共轭梯度法程序

合集下载

共轭梯度法步骤

共轭梯度法步骤

共轭梯度法步骤共轭梯度法是一种求解线性方程组的迭代算法,它以高效稳定的特点而广受欢迎。

以下是共轭梯度法的步骤:步骤1:初始化首先,我们需要有一个初始向量x0和一个初始残量r0=b-Ax0。

其中,A为系数矩阵,b为常数向量。

步骤2:计算方向向量令d0=r0,表示第一次迭代的方向向量。

步骤3:计算步进长度令α0=(r0·r0)/(d0·Ad0),其中·表示向量的点积。

α0表示迭代过程中每个方向向量的步进长度。

步骤4:更新解向量令x1=x0+α0d0,表示迭代后的解向量。

步骤5:计算新残量令r1=r0-α0Ad0。

步骤6:判断终止条件如果r1的范数小于预设阈值,或者迭代次数达到预设次数,终止迭代。

否则,进入下一次迭代。

步骤7:更新方向向量令β1=(r1·r1)/(r0·r0),表示更新方向向量的轴线。

步骤8:计算新方向向量令d1=r1+β1d0,表示新的迭代方向向量。

步骤9:计算新的步进长度令α1=(r1·r1)/(d1·Ad1)。

步骤10:更新解向量令x2=x1+α1d1。

步骤11:更新残量令r2=r1-α1Ad1。

步骤12:重复步骤6至11,直至满足终止条件。

总结起来,共轭梯度法的步骤主要包括初始化、计算方向向量、计算步进长度、更新解向量、计算新残量、判断终止条件、更新方向向量、计算新的步进长度、更新解向量和更新残量等。

该算法迭代次数较少,收敛速度快,适用于大规模线性方程组的求解。

机械优化设计

机械优化设计

机械优化设计一、共轭梯度法描述1、原理:梯度法在迭代点原理极小点的迭代开始阶段,收敛速度较快,当迭代点接近极小点时,步长变得很小,收敛速度变慢,而沿共轭方向搜索具有二次收敛性。

因此,可以将梯度法和共轭方向法结合起来,每一轮搜索的第一步沿负梯度方向搜索,后续各步沿上一步的共轭方向搜索,每一步搜索n 步,即为共轭梯度法,其搜索线路如图所示。

2、搜索方向(1)第一步的搜索方向--------负梯度方向第一步的搜到方向与最速下降法相同,为负梯度方向,即d k=−∇F(x k)=−g k沿负梯度方向,从x k出发找到x k+1。

(2)以后各步的搜索方向--------共轭方向第二步及以后各步的搜索方向为上一步搜索方向的共轭方向,即d k+1=−∇F(x k+1)+β∙d k=−g k+1+β∙d k上式表示,以上一步搜索方向的一部分与当前搜索出发点x(k+1)的负梯度方向的矢量相加,合成新的搜索方向------d k的共轭方二、共轭梯度法的算法①任选初始点x0,给定收敛精度ε和维数n。

②令k←0,求迭代初始点x0的梯度g k;g k=∇F(x k)取第一次搜索的方向d0为初始点的负梯度,即d k=−g k。

③进行一维搜索,求最佳步长αk并求出新点min f(x k+αk d k)→αkx k+1=x k+αk d k④计算x k+1点的梯度g k+1=∇F(x k+1)⑤收敛检查满足条件‖∇F(x k+1)‖<ε则:x∗=x k,计算结束。

否则,继续下一步。

⑥判断k+1是否等于n,若k+1=n,则令x0←x k+1,转步骤②;若k+1<n,则继续下一步。

⑦计算β=‖g k+1‖2‖g k‖2⑧确定下一步搜索方向d k+1=−g k+1+β∙d k 令: k←k+1,返回步骤③。

三、共轭梯度法程序图由以上计算过程可画出共轭梯度法的程序图,便于以后编写MATLAB程序或C语言四、 共轭梯度例题例:求下列目标函数f (x )=x 12+2x 22−4x 1−2x 1x 2的极小值及在极小值处的极小点。

4.4共轭方向法4.5 共轭梯度法

4.4共轭方向法4.5 共轭梯度法

序框图如下图所示。
开始
给定 X 0、d0、
k0
X (k 1) X k ak d k ak : min f ( X k ak d k )
k k+1
YES Xk X(k+1)
结束
NO
f (X k1) <
提供新的共轭方向
共轭方向 + 精确一维搜索 = 二次终结 设 Z1 ,Z2 ,……Zm 关于正定矩阵A共轭。则从任意初 始点出发 二次型目标函数
2 0
2 9
,
2 T 3
X
2
X1
1d1
2
3
0
2
1
9 2
3
2 3
2 9
1
2 3
1
将 X 2 代入原方程,将 n 维问题化成一维问题。
令 将
(1) 1 代入
0 X2
,解得 1
式得
3 2

X
2
2 3
2 9
1
2 3
1
1 1
计算 X 2 点的梯度
g2
f
(
X
2
)
4 0
(0 )
(0 ) 120 4
令 (0 ) 0 ,解得
0
1 3

0
1 3
代入
X1
式得
X
1
20
0
2
3
0
将 X 1 代入求梯度公式
g1
f
(
X
1)
3x1 2
x2
x1
x2
x1
2 3
x2 0
0
2
3
0
g1 g0

共轭梯度法matlab

共轭梯度法matlab

共轭梯度法matlab中文:共轭梯度法(Conjugate Gradient),是一种非常有效的求解对称大型线性系统的近似解的算法。

使用共轭梯度法来求解线性系统最终收敛于最小值,它是在不构造正定矩阵时,可以快速求解系统的一个有效解法。

拉格朗日方程,线性系统通常表示为Ax = b,其中A为系数矩阵,b为常数矩阵,x 为未知标量或未知向量。

给定矩阵A和b,共轭梯度法可以用来求解x。

共轭梯度法的基本思想是,不断改变梯度的方向直到梯度收敛为零。

梯度收敛的定义是:在不同的两个迭代过程中,两个梯度的乘积的值小于一个特定的参数。

由于梯度的收敛程度越小,时间复杂度也就越低。

matlab中,我们可以使用共轭梯度法导入函数cgs来解决线性系统的代数方程。

语句形式为[x,flag,relres,iter,resvec] = cgs(A,b),其中A是系数矩阵,b为常数矩阵,x 为未知量,flag表示结束状态,relres为相对残差,iter表示迭代次数,resvec为残差向量。

若要解决Ax = b,即:A = [1 2;3 4]我们用matlab cgs 函数进行求解,可以这样写:[x,flag,relres,iter,resvec] = cgs(A,b);flag表示收敛情况,flag=0代表收敛,flag=-1代表系数矩阵A不能被处理。

relres 是收敛的相对误差,iter是迭代次数,resvec是残差向量,x为未知量。

上面的程序可以得到flag=0,relres=1.537e-14,iter=13,resvec=[1.0135e-14]。

上面的解为x=[-1;1],解析解一致,表明matlab cgs函数可以成功求解对称大型线性方程组。

最后,共轭梯度法是一种近似求解线性系统的有效算法,它的优势是具有快速的收敛性,在计算时省去构造正定矩阵的时间,并且稳定。

优化方法 2016

优化方法 2016

优化方法上机大作业上机大作业Ⅰ:编写程序求解下述问题 min x f(x) = (1−x1)2 + 100(x2–x12)2. 初始点取 x0 = 0, 精度取ε=1e−4,步长由 Armijo 线搜索生成, 方向分别由下列方法生成:1 最速下降法2 牛顿法3 BFGS 方法4 共轭梯度法1.最速下降法源程序如下:function x_star = steepest(x0,eps)gk = grad(x0);res = norm(gk);k = 0;while res > eps && k<=1000dk = -gk;ak =1; f0 = fun(x0);f1 = fun(x0+ak*dk);slope = dot(gk,dk);while f1 > f0 + 0.1*ak*slopeak = ak/2;xk = x0 + ak*dk;f1 = fun(xk);endk = k+1;x0 = xk;gk = grad(xk);res = norm(gk);fprintf('--The %d-th iter, the residual is %f\n',k,res); endx_star = xk;endfunction f = fun(x)f = (1-x(1))^2 + 100*(x(2)-x(1)^2)^2;endfunction g = grad(x)g = zeros(2,1);g(1)=2*(x(1)-1)+400*x(1)*(x(1)^2-x(2)); g(2) = 200*(x(2)-x(1)^2);end运行结果:>> x0=[0,0]';eps=1e-4eps =1.0000e-004>> xk=steepest(x0,eps)--The 1-th iter, the residual is 3.271712--The 2-th iter, the residual is 2.504194--The 3-th iter, the residual is 2.073282 ……………………………--The 998-th iter, the residual is 0.449447 --The 999-th iter, the residual is 0.449447 --The 1000-th iter, the residual is 0.449447 --The 1001-th iter, the residual is 0.449447 xk =0.63690.40382.牛顿法源程序如下:function x_star = newton(x0,eps)gk = grad(x0);bk = [grad2(x0)]^(-1);res = norm(gk);k = 0;while res > eps && k<=1000dk=-bk*gk;xk=x0+dk;k = k+1;x0 = xk;gk = grad(xk);bk = [grad2(xk)]^(-1);res = norm(gk);fprintf('--The %d-th iter, the residual is %f\n',k,res); endx_star = xk;endfunction f = fun(x)f = (1-x(1))^2 + 100*(x(2)-x(1)^2)^2;endfunction g = grad2(x)g = zeros(2,2);g(1,1)=2+400*(3*x(1)^2-x(2));g(1,2)=-400*x(1);g(2,1)=-400*x(1);g(2,2)=200;endfunction g = grad(x)g = zeros(2,1);g(1)=2*(x(1)-1)+400*x(1)*(x(1)^2-x(2)); g(2) = 200*(x(2)-x(1)^2);end运行结果:>> x0=[0,0]';eps=1e-4;>> xk=newton(x0,eps)--The 1-th iter, the residual is 447.213595 --The 2-th iter, the residual is 0.000000 xk =1.00001.00003.BFGS方法源程序如下:function x_star = bfgs(x0,eps)g0 = grad(x0);gk=g0;res = norm(gk);Hk=eye(2);k = 0;while res > eps && k<=1000dk = -Hk*gk;ak =1; f0 = fun(x0);f1 = fun(x0+ak*dk);slope = dot(gk,dk);while f1 > f0 + 0.1*ak*slopeak = ak/2;xk = x0 + ak*dk;f1 = fun(xk);endk = k+1;fa0=xk-x0;x0 = xk;g0=gk;gk = grad(xk);y0=gk-g0;Hk=((eye(2)-fa0*(y0)')/((fa0)'*(y0)))*((eye(2)-(y0)*(fa0)')/((fa0)'*(y0)))+(fa0*(fa0)')/((fa0)'*(y0)); res = norm(gk);fprintf('--The %d-th iter, the residual is %f\n',k,res); endx_star = xk;endfunction f=fun(x)f=(1-x(1))^2 + 100*(x(2)-x(1)^2)^2;endfunction g = grad(x)g = zeros(2,1);g(1)=2*(x(1)-1)+400*x(1)*(x(1)^2-x(2)); g(2) = 200*(x(2)-x(1)^2);end运行结果:>> x0=[0,0]';>>eps=1e-4;>> xk=bfgs(x0,eps)--The 1-th iter, the residual is 3.271712--The 2-th iter, the residual is 2.381565--The 3-th iter, the residual is 3.448742 ……………………………--The 998-th iter, the residual is 0.004690 --The 999-th iter, the residual is 0.008407 --The 1000-th iter, the residual is 0.005314 --The 1001-th iter, the residual is 0.010880 xk =0.99550.99114.共轭梯度法源程序如下:f unction x_star =conj(x0,eps)gk = grad(x0);res = norm(gk);k = 0;dk = -gk;while res > eps && k<=1000ak =1; f0 = fun(x0);f1 = fun(x0+ak*dk);slope = dot(gk,dk); while f1 > f0 + 0.1*ak*slopeak = ak/2;xk = x0 + ak*dk;f1 = fun(xk);endd0=dk;g0=gk;k=k+1;x0=xk;gk=grad(xk);f=(norm(gk)/norm(g0))^2;res=norm(gk);dk=-gk+f*d0;fprintf('--The %d-th iter, the residual is %f\n',k,res);endx_star = xk;endfunction f=fun(x)f=(1-x(1))^2+100*(x(2)-x(1)^2)^2;endfunction g=grad(x)g=zeros(2,1);g(1)=400*x(1)^3-400*x(1)*x(2)+2*x(1)-2;g(2)=-200*x(1)^2+200*x(2);end运行结果:>> x0=[0,0]';>> eps=1e-4;>> xk=Conj(x0,eps)--The 1-th iter, the residual is 3.271712--The 2-th iter, the residual is 1.380542--The 3-th iter, the residual is 4.527780--The 4-th iter, the residual is 0.850596………………………………--The 73-th iter, the residual is 0.001532--The 74-th iter, the residual is 0.000402--The 75-th iter, the residual is 0.000134--The 76-th iter, the residual is 0.000057xk =0.99990.9999上机大作业Ⅱ:编写程序利用增广拉格朗日方法求解下述问题min 4x1−x22−12s.t. 25−x12−x22 = 010x1–x12 + 10x2−x22−34 ≥ 0x 1,x2≥ 0初始点取 x0 = 0, 精度取ε= 1e−4.主程序:function [x,mu,lamda,output]=main(fun,hf,gf,dfun,dhf,dgf,x0)maxk=2000;theta=0.8; eta=2.0;k=0; ink=0;ep=1e-4;sigma=0.4;x=x0; he=feval(hf,x); gi=feval(gf,x);n=length(x); l=length(he); m=length(gi);mu=0.1*ones(l,1); lamda=0.1*ones(m,1);betak=10; betaold=10;while(betak>ep && k<maxk)[ik,x,val]=bfgs('lagrang','dlagrang',x0,fun,hf,gf,dfun,dhf,dgf,mu,lamda,sigma); ink=ink+ik;he=feval(hf,x); gi=feval(gf,x);betak=sqrt(norm(he,2)^2+norm(min(gi,lamda/sigma),2)^2);if betak>epmu=mu-sigma*he;lamda=max(0.0,lamda-sigma*gi);if(k>=2 && betak>theta*betaold)sigma=eta*sigma;endk=k+1;betaold=betak;x0=x;endf=feval(fun,x);output.fval=f;output.iter=k;output.inner_iter=ink;output.beta=betak;增广拉格朗日函数function lag=lagrang(x,fun,hf,gf,dfun,dhf,dgf,mu,lamda,sigma) f=feval(fun,x); he=feval(hf,x); gi=feval(gf,x);l=length(he); m=length(gi);lag=f; s1=0.0;for(i=1:l)lag=lag-he(i)*mu(i);s1=s1+he(i)^2;endlag=lag+0.5*sigma*s1;s2=0.0;for(i=1:m)s3=max(0.0,lamda(i)-sigma*gi(i));s2=s2+s3^2-lamda(i)^2;lag=lag+s2/(2.0*sigma);增广拉格朗日梯度函数function dlag=dlagrang(x,fun,hf,gf,dfun,dhf,dgf,mu,lamda,sigma) dlag=feval(dfun,x);he=feval(hf,x); gi=feval(gf,x);dhe=feval(dhf,x); dgi=feval(dgf,x);l=length(he); m=length(gi);for(i=1:l)dlag=dlag+(sigma*he(i)-mu(i))*dhe(:,i);endfor(i=1:m)dlag=dlag+(sigma*gi(i)-lamda(i))*dgi(:,i);end线搜索程序基于BFGS方法function [k,x,val]=bfgs(fun,gfun,x0,varargin)Max=1000;ep=1.e-4;beta=0.55; sigma1=0.4;n=length(x0); Bk=eye(n);k=0;while(k<Max)gk=feval(gfun,x0,varargin{:});if(norm(gk)<ep), break; enddk=-Bk\gk;m=0; mk=0;while(m<20)newf=feval(fun,x0+beta^m*dk,varargin{:});oldf=feval(fun,x0,varargin{:});if(newf<=oldf+sigma1*beta^m*gk'*dk)mk=m; break;endm=m+1;endx=x0+beta^mk*dk;sk=x-x0;yk=feval(gfun,x,varargin{:})-gk;if(yk'*sk>0)Bk=Bk-(Bk*sk*sk'*Bk)/(sk'*Bk*sk)+(yk*yk')/(yk'*sk); endk=k+1;x0=x;endval=feval(fun,x0,varargin{:});目标函数文件function f=f1(x)f=4*x(1)-x(2)^2-12;等式约束文件function he=h1(x)he=25-x(1)^2-x(2)^2;不等式约束function gi=g1(x)gi=zeros(3,1);gi(1)=10*x(1)-x(1)^2+10*x(2)-x(2)^2-34;gi(2)=x(1);gi(3)=x(2);目标函数梯度文件function g=df1(x)g=[4;-2*x(1)];等式函数梯度文件function dhe=dh1(x)dhe=[-2*x(1);-2*x(2)];不等式函数梯度文件function dgi=dg1(x)dgi=[10-2*x(1),1,0;10-2*x(2),0,1];输入数据X0=[0;0][x,mu,lamda,output]=main('f1','h1','g1','df1','dh1','dg1',x0) 输出数据x =1.00134.8987mu =0.0158lamda =0.5542output =fval: -31.9924iter: 5inner_iter: 33beta: 8.4937e-005上机大作业Ⅲ:1.解:将目标函数改写为向量形式:x'*a*x-b*x程序代码:n=2;a=[0.5,0;0,1];b=[2 4];c=[1 1];cvx_beginvariable x(n)minimize( x'*a*x-b*x)subject toc * x <= 1x>=0cvx_end运算结果:Calling SDPT3 4.0: 7 variables, 3 equality constraintsFor improved efficiency, SDPT3 is solving the dual problem. ------------------------------------------------------------num. of constraints = 3dim. of socp var = 4, num. of socp blk = 1dim. of linear var = 3******************************************************************* SDPT3: Infeasible path-following algorithms******************************************************************* version predcorr gam expon scale_dataNT 1 0.000 1 0it pstep dstep pinfeas dinfeas gap prim-obj dual-obj cputime-------------------------------------------------------------------0|0.000|0.000|8.0e-001|6.5e+000|3.1e+002| 1.000000e+001 0.000000e+000|0:0:00| chol 1 11|1.000|0.987|4.3e-007|1.5e-001|1.6e+001| 9.043148e+000 -2.714056e-001|0:0:01| chol 1 12|1.000|1.000|2.6e-007|7.6e-003|1.4e+000| 1.234938e+000 -5.011630e-002|0:0:01| chol 1 13|1.000|1.000|2.4e-007|7.6e-004|3.0e-001| 4.166959e-001 1.181563e-001| 0:0:01| chol 1 14|0.892|0.877|6.4e-008|1.6e-004|5.2e-002| 2.773022e-001 2.265122e-001| 0:0:01| chol 1 15|1.000|1.000|1.0e-008|7.6e-006|1.5e-002| 2.579468e-001 2.427203e-001| 0:0:01| chol 1 16|0.905|0.904|3.1e-009|1.4e-006|2.3e-003| 2.511936e-001 2.488619e-001| 0:0:01| chol 1 17|1.000|1.000|6.1e-009|7.7e-008|6.6e-004| 2.503336e-001 2.496718e-001| 0:0:01| chol 1 18|0.903|0.903|1.8e-009|1.5e-008|1.0e-004| 2.500507e-001 2.499497e-001| 0:0:01| chol 1 19|1.000|1.000|4.9e-010|3.5e-010|2.9e-005| 2.500143e-001 2.499857e-001| 0:0:01| chol 1 110|0.904|0.904|5.7e-011|1.3e-010|4.4e-006| 2.500022e-001 2.499978e-001| 0:0:01| chol 2 211|1.000|1.000|5.2e-013|1.1e-011|1.2e-006| 2.500006e-001 2.499994e-001| 0:0:01| chol 2 212|1.000|1.000|5.9e-013|1.0e-012|1.8e-007| 2.500001e-001 2.499999e-001| 0:0:01| chol 2 213|1.000|1.000|1.7e-012|1.0e-012|4.2e-008| 2.500000e-001 2.500000e-001| 0:0:01| chol 2 214|1.000|1.000|2.3e-012|1.0e-012|7.3e-009| 2.500000e-001 2.500000e-001| 0:0:01|stop: max(relative gap, infeasibilities) < 1.49e-008-------------------------------------------------------------------number of iterations = 14primal objective value = 2.50000004e-001dual objective value = 2.49999996e-001gap := trace(XZ) = 7.29e-009relative gap = 4.86e-009actual relative gap = 4.86e-009rel. primal infeas (scaled problem) = 2.33e-012rel. dual " " " = 1.00e-012rel. primal infeas (unscaled problem) = 0.00e+000rel. dual " " " = 0.00e+000norm(X), norm(y), norm(Z) = 3.2e+000, 1.5e+000, 1.9e+000norm(A), norm(b), norm(C) = 3.9e+000, 4.2e+000, 2.6e+000Total CPU time (secs) = 0.99CPU time per iteration = 0.07termination code = 0DIMACS: 3.3e-012 0.0e+000 1.3e-012 0.0e+000 4.9e-009 4.9e-009-------------------------------------------------------------------------------------------------------------------------------Status: SolvedOptimal value (cvx_optval): -32. 解:将目标函数改写为向量形式:程序代码:n=3;a=[-3 -1 -3];b=[2;5;6];C=[2 1 1;1 2 3;2 2 1];cvx_beginvariable x(n)minimize( a*x)subject toC * x <= bx>=0cvx_end运行结果:Calling SDPT3 4.0: 6 variables, 3 equality constraints------------------------------------------------------------num. of constraints = 3dim. of linear var = 6******************************************************************* SDPT3: Infeasible path-following algorithms******************************************************************* version predcorr gam expon scale_dataNT 1 0.000 1 0it pstep dstep pinfeas dinfeas gap prim-obj dual-obj cputime-------------------------------------------------------------------0|0.000|0.000|1.1e+001|5.1e+000|6.0e+002|-7.000000e+001 0.000000e+000| 0:0:00| chol 1 11|0.912|1.000|9.4e-001|4.6e-002|6.5e+001|-5.606627e+000 -2.967567e+001| 0:0:00| chol 1 12|1.000|1.000|1.3e-007|4.6e-003|8.5e+000|-2.723981e+000 -1.113509e+001| 0:0:00| chol 1 13|1.000|0.961|2.3e-008|6.2e-004|1.8e+000|-4.348354e+000 -6.122853e+000| 0:0:00| chol 1 14|0.881|1.000|2.2e-008|4.6e-005|3.7e-001|-5.255152e+000 -5.622375e+000| 0:0:00| chol 1 15|0.995|0.962|1.6e-009|6.2e-006|1.5e-002|-5.394782e+000 -5.409213e+000| 0:0:00| chol 1 16|0.989|0.989|2.7e-010|5.2e-007|1.7e-004|-5.399940e+000 -5.400100e+000| 0:0:00| chol 1 17|0.989|0.989|5.3e-011|5.8e-009|1.8e-006|-5.399999e+000 -5.400001e+000| 0:0:00| chol 1 18|1.000|0.994|2.8e-013|4.3e-011|2.7e-008|-5.400000e+000 -5.400000e+000| 0:0:00|stop: max(relative gap, infeasibilities) < 1.49e-008-------------------------------------------------------------------number of iterations = 8primal objective value = -5.39999999e+000dual objective value = -5.40000002e+000gap := trace(XZ) = 2.66e-008relative gap = 2.26e-009actual relative gap = 2.21e-009rel. primal infeas (scaled problem) = 2.77e-013rel. dual " " " = 4.31e-011rel. primal infeas (unscaled problem) = 0.00e+000rel. dual " " " = 0.00e+000norm(X), norm(y), norm(Z) = 4.3e+000, 1.3e+000, 1.9e+000norm(A), norm(b), norm(C) = 6.7e+000, 9.1e+000, 5.4e+000Total CPU time (secs) = 0.11CPU time per iteration = 0.01termination code = 0DIMACS: 3.6e-013 0.0e+000 5.8e-011 0.0e+000 2.2e-009 2.3e-009 -------------------------------------------------------------------------------------------------------------------------------Status: SolvedOptimal value (cvx_optval): -5.4。

共轭梯度法matlab程序

共轭梯度法matlab程序

共轭梯度法matlab程序共轭梯度法是一种用于求解无约束优化问题的迭代算法。

以下是一个简单的MATLAB 程序示例,用于实现共轭梯度法:matlab复制代码function[x, fval, iter] = conjugate_gradient(A, b, x0, tol,max_iter)% A: 矩阵% b: 向量% x0: 初始解% tol: 容忍度% max_iter: 最大迭代次数r = b - A*x0;p = r;x = x0;fval = A*x - b;iter = 0;while (norm(r) > tol) && (iter < max_iter)Ap = A*p;alpha = dot(p, r) / dot(p, Ap);x = x + alpha*p;r = r - alpha*Ap;if iter == 0fval_new = dot(r, r);elsebeta = dot(r, r) / dot(p, Ap);p = r + beta*p;fval_new = dot(r, r);endif fval_new < fvalfval = fval_new;enditer = iter + 1;endend该程序接受一个矩阵A、一个向量b、一个初始解x0、一个容忍度tol和一个最大迭代次数max_iter作为输入,并返回最终解x、目标函数值fval和迭代次数iter。

使用该函数时,您需要将要优化的目标函数转换为矩阵形式,并调用该函数来找到最优解。

例如,假设您要最小化一个函数f(x),可以将该函数转换为矩阵形式A*x - b,其中A是目标函数的雅可比矩阵,b是目标函数的常数项向量。

然后,您可以调用该函数来找到最优解,例如:matlab复制代码A = jacobian(f); % 计算目标函数的雅可比矩阵b = [1, 2, 3]; % 目标函数的常数项向量x0 = [0, 0, 0]; % 初始解向量tol = 1e-6; % 容忍度max_iter = 1000; % 最大迭代次数[x, fval, iter] = conjugate_gradient(A, b, x0, tol, max_iter); % 调用共轭梯度法函数求解最优解。

共轭梯度法实验报告

共轭梯度法实验报告

数值代数实验报告一、实验名称:用共轭梯度法解线性方程组。

二、实验目的:进一步熟悉理解掌握共轭梯度法解法思路,提高matlab 编程能力。

三、实验要求:已知线性方程矩阵,应用共轭梯度法在相关软件编程求解线性方程组的解。

四、实验原理:1.共轭梯度法:考虑线性方程组Ax b =的求解问题,其中A 是给定的n 阶对称正定矩阵,b 是给定的n 维向量,x 是待求解的n 维向量.为此,定义二次泛函()2T T x x Ax b x ϕ=-.定理1 设A 对称正定,求方程组Ax b =的解,等价于求二次泛函()x ϕ的极小值点. 定理1表明,求解线性方程组问题就转化为求二次泛函()x ϕ的极小值点问题.求解二次函数极小值问题,通常好像盲人下山那样,先给定一个初始向量0x ,确定一个下山方向0p ,沿着经过点0x 而方向为0p 的直线00x x p α=+找一个点1000x x p α=+,使得对所有实数α有()()00000x p x p ϕαϕα+≤+,即在这条直线上1x 使()x ϕ达到极小.然后从1x 出发,再确定一个下山的方向1p ,沿着直线11x x p α=+再跨出一步,即找到1α使得()x ϕ在2111x x p α=+达到极小:()()11111x p x p ϕαϕα+≤+.重复此步骤,得到一串012,,,ααα 和 012,,,p p p ,称k p 为搜索方向,k α为步长.一般情况下,先在k x 点找下山方向k p ,再在直线k k x x p α=+上确定步长k α使()(),k k k k k x p x p ϕαϕα+≤+最后求出1k k k k x x p α+=+.然而对不同的搜索方向和步长,得到各种不同的算法.由此,先考虑如何确定k α.设从k x 出发,已经选定下山方向k p .令 ()()k k f x p αϕα=+()()()2TT k k k k k k x p A x p b x p ααα=++-+()22TT k k k k k p Ap r p x ααϕ=-+,其中k k r b Ap =-.由一元函数极值存在的必要条件有()220TT k k k k f p Ap r p αα'=-=所确定的α即为所求步长k α,即 T k kk Tk kr p p Ap α=. 步长确定后,即可算出1k k k k x x p α+=+.此时,只要0T k k r p ≠,就有()()()()1k k k k k k x x x p x ϕϕϕαϕ+-=+-()2220T k k TT k kk k k k Tk kr p p Ap r p p Ap αα=-=-<即()()1k k x x ϕϕ+<.再考虑如何确定下山方向k p .易知负梯度方向是()x ϕ减小最快的方向,但简单分析就会发现负梯度方向只是局部最佳的下山方向,而从整体来看并非最佳.故采用新的方法寻求更好的下山方向——共轭梯度法. 下面给出共轭梯度法的具体计算过程:给定初始向量0x ,第一步仍选用负梯度方向为下山方向,即00p r =,于是有00010001000,,T T r r x x p r b Ax p Ap αα==+=-.对以后各步,例如第k+1步(k ≥1),下山方向不再取k r ,而是在过点由向量k r 和1k p -所张成的二维平面21{|,,}k k k x x x r p R πξηξη-==++∈内找出使函数ϕ下降最快的方向作为新的下山方向k p .考虑ϕ在2π上的限制:()1,()k k k x r p ψξηϕξη-=++11()()T k k k k k k x r p A x r p ξηξη--=++++12()T k k k b x r p ξη--++. 计算ψ关于,ξη的偏导得: ()()11112,2,T T T k k k k k kT T k k k k r Ar r Ap r r r Ap p Ap ψξηξψξηη----∂=+-∂∂=+∂其中最后一式用到了10T k k r p -=,这可由k r 的定义直接验证.令 0ψψξη∂∂==∂∂, 即知ϕ在2π内有唯一的极小值点001k k k x x r p ξη-=++,其中0ξ和0η满足 00101011,0.T T T k k k k k k T Tk k k k r Ar r Ap r r r Ap p Ap ξηξη----⎧+=⎨+=⎩由于0k r ≠必有00ξ≠,所以可取()01001k k k k p x x r p ηξξ-=-=+作为新的下山方向.显然,这是在平面2π内可得的最佳下山方向.令010k ηβξ-=,则可得1111.T k k k T k k r Ap p Ap β----=-注:这样确定的k p 满足10Tkk p Ap -=,即k p 与1k p -是相互共轭的. 总结上面的讨论,可得如下的计算公式:T k kk Tk kr p p Ap α= , 1k k k k x x p α+=+, 11k k r b Ax ++=-,1T k kk Tk kr Ap p Ap β+=-, 11k k k k p r p β++=+. 在实际计算中,常将上述公式进一步简化,从而得到一个形式上更为简单而且对称的计算公式.首先来简化1k r +的计算公式:11()k k k k k k k k r b Ax b A x p r Ap αα++=-=-+=-.因为k Ap 在计算k α是已经求出,所以计算1k r +时可以不必将1k x +代入方程计算,而是从递推关系1k k k r b Ap α+=-得到.再来简化k α和k β的计算公式.此处需要用到关系式1110,T T T k k k k k k r r r p r p +-+=== 1,2,k =.从而可导出1111,T T k k k k r r r α+++=-, ()111TT T k k k k k k k k k p Ap p r r p r αα+=-=()1111T Tk k k k k k k kr r p r r βαα--=+=.由此可得,T k k k T k k r r p Ap α=, 11.T k k k T k kr r r r β++=.从而有求解对称正定方程组的共轭梯度法算法如下:0x =初值00r b Ax =-;0k =while 0k r ≠1k k =+ if 1k = 00p r =else21122T T k k k k k r r r r β-----= 1122k k k k p r p β----=+ end11111T Tk k k k k r r p Ap α-----=111k k k k x x p α---=+111k k k k r r Ap α---=-endk x x =注:该算法每迭代一次仅需要使用系数矩阵A 做一次矩阵向量积运算. 定理2 由共轭梯度法得到的向量组{}i r 和{}i p 具有如下基本性质: (1)0T i j p r =, 0;i j k ≤<≤ (2)0T i j r r =, i j ≠,0,;i j k ≤≤ (3)0T i j p Ap =, i j ≠,0,;i j k ≤≤ (4)000{,,}{,,}(,,1)k k span r r span p p A r k κ==+,其中0000(,,1){,,,}k A r k span r Ar A r κ+=,通常称之为Krylov 子空间.下面给出共轭梯度法全局最优性定理:定理3 用共轭梯度法计算得到的近似解k x 满足()(){}00min :(,,)k x x x x A r k ϕϕκ=∈+或{}**00min :(,,)k AAx x x x x x A r k κ-=-∈+,其中Ax=*x 是方程组Ax b =的解,0(,,)A r k κ是由所定义的Krylov 子空间. 定理2表明,向量组0,,k r r 和0,,k p p 分别是Krylov 子空间0(,,1)A r k κ+的正交基和共轭正交基.由此可知,共轭梯度法最多n 步便可得到方程组的解*x .因此,理论上来讲,共轭梯度法是直接法.然而实际使用时,由于误差的出现,使k r 之间的正交性很快损失,以致于其有限步终止性已不再成立.此外,在实际应用共轭梯度法时,由于一般n 很大,以至于迭代()O n 次所耗费的计算时间就已经使用户无法接受了.因此,实际上将共轭梯度法作为一种迭代法使用,而且通常是k r 是否已经很小及迭代次数是否已经达到最大允许的迭代次数max k 来终止迭代.从而得到解对称正定线性方程组的实用共轭梯度法,其算法如下:x =初值0;k =;r b Ax =-T r r ρ=while)()max2band k kε><1k k =+if 1k = p r = else;p r p βρρβ==+ end;;T Ap p x x p ωαρωα===+ ;;T r r r r αωρρρ=-== end算法中,系数矩阵A 的作用仅仅是用来由已知向量p 产生向量Ap ω=,这不仅可以充分利用A 的稀疏性,而且对某些提供矩阵A 较为困难而由已知向量p 产生向量Ap ω=又十分方便的应用问题是十分有益的。

共轭梯度法matlab最优化问题

共轭梯度法matlab最优化问题

共轭梯度法是一种在求解最优化问题时常用的算法。

下面是一个在MATLAB 中实现共轭梯度法的简单示例。

请注意,这个示例是为了教学目的而编写的,可能不适用于所有最优化问题。

首先,假设我们有一个目标函数f(x),我们需要找到使得f(x) 最小化的x。

假设f(x) 是一个二次函数,形式为f(x) = x^T Ax + b^T x + c,其中A 是对称正定矩阵,b 和c 是常数向量和标量。

以下是一个使用MATLAB 实现共轭梯度法的示例代码:```matlabfunction [x, iter] = conjugate_gradient(A, b, x0, tol, max_iter)% A -目标函数的系数矩阵% b -目标函数的常数向量% x0 -初始解% tol -容忍的误差% max_iter -最大迭代次数x = x0;r = b - A*x;p = r;iter = 0;while (norm(r) > tol) && (iter < max_iter)Ap = A*p;alpha = (p'*r) / (p'*Ap);x = x + alpha*p;r = r - alpha*Ap;beta = (r'*r) / (p'*r);p = r + beta*p;iter = iter + 1;endend```这个函数接受一个对称正定矩阵A,一个常数向量b,一个初始解x0,一个容忍的误差tol,和一个最大迭代次数max_iter 作为输入,并返回最优解x 和迭代次数iter。

注意,这个函数没有包括一些可能的特殊情况处理,例如如果A 是奇异的或者接近奇异的,那么这个函数可能无法正确地收敛。

在使用这个函数之前,你可能需要根据你的具体问题对其进行一些修改和增强。

共轭梯度法

共轭梯度法

共轭梯度法共轭梯度法(also known as Pearson-Newman gradient method)是电化学反应动力学中一种很有用的技术,主要应用于分析化学、环境工程、农药学、微生物学等领域。

用共轭梯度法时,以活性高的配体替代催化剂上的固定配体(一般为固定相),使原来的催化剂仍能发挥作用,但具有选择性更好、灵敏度更高、应用范围更广的特点,同时能降低毒性和提高催化活性,还可改善催化剂的稳定性。

共轭梯度法(reaction-coordinate density technique,缩写为coAPD),是由美国著名的电化学家S.C.R.(赫维斯特)于1976年提出的,最早是应用于考察水溶液中蛋白质在二级胺诱导下的变性行为。

后来,此方法被用于研究Cu(I)-Zn(II)氧化偶联反应,可用于测定其它一些金属离子。

它能够选择性地催化多种反应,并且操作简便,灵敏度高,催化效率高。

它与同样是基于电极过程机理的原位催化比较,在原理上具有优越性。

对于活性组分分子内部的小的不均匀结构,可以采用共轭梯度法实现更精确的测量。

在这个技术中,如果采用共轭体系,一般可以考虑将其作为一个三电子体系,而与电子得失的量子化运动相联系,即以共振状态作为激发条件。

因此,实验装置也称之为共振极限溶剂。

目前,已经开发了一些共轭体系,其中主要包括共轭二烯体系、共轭异戊二烯体系、共轭二炔体系等。

根据不同的选择性要求,又可将它们划分成几类:双齿配体系列、共轭乙炔体系列、共轭苯炔体系列、共轭乙烯体系列、共轭苯乙炔体系列、双烯类配体系列。

由于选择性较高,该技术广泛用于化学反应机理及反应产物分析。

特别是随着计算机技术的迅速发展,其应用更加广泛。

例如,在定量方面,可以在很短的时间内给出定量结果,可以很快地绘制出实验曲线或计算出数据。

在这个技术中,反应机理以原子轨道理论为基础。

根据反应机理,按照共振条件进行合理的实验设计,通过电化学反应测定反应的产物或催化剂的量,并绘制电位-时间图,即可达到定性、定量的目的。

线性方程组的共轭梯度法

线性方程组的共轭梯度法

迭代过程
计算方程组的雅可比矩阵A和右端项b,得到线性方程组Ax=b。 计算初始残差r0=b-Ax0。 进行迭代,对于k=0,1,2,...,max_iter,执行以下步骤
迭代过程
01
1. 计算搜索方向pk=-Ak^T。
02
2. 在搜索方向pk上进行线搜索,找到步长λk,使得 Axk+1=b-λk*r^k最小化。
感谢观看
THANKS
定义
线性方程组是由一组线性方程组成的 数学模型,其中包含未知数和已知数。
分类
根据方程的系数矩阵和常数项矩阵, 线性方程组可以分为多种类型,如超 定方程组、欠定方程组和恰定方程组。
线性方程组的求解方法
直接法
通过消元或迭代等方法将方程组化为标准形式,然后 求解。
迭代法
通过不断迭代更新解的近似值,逐步逼近方程的解。
在金融工程中的应用
投资组合优化
共轭梯度法可以用于求解投资组合优化问题 ,以最大化投资收益或最小化风险。
期权定价
在期权定价模型中,共轭梯度法可以用于求解 Black-Scholes方程,以得到期权的合理价格。
风险管理
在风险管理方面,共轭梯度法可以用于求解 风险评估模型中的最优化问题,以评估和管 理金融风险。
解效率。
02
常用的预处理方法包括对角占优预处理、不完全LU
分解预处理等。
03
预处理技术可以消除原始方程组中的病态条件,降低
数值误差的放大效应。
自适应步长调整策略
自适应步长调整策略可以根据上 一步的搜索结果动态调整步长, 提高算法的稳定性和收敛速度。
常见的自适应步长调整策略包括 Armijo线搜索、Goldstein线搜
科学计算

梯度法和共轭梯度法

梯度法和共轭梯度法

极小点,其中Bk{ x Nhomakorabeax k
id (i) ,i
R}
i 1
是由 d (1) , d (2) ,, d (k) 生成的子空间。特别地,当k n时,x(n1)是
f ( x)在Rn上的唯一极小点。
推论 在上述定理条件下,必有 f ( x(k1) )T d (i) 0, i 1, 2,, k。
3、共轭方向法
i
g
i
T 1
(
gi1
gi
)
d (i)T ( gi1 gi )
||
gi1 ||2 d (i)T gi
|| gi1 ||2 || gi ||2
(4)
FR算法步骤:
1. 任取初始点x(1) ,精度要求 ,令k 1。 2. 令g1 f ( x(1) ),若 || g1 || ,停止,x(1)为所求极小点;
上式两边同时左乘d jT A,则有
k
id
jT Ad i
0,
i 1
因为d 1 , d 2 ,, d k 是 k 个 A共轭的向量,所以上式可化简为
j d jT Ad j 0 .
因为d j 0,而 A是正定矩阵,所以d jT Ad j 0,
所以
j 0, j 1, 2,, k。
因此 d1 ,d 2 ,,d k 线性无关。
2. 共轭方向
定义 设 A 是 n n的对称正定矩阵,对于Rn中的两个非零向量 d1 和 d 2, 若有 d1T Ad 2 0,则称d 1和d 2关于A共轭。 设 d1 , d 2 ,,d k 是 Rn 中一组非零向量,如果它们两两关于A 共轭,即 d iT Ad j 0, i j , i , j 1, 2,, k。 则称这组方向是关于A共轭的,也称它们是一组A共轭方向。

最优化课程练习-共轭梯度法

最优化课程练习-共轭梯度法

无约束优化方法—共轭梯度法1.共轭梯度法共轭梯度法是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算海赛矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。

其基本思想是利用负梯度方向,构造一共轭方向,使其尽快达到最优点。

共轭梯度法迭代过程如图1所示。

1X 2图1 共轭梯度法迭代过程()k 1x +点是沿()k x 点负梯度方向()()K k Sg =-搜索到的极值点。

如果接着从()k 1x +点出发,不是按着其负梯度方向()kg -搜索,而是沿着通过*x 点的方向()1K S +搜索,显然立即就能搜索到极值点*x 。

根据共轭理论,它们应当满足()()(1)1k Tk SAS+=即()KS 与()1K S +是互为共轭方向,新构造的共轭方向()1K S +,可由矢量合成,()(1)(1)()()2k k k k SgSβ++=-+()k β值可根据在极值点附近目标函数等值线近似为二次型函数的道理,推到出:()(1)(1)(1)2()()()()2||||3||||k T k k k k T k k gg g g g g β+++==利用两个点的梯度()k g和(1)k g+,就可以构造一个与梯度矢量为共轭的矢量()1K S +,沿着该方向搜索,即可求得极值点。

共轭梯度法程序框图如图2所示。

图2 共轭梯度法程序框图2. 共轭梯度法的应用用共轭梯度法计算22121212()52410f X x x x x x x =+---+ 的最优解,其中:初始点()0[1,1]T X =。

收敛精度ε=0.0001(1).共轭梯度法程序设计#include "stdio.h" #include "math.h"double fun1(double x1,double x2) {double y;y=x1*x1+x2*x2-5*x1*x2-2*x1-4*x2+10; return y; }double fun2(double g[],double d[]) {double buchang;buchang=-(g[0]*d[0]+g[1]*d[1])/(d[0]*(2*d[0]-5*d[1])+d[1]*(-5*d[0]+2*d[1])); return buchang; }main(){ double t, beta,x1=1,x2=1,d[2],g[4], y, m,e=0.0001; int k=1;g[0]=2*x1-5*x2-2; g[1]=2*x2-5*x1-4; m=(sqrt(g[0]*g[0]+g[1]*g[1]));while(m>e&&k<=200) { if (k==1) {d[0]=-g[0]; d[1]=-g[1];beta=0; } else {beta=(g[0]*g[0]+g[1]*g[1])/(g[2]*g[2]+g[3]*g[3]); d[0]=-g[0]+beta*d[0]; d[1]=-g[1]+beta*d[1]; }t=fun2(g,d); x1=x1+d[0]*t; x2=x2+d[1]*t; g[2]=g[0]; g[3]=g[1];g[0]= 2*x1-5*x2-2;g[1]= 2*x2-5*x1-4;m=sqrt(g[0]*g[0]+g[1]*g[1]); k++; }y=fun1(x1,x2);printf("迭代次数为k=%d\n",k);printf("分别输出x1=%f,x2=%f\n",x1,x2); printf("极小值y=%f",y); }(2).程序运行结果(3).结 论用共轭梯度法计算22121212()52410f X x x x x x x =+---+的最优解为*( 1.142857,0.857143)X =-- ,*()12.857143F X = 。

运筹学实验报告(F-R共轭梯度法、Wolfe简约梯度法)

运筹学实验报告(F-R共轭梯度法、Wolfe简约梯度法)

一、实验目的:1、掌握求解无约束最优化问题的 F-R 共轭梯度法,以及约束最优化问题 Wolfe 简约梯度法。

2、学会用MATLAB 编程求解问题,并对以上方法的计算过程和结果进行分析。

二、实验原理与步骤: 1、F-R 共轭梯度法基本步骤是在点)(k X 处选取搜索方向)(k d , 使其与前一次的搜索方向)1(-k d关于A 共轭,即(1)()(1),0k k k d d Ad --<>=然后从点)(k X 出发,沿方向)(k d 求得)(X f 的极小值点)1(+k X ,即)(m in )()()(0)1(k d X f X f k k λλ+=>+如此下去, 得到序列{)(k X }。

不难求得0,)1()(>=<-k k Ad d的解为)()1()1()()()()1(,,k k k k k k k d Ad d d AX b XX><>-<+=--+注意到)(k d 的选取不唯一,我们可取)1(1)()()(--+-∇=k k k k d X f d β由共轭的定义0,)1()(>=<-k k Add 可得: ><><-=----)1()1()1()(1,,k k k k k Ad d Ad r β共轭梯度法的计算过程如下:第一步:取初始向量)0(X , 计算⎪⎪⎩⎪⎪⎨⎧+=><><-=-=-∇==(0)0(0)(1))0()0()0()0(0(0)(0)(0)(0)d X X ,,X )X (r d λλAd d Ad r A b f第1+k 步:计算⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧+=><><-=+=><><-=-=-∇=+------(k)0(k)1)(k )()()()()1(1(k))()1()1()1()(1(k)(k)(k)d X X ,,r ,,X )X (r λλββk k k k k k k k k k k k k Ad d Ad r d d Ad d Adr A b f2、Wolfe 简约梯度法Wolfe 基本计算步骤:第一步:取初始可行点 x 0∈X l ,给定终止误差ε>0 ,令k:=0;第二步:设 I B k是x k 的 m 个最大分量的下标集,对矩阵A 进行相应分解 A =(B k ,N k );第三步:计算 ∇f(x k)=(∇B f(x k )∇Nf(x k )) ,然后计算简约梯度r N k=−(B k −1N k )T ∇B f(x k )+∇N f(x k );第四步:构造可行下降方向 p k . 若||p k ||≤ε ,停止迭代,输出x k 。

共轭梯度法的matlab源程序

共轭梯度法的matlab源程序

共轭梯度法的matlab源程序functiong=conjugate_grad_2d(x0,t)%please input thisconjugate_grad_2d([2,2],0.05)x=x0;syms xi yiaf=xi^2-xiyi+3yi^2;fx=diff(f,xi);fy=diff(f,yi);fx=subs(fx,{xi,yi },x0);fy=subs(fy,{xi,yi},x0);fi=[fx,fy];count=0;whiledouble(sqrt(fx^2+fy^2))ts=-fi;ifcount=0s=-fi;elses=s1;endx=x+as;f=subs(f,{xi,yi},x);f1=diff(f);f1=solve(f1);iff1~=0ai=double(f1);elsebreakx,f=subs(f,{xi,yi},x),countend x=subs(x,a,ai);f=xi^2-xiyi+3yi^2;fxi=diff(f,xi);fyi=diff(f,yi);f xi=subs(fxi,{xi,yi},x);fyi=subs(fyi,{xi,yi},x);fii=[fxi,fyi];d=(fxi^ 2+fyi^2)(fx^2+fy^2);s1=-fii+ds;count=count+1;fx=fxi;fy =fyi;endx,f=subs(f,{xi,yi},x),count史锋的共轭梯度法matlab程序以函数f=1-(1/(sqrt(2*pi)))*(exp((-(xi-3)^2+yi^2)/2)+0.6*exp((-(xi+3)^2+yi^2)/2));为例求解最小值function f=conjugate_gradient(x0,eps)x=x0;syms xi yi af=1-(1/(sqrt(2*pi)))*(exp((-(xi-3)^2+yi^2)/2)+0.6*exp((-(xi+3)^2+yi^2)/2));fx=diff(f,xi);fy=diff(f,yi);fx=subs(fx,{xi,yi},x0);fy=subs(fy,{xi,yi},x0);fi=[fx,fy];n=0;while double(sqrt(fx^2+fy^2))>epss=-fi;if n<=0s=-fi;elses=s1;endx=x+a*s;f=subs(f,{xi,yi},x);f1=diff(f);f1=solve(f1);if f1~=0ai=double(f1);elsebreakx,nendx=subs(x,a,ai);f=1-(1/(sqrt(2*pi)))*(exp((-(xi-3)^2+yi^2)/2)+0.6*exp((-(xi+3)^2+yi^2)/2));fxi=diff(f,xi);fyi=diff(f,yi);fxi=subs(fxi,{xi,yi},x);fyi=subs(fyi,{xi,yi},x);fii=[fxi,fyi];d=(fxi^2+fyi^2)/(fx^2+fy^2);s1=-fii+d*s; %搜索方向n=n+1; %搜索次数fx=fxi;fy=fyi;endx,n%请输入:conjugate_gradient([0,0],10^(-6))后运行中国振动联盟标题: 共轭梯度法的matlab源程序[打印本页]作者: suffer 时间: 2006-10-11 09:15 标题: 共轭梯度法的matlab源程序1.function g=conjugate_grad_2d(x0,t)2.%please input this:conjugate_grad_2d([2,2],0.05)3.x=x0;4.syms xi yi a5.f=xi^2-xi*yi+3*yi^2;6.fx=diff(f,xi);7.fy=diff(f,yi);8.fx=subs(fx,{xi,yi},x0);9.fy=subs(fy,{xi,yi},x0);10.fi=[fx,fy];11.count=0;12.while double(sqrt(fx^2+fy^2))>t13.s=-fi;14.if count<=015.s=-fi;16.else17.s=s1;18.end19.x=x+a*s;20.f=subs(f,{xi,yi},x);21.f1=diff(f);22.f1=solve(f1);23.if f1~=024.ai=double(f1);25.else26.break27.x,f=subs(f,{xi,yi},x),count28.end29.x=subs(x,a,ai);30.f=xi^2-xi*yi+3*yi^2;31.fxi=diff(f,xi);32.fyi=diff(f,yi);33.fxi=subs(fxi,{xi,yi},x);34.fyi=subs(fyi,{xi,yi},x);35.fii=[fxi,fyi];36.d=(fxi^2+fyi^2)/(fx^2+fy^2);37.s1=-fii+d*s;38.count=count+1;39.fx=fxi;40.fy=fyi;41.end42.x,f=subs(f,{xi,yi},x),count复制代码本程序由tammy友情提供作者: bainhome 时间: 2006-10-15 23:40这段代码是我编的吧,函数名称命名风格一看就是自己...^_^当时刚学没几天,代码里大段大段的都是符号工具箱里的函数,运行慢得要死要活。

第四章 共轭梯度法

第四章 共轭梯度法
n 设水平集 L x f ( x ) f ( x 0 ) 有界,f 是 R 上具有一阶连续
{ 偏导数的凸函数。 x k } 是由Fletcher-Reeves共轭梯度算法产生的迭代点列。则 { 1) f ( x k )} 为严格单调下降序列,且
lim f ( x k )
k
存在。
n

k 1
g k ( g k g k 1 )
T
d k 1 ( g k g k 1 )
T

gk gk g k 1 g k 1
T
T
共轭梯度法的迭代公式为:
x k 1 x k k d k ( d k 为共轭方向, k 为最佳步长因子)
对二次函数
k
gk dk dk Gdk
(4.7)
2)
k
g k 1 g k 1 gk gk
T
T
(Fletcher-Reeves公式)
(4.8)
3)
k
g k 1 ( g k 1 g k ) (Polak-Ribiere-Polyak 公式)
T
(4.9)
gk gk g k 1 g k 1 dk gk
T T
T
4)
m y
2 T 2 2
,使得
n
y f ( x ) y M y , y R , x L ,
其中 L x R n f ( x ) f ( x 0 ) 是有界水平集。
定理4.9 假定假设条件1和2满足,那么,每r步再开始的PRP和FR共轭梯度 法产生的迭代点列 x k n步二阶收敛,即存在常数c>0,使得
设 又设
fˆkr
0 表示应用到 fˆkr 上的共轭梯度法,并且令 d kr d kr g kr

matlab共轭梯度法求解方程组

matlab共轭梯度法求解方程组

主题:matlab共轭梯度法求解方程组近年来,随着科学技术的不断发展,数学建模和计算机仿真成为科学研究和工程技术领域的重要手段。

在实际应用中,我们常常需要解决线性方程组的求解问题,而共轭梯度法作为一种高效的迭代求解方法,广泛应用于信号处理、图像处理、地球物理勘探和优化问题等领域。

本文将介绍如何利用matlab中的共轭梯度法求解线性方程组的基本原理和实际操作方法。

1. 共轭梯度法的基本原理共轭梯度法是一种迭代法,用于求解对称正定线性方程组Ax=b。

该方法的核心思想是通过一系列的迭代操作,逐步逼近方程组的解,直到满足一定的精度要求。

在每一步迭代中,共轭梯度法利用残差和方向向量的共轭性质,不断寻找最优的步长,从而实现方程组的求解。

2. matlab中共轭梯度法的基本调用方法在matlab中,调用共轭梯度法求解线性方程组非常简单。

需要将方程组的系数矩阵A和右端向量b输入到matlab中,然后利用内置函数conjugateGradient进行求解。

具体的调用方法如下:x = conjugateGradient(A, b, x0, maxIter, tol)其中,A为系数矩阵,b为右端向量,x0为初始解向量,maxIter为最大迭代次数,tol为精度要求。

调用完毕后,matlab将返回方程组的近似解x。

3. 共轭梯度法在实际工程中的应用共轭梯度法作为一种高效的求解方法,在工程技术领域得到了广泛的应用。

以图像处理为例,图像处理中经常需要解决大规模的线性方程组,而共轭梯度法能够高效地求解这类问题,提高了图像处理算法的效率和稳定性。

另外,在地球物理勘探中,共轭梯度法也被广泛应用于三维数据的快速处理和解释。

可以说,共轭梯度法在实际工程中发挥着重要的作用。

4. 共轭梯度法的优缺点分析尽管共轭梯度法具有非常高的效率和稳定性,但是该方法也存在一些缺点。

该方法只适用于对称正定的线性方程组,对于一般的线性方程组并不适用。

共轭梯度法的收敛速度受到方程条件数的影响,对于病态问题,可能收敛速度较慢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、共轭梯度法共轭梯度法(Conjugate Gradient)是共轭方向法的一种,因为在该方向法中每一个共轭向量都是依靠赖于迭代点处的负梯度而构造出来的,所以称为共轭梯度法。

由于此法最先由Fletcher和Reeves (1964)提出了解非线性最优化问题的,因而又称为FR 共轭梯度法。

由于共轭梯度法不需要矩阵存储,且有较快的收敛速度和二次终止性等优点,现在共轭梯度法已经广泛地应用于实际问题中。

共轭梯度法是一个典型的共轭方向法,它的每一个搜索方向是互相共轭的,而这些搜索方向d仅仅是负梯度方向与上一次迭代的搜索方向的组合,因此,存储量少,计算方便,效果好。

二、共轭梯度法的原理设有目标函数f(X)=1/2X T HX+b T X+c 式1 式中,H作为f(X)的二阶导数矩阵,b为常数矢量,b=[b1,b2,b3,...b n]T 在第k次迭代计算中,从点X(k)出发,沿负梯度方向作一维搜索,得S(K)=-∆f(X(k))式2 X(k+1)=X(k)+ɑ(k)S(k) 式3在式中,ɑ(k)为最优步长。

设与S(k)共轭的下一个方向S(k+1)由点S(k)和点X(k+1)负梯度的线性组合构,即S (k+1)=-∆f (X (k+1))+β(k)S (k) 式4 根据共轭的条件有[S (k)]T ∆2f (X (k))S (k+1)=0 式5 把式2和式4带入式5,得-[∆f(X (k))]T ∆2f (X (k))[-∆f (X (k+1))+β(k)S (k) ]=0 式6 对于式1,则在点X (k)和点X (k+1)的梯度可写为∆f(X (k))=HX (k)+b 式7 ∆f (X (k+1))=HX (k+1)+b 式8 把上面两式相减并将式3代入得ɑ(k)H S (k)=∆f (X (k+1))-∆f(X (k)) 式9 将式4和式9两边分别相乘,并代入式5得-[∆f (X (k+1))+β(k)∆f(X (k))]T [∆f (X (k+1))-∆f(X (k)]=0 式10 将式10展开,并注意到相邻两点梯度间的正交关系,整理后得 β(k )=22||))((||||))1((||k X f k X f ∆+∆ 式11把式11代入式4和式3,得 S (k+1)=-∆f (X (k))+β(k )S (k )X (k+1)=X (k )+ɑ(k )S (k )由上可见,只要利用相邻两点的梯度就可以构造一个共轭方向。

以这种方式产生共轭方向并进行迭代运算的方法,即共轭梯度法。

三、共轭梯度法的迭代方法步骤:1、给定的起始点X (0)和迭代计算精度h ;2、取X (0)的负梯度作为搜索方向S (0)=-∆f (X (0)) 3、沿方向S(k)进行一维搜索,得 X (k+1)=X (k )+ɑ(k )S (k )4、进行收敛检验。

若满足||∆f (X (k+1))||≤h,则令X *=X (k+1),f (X *)=f (X (k+1)) 输出最优解,结束迭代计算;否则,转入(5)5、若k=n ,则令X (0)=X (k+1),转入(2)开始新一轮的迭代;否则,转入(6)。

6、构造新的共轭方向 β=22||))((||||))1((||k X f k X f ∆+∆S (k+1)=-∆f (X (k))+β(k )S (k )令k=k+1,转入(3).四、共轭梯度法的计算框图如下:给定X (0), hS(0)=-∆f (X (0)),k=0minf(X (0))+ɑS (k)) X (k-1)=X (k )+ɑ(k )S (k )||∆f (X(k+1))||≤hk=n ?Β=22||))((||||))1((||k X f k X f ∆+∆S (k+1)=-∆f (X (k))+β(k )S(k )K=k+1X (0)=X (k+1) YNNX *=X (k+1)f (X *)=f (X (k+1))转出Y五、共轭梯度法的C++实现程序清单:#include<stdio.h>#include<math.h>#define N 10#define eps pow(10,-6)double f(double x[],double p[]){double s;s=x[]*x[]+4*p[]*p[]-1;return s;}/*以下是进退法搜索区间源程序*/void sb(double *a,double *b,double x[],double p[]) {double t0,t1,t,h,alpha,f0,f1;int k=0;t0=1; /*初始值*/h=0.01; /*初始步长*/alpha=1;f0=f(x,p,t0);t1=t0+h;f1=f(x,p,t1);while(1){if(f1<f0){h=alpha*h; t=t0; t0=t1; f0=f1; k++;}else{if(k==0){h=-h;t=t1;}else{*a=t<t1?t:t1; *b=t>t1?t:t1; break;}}t1=t0+h;f1=f(x,p,t1);}}double hjfg(double x[],double p[]){double beta,t1,t2,t;double f1,f2;double a=0,b=0;double *c,*d;c=&a,d=&b;sb(c,d,x,p);/*调用进退法搜索区间*/printf("\nx1=%lf,x2=%lf,p1=%lf,p2=%lf",x[0],x[1],p[0],p[1]); printf("\n[a,b]=[%lf,%lf]",a,b);beta=(sqrt(5)-1.0)/2;t2=a+beta*(b-a); f2=f(x,p,t2);t1=a+b-t2; f1=f(x,p,t1);while(1){if(fabs(t1-t2)<eps)break;else{if(f1<f2){t=(t1+t2)/2;b=t2; t2=t1;f2=f1; t1=a+b-t2; f1=f(x,p,t1);}else{a=t1; t1=t2;f1=f2;t2=a+beta*(b-a);f2=f(x,p,t2);}}}t=(t1+t2)/2;return t;}/*以下是共轭梯度法程序源代码*/ void gtd(){double x[N],g[N],p[N],t=0,f0,mod1=0,mod2=0,nanda=0;int i,k,n;printf("请输入函数的初值x1,x2=");scanf("%d",&n);printf("\n请输入步长值:\n");for(i=0;i<n;i++)scanf("%lf",&x[i]);f0=f(x,g,t);g[0]=2*x[0]; g[1]=50*x[1];mod1=sqrt(pow(g[0],2)+pow(g[1],2));/*求梯度的长度*/if(mod1>eps){p[0]=-g[0]; p[1]=-g[1]; k=0;while(1){t=hjfg(x,p);printf("\np1=%lf,p2=%lf,t=%lf",p[0],p[1],t);x[0]=x[0]+t*p[0]; x[1]=x[1]+t*p[1];g[0]=2*x[0]; g[1]=50*x[1];/*printf("\nx1=%lf,x2=%lf,g1=%lf,g2=%lf",x[0],x[1] ,g[0],g[1]);*/mod2=sqrt(pow(g[0],2)+pow(g[1],2)); /*求梯度的长度*/if(mod2<=eps) break;else{if(k+1==n){g[0]=2*x[0]; g[1]=50*x[1];p[0]=-g[0]; p[1]=-g[1]; k=0;}else{nanda=pow(mod2,2)/pow(mod1,2);printf("\nnanda=%lf,mod=%lf",nanda,mod2);p[0]=-g[0]+nanda*p[0];p[1]=-g[1]+nanda*p[1];mod1=mod2;k++;}}printf("\n--------------------------");}}printf("\n最优解为x1=%lf,x2=%lf",x[0],x[1]);printf("\n最终的函数值为%lf",f(x,g,t));}main(){gtd();}五、共轭梯度法的函数:用共轭梯度法求f(X)=x21+4x22-1的极小值,设X(0)=[1,1]T,h=0.01.六、函数运行:运行结果如下:请输入初始值:1 1请输入步长值:0.01最优解为x1=-0.000000,x2=-0.000000最终的函数值为-1Press any key to continue七、小结经过此次优化设计学习及作业完成,我基本掌握了优化设计课程的知识内容及任务,特别是在老师安排下动手完成了共轭梯度法的编程函数实现,对 C++语言也更熟悉,对以后的进一步的学习有很大的帮助,尽管在编程时出现诸多错误,甚至无法实现函数功能,但在老师不断地帮助下及时改进,终于实现函数,第一次将C++用于解决实际问题,收获很大。

相关文档
最新文档