩解得0<a<2.故选B.【方法归纳】解答此类题的关键是根据平面直角坐标系内点的特征,列出一次不等式(组)或者方程(组),解所列出的不等式(组)或者方程(组),得到问题的解.1.如果m是任意实数,那么点P(m-4,m+1)一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限2.点P(2a,1-3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为4,则点P的坐标是__________.考点二用坐标表示地理位置【例2】2008年奥运火炬在我省传递(传递路线:昆明—丽江—香格里拉),某校学生小明在我省地图上设定临沧位置点的坐标为(-1,0),火炬传递起点昆明位置点的坐标为(1,1).如图,请帮助小明确定出火炬传递终点香格里拉位置点的坐标__________.【分析】因为设定临沧位置点的横坐标为-1,昆明位置点的横坐标为1,所以可以得到每个小方格的边长为1,且y轴在这两座城市之间的竖直直线上;同理得到x轴在临沧所在的水平线上,从而得到如右图的平面直角坐标系,利用平面直角坐标系得出香格里拉所在位置点的坐标.【解答】(-1,4)【方法归纳】在平面内如果已知两点的坐标求第三个点的坐标时,通常根据已知两点的横坐标和纵坐标分别确定y轴和x轴的位置,从而建立平面直角坐标系,然后求出第三个点的坐标.3.如图,如果用(0,0)表示梅花的中心O,用(3,1)表示梅花上一点A,请用这种方式表示梅花上点B为( )A.(1,-3)B.(-3,1)C.(3,-1)D.(-1,3)4.如图是小刚画的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成( )A.(1,0)B.(-1,0)C.(-1,1)D.(1,-1)5.中国象棋的走棋规则中有“象飞田字”的说法,如图,象在点P处,走一步可到达的点的坐标记作__________.考点三图形的平移与坐标变换【例3】已知△ABC在平面直角坐标系中的位置如图所示,将△ABC向下平移5个单位,再向左平移2个单位,则平移后C点的坐标是( )A.(5,-2)B.(1,-2)C.(2,-1)D.(2,-2)【解析】由△ABC在平面直角坐标系中的位置可知点C的坐标为(3,3),将△ABC向下平移5个单位,再向左平移2个单位后,点C的横坐标减2,纵坐标减5,所以平移后C点的坐标是(1,-2).故选B.【方法归纳】在平面直角坐标系中点P(x,y)向右(或左)平移a个单位后的坐标为P(x+a,y)[或P(x-a,y)];点P(x,y)向上(或下)平移b个单位后的坐标为P(x,y+b)[或P(x,y-b)].6.如图,在边长为1的正方形网格中,将△ABC向右平移两个单位长度,再向下平移三个单位长度得到△A′B′C′,则点B′的坐标是( )A.(0,-1)B.(1,2)C.(2,-1)D.(1,-1)7.如图,A,B的坐标分别为(1,0),(0,2),若将线段AB平移至A1B1,A1,B1的坐标分别为(2,a),(b,3),则a+b=__________.考点四直角坐标系内图形的面积【例4】在平面直角坐标系xOy中,若A点坐标为(-3,3),B点坐标为(2,0),则△ABO的面积为( ) A.15 B.7.5 C.6 D.3【解析】∵点A到x轴的距离为3,而OB=2,∴S△ABO=12×2×3=3.故选D.【方法归纳】求平面直角坐标系中平面图形的面积时,常常利用平行于坐标轴的线段当底,点的横或者纵坐标的绝对值当高.不规则图形的面积常常通过割补法转化为几个规则图形的面积求解.8.已知:点A、点B在平面直角坐标系中的位置如图所示,则:(1)写出这两点坐标:A__________,B__________;(2)求△AOB的面积.考点五规律探索型【例5】如图,已知A1(1,0)、A2(1,1)、A3(-1,1)、A4(-1,-1)、A5(2,-1)、….则点A2 015的坐标为__________.【解析】要求A2 015的坐标,可先从简单的点的坐标开始探究,发现其中的规律.从各点的位置可以发现:A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1);A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2);A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3);….因为A3(-1,1),A7(-2,2),观察坐标系可知:A11(-3,3),A15(-4,4),其横、纵坐标互为相反数.把A3、A7、A11、A15右下角的数字提出来,可整理为:3=3+4×0;A3(-1,1)7=3+4×1;A7(-2,2)11=3+4×2;A11(-3,3)15=3+4×3 A15(-4,4)…………因为2 015=3+4×503,所以A2 015(-504,504).【方法归纳】规律探究题往往是从个例、特殊情况入手,发现其中的规律,从而推广到一般情况,用适当的式子表示出来即可,这是近几年来考试的一个热点.9.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A.(4,0)B.(5,0)C.(0,5)D.(5,5)复习测试一、选择题(每小题3分,共30分)1.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到点B,点B的坐标是( )A.(-5,3)B.(1,3)C.(1,-3)D.(-5,-1)2.在平面直角坐标系中,点(-1,m2+1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位4.在平面直角坐标系中,△ABC的三个顶点坐标分别是A(4,5),B(1,2),C(4,2),将△ABC向左平移5个单位后,A点的对应点A′的坐标是( )A.(0,5)B.(-1,5)C.(9,5)D.(-1,0)5.如图是中国象棋的一盘残局,如果用(4,0)表示“帅”的位置,用(3,9)表示“将”的位置,那么“炮”的位置应表示为( )A.(8,7)B.(7,8)C.(8,9)D.(8,8)6.已知A(-4,3),B(0,0),C(-2,-1),则三角形ABC的面积为( )A.3B.4C.5D.67.如图,与①中的三角形相比,②中的三角形发生的变化是( )A.向左平移3个单位B.向左平移1个单位C.向上平移3个单位D.向下平移1个单位8.若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=(-1,2),g(-4,-5)=(-4,5),则g[f(2,-3)]=( )A.(2,-3)B.(-2,3)C.(2,3)D.(-2,-3)9.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n 是自然数)的坐标为( )A.(1,2n)B.(2n,1)C.(n,1)D.(2n-1,1)10.如图,点A1,A2,A3,A4是某市正方形道路网的部分交汇点.某人从点A1出发,规定向右或向下行走,那么到达点A3的走法共有( )A.4种B.6种C.8种D.10种二、填空题(每小题4分,共20分)11.若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”.请写出一个“和谐点”的坐标为__________.12.若点A(x,y)的坐标满足(y-1)2+|x+2|=0,则点A在第__________象限.13.在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(-4,-1)、N(0,1),将线段MN 平移后得到线段M′N′(点M、N分别平移到点M′、N′的位置),若点M′的坐标为(-2,2),则点N′的坐标为__________.14.如图是一组密码的一部分.为了保密,许多情况下可采用不同的密码,请你运用所学知识找到破译的“钥匙”.目前,已破译出“今天考试”的真实意思是“努力发挥”.若“今”所处的位置为(x,y),你找到的密码钥匙是__________,破译“正做数学”的真实意思是__________.15.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2 015次运动后,动点P的坐标是__________.三、解答题(共50分)16.(8分)如图,是某学校的平面示意图.A,B,C,D,E,F分别表示学校的第1,2,3,4,5,6号楼.(1)写出A,B,C,D,E的坐标;(2)位于原点北偏东45°的是哪座楼,它的坐标是多少?17.(8分)如图是某市市区几个旅游景点示意图(图中每个小正方形的边长为1个单位长度),如果以O 为原点建立平面直角坐标系,用(2,2.5)表示金凤广场的位置,用(11,7)表示动物园的位置.根据此规定:(1)湖心岛、光岳楼、山陕会馆的位置如何表示?(2)(11,7)和(7,11)是同一个位置吗?为什么?18.(8分)某地为了城市发展,在现有的四个城市A,B,C,D附近新建机场E.试建立适当的直角坐标系,写出点A,B,C,D,E的坐标.19.(12分)如图,三角形ABC三个顶点坐标分别为A(3,-2),B(0,2),C(0,-5),将三角形ABC沿y轴正方向平移2个单位,再沿x轴负方向平移1个单位,得到三角形A1B1C1.(1)画出三角形A1B1C1,并分别写出三个顶点的坐标;(2)求三角形的面积A1B1C1.20.(14分)如图,四边形ABCD各个顶点的坐标分别为A(-2,8),B(-11,6),C(-14,0),D(0,0).(1)确定这个四边形的面积,你是怎么做的?(2)如果把原来四边形ABCD各个顶点的纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?参考答案变式练习1.D2.(-65,145) 3.B 4.A 5.(0,2),(4,2) 6.D 7.28.(1)(-1,2) (3,-2)(2)S△AOB=12×1×1+12×1×3=2.9.B复习测试1.B2.B3.D4.B5.A6.C7.A8.B9.B 10.B11.答案不唯一,如:(2,2)或(0,0) 12.二13.(2,4) 14.(x+1,y+2) “祝你成功”15.(2 015,2)16.(1)A(2,3)、B(5,2)、C(3,9)、D(7,5)、E(6,11);(2)在原点北偏东45°的点是点F,其坐标为(12,12).17.(1)湖心岛(2.5,5)、光岳楼(4,4)、山陕会馆(7,3).(2)不是,因为根据题目中点的位置确定可知水平数轴上的点对应的数在前,竖直数轴上的点对应的数在后,是有序数对.18.答案不唯一.如以点A作为坐标原点,经过点A的水平线作为x轴,经过点A的竖直线作为y轴,每个小方格的边长作为1单位长,建立平面直角坐标系,图略,A(0,0)、B(8,2)、C(8,7)、D(5,6)、E(1,8).19.(1)图略,△A1B1C1即为所求,三个顶点的坐标A1(2,0),B1(-1,4),C1(-1,-3).(2)由题意可得出:三角形的面积A1B1C1与△ABC面积相等,则三角形A1B1C1的面积为:12×3×7=21 2.20.(1)将四边形分割成长方形、直角三角形,图略,可求出各自的面积:S长方形①=9×6=54,S直角三角形②=12×2×8=8,S直角三角形③=12×2×9=9,S直角三角形④=12×3×6=9.所以四边形的面积为80.(2)如果把原来四边形ABCD各个顶点的纵坐标保持不变,横坐标增加2,所得的四边形就是将原来的四边形向右平移两个单位长度形成的,所以其面积不变,还是80.我爸爸告诉我,你现在翻的一页书都是将来要数的一张张钞票,所以不让你学习的人,就是在抢你的财富,不想要的都是傻子。
七年级下册数学知识点辅导
七年级下册数学知识点辅导数学一直是很多学生的难点,七年级下册涉及到的数学知识点也非常多,需要同学们认真复习和掌握。
在这篇文章中,我将详细介绍七年级下册数学知识点的辅导,希望能帮到大家。
1.平面直角坐标系平面直角坐标系是数学中的基础知识之一,也是后续学习中必不可少的。
学生需要掌握平面直角坐标系的构建方法、坐标轴的属性、坐标的表示方法等。
平面直角坐标系在后续的函数、图形等知识点中都有应用。
2.整数的加减法整数的加减法是七年级下册的数学重点,学生需要掌握加减法的计算方法和应用,特别是在解决实际问题时,需要考虑到问题的实际应用意义。
3.分数的加减乘除分数的加减乘除同样也是七年级下册的数学重点,同学们需要掌握分数的基本概念、分数的化简与约分等知识,以及分数的加减乘除的计算方法。
4.小数的加减乘除小数的加减乘除同样是七年级下册数学的重点,在日常生活中也经常应用。
学生需要掌握小数的基本概念、小数的计算方法和应用,例如物价计算、利率计算等。
5.比例与比例关系比例与比例关系也是七年级下册数学的重点,学生需要了解比例的基本概念、比例关系的表示方法和应用、比例的性质等知识。
6.几何图形相关知识七年级下册数学中几何图形相关的知识非常多,在这里简单列举一些,例如:相似三角形、勾股定理、平行四边形、梯形、圆等。
学生们需要掌握这些基本的几何图形知识,为后续学习打下坚实的基础。
以上是七年级下册数学知识点辅导的主要内容,也是同学们需要认真复习和掌握的。
在学习过程中,学生们既要理论有依据,也要有实践应用,例如通过课堂练习、作业练习等方式来提高自己的数学成绩。
希望同学们认真对待每一个知识点,通过不断地学习和练习,取得优异的成绩。
(完整版)初一下册数学重难点
初一下册数学重难点
第五章:相交线与平行线
本章的知识点有:各种角,同一平面内线与线之间的关系,平行的性质及判定。
这一章中的三线八角使我们几何学习的重中之重,在这一章我们要学会从不同角度去看图形,否则后面的几何学起来很痛苦。
第六章:平面直角坐标系
本章的知识点是:点的坐标,平面直角坐标系,点的平移,点的对称。
本章的知识点不多学起来也很容易,但很多重点学校将图形平移,对称都加进来了,增加了本章的难度。
第七章:三角形
本章的知识点是:三角形三边的关系,三角形的高线、中线、角平分线、外角;多边形的外角和、内角和、对角线;平面镶嵌等相关知识。
学习本章要求知识点要掌握透彻即可。
第八章:二元一次方程
本章的知识点是:二元一次方程,二元一次方程组,三元一次方程(组),二元一次方程的解,消元(代入与加减消元法),列方程解应用题常见的题型有,①和差倍分、②行程问题、③工程问题、④产品配套问题,⑤增长率问题。
如果第三章学好了以后这章的难度就只有三元一次方程的解法了。
因为难点一样。
第九章:不等式
1.不等式的概念,不等式的解及解集和表示方法,一元一次不等式(组),不等式的性质
2.本章的难点是①不等式性质三的应用,②含参数的不等式的解法。
平面直角坐标系重难点复习
内点的 坐标的符号特征.
巩固练习2:坐标轴上点的坐标
(1)点P(m+2,m-1)在x轴上,则点P的坐标是 ( 3, 0. ) (2)点P(m+2,m-1)在y轴上,则点P的坐标是 ( 0, -3 ). (3)点P(x,y)满足 xy=0, 则点P在 x 轴上 或 y 轴. 上
当P(x ,y)向右平移a个单位长度,再向上平移
b个单位长度后别是2,1,则点P的 坐标可能为 (1,2)、 (-1,2)、(-1,-2) 、(1,-.2).
在平面直角坐标系中,将点(x, y)向右 (或向左)平移a 个单位长度,可以得到对应点 (x+a,y)或(x-a,y) 将点(x, y)向上(或向下)平移b个单位长度,可以得 到对应点 (x,y+b) 或(x,y-b) 可以简单地理解为: 左、右平移___坐标不变, ___坐标变,变化 规律是___减___加, 上下平移___坐标不变, ___坐标变, 变化规律是___减 ___加。例如:
数就是这个点的横坐 标与纵坐标。
y
2 1
记作A( 2,1 ) A
-3 -2 -1 O 1 2 3 x
-1
方法:先在x轴和y轴上 分别找到表示横坐标与 纵坐标的点,然后过这 两点分别作x轴与y轴的 垂线,两条垂线的交点 就是该坐标对应的点。
-2
B
-3
找点B( 3,-2 )表 示的点?
特殊点的坐标 y
-1 0 1 -1
x
C(-a,-b)
A(a,-b)
巩固练习1:由坐标找象限。
(1)点P的坐标是(2,-3),则点P在第 四象限;
(2)若点P(x,y)的坐标满足xy﹥0, 则点P在第一或三 象限; (3)若点P(x,y)的坐标满足 xy﹤0,且在x轴上方, 则点P在第 二 象限;
专题04 平面直角坐标系重难点一遍过-七年级数学下册期末重难点知识一遍过(人教版)(解析版)
专题04 平面直角坐标系重难点一遍过一、基础知识点综述1.定义(1)有序数对(a,b)——字母顺序不能颠倒(2)坐标系两条互相垂直,原点重合的数轴组成.(3)坐标平面内的点与有序实数对是一一对应的关系.(4)象限与坐标轴①象限②坐标轴★坐标轴上的点不属于任何象限,象限内的点也不属于任何坐标轴.2. 常用结论(1)平行于坐标轴的点的特征①平行与横轴的直线上点的特征:纵坐标相同;②平行与纵轴的直线上点的特征:横坐标相同.点A和点B纵坐标相同,均为m点A和点B横坐标相同,均为n(2)两坐标轴夹角平分线上的点的特征①一三象限角平分线上的点的横纵坐标相同:x=y;②二四象限角平分线上的点的横纵坐标互为相反数:x+y=0.一三象限角平分线上,m=n二四象限角平分线上,m+n=0 3. 重难点梳理(1)在平面直角坐标系中的点到坐标轴的距离P(a,b)到x轴的距离为|b|,到y轴的距离为|a|;(2)关于坐标轴对称的点的特征①关于x轴对称,横坐标相等,纵坐标互为相反数;②关于y轴对称,纵坐标相等,横坐标互为相反数;③关于坐标原点对称,横、纵坐标互为相反数.(3)割补法求图形的面积.二、典型例题精讲题1. 基础题型(1)如果(336)P m m -+-,在y 轴上,那么点P 的坐标是(2)若P 到x 轴的距离为3,到y 轴的距离为4,则点P 的坐标为 (3)若x 轴上的点P 到y 轴的距离为5,则点P 的坐标为 (4)若0ab >,则(,)P a b 在第象限(5)如果点(,)M a b ab +在第二象限,那么点(,)N a b 在第象限(6)在平面直角坐标系中,点(1,4)P 向左移动1个单位长度后的坐标是(7)在平面直角坐标系中,点A 的坐标为(-1,3),线段AB ∥x 轴,且AB =2,则点B 的坐标为 . (8)已知点M 的坐标为(1,﹣2),线段MN =3,MN ∥y 轴,点N 在第一象限,则点N 的坐标为 (9)线段CD 是由线段AB 平移得到的.点(1,4)A -的对应点为(4,7)C ,则点(4,1)B --的对应点D 的坐标为(10)在平面直角坐标系中,若A 点坐标为(2,2)-,B 点坐标为(6,0),则ABO ∆的面积为 【答案】(1)()0,3;(2)()()()()4,34,34,34,3----、、、;(3)()()5,05,0-、;(4)一或三; (5)三;(6)()0,4;(7)()()1,33,3-、;(8)()1,1;(9)()1,2;(10)6. 【解析】解:(1)∵(336)P m m -+-,在y 轴上, ∴3m -+=0,解得m =3, ∴P 点坐标为()0,3;(2)∵P 到x 轴的距离为3,到y 轴的距离为4, ∴P 点横坐标为4或-4,纵坐标为3或-3, 即P 点坐标为()()()()4,34,34,34,3----、、、;(3)因为x 轴上的点P 到y 轴的距离为5,所以P 点坐标为()()5,05,0-、; (4)∵0ab >,∴a >0,b >0或a <0,b <0, 即P 点在第一象限或第三象限; (5)∵点(,)M a b ab +在第二象限,∴0a b ab +<⎧⎨>⎩即a <0,b <0, ∴(,)N a b 在第三象限;(6)点(1,4)P 向左移动1个单位长度后的坐标是()0,4; (7)∵AB ∥x 轴, ∴B 点纵坐标为3, ∵AB =2,∴B 点横坐标为-3或1, 即B 点坐标为()()1,33,3-、; (8)∵MN ∥y 轴, ∴N 点横坐标为-1, ∵MN =3,∴N 点纵坐标为1或-5, ∵N 在第一象限, 所以N 点坐标为()1,1;(9)因为线段CD 是由线段AB 平移得到,点(1,4)A -的对应点为(4,7)C , 所以平移规律是向左平移5个单位,向上平移3个单位, 则点(4,1)B --的对应点D 的坐标为()1,2;(10)A 点坐标为(2,2)-,B 点坐标为(6,0),所以OB =6,△ABO 边OB 上的高为2,则ABO ∆的面积=12662⨯⨯=. 题2. 规律性题目(1)在平面直角坐标系中,一只蚂蚁从原点O 出发,按向上,向右,向下,向右⋯的方向依次不断移动,每次移动1个单位,其行走路线如图所求.①填写下列各点的坐标4(A , 8)(A , 12)(A , )②直接写出4n A 的坐标(n 是正整数)( , )③说明从点2016A 到点2018A 的移动方向.图2-1【答案】①2,0;4,0,6,0;②2n ,0;③见解析. 【解析】解:①由图2-1可知,4A ,8A ,12A 都在x 轴上, Q 蚂蚁每次移动1个单位, 42OA ∴=,84OA =,126OA =, 4(2,0)A ∴,8(4,0)A ,12(6,0)A ;故答案为:2,0;4,0,6,0; ②根据①知:4422n OA n n =÷=, ∴点4n A 的坐标(2,0)n ; 故答案为:2n ,0; (3)20164504÷=Q ,∴从点2016A 到点2018A 的移动方向:点2016A 在x 轴上,向上移动一个到2017A ,再向右移动一个到2018A . (2)如图2-2,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2 019次运动后,动点P 的坐标是图2-2【答案】(2019,2)【解析】解:由图可知,动点P 的纵坐标变化为1,0,2,0……,周期为4 横坐标变化为:1,2,3,4,5,6,……2019÷4=504 (3)所以P点的纵坐标为2,横坐标为2019,即P点坐标为(2019,2).(3)在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点.观察图2-3中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有个.图2-3【答案】40【解析】解:由图2-3可知:第一个正方形四条边上整点个数为4个;第二个正方形四条边上整点个数为8个;第三个正方形四条边上整点个数为12个……第n个正方形四条边上整点个数为4n个,故第10个正方形(实线)四条边上的整点个数共有40个.(4)如图2-4所示,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),…,根据这个规律,点P2 019的坐标为图2-4【答案】(505,505).【解析】解:从图可知,点P自P3开始依次在第一、第二、第三、第四象限运动……(2019-2)÷4=2017÷4=504……1, 即P 2019在第一象限,研究第一象限点的坐标,P 3(1,1)、P 7(2,2)、P 11(3,3)…… ∴P 2019的坐标为(505,505).(5)在平面直角坐标系中,对于点P (x ,y ),我们把点P (-y +1,x +1)叫做点P 伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(1,0),点A 2019的坐标为【答案】(-1,2).【解析】解:因为A 1的坐标为(1,0),由题意知 A 2(1,2)A 3(-1,2)A 4(-1,0)A 5(1,0)…… 2019÷4=504……3, 即A 2019的坐标为(-1,2).题3. 综合性题目(1)已知点(2,28)P a a -+,分别根据下列条件求出点P 的坐标. ①点P 在x 轴上; ②点P 在y 轴上;③点Q 的坐标为(1,5),直线//PQ y 轴; ④点P 到x 轴、y 轴的距离相等. 【答案】见解析.【解析】解:①Q 点(2,28)P a a -+在x 轴上,280a ∴+=,解得:4a =-,故2426a -=--=-,则(6,0)P -; ②Q 点(2,28)P a a -+在y 轴上,20a ∴-=,解得:2a =,故2822812a +=⨯+=,则(0,12)P ; ③Q 点Q 的坐标为(1,5),直线//PQ y 轴,21a ∴-=,解得:3a =,故2814a +=,则(1,14)P ; ④Q 点P 到x 轴、y 轴的距离相等,228a a ∴-=+或2280a a -++=,解得:110a =-,22a =-,当10a =-则:212a -=-,2812a +=-,则(12,12)P --; 当2a =-则:24a -=-,284a +=,则(4,4)P -. 综上所述:(12,12)P --,(4,4)-. (2)已知:A (0,1),B (2,0),C (4,3).①在坐标系中描出各点,画出△ABC ;求△ABC 的面积;②若点P 在坐标轴上,且△ABP 与△ABC 的面积相等,求点P 的坐标. 【答案】见解析.【解析】解:①如图3-1所示.图3-1S △ABC =3×4-×2×3-×2×4-×2×1=12-3-4-1=4. ②当点P 在x 轴上时,S △ABP =×AO ×BP =4,即×1×BP =4,解得BP =8,∴点P 的坐标为(10,0)或(-6,0); 当点P 在y 轴上时,S △ABP =×BO ×AP =4,即×2×AP =4,解得AP =4,∴点P 的坐标为(0,5)或(0,-3),综上所述,点P 的坐标为(0,5)或(0,-3)或(10,0)或(-6,0).(3)如图3-2所示,在平面直角坐标系中,已知点a(0,2),B(4,0),C(4,3)三点.①求△ABC的面积;②如果在第二象限内有一点P(m,1),且四边形ABOP的面积是△ABC的面积的两倍;求满足条件的P 点坐标.图3-2【答案】见解析.【解析】解:①∵B(4,0),C(4,3),∴BC=3,∴S△ABC=×3×4=6;②∵A(0,2)(4,0),∴OA=2,OB=4,∴S四边形ABOP=S△AOB+S△AOP=12×4×2+12×2(﹣m)=4﹣m,又∵S四边形ABOP=2S△ABC=12,∴4﹣m=12,解得:m=﹣8,即P(﹣8,1).(4)在平面直角坐标系中,有点A(m,0),B(0,n),且m,n满足m=41n+.图3-3 (1)求A、B两点坐标;(2)如图3-3,直线lx轴,垂足为点Q(1,0).点P为l上一点,且点P在第四象限,若△PAB的面积为3.5,求点P的坐标.【答案】见解析.【解析】解:(1)∵41mn-=+又∵n-1≥0,n-1≤0,∴n=1,∴n=1,m=﹣2,∴A(﹣2,0),B(0,1).(2)如图3-4中,设P(1,m),作BM⊥l于M,连接AM.图3-4∵S△PAB=S△ABM+S△AMP﹣S△PMB,∴12×1×1+12×(1﹣m)×3﹣12×(1﹣m)×1=3.5,解得m=﹣14,∴P(1,﹣14).。
第七章平面直角坐标系 综合复习人教版数学七年级下册
2021-2022学年人教版数学七年级下册《第七章平面直角坐标系》综合复习(练习、考试专用——带答案解析)一、选择题(本大题共10小题,共30分)1.(2019·浙江省台州市·期末考试)若点P在第四象限内,P到x轴的距离是1,到y轴的距离是3,则点P的坐标为()A. (3,−1)B. (−3,−1)C. (−3,1)D. (−1,−3)2.(2022·江西省·模拟题)已知AB//y轴,且点A的坐标为(m,2m-1),点B的坐标为(2,4),则点A的坐标为(),4) C. (−2,−4) D. (2,−4)A. (2,3)B. (523.(2022·湖北省·期中考试)如图,在平面直角坐标系xOy中,点P的坐标为(1,1).如果将x轴向上平移2个单位长度,y轴不变,得到新坐标系,那么点P在新坐标系中的坐标是()A. (1,−1)B. (−1,1)C. (3,1)D. (1,2)4.(2022·广东省·单元测试)如图,长方形BCDE的各边分别平行于x轴与y轴,物体甲和物体乙由点A(2,0)同时出发,沿长方形BCDE的边做环绕运动,物体甲按逆时针方向以1个单位长度/秒的速度匀速运动,物体乙按顺时针方向以2个单位长度/秒的速度匀速运动,则两个物体运动后的第2021次相遇地点的坐标是()A. (1,−1)B. (2,0)C. (−1,1)D. (−1,−1)5.(2022·全国·同步练习)某电影院里5排2号可以用数对(5,2)表示,小明买了7排4号的电影票,用数对可表示为( )A. (4,7)B. (2,5)C. (7,4)D. (5,2)6.(2021·重庆市·期中考试)如果点A(a,b)在第三象限,则点B(-a+1,3b-5)关于原点的对称点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.(2021·北京市·月考试卷)已知三角形的三个顶点坐标分别是(-1,4),(1,1),(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A. (−2,2),(3,4),(1,7)B. (−2,2),(4,3),(1,7)C. (2,2),(3,4),(1,7)D. (2,−2),(3,3),(1,7)8.(2021·安徽省·单元测试)在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:9.①f(m,n)=(m,-n),如f(2,1)=(2,-1);10.②g(m,n)=(-m,-n),如g(2,1)=(-2,-1).11.按照以上变换有:f[g(3,4)]=f(-3,-4)=(-3,4),那么g[f(-3,2)]等于()A. (3,2)B. (3,−2)C. (−3,2)D. (−3,−2)12.(2021·黑龙江省牡丹江市·历年真题)如图,在平面直角坐标系中A(-1,1),B(-1,-2),C(3,-2),D(3,1),一只瓢虫从点A出发以2个单位长度/秒的速度沿A→B→C→D→A循环爬行,问第2021秒瓢虫在()处.A. (3,1)B. (−1,−2)C. (1,−2)D. (3,−2)13.(2021·安徽省·单元测试)如图,在平面直角坐标系中,AB∥EG∥x轴,BC∥DE∥HG∥AP∥y轴,点D、C、P、H在x轴上,A(1,2),B(﹣1,2),D(﹣3,0),E(﹣3,﹣2),G(3,﹣2),把一条长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣E﹣F﹣G﹣H﹣P﹣A…的规律紧绕在图形“凸”的边上,则细线另一端所在位置的点的坐标是()A. (1,1)B. (1,2)C. (−1,2)D. (−1,−2)二、填空题(本大题共6小题,共18分)14.(2021·安徽省·期中考试)已知点A(0,-3),点B在x轴上,且三角形OAB的面积为6,则点B的坐标为________.15.(2021·辽宁省沈阳市·同步练习)已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是____________________.16.(2018·山东省泰安市·月考试卷)已知:点P的坐标是(m,-1),且点P关于x轴对称的点的坐标是(-3,2n),则m= ______ ,n= ______ .17.(2020·安徽省芜湖市·单元测试)已知点N的坐标为(a,a-1),则点N一定不在第象限.18.(2020·安徽省芜湖市·单元测试)如图,长方形OABC的边OA,OC分别在x轴、,轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B'处,则点B'的坐标为 .19.(2021·江苏省南通市·单元测试)在平面直角坐标系中,O为坐标原点,点A(−a,a)(a>0),点B(−a−4,a+3),点C为平面直角坐标系内的一点,连接AB,OC,若AB //OC且AB=OC,则点C的坐标为.三、解答题(本大题共6小题,共52.0分)20.(2019·吉林省白山市·期末考试)已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P到x轴的距离为2,且在第四象限.21.(2021·重庆市市辖区·单元测试)在平面直角坐标系中,点A(0,a),B(b,0),C(c,c)的坐标满足(a−5)2+|b+2|+√c−3=0,四边形ABCD是平行四边形,点D在第一象限.直线AC交x轴于点F.(1)求点D的坐标(2)求三角形BCF的面积.22.(2020·浙江省台州市·期末考试)三角形ABC在平面直角坐标系中的位置如图所示(图中每个小方格的边长均为1个单位长度).将三角形ABC先向左平移4个单位长度,再向下平移3个单位长度得到三角形A1B1C1.(1)在图中画出三角形A1B1C1;(2)求三角形ABC的面积.23.(2022·安徽省·模拟题)如图1,在平面直角坐标系中,C是第二象限内一点,CB⊥y轴于点B,且B(0,b)是y轴正半轴上一点,A(a,0)是x轴负半轴上一点,且|a+2|+|b-3|=0,S四边形AOBC=9.(1)求点C的坐标;(2)如图2,点D为线段OB上一动点,且,求点D的坐标.24.(2022·江苏省南通市·同步练习)如图,学校植物园的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中,已知小正方形的边长为1米,则A1的坐标为(2,2)、A2的坐标为(5,2)(1)A3的坐标为____,A n的坐标(用n的代数式表示)为____.(2)2022米长的护栏,需要两种正方形各多少个?25.(2020·全国·期中考试)如图,在平面直角坐标系中有一点A(4,-1),将点A向左平移5个单位再向上平移5个单位得到点B,直线l过点A、B,交x轴于点C,交y轴于点D,P是直线上的一个动点,通过研究发现直线l上所有点的横坐标x与纵坐标y都是二元一次方程x+y=3的解.①直接写出点B,C,D的坐标;B______,C______,D______;②求S△AOB;③当S△OBP:S△OPA=1:2时,求点P的坐标.1.【答案】A【知识点】平面直角坐标系中点的坐标【解析】解:∵点P在第四象限,∴其横、纵坐标分别为正数、负数,又∵点P到x轴的距离为1,到y轴的距离为3,∴点P的横坐标为3,纵坐标为-1.故点P的坐标为(3,-1).故选:A.根据点P在第四象限可知其横坐标为正,纵坐标为负即可确定P点坐标.本题考查了点的坐标,解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一、二、三、四象限内各点的符号分别为(+,+)、(-,+)、(-,-)、(+,-).2.【答案】A【知识点】坐标与图形性质、平面直角坐标系中点的坐标【解析】【分析】本题考查了坐标与图形性质:利用点的坐标得到相应的线段的长和判断线段与坐标轴的位置关系.在平面直角坐标系中与y轴平行,则它上面的点横坐标相同,可求A点的坐标.【解答】解:∵AB∥y轴,点A的坐标为(m,2m-1),点B的坐标为(2,4),∴m=2,∴2m-1=3,∴点A的坐标为(2,3).故选A.3.【答案】A【知识点】平移中的坐标变化【解析】【分析】本题考查了坐标与图形变化一平移,熟记左加右减,上加下减的规律是解题的关键.将坐标系中的x轴向上平移2个单位,即相当于将点P向下平移2个单位,根据左加右减,上加下减的规律求解即可.【解答】解:如果将x轴向上平移2个单位长度,则其纵坐标减少2,∴点P在新坐标系中的坐标是(1,-1),4.【答案】D【解析】解:长方形BCDE的长与宽分别为4和2,因为物体乙的速度是物体甲的2倍,二者的运动时间相同,所以物体甲与物体乙走的路程比为1:2.由题意可知, ①第一次相遇时,物体甲与物体乙走的路程之和为12×1,物体甲走的路程为12×1=4,物3=8,相遇在BC边上点(-1,1)处;体乙走的路程为12×23 ②第二次相遇时,物体甲与物体乙走的路程之和为12×2,物体甲走的路程为12×2×1=8,3=16,相遇在DE边上的点(-1,-1)处;物体乙走的路程为12×2×23 ③第三次相遇时,物体甲与物体乙走的路程之和为12×3,物体甲走的路程为12×3×1=12,3=24,相遇在出发点A点.物体乙走的路程为12×3×23此时,甲、乙回到原出发点,故每相遇三次,甲、乙两物体就回到出发点.因为2021÷3=673⋯⋯2,所以两个物体运动后的第2021次相遇地点是DE边上的点(-1,-1)处.故选D.5.【答案】C【知识点】有序数对【解析】由5排2号可以表示为(5,2)可知,7排4号可用数对(7,4)表示.6.【答案】B【知识点】中心对称中的坐标变化、平面直角坐标系中点的坐标【解析】略7.【答案】A【知识点】平移中的坐标变化【解析】略8.【答案】A【知识点】平面直角坐标系中点的坐标【解析】【分析】本题考查了一种新型的运算法则,考查了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,关键是明白两种运算改变了哪个坐标的符号.由题意应先进行f方式的运算,再进行g方式的运算,注意运算顺序及坐标的符号变化.【解答】解:∵f(-3,2)=(-3,-2),∴g[f(-3,2)]=g(-3,-2)=(3,2),故选A.9.【答案】A【知识点】平面直角坐标系中点的坐标、图形规律问题【解析】解:∵A(-1,1),B(-1,-2),C(3,-2),D(3,1),∴AB=CD=3,AD=BC=4,∴C矩形ABCD=2(AB+AD)=14.∵2021=288×(14÷2)+1.5+2+1.5,∴当t=2021秒时,瓢虫在点D处,∴此时瓢虫的坐标为(3,1).故选:A.根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由2021=288×(14÷2)+1.5+2+1.5,可得出当t=2021秒时瓢虫在点D处,再结合点D的坐标即可得出结论.本题考查了规律型中点的坐标,根据瓢虫的运动规律找出当t=2021秒时瓢虫在点D处是解题的关键.10.【答案】A【知识点】坐标与图形性质、图形规律问题【解析】【分析】本题主要考查平面直角坐标系中点的坐标的变化规律,理解题意,求出“凸”形的周长是解题关键.先根据已知点的坐标,求出凸形ABCDEGHP的周长为20,根据2019÷20的余数为19,即可得出答案.【解答】解:∵A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2),∴“凸”形ABCDEGHP的周长为:AB+BC+CD+DE+EG+GH+HP+PA=2+2+2+2+6+2+2+2=20,∵2019÷20=100······19,余数为19,∴细线另一端所在位置的点在P处上面1个单位的位置,坐标为(1,1).故选A.11.【答案】(-4,0)或(4,0)【知识点】三角形的面积、分类讨论思想【解析】【分析】本题考查了坐标与图形性质,三角形的面积,难点在于要分情况讨论.【解答】解:∵点B在x轴上∴设B点的坐标为:(m,0),∴OB=|m|,又∵A(0,-3),根据△OAB的面积是6得:×OB×36=12×3×|m|6=12m=±4,故答案为(-4,0)或(4,0).12.【答案】(3,3)或(6,-6)【知识点】平面直角坐标系中点的坐标【解析】略13.【答案】-3;12【知识点】轴对称中的坐标变化【解析】解:∵点P的坐标是(m,-1),且点P关于x轴对称的点的坐标是(-3,2n),∴m=-3;2n=1,即n=1.2平面内关于x轴对称的两个点的坐标:横坐标不变,纵坐标互为相反数.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.14.【答案】二【解析】略15.【答案】(2,1)【解析】解:由题意知四边形BEB'D是正方形,∴点B'的横坐标与点E的横坐标相同,点B'的纵坐标与点D的纵坐标相同,∴点B'的坐标为(2,1).16.【答案】(-4,3)或(4,-3)【知识点】两点间的距离公式*、平行线的性质【解析】解:依照题意画出图形,如图所示.设点C 的坐标为(x ,y ),∵AB ∥OC 且AB =OC ,∴{x −0=(−a −4)−(−a)y −0=a +3−a或{0−x =(−a −4)−(−a)0−y =a +3−a, 解得:{x =−4y =3或{x =4y =−3, ∴点C 的坐标为(-4,3)或(4,-3).故答案为:(-4,3)或(4,-3).设点C 的坐标为(x ,y ),由AB ∥OC 、AB =OC 以及点A 、B 的坐标,即可求出点C 的坐标.本题考查了平行线的性质以及两点间的距离公式,依照题意画出图形,利用数形结合解决问题是解题的关键.17.【答案】解:(1)∵点P (2m +4,m -1)在y 轴上,∴2m +4=0,解得m =-2,所以,m -1=-2-1=-3,所以,点P 的坐标为(0,-3);(2)∵点P 的纵坐标比横坐标大3,∴(m -1)-(2m +4)=3,解得m =-8,m -1=-8-1=-9,2m +4=2×(-8)+4=-12,所以,点P 的坐标为(-12,-9);(3)∵点P 到x 轴的距离为2,解得m=-1或m=3,当m=-1时,2m+4=2×(-1)+4=2,m-1=-1-1=-2,此时,点P(2,-2),当m=3时,2m+4=2×3+4=10,m-1=3-1=2,此时,点P(10,2),∵点P在第四象限,∴点P的坐标为(2,-2).【知识点】平面直角坐标系中点的坐标【解析】(1)根据y轴上点的横坐标为0列方程求出m的值,再求解即可;(2)根据纵坐标比横坐标大3列方程求解m的值,再求解即可;(3)根据点P到x轴的距离列出绝对值方程求解m的值,再根据第四象限内点的横坐标是正数,纵坐标是负数求解.本题考查了点的坐标,熟练掌握坐标轴上点的坐标特征是解题的关键,(3)要注意点在第四象限.18.【答案】解:(1)∵(a-5)2+|b+2|+√c−3=0,∴a=5,b=-2,c=3,则A (0,5),В (-2,0) ,C(3, 3),如图:过D作DN⊥y轴,过C作CM⊥x轴,垂足分别为N、M,延长BA交DN于G,延长DC交BM于H,则BM=5,CM=3,OA=5,∵四边形ABCD为平行四边形,又DN //BH .∴四边形BHDG 为平行四边形,∴∠ABM =∠CDN .∵四边形ABCD 为平行四边形,∴∠ABC =∠ADC ,∴∠CBM =∠ADN ,且AD =BC .在△BCM 和△DAN 中,∠CBM =∠ADN ,∠BMC =∠DNA =90°,BC =AD , ∴△BCM ≌△DAN ,∴DN =BM =5,AN =CM =3,∴ON =OA +AN =5+3=8,∴D 点的坐标为(5,8);(2)设F (m ,0),过点C 作CM ⊥x 轴于点M ,∴S △AOF =S △CMF +S 四边形AOMC ,∴12×m ×5=12×(m -3)×3+12×(3+5)×3, 解得m =152,∴F (152,0),∴S △BCF =574.【知识点】坐标与图形性质、平行四边形的判定与性质、非负数的性质:绝对值、三角形的面积、非负数的性质:偶次方、非负数的性质:算术平方根、全等三角形的判定与性质【解析】本题考查了坐标与图形性质,平行四边形的性质与判定,全等三角形的性质与判定等知识,解题时要正确作出辅助线,并且根据利用这些性质进行解题.(1)首先由已知确定A (0,5),B (-2,0),C (3,3),过D 作DN ⊥y 轴,过C 作CM ⊥x 轴,垂足分别为N 、M ,延长BA 交DN 于G ,延长DC 交BM 于H ,根据AAS 判定△BCM ≌△DAN ,进而求出DN 、BM 、AN 、CM 、ON ,OA 的值,解答即可; (2)设F (m ,O ),过点C 作CM ⊥x 轴于点M ,根据S △AOF =S △CMF +S 四边形AOMC 列式进而求得m 值,则可确定F 的坐标,再根据S △BCF =12·BF ・CN 解答即可. 19.【答案】解:(1)如图所示,三角形A 1B 1C 1即为所求;(2)如图所示,取格点D ,E ,则S △ABC =S 梯形CDEB -S △ADC -S △ABE=12×(1+3)×3-12×1×3-12×1×2 =6-32-1=72.【知识点】作图-平移变换、三角形的面积【解析】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.(1)依据三角形ABC 先向左平移4个单位长度,再向下平移3个单位长度,即可得到三角形A 1B 1C 1.(2)依据割补法进行计算,即可得到三角形ABC 的面积.20.【答案】解:(1)∵ |a +2|+|b -3|=0,∴a =-2,b =3,∵ S 四边形AOBC =9.×(2+BC)×3=9∴12∴BC=4,∵CB⊥y轴于点B,∴C(-4,3),(2)设D(0,m),则S四边形ADBC=9-m,S△ADC=S△AOC+S△ODC-S△AOD=3+2m-m=m+3,(9−m),∴m+3=23,解得m=95).∴D(0,95【知识点】四边形综合、平面直角坐标系中点的坐标【解析】本题属于四边形综合题,考查了四边形的面积,三角形的面积等知识,解题的关键是学会利用参数,构建方程解决问题,属于中考常考题型.(1)利用非负数的性质求出a,b的值,可得结论.(2)设D(0,m).根据,构建方程求解即可.21.【答案】解:(1)(8,2);(3n﹣1,2);(2)∵2022÷(1+2)=674,∴需要大小正方形各674.【知识点】平面直角坐标系中点的坐标【解析】【分析】(1)根据已知条件与图形可知,大正方形的对角线长为2,由此可得规律:A1,A2,A3,…,A n各点的纵坐标均为2,横坐标依次大3,由此便可得结果;(2)根据一个小正方形与一个大正方形所构成的护栏长度,计算出2022米包含多少这样的长度,即可得出结果.解:(1)根据已知条件与图形可知,大正方形的对角线长为2,∴A 1,A 2,A 3,…,A n 各点的纵坐标均为2,横坐标依次大3,∴A 3的坐标为(8,2),A n 的坐标为(3n ﹣1,2);(2)见答案.22.【答案】(-1,4) (3,0) (0,3)【知识点】平移与全等、平移中的坐标变化【解析】解:(1)∵点A (4,-1),将点A 向左平移5个单位再向上平移5个单位得到点B ,∴点B (-1,4)∵直线l 上所有点的横坐标x 与纵坐标y 都是二元一次方程x +y =3的解.∴直线l 的解析式为:y =-x +3,∴当x =0时,y =3,当y =0时,x =3,∴点C (3,0),点D (0,3)故答案为:(-1,4),(3,0),(0,3)(2)如图1,连接AO ,BO ,∵S △AOB =S △BOC +S △AOC ,∴S △AOB =12×3×4+12×3×1=152, (3)设点P (a ,-a +3)当点P 在线段AB 上时,∵S △OBP :S △OPA =1:2,且S △AOB =152∴S △OPA =5,∵S △OPA =S △OPC +S △OCA ,∴5=12×3×(3-a )+32,∴a =23,∴点P (23,73),当点P 在点B 的左侧时,∵S △OBP :S △OPA =1:2,且S △AOB =152,∴S △OPA =15,∵S △OPA =S △OPC +S △OCA ,∴15=12×3×(3-a )+32,∴a =-6,∴点P (-6,9)(1)由平移的性质可求点B 坐标,由题意可得直线l 的解析式,即可求点C ,点D 坐标;(2)由三角形面积公式可求解;(3)分两种情况讨论,由三角形的面积公式可求解.本题是几何变换综合题,考查了平移的性质,一次函数的性质,三角形的面积公式,利用分类讨论思想解决问题是本题的关键.。
掌握初一数学:重难点题型全面解析
掌握初一数学:重难点题型全面解析引言初一下册数学内容丰富,涵盖了相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组等多个重要知识点。
本文将对这些重难点题型进行详细解析,帮助学生更好地掌握初一数学。
一、相交线和平行线1.重难点解析:平行线的性质:平行线的性质是初中数学的重要内容,常以选择题和填空题形式出现。
1.例题:已知两条平行线被第三条直线所截,求对应角、内错角和同位角的关系。
2.解析:利用平行线的性质,找出对应角、内错角和同位角的相等关系。
2.平行线的判别方法:掌握平行线的判别方法是解题的关键。
1.例题:给出几组角度,判断哪些角度可以判定两条直线平行。
2.解析:根据平行线的判别方法,判断角度关系是否满足平行条件。
二、实数1.重难点解析:实数的概念和运算:实数的概念和运算是基础内容,常以计算题形式出现。
1.例题:计算给定实数的加减乘除。
2.解析:熟练掌握实数的运算规则,进行正确计算。
2.实数的分类:了解实数的分类及其性质。
1.例题:将给定的数分类为有理数或无理数。
2.解析:根据实数的定义和性质进行分类。
三、平面直角坐标系1.重难点解析:坐标系的基本概念:掌握平面直角坐标系的基本概念和应用。
1.例题:在坐标平面上标出给定点的坐标。
2.解析:理解坐标系的构成,正确标出点的位置。
2.函数图像的绘制:学会绘制简单函数的图像。
1.1.例题:绘制一次函数的图像。
2.解析:根据函数的解析式,确定函数图像的形状和位置。
四、二元一次方程组1.重难点解析:方程组的解法:掌握解二元一次方程组的方法,如代入法和加减法。
1.例题:解给定的二元一次方程组。
2.解析:选择合适的方法,逐步求解方程组。
2.应用题的解法:将实际问题转化为二元一次方程组进行求解。
1.例题:根据题意列出二元一次方程组并求解。
2.解析:理解题意,正确列出方程组并求解。
五、不等式和不等式组1.重难点解析:不等式的解法:掌握一元一次不等式和不等式组的解法。
《平面直角坐标系单元复习》教案
学案☆七年级(下)【课题】第七章平面直角坐标系单元复习(一)【学习目标】(1)认识平面直角坐标系,了解点与坐标的对应关系.(2) 能用坐标表示平移变换,感受代数问题与几何问题的相互转换,体会平面直角坐标系是数与形之间的桥梁.(3)利用平面直角坐标系解决图形变化问题,探究图形变化规律.体会数学的应用价值.【重点】利用平面直角坐标系解决图形变化问题,探究图形变化规律.【难点】探索图形变化规律时,点的变化规律.【学法指导】结合教材和预习学案,先独立思考,遇到困难小组内进行帮扶,完成学习任务.【学具准备】导学案,教材,练习册,练习本,作图工具.一、【自主学习检测】〖题组一〗平面直角坐标系的意义:在平面内有公共原点且互相垂直的两条数轴组成平面直角坐标系。
水平的数轴为,铅直的数轴为,它们的公共原点O为直角坐标系的.可用有序数对(a ,b)表示平面内任一点P的坐标.a 表示,b表示.〖题组二〗象限: 两坐标轴把平面分成________,坐标轴上的点不属于_______。
各象限内点的坐标符号特点: 第一象限,第二象限________,第三象限________,第四象限_______.〖题组三〗坐标轴上点的坐标特点: 横轴上的点________为零,纵轴上的点________为零.点到坐标轴的距离:点(x,y)到x轴的距离为_______;点(x,y)到y轴的距离为_______.〖题组四〗利用平面直角坐标系绘制某一区域的各点分布情况的平面图包括以下过程:(1)建立适当的坐标系,即选择适当的点作为原点,确定x轴、y轴的正方向; (注重寻找最佳位置)(2)根据具体问题确定恰当的________,在数轴上标出________;(3)在坐标平面上画出各点,写出________.〖题组五〗一个图形在平面直角坐标系中进行平移,其坐标就要发生相应的变化, 可以简单地理解为:左、右平移____坐标不变, ____坐标变,变化规律是左减右加;上下平移____坐标不变,____坐标变,变化规律是上加下减。
初一下册数学平面直角坐标系的知识点
初一下册数学平面直角坐标系的知识点初一下册数学平面直角坐标系的知识点在日复一日的学习中,大家最不陌生的就是知识点吧!知识点就是学习的重点。
为了帮助大家掌握重要知识点,下面是店铺为大家收集的初一下册数学平面直角坐标系的知识点,欢迎大家分享。
初一下册数学平面直角坐标系的知识点篇11、有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)其中a表示横轴,b表示纵轴。
2、平面直角坐标系:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,竖直的数轴叫做Y轴或纵轴,X 轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
3、横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4、坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。
坐标轴上的点不在任何一个象限内。
6、特殊位置的点的坐标的特点(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
(2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
(3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
(4)点到轴及原点的距离。
点到x轴的距离为|y|;点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;7、在平面直角坐标系中对称点的特点(1)关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。
第七章 平面直角坐标系 七年级数学下册单元复习(人教版)
7-20-7
【典例讲解】
例10. 将顶点坐标为(-4,-1),(1, 1),(-1,4)的三角形向右平移2个单 位长度,再向上平移3个单位长度,则平移 后的三角形三个顶点的坐标分别是( C ) A.(2,2),(3,4),(1,7) B.(-2,2),(4,3),(1,7) C.(-2,2),(3,4),(1,7) D.(2,-2),(3,3),(1,7)
①由两个数组成;
②两数有顺序性;(a,b)与(b,a)表示的是两个不同的位置(a≠b).
③成对出现.
(二)平面直角坐标系
1、平面直角坐标系的定义
平面直角坐标系:平面内两条互相垂直、原点重合的数轴,组成平面直
角坐标系。水平方向的数轴称为x轴或横轴,习惯取向右的方向为正方向;
知识点一 平面直角坐标系
竖直方向上的数轴称为y轴或纵轴,习惯取向上的方向为正方向; 两坐标轴的交点是平面直角坐标系的原点 .
辨识平面直角坐标系的“三要素”: 1. 两条数轴;2. 共原点;3. 互相垂直. 注意:一般取向上、向右为正方向.
知识点一 平面直角坐标系
2、点的坐标表示方法
平面内任意一点P,过P点分别向x、y轴作垂线,垂足在x轴、y轴上对应的数a、b 分别叫做点p的横坐标、纵坐标, 则有序数对(a,b)叫做点P的坐标,记为P(a,b) 注意:在写点的坐标时,必须先写横坐标,再写纵坐标, 中间用逗号隔开,最后用小括号把它们括起来; 点的坐标是有序实数对,(a,b) 和(b,a)(a ≠ b) 虽然数字相同,但由于顺 序不同,表示的位置就不同. 3. 平面直角坐标系内的点与有序实数对的一一对应关系: (1)坐标平面内的任意一点,都有唯一的一个有序实数对(点的坐标)与它对应. (2)任意一个有序实数对(点的坐标)在坐标平面内都有唯一的一个点和它对应.
七年级数学平面直角坐标系重点题型及知识点
七年级数学平面直角坐标系重点题型及知识点单选题1、如图,将线段 AB 先向右平移 5 个单位,再将所得线段绕原点按顺时针方向旋转 90°,得到线段A′B′,则点 B 的对应点B′的坐标是()A.(-4 , 1)B.(-1, 2)C.(4 ,- 1)D.(1 ,- 2)答案:D解析:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,-2),故选D.小提示:本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.2、如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( )A.(2,3)B.(0,3)C.(3,2)D.(2,2)答案:D解析:解:若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为(2,2).故选D.3、已知x是整数,当|x−√30|取最小值时,x的值是( )A.5B.6C.7D.8答案:A解析:根据绝对值的意义,找到与√30最接近的整数,可得结论.解:∵√25<√30<√36,∴5<√30<6,且与√30最接近的整数是5,∴当|x−√30|取最小值时,x的值是5,故选A.小提示:本题考查了算术平方根的估算和绝对值的意义,熟练掌握平方数是关键.4、如图为某停车场的平面示意图,若“奥迪”的坐标是(-2,-1),“奔驰”的坐标是(1,-1),则“东风标致”的坐标是()A.(-3,2)B.(3,2)C.(-3,-2)D.(3,-2)答案:D解析:由题意,先建立平面直角坐标系,确定原点的位置,即可得到“东风标致”的坐标.解:∵“奥迪”的坐标是(−2,−1),“奔驰”的坐标是(1,−1),∴建立平面直角坐标系,如图所示:∴“东风标致”的坐标是(3,−2);故选:D.小提示:本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.5、课间操时,小华、小军、小刚的位置如图所示,小军对小刚说,如果我的位置用(–1,0)表示,小华的位置用(–3,–1)表示,那么小刚的位置可以表示成()A.(1,2)B.(1,3)C.(0,2)D.(2,2)答案:A解析:如图,根据题意作出直角坐标系,即可得出小刚的位置.如图,小刚的位置可以表示为(1,2)小提示:此题主要考查直角坐标系的定义,解题的关键是根据题意画出直角坐标系.6、下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.答案:B解析:A、∵AB//CD,∴∠1+∠2=180°.故本选项错误.B、如图,∵AB//CD,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本选项正确.C、∵AB//CD,∴∠BAD=∠CDA,不能得到∠1=∠2.故本选项错误.D、当梯形ABDC是等腰梯形时才有,∠1=∠2.故本选项错误.故选:B.7、如图,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,则小明走下列线路不能到达学校的是()A.(0,4)→(0,0)→(4,0)B.(0,4)→(4,4)→(4,0)C.(0,4)→(3,4)→(4,2)→(4,0)D.(0,4)→(1,4)→(1,1)→(4,1)→(4,0)答案:C解析:根据点的坐标的定义结合图形对各选项分析判断即可得解.A、(0,4)→(0,0)→(4,0)都能到达,故本选项错误;B、(0,4)→(4,4)→(4,0)都能到达,故本选项错误;C、(3,4)→(4,2)不都能到达,故本选项正确;D、(0,4)→(1,4)→(1,1)→(4,1)→(4,0)都能到达,故本选项错误.故选C.小提示:本题考查了坐标确定位置,熟练掌握点的坐标的定义并准确识图是解题的关键.8、如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是()A.(﹣1,2)B.(﹣9,6)C.(﹣1,6)D.(﹣9,2)答案:A解析:根据平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减即可解决问题;由题意P(﹣5,4),向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是(﹣1,2),故选:A.小提示:本题考查坐标与平移,解题的关键是记住平移规律:坐标,右移加,左移减;纵坐标,上移加,属于中考常考题型.填空题9、如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示1 km.甲、乙两人对着地图如下描述路桥区A处的位置.则椒江区B处的坐标是___.答案:(10,8√3)解析:根据题意建立如图所示的直角坐标系,则OA=2,AB=16,∠ABC=30°,所以AC=8,BC=8√3,则OC=OA+AC=10,所以B(10,8√3),故答案为(10,8√3).10、观察下列各式:√1+13=2√13,√2+14=3√14,√3+15=4√15,……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________.答案:√n+1n+2=(n+1)√1n+2(n≥1)解析:观察分析可得√1+13=(1+1)√11+2,√2+14=(2+1)√12+2,√3+15=(3+1)√13+2,则将此规律用含自然数n(n≥1)的等式表示出来是√n+1n+2=(n+1)√1n+2(n≥1)解:根据题意得:√1+13=(1+1)√11+2,√2+14=(2+1)√12+2,√3+15=(3+1)√13+2,……,发现的规律用含自然数n(n≥1)的等式表示出来是√n+1n+2=(n+1)√1n+2(n≥1).所以答案是:√n+1n+2=(n+1)√1n+2(n≥1)小提示:本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.11、在平面直角坐标系中,将点(-b,-a)称为点(a,b)的“关联点”(例如点(-2,-1)是点(1,2)的“关联点”).如果一个点和它的“关联点”在同一象限内,那么这一点在第_______象限.答案:二、四.解析:试题解析:根据关联点的特征可知:如果一个点在第一象限,它的关联点在第三象限.如果一个点在第二象限,它的关联点在第二象限.如果一个点在第三象限,它的关联点在第一象限.如果一个点在第四象限,它的关联点在第四象限.故答案为二,四.12、如图是玉渊潭公园部分景点的分布示意图,在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,当表示西桥的点的坐标为(−6,1),表示中堤桥的点的坐标为(1,2)时,表示留春园的点的坐标为___.答案:(9,-1)解析:根据表示西桥的点的坐标为(−6,1),表示中堤桥的点的坐标为(1,2)建立平面直角坐标系,确定坐标原点的位置,进而可确定表示留春园的点的坐标.解:根据题意可建立如下所示平面直角坐标系,则表示留春园的点的坐标为(9,−1),故答案为(9,−1).小提示:此题考查坐标确定位置,解题的关键就是确定坐标原点和x,y轴的位置.13、将点P(2,−3)向右平移4个单位得到点P′,则点P′的坐标为__________.答案:(6,−3)解析:根据平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减)求解.解:将点P(2,﹣3)向右平移4个单位长度得点P′,则点P′的坐标为(6,﹣3).所以答案是:(6,﹣3).小提示:本题考查了坐标与图形变化-平移,熟练掌握平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减)是解题的关键.解答题14、如图,用(−1,−1)表示A点的位置,用(3,0)表示B点的位置.(1)画出直角坐标系.(2)点E的坐标为______.(3)△CDE的面积为______.答案:(1)见解析;(2)(3,2);(3)3.5.解析:(1)根据坐标与象限的关系,建立直角坐标系,将(−1,−1)、(3,0)表示在直角坐标系中即可;(2)根据坐标与象限的关系,点E在第一象限,横坐标、纵坐标均为正数,据此解题(3)由割补法解题,△CDE的面积等于梯形面积减去两个直角三角形面积即可解题.(1)如图所示,即为所求(2)点E在第一象限,横坐标、纵坐标均为正数,∴E(3,2)所以答案是:(3,2);(3)S△CDE=(1+3)2×3−12×1×3−12×1×2=3.5所以答案是:3.5.小提示:本题考查坐标与图形,是重要考点,难度较易,掌握相关知识是解题关键.15、在如图所示的平面直角坐标系中表示下面各点A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(5,6),G(5,0)根据描点回答问题:(1)A点到原点的距离是________.(2)将点C向x轴的负方向平移6个单位,它与点______重合.(3)连接CE,则直线CE与坐标轴是什么关系?(4)在以上七个点中,任意两点所形成的直线中,直接写出互相垂直的直线.答案:(1)3;(2)D;(3)与y轴平行,与x轴垂直;(4)直线CD与CE垂直,直线CD与FG垂直.解析:(1)根据A点坐标可得出A点在y轴上,即可得出A点到原点的距离;(2)根据点的平移的性质得出平移后的位置;(3)利用图形性质得出直线CE与坐标轴的位置关系;(4)利用图形性质得出互相垂直的直线.解:由题意得,如图所示:(1)A点到原点的距离是3.(2)将点C向x轴的负方向平移6个单位,它与点D重合.(3)直线CE与y轴平行,与x轴垂直;(4)直线CD与CE垂直,直线CD与FG垂直.故答案为(1)3;(2)D;(3)垂直;(4)直线CD与CE垂直,直线CD与FG垂直.小提示:此题主要考查了点的坐标性质以及平移的性质,根据坐标系得出各点的位置是解题关键.。
2024年七年级数学下册专题7.1 平面直角坐标系【八大题型】(举一反三)(人教版)(解析版)
专题7.1 平面直角坐标系【八大题型】【人教版】【题型1 判断点所在的象限】 (1)【题型2 坐标轴上点的坐标特征】 (3)【题型3 点到坐标轴的距离】 (4)【题型4 平行与坐标轴点的坐标特征】 (6)【题型5 坐标确定位置】 (8)【题型6 点在坐标系中的平移】 (11)【题型7 图形在坐标系中的平移】 (13)【题型8 图形在格点中的平移变换】 (15)【题型1 判断点所在的象限】【例1】(2022春•洪山区期末)已知点P(x,y)在第四象限,则点Q(﹣x﹣3,﹣y)在( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据第四象限的横纵坐标范围,可求得x,y的取值范围,再确定Q点横纵坐标的取值范围即可解答.【解答】解:点P(x,y)在第四象限,∴x>0,y<0,∴﹣x﹣3<0,﹣y>0,∴点Q(﹣x﹣3,﹣y)在第二象限.故选:B.【变式1-1】(2022春•长沙期末)已知点P(﹣a,b),ab>0,a+b<0,则点P在( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据有理数的乘法、有理数的加法,可得a、b的符号,根据第一象限内点的横坐标大于零,纵坐标大于零,可得答案.【解答】解:因为ab>0,a+b<0,所以a<0,b<0,所以﹣a>0,所以点P(﹣a,b)在第四象限,故选:D.【变式1-2】(2022春•青山区期末)已知,点A的坐标为(m﹣1,2m﹣3),则点A一定不会在( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据每个象限点的坐标的符号特征列出不等式组,解不等式组,不等式组无解的选项符合题意.【解答】解:A选项,{m―1>02m―3>0,解得:m>32,故该选项不符合题意;B选项,{m―1<02m―3>0,不等式组无解,故该选项符合题意;C选项,{m―1<02m―3<0,解得:m<1,故该选项不符合题意;D选项,{m―1>02m―3<0,解得:1<m<32,故该选项不符合题意;故选:B.【变式1-3】(2022春•晋州市期中)对任意实数x,点P(x,x2+3x)一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】利用各象限内点的坐标性质分析得出答案.【解答】解:当x>0,则x2+3x>0,故点P(x,x2+3x)可能在第一象限;当x<0,则x2+3x>0或x2+3x<0,故点P(x,x2+3x)可能在第二、三象限;当x=0时,点P(x,x2+3x)在原点.故点P(x,x2+3x)一定不在第四象限.故选:D.均为0.【题型2 坐标轴上点的坐标特征】【例2】(2022春•陇县期中)在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点P (m﹣1,1﹣m)在( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据x轴上的点纵坐标为0,可得m+1=0,从而求出m的值,进而求出点P的坐标,最后根据平面直角坐标系中每一象限点的坐标特征,即可解答.【解答】解:由题意得:m+1=0,∴m=﹣1,当m=﹣1时,m﹣1=﹣2,1﹣m=2,∴点P(﹣2,2)在第二象限,故选:B.【变式2-1】(2022春•海淀区校级期中)在平面直角坐标系中,点P的坐标为(2m﹣4,m+1),若点P在y轴上,则m的值为( )A.﹣1B.1C.2D.3【分析】根据y轴上的点横坐标为0,可得2m﹣4=0,然后进行计算即可解答.【解答】解:由题意得:2m﹣4=0,解得:m=2,故选:C.【变式2-2】(2022春•仓山区校级期中)已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用x轴以及y轴上点的坐标得出m,n的值,进而得出答案.【解答】解:∵点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,∴2m+3=0,n﹣4=0,解得:m=―32,n=4,则点C(m,n)在第二象限.故选:B.【变式2-3】(2022春•东莞市期中)已知点P(2a﹣4,a+1),若点P在坐标轴上,则点P 的坐标为 .【分析】分两种情况:当点P在x轴上,当点P在y轴上,分别进行计算即可解答.【解答】解:分两种情况:当点P在x轴上,a+1=0,∴a=﹣1,当a=﹣1时,2a﹣4=﹣6,∴点P的坐标为:(﹣6,0),当点P在y轴上,2a﹣4=0,∴a=2,当a=2时,a+1=3,∴点P的坐标为:(0,3),综上所述,点P的坐标为:(﹣6,0)或(0,3),故答案为:(﹣6,0)或(0,3).【题型3 点到坐标轴的距离】【例3】(2022春•巴南区期末)已知点P在x轴的下方,若点P到x轴的距离是3,到y 轴的距离是4,则点P的横坐标与纵坐标的和为 .【分析】根据题意可得点P在第三象限或第四象限,再根据点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】解:∵点P在x轴下方,点P到x轴的距离是3,到y轴的距离是4,∴点P的横坐标为±4,纵坐标为﹣3,∴点P的坐标为(4,﹣3)或(﹣4,﹣3),点P的横坐标与纵坐标的和为4﹣3=1或﹣4﹣3=﹣7.故答案为:1或﹣7.【变式3-1】(2021秋•城固县期末)已知点M(a,b)在第一象限,点M到x轴的距离等于它到y轴距离的2倍,且点M到两坐标轴的距离之和为6,则点M的坐标为 .【分析】根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,可得答案.【解答】解:因为点M(a,b)在第一象限,所以a>0,b>0,又因为点M(a,b)在第一象限,点M到x轴的距离等于它到y轴距离的2倍,且点M 到两坐标轴的距离之和为6,所以{b=2aa+b=6,解得{a=2b=4,所以点M的坐标为(2,4).故答案为:(2,4).【变式3-2】(2022春•云阳县期中)坐标平面内有一点A(x,y),且点A到x轴的距离为3,到y轴的距离恰为到x轴距离的2倍.若xy<0,则点A的坐标为( )A.(6,﹣3)B.(﹣6,3)C.(3,﹣6)或(﹣3,6)D.(6,﹣3)或(﹣6,3)【分析】根据题意可得x,y异号,然后再利用点到x的距离等于纵坐标的绝对值,点到y 的距离等于横坐标的绝对值,即可解答.【解答】解:∵xy<0,∴x,y异号,∵点A到x轴的距离为3,到y轴的距离恰为到x轴距离的2倍,∴点A(6,﹣3)或(﹣6,3),故选:D.【变式3-3】(2021秋•阳山县期末)在平面直角坐标系中,点A的坐标是(3a﹣5,a+1).若点A到x轴的距离与到y轴的距离相等,且点A在y轴的右侧,则a的值为( )A.1B.2C.3D.1 或3【分析】根据点A到x轴的距离与到y轴的距离相等可得3a﹣5=a+1或3a﹣5=﹣(a+1),解出a的值,再由点A在y轴的右侧可得3a﹣5>0,进而可确定a的值.【解答】解:∵点A到x轴的距离与到y轴的距离相等,∴3a﹣5=a+1或3a﹣5=﹣(a+1),解得:a=3或1,∵点A在y轴的右侧,∴点A的横坐标为正数,∴3a﹣5>0,∴a>5 3,∴a=3.故选:C.【题型4 平行与坐标轴点的坐标特征】【例4】(2022春•东莞市期末)在平面直角坐标系中,点A的坐标为(3,2),AB平行于x轴,若AB=4,则点B的坐标为( )A.(7,2)B.(1,5)C.(1,5)或(1,﹣1)D.(7,2)或(﹣1,2)【分析】线段AB∥x轴,A、B两点纵坐标相等,又AB=4,B点可能在A点左边或者右边,根据距离确定B点坐标.【解答】解:∵AB∥x轴,∴A、B两点纵坐标都为2,又∵AB=4,∴当B点在A点左边时,B(﹣1,2),当B点在A点右边时,B(7,2);故选:D.【变式4-1】(2022春•延津县期中)在平面直角坐标系中,点A(﹣2,1),B(2,3),C (a,b),若BC∥x轴,AC∥y轴,则点C的坐标为( )A.(﹣2,1)B.(2,﹣3)C.(2,1)D.(﹣2,3)【分析】根据已知条件即可得到结论.【解答】解:∵点A(﹣2,1),B(2,3),C(a,b),BC∥x轴,AC∥y轴,∴b=3,a=﹣2,∴点C的坐标为(﹣2,3),故选:D.【变式4-2】(2022春•涪陵区期末)在平面直角坐标系中,若点P和点Q的坐标分别为P (﹣2,m),Q(﹣2,1),点P在点Q的上方,线段PQ=5,则m的值为( )A.6B.5C.4D.7【分析】借助图形,采用数形结合的思想求解.【解答】解:∵P(﹣2,m),Q(﹣2,1),点P在点Q的上方,线段PQ=5,∴m=1+5=6.故选:A.【变式4-3】(2022春•硚口区期中)如图,已知点A(4,0),B(0,2),C(﹣5,0),CD∥AB交y轴于点D.点P(m,n)为线段CD上(端点除外)一点,则m与n满足的等量关系式是( )A.m+2n=﹣5B.2m+n=﹣10C.m﹣n=﹣5D.2m﹣n=﹣6【分析】利用平移的性质可得点B与C对应时,点A的对应点为(﹣1,﹣2),由此可确定点P满足的等量关系式.【解答】解:∵AB∥CD,A(4,0),B(0,2),C(﹣5,0),当B与C对应时,点A平移后对应的点是(﹣1,﹣2),∵点P(m,n)为线段CD上(端点除外)一点,将点C(﹣5,0)和(﹣1,﹣2)分别代入m+2n=﹣5,2m+n=﹣10,m﹣n=﹣5,2m﹣n=﹣6中,只有m+2n=﹣5满足条件.故选:A.【题型5 坐标确定位置】【例5】(2022春•中山市期中)中国象棋具有悠久的历史,战国时期,就有了关于象棋的正式记载,如图是中国象棋棋局的一部分,如果用(2,﹣1)表示“炮”的位置,(﹣2,0)表示“士”的位置,那么“将”的位置应表示为( )A.(﹣2,3)B.(0,﹣5)C.(﹣3,1)D.(﹣4,2)【分析】直接利用已知点坐标建立平面直角坐标系,进而得出答案.【解答】解:如图所示:“将”的位置应表示为(﹣3,1).故选:C.【变式5-1】(2021秋•渠县校级期中)在大型爱国主义电影《长津湖》中,我军缴获了敌人防御工程的坐标地图碎片(如图),若一号暗堡坐标为(1,2),四号暗堡坐标为(﹣3,2),指挥部坐标为(0,0),则敌人指挥部可能在( )A.A处B.B处C.C处D.D处【分析】根据一号暗堡和四号暗堡的横纵坐标分别确定x轴和y轴的大致位置,然后画出直角坐标系即可得到答案.【解答】解:∵一号暗堡的坐标为(1,2),四号暗堡的坐标为(﹣3,2),∴它们的连线平行于x轴,∵一号暗堡和四号暗堡的纵坐标为正数,四号暗堡离y轴要远,如图,∴B点可能为坐标原点,∴敌军指挥部的位置大约是B处.故选:B.【变式5-2】(2022春•朝阳区期末)为更好的开展古树名木的系统保护工作,某公园对园内的6棵百年古树都利用坐标确定了位置,并且定期巡视.(1)在如图所示的正方形网格中建立平面直角坐标系xOy,使得古树A、B的位置分别表示为A(1,2),B(0,﹣1);(2)在(1)建立的平面直角坐标系xOy中,①表示古树C的位置的坐标为 ;②标出另外三棵古树D(﹣1,﹣2),E(1,0),F(1,1)的位置;③如果“(﹣2,﹣2)→(﹣2,﹣1)→(﹣2,0)→(﹣2,1)→(﹣1,2)→(0,2)→(1,2)→(1,1)→(1,0)→(1,﹣1)→(0,﹣1)→(0,﹣2)→(﹣1,﹣2)”表示园林工人巡视古树的一种路线,请你用这种形式画出园林工人从原点O出发巡视6棵古树的路线(画出一条即可).【分析】(1)根据A(1,2),B(0,﹣1)建立坐标系即可;(2)①根据坐标系中C的位置即可求得;②直接根据点的坐标描出各点;③根据6棵古树的位置得出运动路线即可.【解答】解:(1)如图:(2)①古树C的位置的坐标为(﹣1,2);故答案为:(﹣1,2);②标出D(﹣1,﹣2),E(1,0),F(1,1)的位置如上图;③园林工人从原点O出发巡视6棵古树的路线:(0,0)→(1,0)→(1,1)→(1,3)→(﹣1,2)→(﹣1,2)→(0,1).【变式5-3】(2022春•海淀区校级期中)如图1,将射线OX按逆时针方向旋转β角(0°≤β<360°),得到射线OY,如果点P为射线OY上的一点,且OP=m,那么我们规定用(m,β)表示点P在平面内的位置,并记为P(m,β).例如,图2中,如果OM=5,∠XOM=110,那么点M在平面内的位置,记为M(5,110°),根据图形,解答下列问题:(1)如图3,点N在平面内的位置记为N(6,30°),那么ON= ,∠XON= .(2)如果点A、B在平面内的位置分别记为A(4,30°),B(3,210°),则A、B 两点间的距离为 .【分析】(1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x 轴所夹的角的度数;(2)根据相应的度数判断出AB 是一条线段,从而得出AB 的长为4+3=7.【解答】解:(1)根据点N 在平面内的位置记为N (6,30°)可知,ON =6,∠XON =30°.故答案为:6,30°;(2)如图所示:∵A (4,30°),B (3,210°),∴∠AOX =30°,∠BOX =210°,∴∠AOB =180°,∵OA =4,OB =3,∴AB =4+3=7.故答案为:7.) 【例6】(2022春•洪湖市期中)在平面直角坐标系中,将点(1,﹣4)平移到点(﹣3,﹣2),经过的平移变换为( )A .先向左平移4个单位长度,再向下平移6个单位长度B .先向右平移4个单位长度,再向上平移6个单位长度C .先向左平移4个单位长度,再向上平移2个单位长度)向左平移a 个单位再向上平移b 个单向下平移b 个单位D.先向右平移4个单位长度,再向下平移2个单位长度【分析】根据点向左平移,纵坐标不变的特点即可求解.【解答】解:∵点(1,﹣4)平移到点(﹣3,﹣2),∴﹣3﹣1=﹣4,∴﹣2﹣(﹣4)=2,∴先向左平移4个单位长度,再向上平移2个单位长度故选:C.【变式6-1】(2022春•武侯区期末)在平面直角坐标系中,将点M(3m﹣1,m﹣3)向上平移2个单位长度得到点M',若点M'在x轴上,则点M的坐标是( )A.(2,﹣2)B.(14,2)C.(﹣2,―103)D.(8,0)【分析】让点M的纵坐标加2后等于0,求得m的值,进而得到点M的坐标.【解答】解:∵将点M(3m﹣1,m﹣3)向上平移2个单位长度得到点M',若点M'在x 轴上,∴m﹣3+2=0,解得:m=1,∴3m﹣1=2,m﹣3=﹣2,∴M(2,﹣2).故选:A.【变式6-2】(2022春•碑林区校级期中)在平面直角坐标系中,将点P(a,b)向右平移3个单位,再向下平移2个单位,得到点Q.若点Q位于第四象限,则a,b的取值范围是( )A.a>0,b<0B.a>1,b<2C.a>1,b<0D.a>﹣3,b<2【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【解答】解:P(a,b)向右平移3个单位,再向下平移2个单位得到(a+3,b﹣2),∵Q位于第四象限,∴a+3>0,b﹣2<0,∴a>﹣3,b<2.故选D.【变式6-3】(2021秋•苏州期末)在平面直角坐标系中,把点P(a﹣1,5)向左平移3个单位得到点Q(2﹣2b,5),则2a+4b+3的值为 .【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【解答】解:将点P(a﹣1,5)向左平移3个单位,得到点Q,点Q的坐标为(2﹣2b,5),∴a﹣1﹣3=2﹣2b,∴a+2b=6,∴2a+4b+3=2(a+2b)+3=2×6+3=15,故答案为:15.【例7】(2022春•胶州市期末)如图,△ABC的顶点坐标A(2,3),B(1,1),C(4,2),将△ABC先向左平移3个单位,再向下平移1个单位,得到△A'B'C',则BC边上一点D(m,n)的对应点D'的坐标是( )A.(m+3,n+1)B.(m﹣3,n﹣1)C.(﹣1,2)D.(3﹣m,1﹣n)【分析】根据坐标平移规律解答即可.【解答】解:∵将△ABC先向左平移3个单位,再向下平移1个单位,得到△A'B'C',∴BC边上一点D(m,n)的对应点D'的坐标是(m﹣3,n﹣1).故选:B.【变式7-1】(2022•青岛二模)如图,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段A'B'有一个点P'(a,b),则点P'在AB上的对应点P的坐标为( )A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)【分析】先利用点A它的对应点A′的坐标特征得到线段AB先向右平移2个单位,再向下平移3个单位得到线段A′B′,然后利用点平移的坐标规律写出点P(a,b)平移后的对应点P′的坐标.【解答】解:由图知,线段A'B'向右平移2个单位,再向下平移3个单位即可得到线段AB,所以点P'(a,b)在AB上的对应点P的坐标为(a+2,b﹣3),故选:D.【变式7-2】(2022春•滨城区期中)如图,第一象限内有两点P(m﹣4,n),Q(m,n﹣3),将线段PQ平移,使点P、Q分别落在两条坐标轴上,则点P平移后的对应点的坐标是( )A.(﹣2,0)B.(0,3)C.(0,3)或(﹣4,0)D.(0,3)或(﹣2,0)【分析】设平移后点P、Q的对应点分别是P′、Q′.分两种情况进行讨论:①P′在y 轴上,Q′在x轴上;②P′在x轴上,Q′在y轴上.【解答】解:设平移后点P、Q的对应点分别是P′、Q′.分两种情况:①P′在y轴上,Q′在x轴上,则P′横坐标为0,Q′纵坐标为0,∵0﹣(n﹣3)=﹣n+3,∴n﹣n+3=3,∴点P平移后的对应点的坐标是(0,3);②P′在x轴上,Q′在y轴上,则P′纵坐标为0,Q′横坐标为0,∵0﹣m=﹣m,∴m﹣4﹣m=﹣4,∴点P平移后的对应点的坐标是(﹣4,0);综上可知,点P平移后的对应点的坐标是(0,3)或(﹣4,0).故选:C.【变式7-3】(2022春•如东县期中)三角形ABC在经过某次平移后,顶点A(﹣1,m+2)的对应点为A(2,m﹣3),若此三角形内任意一点P(a,b)经过此次平移后对应点P1(c,d).则a+b﹣c﹣d的值为( )A.8+m B.﹣8+m C.2D.﹣2【分析】由A(﹣1,2+m)在经过此次平移后对应点A1(3,m﹣3),可得△ABC的平移规律为:向右平移3个单位,向下平移5个单位,由此得到结论.【解答】解:∵A(﹣1,2+m)在经过此次平移后对应点A1(2,m﹣3),∴△ABC的平移规律为:向右平移3个单位,向下平移5个单位,∵点P(a,b)经过平移后对应点P1(c,d),∴a+3=c,b﹣5=d,∴a﹣c=﹣3,b﹣d=5,∴a+b﹣c﹣d=﹣3+5=2,故选:C.【题型8 图形在格点中的平移变换】【例8】(2021春•抚远市期末)在平面直角坐标系xOy中,点A的坐标为(0,4),线段MN的位置如图所示,其中点M的坐标为(﹣3,﹣1),点N的坐标为(3,﹣2).(1)将线段MN平移得到线段AB,其中点M的对应点为A,点N的对应点为B.①点M平移到点A的过程可以是:先向 平移 个单位长度,再向 平移 个单位长度;②点B的坐标为 ;(2)在(1)的条件下,若点C的坐标为(4,0),连接AC,BC,求△ABC的面积.【分析】(1)由点M及其对应点的A的坐标可得平移的方向和距离,据此可得点N的对应点B的坐标;(2)割补法求解可得.【解答】解:(1)如图,①点M平移到点A的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;②点B的坐标为(6,3),故答案为:右、3、上、5、(6,3);(2)如图,S△ABC=6×4―12×4×4―12×2×3―12×6×1=10.【变式8-1】(2022春•长沙期末)如图,△ABC的顶点A(﹣1,4),B(﹣4,﹣1),C (1,1).若△ABC向右平移4个单位长度,再向下平移3个单位长度得到△A'B'C',且点C的对应点坐标是C'.(1)画出△A'B'C',并直接写出点C'的坐标;(2)若△ABC内有一点P(a,b)经过以上平移后的对应点为P',直接写出点P'的坐标;(3)求△ABC的面积.【分析】(1)首先确定A、B、C三点平移后的对应点位置,然后再连接即可;(2)由平移的性质可求解;(3)利用面积的和差关系可求解.【解答】解:(1)如图所示:∴点C(5,﹣2);(2)∵△ABC向右平移4个单位长度,再向下平移3个单位长度得到△A'B'C',∴点P'(a+4,b﹣3);(3)S△ABC=5×5―12×3×5―12×2×3―12×5×2=25﹣7.5﹣3﹣5=9.5.【变式8-2】(2022春•江岸区校级月考)如图,三角形A′B′C′是由三角形ABC经过某种平移得到的,点A与点A′,点B与点B′,点C与点C′分别对应,且这六个点都在格点上,观察各点以及各点坐标之间的关系,解答下列问题:(1)分别写出点B和点B′的坐标,并说明三角形A′B′C′是由三角形ABC经过怎样的平移得到的;(2)连接BC′,直接写出∠CBC′与∠B′C′O之间的数量关系 ;(3)若点M(a﹣1,2b﹣5)是三角形ABC内一点,它随三角形ABC按(1)中方式平移后得到的对应点为点N(2a﹣7,4﹣b),求a和b的值.【分析】(1)由图形可得出点的坐标和平移方向及距离;(2)根据平移的性质和平角的定义和平行线的性质即可求解;(3)根据以上所得平移方式,利用“横坐标,右移加,左移减;纵坐标,上移加,下移减”的规律列出关于a、b的方程,解之求得a、b的值.【解答】解:(1)由图知,B(2,1),B′(﹣1,﹣2),三角形A′B′C′是由三角形ABC向左平移3个单位,向下平移3个单位得到的;(2)∠CBC′与∠B′C′O之间的数量关系∠CBC′﹣∠B′C′O=90°.故答案为:∠CBC′﹣∠B′C′O=90°;(3)由(1)中的平移变换得a﹣1﹣3=2a﹣7,2b﹣5﹣3=4﹣b,解得a=3,b=4.故a的值是3,b的值是4.【变式8-3】(2021春•安阳县期中)在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A ,A' .(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.【分析】(1)根据已知图形可得答案;(2)由A(1,0)的对应点A′(﹣4,4)得平移规律,即可得到答案;(3)由(2)平移规律得出m、n的方程.【解答】解:(1)由图知A(1,0),A'(﹣4,4),故答案为:(1,0),(﹣4,4);(2)A(1,0)对应点的对应点A′(﹣4,4)得A向左平移5个单位,向上平移4个单位得到A′,三角形A'B'C'是由三角形ABC向左平移5个单位,向上平移4个单位得到.(3)△ABC内M(m,4﹣n)平移后对应点M'的坐标为(m﹣5,4﹣n+4),∵M'的坐标为(2m﹣8,n﹣4),∴m﹣5=2m﹣8,4﹣n+4=n﹣4,∴m=3,n=6.。
人教版七年级数学下册期考重难点突破、典例剖析与精选练习:平面内直角坐标系基础(解析版)
人教版七年级数学下册期考重难点突破、典例剖析与精选练习:平面内直角坐标系基础知识网络重难突破知识点一平面直角坐标系有序数对概念:有顺序的两个数a与b组成的数对,叫做有序数对,记作(a ,b)。
【注意】a、b的先后顺序对位置的影响。
平面直角坐标系的概念:在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系。
两轴的定义:水平的数轴叫做x轴或横轴,通常取向右为正方向;竖直的数轴叫做y轴或纵轴,通常取向上方向为正方向。
平面直角坐标系原点:两坐标轴交点为其原点。
坐标平面:坐标系所在的平面叫坐标平面。
象限的概念:x轴和y轴把平面直角坐标系分成四部分,每个部分称为象限。
按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限。
【注意】坐标轴上的点不属于任何象限。
点的坐标:对于坐标轴内任意一点A,过点A分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应的数a、b分别叫做点A的横坐标和纵坐标,有序数对A(a,b)叫做点A的坐标,记作A(a,b)。
【典型例题】题型一位置的确定典例1(2019·平顶山市期末)下列描述不能确定具体位置的是()A.某影剧院6排8号B.新华东路210号C.北纬32度,东经116度D.南偏西56度【答案】D【详解】解:A、某影剧院6排8号能确定具体位置;B、新华东路210号,能确定具体位置;C、北纬32度,东经116度,能确定具体位置;D、南偏西56度不能确定具体位置;故选D.变式1-1(2019·南宁市期中)下列数据中,不能确定物体位置的是()A.1单元201号B.南偏西C.学院路11号D.东经,北纬【答案】B【详解】解:A、1单元201号,是有序数对,能确定物体的位置,故正确;B、南偏西45°,不是有序数对,不能确定物体的位置,故错误;C、学院路11号,“学院路”相当于一个数据,是有序数对,能确定物体的位置,故正确;D、东经105°北纬40°,是有序数对,能确定物体的位置,故正确.故选B.变式1-2(2019·孝义市期末)根据下列表述,能确定位置的是( )A.孝义市府前街B.南偏东45︒C.美莱登国际影城3排D.东经116.4︒,北纬39.9︒【答案】D【详解】解:A、孝义市府前街,具体位置不能确定,故本选项错误;B、南偏东45︒,具体位置不能确定,故本选项错误;C、美莱登国际影城3排,具体位置不能确定,故本选项错误;D、东经116.4︒,北纬39.9︒,位置很明确,能确定位置,故本选项正确.故选:D.题型二用坐标表示位置典例2-1(2019·西宁市海湖中学初一期中)如图所示是做课间操时,小明、小红、小刚三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为()A.(0,0)B.(0,1)C.(1,0)D.(1,1)【答案】D【详解】如图,∵用(4,5)表示小明的位置,(2,4)表示小刚的位置,∴小红的位置可表示为(1,1)故选D.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题1.3平面直角坐标系重难点题型汇编
【考点1 象限内点的特征】
【方法点拨】掌握第1~4象限内点的坐标符号特点分别是:(+,+)、(-,+)、(-,-)、(+,-). 【例1】(2019春•天门校级期中)已知点P(a,b)在第四象限,则点Q(2a﹣b,2b﹣a)在第()象限.A.一B.二C.三D.四
【变式1-1】(2019春•信丰县期中)如果P(a+b,ab)在第二象限,那么点Q(﹣a,b)在第()象限.A.一B.二C.三D.四
【变式1-2】(2019春•卫辉市期中)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在第()象限.A.四B.三C.二D.一
【变式1-3】(2019春•汉阳区期末)直角坐标系中点P(a+2,a﹣2)不可能所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限
【考点2坐标轴上点的特征】
【方法点拨】坐标系内点的坐标特点:坐标原点(0,0)、x轴(x,0)、y轴(0,y).注意若点在坐标轴上,则要分成在x轴、y轴上两种情况来讨论.
【例2】(2019秋•市北区期中)如果点P(m+3,2m+4)在y轴上,那么点Q(m﹣3,﹣3)的位置在()A.纵轴上B.横轴上C.第三象限D.第四象限
【变式2-1】(2019春•邓州市期中)若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在第()象限.A.一B.二C.三D.四
【变式2-2】(2019春•柳江区期中)若点A(m+2,2m﹣5)在y轴上,则点A的坐标是()A.(0,﹣9)B.(2.5,0)C.(2.5,﹣9)D.(﹣9,0)
【变式2-3】(2018秋•章丘区期末)已知点A(2x﹣4,x+2)在坐标轴上,则x的值等于()A.2或﹣2 B.﹣2 C.2 D.非上述答案
【考点3点到坐标轴的距离】
【方法点拨】点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值.
【例3】(2019春•兰山区期中)在平面直角坐标系中,点E在x轴上方,y轴的左侧,距离x轴3个单位,距离y轴4个单位,则E点的坐标为()
A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)
【变式3-1】(2019春•郯城县期中)点P(a+3,b+1)在平面直角坐标系的x轴上,并且点P到y轴的距离
为2,则a+b的值为()
A.﹣1 B.﹣2 C.﹣1或﹣6 D.﹣2或﹣6
【变式3-2】(2018春•新罗区校级期中)若点P(2x,3x+5)在第二象限,且点P到两坐标轴的距离相等,则点Q(﹣x2,2x2+2)的坐标是()
A.(1,﹣4)B.(﹣1,﹣4)C.(﹣1,4)D.(1,4)
【变式3-3】(2019春•栾城区期中)已知直线MN垂直于x轴,若点M的坐标为(﹣5,2),点N距x轴的距离为3个单位,则点N的坐标为()
A.(﹣5,3)B.(﹣5,3)或(﹣5,﹣3)
C.(3,2)D.(3,2)或(﹣3,2)
【考点4角平分线上点的特征】
【方法点拨】象限角平分线上点的坐标特点:第1、3象限中x=y,第二、四象限中x+y=0.
【例4】(2019春•武平县校级期中)已知点A(2a+1,5a﹣2)在第一、三象限的角平分线上,点B(2m+7,m﹣1)在二、四象限的角平分线上,则()
A.a=1,m=﹣2 B.a=1,m=2 C.a=﹣1,m=﹣2 D.a=﹣1,m=2
【变式4-1】(2019春•德州期末)若点A(a+1,a﹣2)在第二、四象限的角平分线上,则点B(﹣a,1﹣a)在()
A.第一象限B.第二象限C.第三象跟D.第四象限
【变式4-2】若A(a,﹣b),B(﹣b,a)表示同一个点,那这个点一定在()A.第二、四象限的角平分线上
B.第一、三象限的角平分线上
C.平行于x轴的直线上
D.平行于y轴的直线上
【变式4-3】(2019春•福州校级月考)已知点M(a﹣1,﹣a+3)向右平移3个单位,之后又向下移7个单位,得到点N、若点N恰在第三象限的角平分线上,则a的值为()
A.2 B.0 C.3 D.﹣3
【考点5点的坐标确定位置】
【方法点拨】首先由点的坐标确定坐标系,进而可确定所求位置的坐标.
【例5】(2019春•郯城县期中)课间操时,小华、小军、小刚的位置如图,小军对小华说,如果我的位置用(0,﹣2)表示,小刚的位置用(2,0)表示,那么你的位置可以表示为()
A.(﹣2,﹣3)B.(﹣3,﹣2)C.(﹣3,﹣4)D.(﹣4,﹣3)
【变式5-1】(2019春•蒙阴县期中)如图是中国象棋的一盘残局,如果用(2,﹣3)表示“帅”的位置,用(6,4)表示的“炮”位置,那么“将”的位置应表示为()
A.(6,4)B.(4,6)C.(1,6)D.(6,1)
【变式5-2】(2018春•越秀区期中)如图所示为某战役潜伏敌人防御工亭坐标地图的碎片,一号墙堡的坐标为(4,2),四号墙堡的坐标为(﹣2,4),由原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大概()
A.A处B.B处C.C处D.D处
【变式5-3】(2018春•阳信县期中)如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()
A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)
【考点6坐标与图形的性质】
【方法点拨】与坐标轴平行的直线上点的坐标特点:与x轴平行,纵坐标y相等;与y轴平行,横坐标x 相等.
【例6】(2019春•海安县期中)已知直线a平行于x轴,点M(﹣2,﹣3)是直线a上的一个点.若点N 也是直线a上的一个点,MN=5,则点N的坐标为.
【变式6-1】(2018春•繁昌县期中)已知A(﹣3,2)与点B(x,y)在同一条平行于y轴的直线上,且点B到x轴的距离等于3,则B点的坐标为.
【变式6-2】(2018春•邹城市期中)已知点M的坐标为(a﹣2,2a﹣3),点N的坐标为(1,5),直线MN ∥x轴,则点M的横坐标为.
【变式6-3】(20197秋•汝州市校级期中)已知点A(b﹣4,3+b),B(3b﹣1,2),AB⊥x轴,则点A的坐标是.
【考点7图形在坐标系中的平移】
【方法点拨】平面直角坐标内点的平移规律,设a>0,b>0
【例7】(2019春•番禺区期中)△ABC与△A′B′C′在平面直角坐标系中的位置如图(1)分别写出下列各点的坐标:
A′;B′;C′
(2)若点P(m,n)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为.(3)求△ABC的面积.
【变式7-1】(2019春•兰陵县期中)△ABC与△A′B′C′在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A;B;C;
(2)△ABC由△A′B′C′经过怎样的平移得到?答:.
(3)若点P(x,y)是△ABC内部一点,则△A'B'C'内部的对应点P'的坐标为;
(4)求△ABC的面积.
【变式7-2】(2019春•金平区校级期中)已知,△ABC在平面直角坐标系中的位置如图所示.(1)写出A、B、C三点的坐标.
(2)△ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+4,y0﹣3),先将△ABC作同样的平移得到△A1B1C1,并写出B1、C1的坐标.
(3)求△ABC的面积.
【变式7-3】(2019春•厦门期末)在平面直角坐标系中,O 为坐标原点,将三角形ABC 进行平移,平移后
点A 、B 、C 的对应点分别是点D 、E 、F ,点A (0,a ),点B (0,b ),点D (a ,12a ),点E (m ﹣b ,12a +4). (1)若a =1,求m 的值;
(2)若点C (﹣a ,14m +3),其中a >0.直线CE 交y 轴于点M ,且三角形BEM 的面积为1,试探究AF 和BF 的数量关系,并说明理由.
【考点8 点在坐标系内的移动规律】
【例8】(2019春•博兴县期中)如图,在平面直角坐标系中,从点p 1(﹣1,0),p 2(﹣1,﹣1),p 3(1,﹣1),p 4(1,1),p 5(﹣2,1),p 6(﹣2,﹣2),…依次扩展下去,则p 2019的坐标为( )
A .(505,﹣505)
B .(﹣505,505)
C .(﹣505,504)
D .(﹣506,505)
【变式8-1】(2018春•武昌区期中)一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0.1),
然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2018次跳到点( )
A.(6,44)B.(7,45)C.(44,7)D.(7,44)
【变式8-2】(2019春•武城县期中)如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)…根据这个规律,第2019个点的坐标为()
A.(45,6)B.(45,13)C.(45,22)D.(45,0)
【变式8-3】(2019春•新左旗期中)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P的坐标是()
A.(2018,1)B.(2018,0)C.(2018,2)D.(2019,0)。