大学物理工科教材习题(附答案)

合集下载

大学物理习题与答案解析

大学物理习题与答案解析

根据匀加速直线运动的速度公 式$v = v_0 + at$,代入已知的 $v_0 = 2m/s$和$a = 3m/s^2$,以及时间$t = 3s$, 计算得到$v = 2m/s + 3 times 3m/s^2 = 11m/s$。
一物体做匀减速直线运动,初 速度为10m/s,加速度为2m/s^2,则该物体在速度减为 零时的位移是多少?
04
答案解析
根据公式$v = lambda f$,频率$f = frac{v}{lambda} = frac{3 times 10^{8}}{500 times 10^{-9}}Hz = 6 times 10^{14}Hz$;根据公式 $E = hnu$,能量$E = h times f = 6.626 times 10^{-34} times 6 times
题目
答案解析
计算氢原子光谱线波长与频 率的关系。
根据巴尔末公式,氢原子光 谱线波长与频率的关系可以
表示为λ=R*(1/n1^2 1/n2^2),其中λ是光谱线波 长,R是里德伯常数,n1和 n2分别是两个能级的主量子
数。
பைடு நூலகம்
题目
一束光照射到某金属表面, 求光电子的最大初动能。
答案解析
根据爱因斯坦光电效应方程,光 电子的最大初动能Ekm=hν-W, 其中h是普朗克常数,ν是入射光 的频率,W是金属的逸出功。因 此,通过测量入射光的频率和金 属的逸出功,可以计算出光电子
题目
一定质量的理想气体,在等容升温过 程中,不吸热也不放热,则内能如何 变化?
答案解析
根据热力学第一定律,等容升温过程 中,气体不吸热也不放热,则内能增 加。
热传递习题及答案解析
题目

大学物理课后习题答案(上下册全)武汉大学出版社 习题3详解

大学物理课后习题答案(上下册全)武汉大学出版社 习题3详解

3-1 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ ] A.2ωmR J J + B. 02)(ωR m J J+ C.02ωmR JD. 0ω 答案:A3-2 如题3-2图所示,圆盘绕O 轴转动。

若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将:[ ]A. 增大.B. 不变.C. 减小.D. 无法判断. 题3-2 图 答案: C3-3 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为J 0,角速度为ω0,当她突然收臂使转动惯量减小为J 0 / 2时,其角速度应为:[ ] A. 2ω0 . B. ω0 . C. 4ω0 . D. ω 0/2. 答案:A3-4 如题3-4图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体:[ ]A. 动量不变,动能改变; 题3-4图B. 角动量不变,动量不变;C. 角动量改变,动量改变;D. 角动量不变,动能、动量都改变。

答案:D3-5 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量J z = .答案: 38kg ·m 23-6 如题3-6图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球并嵌于其中,则在此击中过程中,木球、子弹、细棒系统对o 轴的 守恒。

大学物理工科教材习题(附答案)

大学物理工科教材习题(附答案)

时间 空间与运动学1 下列哪一种说法是正确的( )(A )运动物体加速度越大,速度越快 (B )作直线运动的物体,加速度越来越小,速度也越来越小(C )切向加速度为正值时,质点运动加快 (D )法向加速度越大,质点运动的法向速度变化越快2 一质点在平面上运动,已知质点的位置矢量的表示式为j i r 22bt at +=(其中a 、b 为常量),则该质点作( ) (A )匀速直线运动 (B )变速直线运动 (C )抛物线运动 (D )一般曲线运动3 一个气球以1s m 5-⋅速度由地面上升,经过30s 后从气球上自行脱离一个重物,该物体从脱落到落回地面的所需时间为( )(A )6s (B )s 30 (C )5. 5s (D )8s4 如图所示湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖上的船向岸边运动,设该人以匀速率0v 收绳,绳长不变,湖水静止,则小船的运动是( )(A )匀加速运动 (B )匀减速运动 (C )变加速运动(D )变减速运动5 已知质点的运动方程j i r 33)s m 4()3(t m -⋅+=,则质点在2s 末时的速度和加速度为( )(A )j a j i v )s m 48( , )s m 48()s m 3(211---⋅=⋅+⋅=(B )j a j v )s m 48( , )s m 48(21--⋅=⋅=(C )j a j i v )s m 32( , )s m 32()s m 3(211---⋅=⋅+⋅=(D )j a j v )s m 32( , )s m 32(21--⋅=⋅=6 一质点作竖直上抛运动,下列的t v -图中哪一幅基本上反映了该质点的速度变化情况( )7 有四个质点A 、B 、C 、D 沿Ox 轴作互不相关的直线运动,在0=t 时,各质点都在00=x 处,下列各图分别表示四个质点的t v -图,试从图上判别,当s 2=t 时,离坐标原点最远处的质点( )8 一质点在0=t 时刻从原点出发,以速度0v 沿Ox 轴运动,其加速度与速度的关系为2kv a -=,k 为正常数,这质点的速度与所经历的路程的关系是( )(A )kx e v v -=0 (B ))21(200v x v v -=(C )201x v v -= (D )条件不足,无地确定9 气球正在上升,气球下系有一重物,当气球上升到离地面100m 高处,系绳突然断裂,重物下落,这重物下落到地面的运动与另一个物体从100m 高处自由落到地面的运动相比,下列哪一个结论是正确的( )(A )下落的时间相同 (B )下落的路程相同(C )下落的位移相同 (D )落地时的速度相同10 质点以速度231)s m 1(s m 4t v --⋅+⋅=作直线运动,沿直线作Ox 轴,已知s 3=t 时质点位于m 9=x 处,则该质点的运动方程为( ) (A )t x )s m 2(1-⋅= (B )221)s m 21()s m 4(t t x --⋅+⋅= (C )m t t x 12)s m 31()s m 4(331-⋅+⋅=-- (D )m t t x 12)s m 31()s m 4(331+⋅+⋅=--11 已知质点作直线运动,其加速度t a )s m 3(sm 232--⋅-⋅=,当0=t 时,质点位于00=x 处,且10s m 5-⋅=v ,则质点的运动方程为( ) (A )33221)s m 21()s m 1()s m 5(t t t x ---⋅-⋅+⋅= (B )3322)s m 21()s m 1(t t x --⋅-⋅=(C )3322)s m 31()s m 21(t t x --⋅-⋅= (D )3322)s m 1()s m 1(t t x --⋅-⋅=12 一个质点在Oxy 平面运动,其速度为j i v t )s m 8()s m 2(21--⋅-⋅=,已知质点0=t 时,它通过(3,7)位置处,那么该质点任意时刻的位矢是( )(A )j i r 221)s m 4()s m 2(t t --⋅-⋅= (B )j 7i r m])s m 4[(]3)s m 2[(221+⋅-+⋅=--t m t(C )j -(8m) (D )条件不足,不能确定13 质点作平面曲线运动,运动方程的标量函数为)( , )(t y y t x x ==,位置矢量大小22 y x +=r ,则下面哪些结论是正确的?( )(A )质点的运动速度是t x d d (B )质点的运动速率是t d d r v = (C ) d d t r v = (D ) d d t r 可以大于或小于 v14 质点沿轨道AB 作曲线运动,速率逐渐减小,在图中哪一个图正确表示了质点C 的加速度?( )15 以初速度0v 将一物体斜向上抛出,抛射角为o 45>θ,不计空气阻力,在g v t )cos (sin 0θθ-=时刻该物体的( )(A )法向加速度为g (B )法向加速度为g 32- (C )切向加速度为g 23- (D )切向加速度为g 32-16 一质点从静止出发绕半径为R 的圆周作匀变速圆周运动,角加速度为α,当质点走完一圈回到出发点时,所经历的时间是( )(A )R 221α (B )απ4(C )απ2 (D )不能确定17 一飞轮绕轴作变速转动,飞轮上有两点21 P P 和,它们到转轴的距离分别为d d 2 和,则在任意时刻,21 P P 和两点的加速度大小之比)/21a a 为( )(A )21 (B )41(C )要由该时刻的角速度决定 (D )要由该时刻的角加速度决定18 沿直线运动的物体,其速度与时间成反比,则其加速度与速度的关系是( )(A )与速度成正比 (B )与速度平方成正比 (C )与速度成反比 D )与速度平方成反比19 抛物体运动中,下列各量中不随时间变化的是( )(A )v (B )v (C )t v d d (D )t d d v20 某人以1h km 4-⋅速率向东前进时,感觉到风从正北方吹来,如果将速率增加一倍,则感觉风从东北吹来,实际风速和风向为( )(A )1h km 4-⋅从正北方吹来 (B )1h km 4-⋅从西北方吹来 (C )1h km 24-⋅从东北方向吹来 (D )1h km 24-⋅从西北方向吹来 C a c b d a a c c a b c c d b a b d d牛顿运动定律1 下列说法中哪一个是正确的?( )(A )合力一定大于分力 (B )物体速率不变,所受合外力为零(C )速率很大的物体,运动状态不易改变(D )质量越大的物体,运动状态越不易改变2 物体自高度相同的A 点沿不同长度的光滑斜面自由下滑,如右图所示,斜面倾角多大时,物体滑到斜面底部的速率最大()(A )30o (B)45o (C)60o (D )各倾角斜面的速率相等。

(完整版)大学物理课后习题答案详解

(完整版)大学物理课后习题答案详解

第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。

(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。

解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

大学物理学课后习题答案

大学物理学课后习题答案

习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r -=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d .t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。

大学物理教材习题答案

大学物理教材习题答案

⼤学物理教材习题答案第⼀章质点运动习题解答⼀、分析题1.⼀辆车沿直线⾏驶,习题图1-1给出了汽车车程随时间的变化,请问在图中标出的哪个阶段汽车具有的加速度最⼤。

答: E 。

位移-速度曲线斜率为速率,E 阶段斜率最⼤,速度最⼤。

2.有⼒P 与Q 同时作⽤于⼀个物体,由于摩擦⼒F 的存在⽽使物体处于平衡状态,请分析习题图1-2中哪个可以正确表⽰这三个⼒之间的关系。

答: C 。

三个⼒合⼒为零时,物体才可能处于平衡状态,只有(C )满⾜条件。

3.习题图1-3(a )为⼀个物体运动的速度与时间的关系,请问习题图1-3(b )中哪个图可以正确反映物体的位移与时间的关系。

答:C 。

由v-t 图可知,速度先增加,然后保持不变,再减少,但速度始终为正,位移⼀直在增加,且三段变化中位移增加快慢不同,根据v-t 图推知s-t 图为C 。

三、综合题:1.质量为的kg 50.0的物体在⽔平桌⾯上做直线运动,其速率随时间的变化如习题图1-4所⽰。

问:(1)设s 0=t 时,物体在cm 0.2=x 处,那么s 9=t 时物体在x ⽅向的位移是多少?(2)在某⼀时刻,物体刚好运动到桌⼦边缘,试分析物体之后的运动情况。

解:(1)由v-t 可知,0~9秒内物体作匀减速直线运动,且加速度为:220.8cm/s 0.2cm/s 4a == 由图可得:0 2.0cm s =,00.8cm/s v =, 1.0cm/s t v =-,则由匀减速直线运动的位移与速度关系可得:22002() t a s s v v -=- 2200()/2t s v v a s =-+ 22[0.8( 1.0)]/20.2 2.0cm =--?+1.1c m =(2)当物体运动到桌⼦边缘后,物体将以⼀定的初速度作平抛运动。

2.设计师正在设计⼀种新型的过⼭车,习题图1- 5为过⼭车的模型,车的质量为0.50kg ,它将沿着图⽰轨迹运动,忽略过⼭车与轨道之间的摩擦⼒。

《新编大学物理》(上、下册)教材习题答案

《新编大学物理》(上、下册)教材习题答案
题:
答案:[A]
提示: ,
题:
答案:[C]
提示:由时间的相对性, ,长度为
题 :
答案:[D]
提示: 得
题:
答案:[D]
提示: , ,故
题:
答案:[A]
提示: ; ; ;故
二、填空题
题:
答案:
提示:设痕迹之间距离为 ,由公式 ( 为静长度)。则车上观察者测得长度为
题:
答案:(1) ,(2)
提示:(1)相对论质量和相对论动量: ,
简谐振动的表达式为:x= (πt –π/3).
(2)当t=T/4时物体的位置为;x= (π/2–π/3) = π/6 = (m).
速度为;v= -πAsin(π/2–π/3) = πsinπ/6 = (m·s-1).
加速度为:a= dv/dt= -ω2Acos(ωt + φ)= -π2Acos(πt -π/3)= π2cosπ/6 = (m·s-2).
[解答]物体的总能量为:E = Ek+ Ep= (J).
(1)根据能量公式E = kA2/2,得振幅为: = (m).
(2)当动能等于势能时,即Ek= Ep,由于E = Ek+ Ep,可得:E =2Ep,
即 ,解得: = ±(m).
(3)再根据能量公式E = mvm2/2,得物体经过平衡位置的速度为:
(2)速度的最大值为:vm= ωA= π = (m·s-1); 题解答图
加速度的最大值为:am= ω2A= π2= (m·s-2).
(3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A= (N);
振动能量为:E = kA2/2 =mω2A2/2 = ×10-2(J),

工科大学物理练习答案及解析(含综合卷)

工科大学物理练习答案及解析(含综合卷)
为16m/s,试求t=1s时,质点P的速度与加速度的大小 解: V R kRt 2 kt 2
16
t 2
k4
V 4t 2
Vt 1 4m/s
a R
d dV 2kt 8t dt dt
an 2 R 2 16t 4
F

O
F
1题图
M J
M 0
2.质量为m的小孩站在半径为R的水平平台边缘上,平台可以绕通过 其中心的竖直光滑轴自由转动,转动惯量为J,开始时平台和小孩 均静止,当小孩突然以相对地面为V的速率在台边缘沿顺时针转向
走动时,此平台相对地面旋转的角速度和旋转方向分别为 :
(A)
mR 2 V ( ) J R
M J k 2 J 0 / 2


k 2 J
d dt
2.一长为l的轻质细棒,两端分别固定质量为m和
2m的小球如图,此系统在竖直平面内可绕过中点 O且与棒垂直的水平光滑固定轴(O轴)转动。开始 时棒与水平成60°角并处于静止状态。无初转速 地释放以后,棒、球组成的系统绕O轴转动,系 3 ml 2 统绕O轴转动惯量J= 4 ,释放后,当棒转到 1 mgl 水平位置时,系统受到的合外力矩M= 2 , 角加速度 =
a2 10 18 2 26(SI )
2.一质点沿X轴运动,其加速度a与位置坐标x的关系为a=3+6x2(SI), 如果质点在原点处的速度为零,试求其在任意位置处的速度。 dV dx dV 2 dV a ( 3 6 x ) i V 解: dt dx dt dx

k t ( AV0 ) m V Ae
mg F A k

工科大学物理测试题及答案

工科大学物理测试题及答案

工科大学物理测试题及答案一、选择题(每题2分,共20分)1. 光在真空中的传播速度是:A. 3×10^8 m/sB. 3×10^5 km/sC. 3×10^4 km/sD. 3×10^3 km/s2. 一个物体从静止开始做匀加速直线运动,其加速度为2 m/s²,那么在第3秒末的速度为:A. 4 m/sB. 6 m/sC. 8 m/sD. 10 m/s3. 根据牛顿第三定律,作用力和反作用力:A. 总是大小相等,方向相反B. 总是大小不等,方向相反C. 总是大小相等,方向相同D. 总是大小不等,方向相同4. 以下哪种情况不会改变物体的动量?A. 物体受到外力作用B. 物体的速度发生变化C. 物体的质量发生变化D. 物体处于静止状态5. 一个物体的质量为2 kg,受到一个大小为10 N的力,作用时间为5 s,那么物体的冲量为:A. 50 N·sB. 100 N·sC. 200 N·sD. 500 N·s6. 光的折射定律表明:A. 入射角和折射角之和恒定B. 入射角和折射角之比恒定C. 入射角和折射角之差恒定D. 入射角和折射角成正比7. 一个物体在水平面上做匀速圆周运动,其向心力的方向:A. 总是指向圆心B. 总是指向圆周的切线方向C. 总是垂直于圆周的切线方向D. 总是垂直于圆心8. 根据能量守恒定律,以下说法正确的是:A. 能量可以被创造B. 能量可以被消灭C. 能量既不能被创造也不能被消灭D. 能量可以无限制地转化9. 一个物体在竖直方向上受到重力和摩擦力的作用,如果物体处于静止状态,则:A. 重力和摩擦力大小相等,方向相反B. 重力和摩擦力大小不相等,方向相反C. 重力和摩擦力大小相等,方向相同D. 重力和摩擦力大小不相等,方向相同10. 以下哪种波是横波?A. 声波B. 电磁波C. 光波D. 重力波二、填空题(每题2分,共20分)1. 牛顿第一定律也被称为______定律。

大学物理教程上课后习题答案

大学物理教程上课后习题答案

物理部分课后习题答案标有红色记号的为老师让看的题27页 1-2 1-4 1-121-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求:(1) 质点的运动轨迹;(2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度;解:1由运动方程消去时间t 可得轨迹方程,将t =,有21)y =或 1=2将1t s =和2t s =代入,有11r i =, 241r i j =+213r r r i j =-=-位移的大小 231r =+=3 2x dxv t dt== 2(1)y dy v t dt==-22(1)v ti t j =+-2xx dv a dt==, 2y y dv a dt == 22a i j =+当2t s =时,速度和加速度分别为42/v i j m s =+22a i j =+ m/s 21-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+,式中的R 、ω均为常量;求1质点的速度;2速率的变化率;解 1质点的速度为sin cos d rv R ti R t j dtωωωω==-+ 2质点的速率为v R ω==速率的变化率为0dvdt= 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+;求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小;解 由于 4d t dtθω== 质点在t 时刻的法向加速度n a 的大小为2216n a R Rt ω==角加速度β的大小为 24/d rad s dtωβ==77页2-15, 2-30, 2-34,2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量;解 由冲量的定义,有2.02.02.02(63)(33)18I Fdt t dt t t N s ==+=+=⎰⎰2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的阻力空气阻力和摩擦力f kv =-k 为常数作用;设撤除牵引力时为0t =,初速度为0v ,求1滑行中速度v 与时间t 的关系;20到t 时间内飞机所滑行的路程;3飞机停止前所滑行的路程;解 1飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有dvf mkv dt ==- 即 dv k dt v m=- 两边积分,速度v 与时间t 的关系为2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等于地球半径的2倍即2R ,试以,m R 和引力恒量G 及地球的质量M 表示出:(1) 卫星的动能;(2) 卫星在地球引力场中的引力势能.解 1 人造卫星绕地球做圆周运动,地球引力作为向心力,有22(3)3Mm v G m R R= 卫星的动能为 2126k GMmE mv R ==2卫星的引力势能为3p GMmE R=-00v t v dv k dt v m =-⎰⎰2-37 一木块质量为1M kg =,置于水平面上,一质量为2m g =的子弹以500/m s的速度水平击穿木块,速度减为100/m s ,木块在水平方向滑行了20cm 后停止;求:(1) 木块与水平面之间的摩擦系数; (2) 子弹的动能减少了多少;解 子弹与木块组成的系统沿水平方向动量守恒12mv mv Mu =+对木块用动能定理2102Mgs Mu μ-=-得 1 2212()2m v v Mgsμ-==322(210)(500100)0.16219.80.2-⨯⨯-=⨯⨯⨯ 2 子弹动能减少2212121()2402k k E E m v v J -=-= 114页3-11,3-9,例3-2 如图所示,已知物体A 、B 的质量分别为A m 、B m ,滑轮C 的质量为C m ,半径为R ,不计摩擦力,物体B 由静止下落,求1物体A 、B 的加速度; 2绳的张力;3物体B 下落距离L 后的速度; 分析: 1本题测试的是刚体与质点的综合运动,由于滑轮有质量,在运动时就变成含有刚体的运动了;滑轮在作定轴转动,视为圆盘,转动惯量为例3-2图212J mR =; 2角量与线量的关系:物体A 、B 的加速度就是滑轮边沿的切向加速度,有t a R β=; 3由于滑轮有质量,在作加速转动时滑轮两边绳子拉力12T T ≠; 分析三个物体,列出三个物体的运动方程:物体A 1A T m a = 物体B 2B B m g T m a -= 物体C ''22111()22C C T T R J m R m Ra ββ-=== 解 112B A B Cm g a m m m =++;2112A B A B C m m g T m m m =++, 21()212A C AB Cm m g T m m m +=++;3对B 来说有,2202v v aLv -===例3-4 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止 已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量 分析: 利用积分求圆形平板受桌面的摩擦力矩,运用转动定律求出平板的角加速度,再用运动学公式求转动的圈数.解:在距圆形平板中心r 处取宽度为dr 的环带面积,环带受桌面的摩擦力矩为r r r RmgM d 2d 2⋅π⋅π=μ总摩擦力矩为mgR M M Rμ32d 0==⎰ 故平板的角加速度为M Jβ=222 可见圆形平板在作匀减速转动,又末角速度0ω=,因此有2022M Jθωβθ==设平板停止前转数为n,则转角2n θπ=,可得22003416J R n M ωωμ==πgπ3-2:如题3-2图所示,两个圆柱形轮子内外半径分别为R 1和R 2,质量分别为M 1和M 2;二者同轴固结在一起组成定滑轮,可绕一水平轴自由转动;今在两轮上各绕以细绳,细绳分别挂上质量为m 1和m 2的两个物体;求在重力作用下,定滑轮的角加速度;解: m 1:1111a m g m T=-m 2:2222a m T g m=-转动定律:βJ T R T R =-1122其中:2222112121R M R M J += 运动学关系:2211R a R a ==β 解得:222221111122)2/()2/()(R m M R m M gR m R m +++-=β3-6 一质量为m 的质点位于11,y x 处,速度为j v i v v y x+=, 质点受到一个沿x 负方向的力f 的作用,求相对于坐标原点的角动量以及作用于质点上的力的力矩.解: 由题知,质点的位矢为j y i x r11+=作用在质点上的力为i f f -=所以,质点对原点的角动量为v m r L⨯=0)()(11j v i v m i y i x y x +⨯+=k mv y mv x x y )(11-=作用在质点上的力的力矩为k f y i f j y i x f r M1110)()(=-⨯+=⨯=3-11 如题3-11图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求:1初始时刻的角加速度; 2杆转过θ角时的角速度. 解: 1由转动定律,有2123()=l mgml β 则 lg23=β 2由机械能守恒定律,有22110232()-=lml ωmg sin θ题3-11图所以有 lg θωsin 3=3-13 一个质量为M 、半径为R 并以角速度ω转动着的飞轮 可看作匀质圆盘,在某一瞬时突然有一片质量为m 的碎片从轮的边缘上飞出,见题3-13图.假定碎片脱离飞轮时的瞬时速度方向正好竖直向上. 1问它能升高多少2求余下部分的角速度、角动量和转动动能.解: 1碎片离盘瞬时的线速度即是它上升的初速度ωR v =0设碎片上升高度h 时的速度为v ,则有 题3-13图gh v v 2202-=令0=v ,可求出上升最大高度为2220212ωR gg v H ==2圆盘的转动惯量212=J MR ,碎片抛出后圆盘的转动惯量2212'=-J MR mR ,碎片脱离前,盘的角动量为J ω,碎片刚脱离后,碎片与破盘之间的内力变为零,但内力不影响系统的总角动量,碎片与破盘的总角动量应守恒,即'=+'0J ωJ ωmv R式中ω'为破盘的角速度.于是R mv mR MR MR 0222)21(21+'-=ωωωω'-=-)21()21(2222mR MR mR MR 得ωω=' 角速度不变圆盘余下部分的角动量为ω)21(22mR MR - 转动动能为222)21(21ωmR MR E k -=258页8-2,8-12,8-178-7 试计算半径为R 、带电量为q 的均匀带电细圆环的轴线过环心垂直于圆环所在平面的直线上任一点P 处的场强P 点到圆环中心的距离取为x .解 在圆环上任取一电荷元dq ,其在P 点产生的场强为 ()2204Rx dqdE +=πε方向沿dq 与P 点的连线.将其分解为平行于轴线的分量和垂直于轴线的分量,由电荷分布的对称性可知,各dq 在P 点产生的垂直于轴线的场强分量相互抵消,而平行于轴线的分量相互加强,所以合场强平行于轴线, 大小为:E =E ∥=()()()23220212222044cos R x qxR x x R x dq dE q +=+⋅+=⎰⎰πεπεθ 方向:q >0时,自环心沿轴线向外;q <0时,指向环心.8-12 两个均匀带电的同心球面半径分别为R 1和R 2R 2>R 1,带电量分别为q 1和q 2,求以下三种情况下距离球心为r 的点的场强:1r <R 1;2R 1<r <R 23r >R 2.并定性地画出场强随r 的变化曲线解 过所求场点作与两带电球面同心的球面为高斯面,则由高斯定理可知: (1) 当r <R 1时,0,04cos 2=∴=⋅==Φ⎰E r E dS E e πθ(2) 当R 1<r <R 2时,2010124,4cos rq E q r E dS E e πεπθ=∴=⋅==Φ⎰(3) 当r >R 2 时,()()2021021244cos rq q E q q r E dS E e πεεπθ+=∴+=⋅==Φ⎰8-13 均匀带电的无限长圆柱面半径为R ,每单位长度的电量即电荷线密度为λ. 求解8-7图E12解8-12图 场强随r 的变化曲线圆柱面内外的场强.解 过所求场点作与无限长带电圆柱面同轴的、长为l 的封闭圆柱面,使所求场点在封闭圆柱面的侧面上.由电荷分布的对称性可知,在电场不为零的地方,场强的方向垂直轴线向外设λ>0,且离轴线的距离相等的各点场强的大小相等. 所以封闭圆柱面两个底面的电通量为零,侧面上各点场强的大小相等,方向与侧面垂直与侧面任一面积元的法线方向平行.设所求场点到圆柱面轴线的距离为r ,当r <R 即所求场点在带电圆柱面内时,因为0,02000cos cos =∴=⋅=++==Φ⎰⎰E rl E dS E dS E e πθ;当r >R 即所求场点在带电圆柱面外时,rE l rl E e 002,2πελελπ=∴=⋅=Φ . 8-15 将q=×10-8C 的点电荷从电场中的A 点移到B 点,外力作功×10-6J .问电势能的增量是多少 A 、B 两点间的电势差是多少哪一点的电势较高若设B 点的电势为零,则A 点的电势是多少解 电势能的增量:J 100.56-⨯==-=∆外A W W W A B ;A 、B 两点间的电势差:V 100.2105.2100.5286⨯-=⨯⨯-=-=-=---q W W q W q W U U B A B A B A <0, ∴ B 点的电势较高;若设B 点的电势为零,则 V 100.22⨯-=A U .8-17 求习题8-12中空间各点的电势.解 已知均匀带电球面内任一点的电势等于球面上的电势Rq 04πε,其中R 是球面的半径;均匀带电球面外任一点的电势等于球面上的电荷全部集中在球心上时的电势.所以,由电势的叠加原理得:(1) 当r <R 1即所求场点在两个球面内时:20210144R q R q U πεπε+=;(2) 当R 1<r <R 2即所求场点在小球面外、大球面内时:2020144R q rq U πεπε+=;当r >R 2即所求场点在两个球面外时:r q q r q r q U 0210201444πεπεπε+=+=当r >R 2即所求场点在两个球面外时:rq q rq rq U 0210201444πεπεπε+=+=285页9-3,9-49-3.如图,在半径为R 的导体球外与球心O 相距为a 的一点A 处放置一点电荷+Q ,在球内有一点B 位于AO 的延长线上,OB = r ,求:1导体上的感应电荷在B 点产生的场强的大小和方向;2B 点的电势.解:1由静电平衡条件和场强叠加原理可知,B 点的电场强度为点电荷q 和球面感应电荷在该处产生的矢量和,且为零,即04130=+'=r rE E p B πε r r a E B30)(41+-=πε 2由电势叠加原理可知,B 点的电势为点电荷q 和球面感应电荷在该处产生的电势的标量和,即rq V V BB 04πε+'=由于球体是一个等势体,球内任一点的电势和球心o 点的电势相等aq V V V B 0004πε+'==因球面上的感应电荷与球心o 的距离均为球的半径R,且感应电荷的总电贺量为零,所以感应电荷在o 点产生的电势为零,且00V V =',因此aq V V B 004πε==所以, B 点的电势 aq V B 04πε=9-4.如图所示,在一半径为R 1 = cm 的金属球A 外面罩有一个同心的金属球壳B.已知球壳B 的内、外半径分别为R 2 = cm,R 3 = cm,A 球带有总电量Q A = ×10-8 C,球壳B 带有总电量Q B = ×10-8 C.求:1球壳B 内、外表面上所带的电量以及球A 和球壳B 的电势;2将球壳B 接地后再断开,再把金属球A 接地,求金属球A 和球壳B 的内、外表面上所带的电量,以及球A 和球壳B 的电势.习题图解:1在导体到达静电平衡后,A Q 分布在导体球A的表面上.由于静电感应,在B 球壳的内表面上感应出负电荷A Q ,外表面上感应出正电荷A Q ,则B 球壳外表面上的总电荷B A Q Q +;由场的分布具有对称性,可用高斯定理求得各区域的场强分布)(4),(02120211R r R r Q E R r E A<<=<=πε)(4),(03204323R r rQ Q E R r R E BA >+=<<=πε E 的方向眼径向外.导体为有限带电体,选无限远处为电势零点;由电势的定义可计算两球的电势B A V V 和. A 球内任一场点的电势A V 为)(4144321020204321321332211R Q Q R Q R Q rd r Q Q r d r Q rd E r d E r d E r d E V BA A A RB A R R A R R R R R R rA ++-=++=⋅+⋅+⋅+⋅=⎰⎰⎰⎰⎰⎰∞∞πεπεπεB 球壳内任一点的电势B V 为30204344333R Q Q dr r Q Q rd E r d E V B A R B A R R rB πεπε+=+=⋅+⋅=⎰⎰⎰∞∞9-5.两块无限大带电平板导体如图排列,试证明:1相向的两面上图中的2和3,其电荷面密度大小相等而符号相反;2背向的两面上图中的1和4,其电荷面密度大小相等且符号相同. 解:因两块导体板靠得很近,可将四个导体表面视为四个无限大带点平面;导体表面上的电荷分布可认为是均匀的,且其间的场强方向垂直导体表面;作如图所示的圆柱形高斯面,因导体在到达静电平衡后内部场强为零,导体外的场强方向与高斯面的侧面平行,由高斯定理可得习题图320320σσεσσ-=∴+=; 再由导体板内的场强为零,可知P 点合场强0)2()2()2(204030201=-++-+εσεσεσεσ 由 32σσ-= 得41σσ-=9-7. 一平行板电容器,充电后极板上的电荷面密度为σ = ×10-5 C . m -2,现将两极板与电源断开,然后再把相对电容率为εr = 的电介质充满两极板之间.求此时电介质中的D 、E 和P . 解:当平行板电容器的两板与电源断开前后,两极板上所带的电荷量没有发生变化,所以自由电荷面密度也没有发生变化,由 1-'=r r εσεσ ∴极化电荷面密度rr )(εεσσ1-='对于平行板电容器σ'=P 0r E εεσ)1(-'=∴1-'=r r D εσε 且E D P ,,的方向均沿径向.9-11.圆柱形电容器由半径为R 1的导线和与它同轴的导体圆筒构成,其间充满相对电容率为εr 的电介质.圆筒内半径为R 2.电容器长为L,沿轴线单位长度上的电荷为± λ,略去边缘效应,试求:1两极的电势差;2电介质中的电场强度、电位移、极化强度; 3电介质表面的极化电荷面密度.解:1 设导线上的电荷均匀地分布在导线的表面上,圆筒上的电荷均匀的分布在圆筒的内表面上,可由高斯定理求得各区域的场强110R ,rE <=习题图10-6ByOlllzx12022R r ,R rE r >>=επελ23,0R r E >= ∴两极的电位差1201202ln 2ln 221R R R R r l d E u r r R R επελεπελ==⋅=⎰2 由第1问知,电介质中的电场强度 rE r επελ02=电位移rr r E D πλεε20== 极化强度 0)1(εε-=r P rr r πελε2)1(-=329页10-9,10-1010-6 一边长为0.15l =m 的立方体如图放置,有一均匀磁场(63 1.5)B i j k =++T 通过立方体所在区域.计算:1通过立方体上阴影面积的磁通量; 2通过立方体六面的总磁通量. 解:1立方体一边的面积2S l =2(63 1.5)(0.15)0.135B S i j k i Wb Φ==++=(2)总通量0B ds Φ=•=⎰⎰10-11 如图所示,已知相距为d 的两平行长直导线载有相同电流,求1两导线所在平面与此两导线等距一点处的磁感应强度; 2通过图中矩形面积的磁通量 ()31r r =解 在两导线所在平面内,两导线之间的任一点P 处,两导线所产生的磁感应强度B 1和B 2方向相同,都垂直纸面向外;故P P P B B B 21+= 设P 点离导线1的距离为r ,则 RIB P πμ21=,()r d I B P -=πμ22代入上式得()r d Ir I B P -+=πμπμ22 (1) 在导线等距的点有 2d r =, dI B πμ2= (2) 取面积元ldr dS =,则通过矩形面积的磁通量为⎰=ΦSm B d S ()ldr r d I r I r r r ⎰+⎥⎦⎤⎢⎣⎡-+=21122πμπμ πμ2Il =㏑121r r r ++πμ2Il ㏑211r r d r d ---πμIl =㏑11r r d -10-10 如图,载流导线弯成a 、b 、c 所示的形状,求三图中P 点的磁感应强度B 的大小和方习题图10-10习题图10-6By Olllzx向.解:a 水平方向的载流导线对P 电磁感应强度的贡献为0;竖直部分对P 点磁感应强度10-6 一边长为0.15l =m 的立方体如图放置,有一均匀磁场(63 1.5)B i j k =++T 通过立方体所在区域.计算:1通过立方体上阴影面积的磁通量; 2通过立方体六面的总磁通量. 解:1立方体一边的面积2S l =2(63 1.5)(0.15)0.135B S i j k i Wb Φ==++=(3)总通量0B ds Φ=•=⎰⎰ 10-11 如图所示,已知相距为d 的两平行长直导线载有相同电流,求1两导线所在平面与此两导线等距一点处的磁感应强度;通过图中矩形面积的磁通量 ()31r r =2解 在两导线所在平面内,两导线之间的任一点P 处,两导线所产生的磁感应强度B 1和B 2方向相同,都垂直纸面向外;故P P P B B B 21+= 设P 点离导线1的距离为r ,则 RIB P πμ21=,()r d I B P -=πμ22代入上式得()rd Ir I B P -+=πμπμ22(3) 在导线等距的点有002100(cos cos )(cos90cos180)44[0(1)]44o o I IB r aI a I a μμθθππμπμπ=-=-=--=2d r =, dI B πμ2= (4) 取面积元ldr dS =,则通过矩形面积的磁通量为⎰=ΦSm B d S ()ldr r d I r I r r r ⎰+⎥⎦⎤⎢⎣⎡-+=21122πμπμ πμ2Il =㏑121r r r ++πμ2Il ㏑211r r d r d ---πμIl =㏑11r r d - 10-10 如图,载流导线弯成a 、b 、c 所示的形状,求三图中P 点的磁感应强度B 的大小和方向.解:a 水平方向的载流导线对P 电磁感应强度的贡献为0;竖直部分对P 点磁感应强度方向垂直纸面向外.bP 点处的磁感应强度为三部分载流导线所产生的磁感应强度的叠加,则00123132*********22(cos cos )422;90;108;2[0(1)]42224I I B B B B B B r r r a I I I IB a r a rμμθθθππθθθπμμμμππππ=++=+=-+====∴=--+=+方向垂直纸面向里.cB 为三边磁感应强度叠加,由对称性习题图10-10002100(cos cos )(cos90cos180)44[0(1)]44o o I IB r aIa I aμμθθππμπμπ=-=-=--=习题图10-1401231210033(cos cos )41393.42IB B B B B rr h IB I h aμθθπμμππ=++==-=∴==方向垂直纸面向里.10-14 一根很长的铜导线,载有电流10 A,在导线内部通过中心线作一平面S ,如图所示.试计算通过导线1m 长的S 平面内的磁通量铜材料本身对磁场分布无影响.解:设距轴线为r 处的磁感应强度为B .则0222200022002000000220076,;22224410101 1.0104R Rs I IB dl I r R r r I I B r I R R I B rRI I l I l B d s r ld r rdr R R Wbμπππμμπμμμπππππ--⋅==∴=⋅=∴=Φ====⨯⨯⨯==⨯⎰⎰⎰⎰⎰即S 平面内的磁通量为61.010Wb -⨯.方向垂直纸面向外.bP 点处的磁感应强度为三部分载流导线所产生的磁感应强度的叠加,则习题图10-1400123132*********22(cos cos )422;90;108;2[0(1)]42224I I B B B B B B r r r a I I I IB a r a rμμθθθππθθθπμμμμππππ=++=+=-+====∴=--+=+方向垂直纸面向里.cB 为三边磁感应强度叠加,由对称性01231210033(cos cos )41393.42IB B B B B rr h IB I h aμθθπμμππ=++==-=∴==方向垂直纸面向里.10-14 一根很长的铜导线,载有电流10 A,在导线内部通过中心线作一平面S ,如图所示.试计算通过导线1m 长的S 平面内的磁通量铜材料本身对磁场分布无影响.解:设距轴线为r 处的磁感应强度为B .则0222200022002000000220076,;22224410101 1.0104R Rs I IB dl I r R r r I I B r I R R I B rRI I l I l B d s r ld r rdr R R Wbμπππμμπμμμπππππ--⋅==∴=⋅=∴=Φ====⨯⨯⨯==⨯⎰⎰⎰⎰⎰即S 平面内的磁通量为61.010Wb -⨯. 367页11-1,11-511-1 一载流I 的无限长直导线,与一N 匝矩形线圈ABCD 共面;已知AB 长为L ,与导线间距为a ;CD 边与导线间距为bb ›a;线圈以 v 的速度离开直导线,求线圈内感应电动势的方向和大小;解 由于I 为稳恒电流,所以它在空间各点产生的磁场为稳恒磁场;当矩形线圈ABCD 运动时,不同时刻通过线圈的磁通量发生变化,故有感应电动势产生;取坐标系如图a 所示;设矩形线圈以速度 v 以图示位置开始运动,则经过时间t 之后,线圈位置如图b 所示;取面积元ldx dS =,距长直导线的距离为x ,按无限长直载流导线的磁感应强度公式知,该面积元处B 的大小为 B =xπμ20I 通过该面积元的磁通量为 ldx xIBdS d πμ20==Φ 于是通过线圈的磁通量为 ()⎰⎰⎰++++==Φ=Φvt b vt a vtb vt a xldxI ldx x I d t πμπμ2200 =πμ20Il ㏑vta vtb ++ 由法拉第电磁感应定律可知,N 匝线圈内的感应电动势为()()()⎥⎦⎤⎢⎣⎡++-+++-=Φ-=202vt a v vt b v vt a vt b vt a lIN dt d N E πμ ()()()()vt a vt b vvt b v vt a lIN +++-+-=πμ20令t = 0,并代入数据,则得线圈刚离开直导线时的感应电动势()ab a b NlIv b a lIvN dtd NE t πμπμ2112000-=⎪⎭⎫ ⎝⎛-=Φ-== 按楞次定律可知,E 感应电动势的方向沿顺时针方向;11-5 在无限长螺线管中,均匀分布着与螺线管轴线平行的磁场B t;设B 以速率dtdB=К变化К为大于零的常量;现在其中放置一直角形导线 abc;若已知螺线管截面半径为R,l ab =,求:1螺线管中的感生电场EV;2bc ab ,两段导线中的感生电动势;解 1由于系统具有轴对称性,如图所示,可求出感生电场;在磁场中取圆心为O ,半径为()R r r <的圆周,根据感生电场与变化磁场之间的关系m V LS d BE dl d S dtt Φ∂=-=-∂⎰⎰可得222V dBE r r r dtπππκ=-=- 有2V rE κ=-()R r < 由楞次定律可以判断感生电场为逆时针方向;2解法一 用法拉第电磁感应定律求解;连接Ob Oa ,和Oc ,在回路OabO 中,穿过回路所围面积的磁通量为1222124l BS Bl R ⎛⎫Φ=-=-- ⎪⎝⎭则11222221112424d l dB l E l R l R dt dt κ⎛⎫⎛⎫Φ=-=--=- ⎪ ⎪⎝⎭⎝⎭而ab oa bo ab E E E E E =++=1 所以12221124ab l E E lk R ⎛⎫==- ⎪⎝⎭方向由a 指向b同理可得 1222124bc l E lk R ⎛⎫=- ⎪⎝⎭方向由b 指向c解法二 也可由感生电场力做功求解;由于1中已求出EV;则122224bab V ak l E E dl l R ⎛⎫=⋅=- ⎪⎝⎭⎰122224cbc V bk l E E dl l R ⎛⎫=⋅=- ⎪⎝⎭⎰11-1.解: 1由电磁感应定律812)1(--=Φ-t dtd i ε2)2(102.3-⨯-=i ε2 2106.1-⨯==RI iε由于磁通量是增加的,所以线圈中产生的感应电动势使R 中产生感应电流的方向是由左向右11-4解:由题意可知金属棒沿杆下滑的速度为重力加速度所引起t BgL L Bgt l d B V )cos sin (cos sin )(θθθθε==⋅⨯=⎰11-5解:由于I 为稳定电流,所以它在空间各点产生的磁场为稳恒磁场.当矩形线圈ABCD 运动时,不同时刻通过线圈的磁通量回发生变化,故有感应电动势产生.取坐标系如图;设矩形线圈以速度V 从图示位置开始运动,经过时间t 之后,线圈位置如图b 所示,取面积元ds=ldx,距长直导线的距离为x,按无限长直载流导体的磁感应强度公式知,该面积元外B的大小为x I B πμ20= 通过该面积元的磁通量为ldx x I Bds d ⋅==Φπμ20 于是通过线圈的磁通量为⎰⎰⎰++++⋅=⋅=Φ=Φvt b vt a vt b vt a xldx x I ldx x I d t πμπμ22)(00 va vtb IL ++=ln 20πμ 由法拉第电磁感应定律可知,N 匝线圈中的感应电动势为])()()([220vt a v vt b v vt a vt b vt a ILN dt d N E ++-+++-=Φ-=πμ -=))(()()(20vt b vt a v vt b v vt a IN +++-+πμ 令t=0,代入数据,得到线圈,刚离开直导线时的感应电动势)11(200ba LIVN dt d N E t -=Φ-==πμ )(100.32.01.02)1.02.0(0.30.52.010104737V --⨯=⨯⨯-⨯⨯⨯⨯⨯⨯=ππ 按楞次定律E 的方向为图b 中的顺时针方向1、 一质点作匀速率圆周运动,其质量为m,线速度为v,半径为R;求它对圆心的角动 量;它相对于圆周上某一点的角动量是否为常量,为什么答:它对圆心的角动量Rmv ,是常量;它相对于圆周上某一点的角动量不是常量;4、彗星绕太阳作椭圆轨道运动,太阳位于椭圆轨道的一个焦点上,问系统的角动量是否 守恒 近日点与远日点的速度哪个大答:在彗星绕太阳轨道运转过程中,只受万有引力作用,万有引力对太阳不产生力矩,系统角动量守恒;近日点 r 小 v 大,远日点 r 大 v 小;这就是为什么彗星运转周期为几十年,而经过太阳时只有很短的几周时间;彗星接近太阳时势能转换成动能,而远离太阳时,动能转换成势能;8.利用角动量守恒定律简要分析花样滑冰、跳水运动过程;答:对这一力学现象可根据角动量守衡定律来解释;例如旋转着的芭蕾舞演员要加快旋转时,总是将双手收回身边,这时演员质量分布靠近转轴,转动惯量变小,转动速度加快,转动动能增加;3-5题图。

大学物理教材课后习题参考答案

大学物理教材课后习题参考答案

1.7 一质点的运动学方程为22(1,)x t y t ==-,x 和y 均以为m 单位,t 以s 为单位,试求:(1)质点的轨迹方程;(2)在t=2s 时,质点的速度v 和加速度a 。

解:(1)由运动学方程消去时间t 可得质点的轨迹方程,将t =21)y = 或1=(2)对运动学方程微分求速度及加速度,即 2x dx v t dt == 2(1)y dyv t dt==- 22(1)v ti t j =+- 22y x x y dv dva a dtdt==== 22a i j =+当t=2s 时,速度和加速度分别是42v i j =+ /m s 22a i j =+ 2/m s1.8 已知一质点的运动学方程为22(2)r ti t j =+- ,其中, r ,t 分别以 m 和s 为单位,试求:(1) 从t=1s 到t=2s 质点的位移;(2) t=2s 时质点的速度和加速度;(3) 质点的轨迹方程;(4)在Oxy 平面内画出质点运动轨迹,并在轨迹图上标出t=2s 时,质点的位矢r,速度v 和加速度a 。

解: 依题意有 x = 2t (1) y = 22t - (2)(1) 将t=1s,t=2s 代入,有(1)r = 2i j + , (2)42r i j =-故质点的位移为 (2)(1)23r r r i j ∆=-=-(2) 通过对运动学方程求导可得22dx dy v i j i t j dt dt =+=- 22222d x d y a i j j dt dt=+=-当t=2s 时,速度,加速度为 24v i j =- /m s 2a j =- 2/m s(3) 由(1)(2)两式消去时间t 可得质点的轨迹方程 22/4y x =- (4)图略。

1.11 一质点沿半径R=1m 的圆周运动。

t=0时,质点位于A 点,如图。

然后沿顺时针方向运动,运动学方程2s t t ππ=+,其中s 的单位为m ,t 的单位为s ,试求:(1)质点绕行一周所经历的路程,位移,平均速度和平均速率;(2)质点在第1秒末的速度和加速度的大小。

(完整版)大学物理,课后习题,答案

(完整版)大学物理,课后习题,答案

第十七章 振 动1、 一物体作简谐振动,振动方程为 )cos(A x 4t πω+=。

求 4Tt =(T 为周期)时刻物体的加速度。

解:由振动加速度定义得)4 cos(222πωω+-==t A dtx d a代入4Tt =22422)442cos(ωππωA A a T t =+-==求得4Tt =时物体的加速度为222ωA 。

2、 一质点沿x轴作简谐振动,振动方程为)cos(x ππ312t 2104+⨯=-(SI )。

求:从t=0时刻起,到质点位置在x=-2cm 处,且向x轴正方向运动的最短时间间隔?解:用旋转矢量图求解,如图所示t=0时刻,质点的振动状态为:3sin 08.0)3 2sin(204.002.0)30cos(04.0)3 2cos(04.000<-=+⨯-===+=+=ππππππππt dt dx v mt x可见,t=0时质点在cm x 2=处,向x 轴负方向运动。

设t 时刻质点第一次达到cm x 2-=处,且向x 轴正方向运动0>v 。

则:πϕ=∆min5.02min===∆ππωπt (s )3、一物体作简谐振动,其速度最大值sm v m 2103-⨯=,其振幅 m A 2102-⨯=。

若t=0时,物体位于平衡位置且向x轴的负方向运动.求: (1)振动周期T ;(2)加速度的最大值m a ; (3)振动方程的数值式。

解:设物体的振动方程为) cos(ϕω+=t A x则)cos( )sin( 2ϕωωϕωω+-=+-=t A a t A v(1) 由, ωA v m =及sm v m 2103-⨯= 得物体的振动周期:πππωπ341031022 2222=⨯⨯⨯===--m v A T (s ) (2) 加速度最大值:)(105.4102)103(2222222s m A v A a m m ---⨯=⨯⨯===ω (3) 由t=o 时,0 , 0<=v x 得)0sin( 02.00)0cos(02.000<+⨯-==+=ϕωϕv x解之得:2πϕ=质点的振动方程为:)223cos(02.0π+=t x m4、两个物体作同方向、同频率、同振幅的简谐振动。

大学物理习题册及答案

大学物理习题册及答案

3
6. 质点沿半径为 R = 3m 的圆周运动,见图 2-6,已知切向加速度 aτ = 6t m/s2, t = 0
时质点在 O′点,其速度 v0 = 0, s0 = 0,试求: (1) t = 1s 时质点速度和加速度的大小; (2) 第 2 秒内质点所通过的路程。
s R
О′
图 2-6
4
练习三 运动的描述(三)
班级
学号
姓名
1. 质点作圆周运动,其角加速度 β = 6t (SI),若质点具有初角速度 ω 0 ,则任意时刻 t
质点的角速度为
、转过的角度为

2. 一质点沿半径为 R 的圆周运动,已知角速度 ω 与时间 t 的关系为 ω = kt 2 (SI) 、k 为
常数,已知 t = 0 时,θ 0 = 0、 ω0 = 0,则 t 时刻的角加速度为
1
6. 路灯离地面高度为 H ,一个身高为 h 的人,在灯下水平路面上非匀速步行,如图 1-6 所示。当人与灯的水平距离为 s 时,人的步行速度大小为 v0 ,方向向右,求此时他的头顶在 地面上的影子移动的速度。
H
v0
h s 图 1-6
2
练习二 运动的描述(二)
班级
学号
姓名
1. 如图 2-1 所示,质点沿路径 s 运动,在 P 点的速度为 v 、
量值相等的是:
A. ∆r = ∆s ; B. d r = ∆s ; C. d r = d s ; D. d r = ∆r ; E. ∆r = d s 。
4. [
]对于作曲线运动的物体,以下几种说法中哪一种是正确的:
A. 切向加速度必不为零;
B. 法向加速度必不为零(拐点处除外);
C. 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零;

大学物理教程课后练习题含答案

大学物理教程课后练习题含答案

大学物理教程课后练习题含答案前言大学物理是培养学生科学素养的重要课程,也是许多专业必修的基础课程之一。

然而,因为课程内容的抽象性和难度,学生在学习中往往会遇到一些困难,需要反复练习来加深理解、掌握知识和技能,提高成绩。

本文收录了一些经典的大学物理教程课后练习题,希望能够对学生提供一些有益的帮助。

第一章静力学1.1 问题一绳连接两物体,下面物体沿光滑斜面滑动,假设无空气阻力,则:(1)求该物体所受的重力分力;(2)求该物体所受的斜面支持力。

1.2 答案(1)该物体所受的重力分力为 mg*sinθ,其中 m 是物体的质量,g 是重力加速度,θ是斜面倾角。

(2)该物体所受的斜面支持力为 mg*cosθ。

第二章动力学2.1 问题一个弹性碰撞的实验装置弹性碰撞实验装置其中,m1 和 m2 分别是光滑水平面上两个物体的质量,v1 和 v2 分别是它们在碰撞前的速度,v1’ 和v2’ 分别是它们在碰撞后的速度。

假设碰撞前两个物体相对距离为 L,碰撞后 m1 的速度与 x 轴正方向夹角为θ1,m2 的速度与 x 轴正方向夹角为θ2,则:(1)求碰撞前两个物体的总动量和总动能;(2)求碰撞后两个物体的速度和动能。

2.2 答案(1)碰撞前,两个物体的总动量为 m1v1 + m2v2,总动能为 (1/2)m1v1^2 + (1/2)m2v2^2。

(2)碰撞后,两个物体的速度和动能为:v1’ = [(m1-m2)v1+2m2*v2]cosθ1/(m1+m2) +[(m2+m2)v1+2m1*v1]sinθ1/(m1+m2) v2’ = [(m2-m1)v2+2m1*v1]cosθ2/(m1+m2) + [(m1+m1)v2+2m2*v2]sinθ2/(m1+m2)K1’ = (1/2)m1v1’^2, K2’ = (1/2)m2v2’^2第三章热学3.1 问题设一个物体的初温度为 T1,末温度为 T2,它的质量为 m,比热容为 c,求对该物体施加一定的热量 Q 后它的温度变化。

第六版大学物理学习题答案

第六版大学物理学习题答案

第六版大学物理学习题答案第六版大学物理学习题答案大学物理作为一门重要的基础学科,对于理工科学生来说至关重要。

而在学习过程中,练习题是巩固知识、提高理解和应用能力的重要途径。

然而,由于各版本教材的不同,很多学生在解答练习题时会遇到困难。

为了帮助大家更好地学习物理,本文将分享第六版大学物理学习题的一些答案和解析,希望能对大家有所帮助。

1. 第一章:运动的描写题目:一个物体做匀速直线运动,已知它在t=2s时的位移为10m,在t=5s时的位移为30m,求它的速度。

答案:根据匀速直线运动的定义,速度等于位移与时间的比值。

所以,速度v= (30m - 10m) / (5s - 2s) = 20m/s。

2. 第二章:力的概念题目:一个质量为2kg的物体,受到一个恒力F=10N的作用,求它在5s内的加速度。

答案:根据牛顿第二定律F = ma,可得加速度a = F/m = 10N / 2kg = 5m/s²。

3. 第三章:牛顿定律和动量题目:一个质量为0.1kg的物体,受到一个恒力F=5N的作用,求它在10s内的速度变化。

答案:根据牛顿第二定律F = ma,可得加速度a = F/m = 5N / 0.1kg = 50m/s²。

速度的变化Δv = at = 50m/s² * 10s = 500m/s。

4. 第四章:功和能量题目:一个质量为0.5kg的物体从高度为10m的位置自由下落,求它落地时的动能。

答案:根据势能转化为动能的公式E = mgh,其中m为物体质量,g为重力加速度,h为高度。

所以,动能E = 0.5kg * 9.8m/s² * 10m = 49J。

5. 第五章:振动和波动题目:一个质量为0.2kg的弹簧振子,振动周期为2s,求它的弹性势能。

答案:根据弹簧振子的势能公式E = (1/2)kx²,其中k为弹簧劲度系数,x为振子的位移。

振动周期T与弹簧劲度系数k的关系为T = 2π√(m/k),其中m为振子的质量。

江西理工大学 大学物理习题册及答案 完整版

江西理工大学 大学物理习题册及答案 完整版
解:最高点
三、计算题:
1、一人站在山坡上,山坡与水平面成α角,他扔出一个初速度为VO的小石子,VO与水平面成θ角(向上)如图:
(1)空气阻力不计,证明小石子落在斜坡上的距离为:
解:建立图示坐标系,则石子的运动方程为:
落地点: 解得:
(2)由此证明对于给定的VO和α值,S在时有最大值
y
由 x
得:
∴ 代入得:
(2) 由题意
即: 解得:t=0.66s

即:
解得:t =0 ; t =0.55s
班级_____________学号____________姓名____________
运动学(习题课)
1、一质点在半径R=1米的圆周上按顺时针方向运动,开始时位置在A点,如图所示,质点运动的路程与时间的关系为S=πt2+πt(SI制)试求:
(A)速度为零,加速度一定为零。
(B)当加速度和速度方向一致,但加速度量值减小时,速度的值一定增加。
(C)速度很大,加速度也一定很大。
2、以初速度VO仰角θ抛出小球,当小球运动到轨道最高点时,其轨道曲率半径为(不计空气阻力)(D)
(a)/g(B) /(2g) (C) sin2θ/g (D) cos2θ/g
解得: ; ;
将M=2m; 代入得:
3、光滑水平面上平放着半径为R的固定环,环内的一物体以速率VO开始沿环内侧逆时针方向运动,物体与环内侧的摩擦系数为μ,求:
(1)物体任一时刻t的速率V;
(2)物体从开始运动经t秒经历的路程S。
解:(1) ; ;
∴ ;得:
化简得:
(2)

4、质量为M的小艇在快靠岸时关闭发动机,此时的船速为VO,设水对小船的阻力R正比于船速V,即R=KV(K为比例系数),求小船在关闭发动机后还能前进多远?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理工科教材习题(附答案)时间 空间与运动学1 下列哪一种说法是正确的( )(A )运动物体加速度越大,速度越快 (B )作直线运动的物体,加速度越来越小,速度也越来越小 (C )切向加速度为正值时,质点运动加快 (D )法向加速度越大,质点运动的法向速度变化越快2 一质点在平面上运动,已知质点的位置矢量的表示式为j i r 22bt at +=(其中a 、b 为常量),则该质点作( )(A )匀速直线运动 (B )变速直线运动 (C )抛物线运动 (D )一般曲线运动3 一个气球以1s m 5-⋅速度由地面上升,经过30s 后从气球上自行脱离一个重物,该物体从脱落到落回地面的所需时间为( )(A )6s (B )s 30 (C )5. 5s (D )8s4 如图所示湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖上的船向岸边运动,设该人以匀速率0v 收绳,绳长不变,湖水静止,则小船的运动是( )(A )匀加速运动 (B )匀减速运动 (C )变加速运动(D )变减速运动 5 已知质点的运动方程ji r 33)s m 4()3(t m -⋅+=,则质点在2s 末时的速度和加速度为( )(A )j a j i v )s m 48( , )s m 48()s m 3(211---⋅=⋅+⋅=(B )j a j v )s m 48( , )s m 48(21--⋅=⋅=(C )j a j i v )s m 32( , )s m 32()s m 3(211---⋅=⋅+⋅=(D )j a j v )s m 32( , )s m 32(21--⋅=⋅=6 一质点作竖直上抛运动,下列的t v -图中哪一幅基本上反映了该质点的速度变化情况( )7 有四个质点A 、B 、C 、D 沿Ox 轴作互不相关的直线运动,在0=t 时,各质点都在00=x 处,下列各图分别表示四个质点的t v -图,试从图上判别,当s 2=t 时,离坐标原点最远处的质点( )8 一质点在0=t 时刻从原点出发,以速度0v 沿Ox 轴运动,其加速度与速度的关系为2kv a -=,k 为正常数,这质点的速度与所经历的路程的关系是( )(A )kxev v -=0 (B ))21(20v xv v -=(C )201x v v -= (D )条件不足,无地确定9 气球正在上升,气球下系有一重物,当气球上升到离地面100m 高处,系绳突然断裂,重物下落,这重物下落到地面的运动与另一个物体从100m 高处自由落到地面的运动相比,下列哪一个结论是正确的( )(A )下落的时间相同 (B )下落的路程相同(C )下落的位移相同 (D )落地时的速度相同10 质点以速度231)s m 1(s m 4t v --⋅+⋅=作直线运动,沿直线作Ox 轴,已知s 3=t 时质点位于m 9=x 处,则该质点的运动方程为( )(A )t x )s m 2(1-⋅= (B )221)s m 21()s m 4(t t x --⋅+⋅=(C )m t t x 12)s m 31()s m 4(331-⋅+⋅=-- (D )mt t x 12)s m 31()s m 4(331+⋅+⋅=--11 已知质点作直线运动,其加速度t a )s m 3(s m 232--⋅-⋅=,当0=t 时,质点位于00=x 处,且10s m 5-⋅=v ,则质点的运动方程为( )(A )33221)s m 21()s m 1()s m 5(t t t x ---⋅-⋅+⋅= (B )3322)s m 21()s m 1(t t x --⋅-⋅= (C )3322)s m 31()s m 21(t t x --⋅-⋅= (D )3322)s m 1()s m 1(t t x --⋅-⋅=12 一个质点在Oxy 平面内运动,其速度为ji v t )s m 8()s m 2(21--⋅-⋅=,已知质点0=t 时,它通过(3,7)位置处,那么该质点任意时刻的位矢是( )(A )ji r 221)s m 4()s m 2(t t --⋅-⋅= (B )j7i r m])s m 4[(]3)s m 2[(221+⋅-+⋅=--t m t(C )j -(8m) (D )条件不足,不能确定13 质点作平面曲线运动,运动方程的标量函数为)( , )(t y y t x x ==,位置矢量大小22 y x +=r ,则下面哪些结论是正确的?( )(A )质点的运动速度是t xd d (B )质点的运动速率是t d d r v =(C )d dt r v = (D )d d t r可以大于或小于 v14 质点沿轨道AB 作曲线运动,速率逐渐减小,在图中哪一个图正确表示了质点C 的加速度?( )15 以初速度0v 将一物体斜向上抛出,抛射角为o45>θ,不计空气阻力,在g v t )cos (sin 0θθ-=时刻该物体的( )(A )法向加速度为g (B )法向加速度为g 32-(C )切向加速度为g 23- (D )切向加速度为g 32-16 一质点从静止出发绕半径为R 的圆周作匀变速圆周运动,角加速度为α,当质点走完一圈回到出发点时,所经历的时间是( )(A )R221α (B )απ4(C )απ2 (D )不能确定17 一飞轮绕轴作变速转动,飞轮上有两点21 P P 和,它们到转轴的距离分别为d d 2 和,则在任意时刻,21 P P 和两点的加速度大小之比)/21a a 为( )(A )21 (B )41(C )要由该时刻的角速度决定 (D )要由该时刻的角加速度决定18 沿直线运动的物体,其速度与时间成反比,则其加速度与速度的关系是( )(A )与速度成正比 (B )与速度平方成正比 (C )与速度成反比 D )与速度平方成反比 19 抛物体运动中,下列各量中不随时间变化的是( ) (A )v (B )v (C )t v d d (D )t d d v20 某人以1h km 4-⋅速率向东前进时,感觉到风从正北方吹来,如果将速率增加一倍,则感觉风从东北吹来,实际风速和风向为( )(A )1h km 4-⋅从正北方吹来 (B )1h km 4-⋅从西北方吹来(C )1h km 24-⋅从东北方向吹来 (D )1h km 24-⋅从西北方向吹来C a c b d a a c c a b c c d b a b d d牛顿运动定律1 下列说法中哪一个是正确的?( )(A )合力一定大于分力 (B )物体速率不变,所受合外力为零 (C )速率很大的物体,运动状态不易改变(D )质量越大的物体,运动状态越不易改变 2 物体自高度相同的A 点沿不同长度的光滑斜面自由下滑,如右图所示,斜面倾角多大时,物体滑到斜面底部的速率最大() (A )30o(B)45o(C)60o(D )各倾角斜面的速率相等。

3 如右图所示,一轻绳跨过一定滑轮,两端各系一重物,它们的质量分别为2121 ,m m m m >且和,此时系统的加速度为a ,今用一竖直向下的恒力g m 1=F 代替1m ,系统的加速度为a ',若不计滑轮质量及摩擦力,则有( )(A )a a =' (B )a a >' (C )a a <'(D )条件不足不能确定。

4 一原来静止的小球受到下图1F 和2F 的作用,设力的作用时间为5s ,问下列哪种情况下,小球最终获得的速度最大( )(A )N 61=F ,02=F (B )01=F ,N 62=F (C )N 821==F F (D )N 61=F ,N 82=F5 三个质量相等的物体A 、B 、C 紧靠一起置于光滑水平面上,如下图,若A 、C 分别受到水平力1F 和2F 的作用(F 1>F 2),则A 对B 的作用力大小( )(A )21F F - (B )21F F 3132+ (C )21F F 3132-(D )21F F 3231+ 6 长为l ,质量为m 的一根柔软细绳挂在固定的水平钉子上,不计摩擦,当绳长一边为b ,另一边为c 时,钉子所受压力是( )(A )mg (B )lcb mg - (C )l b l mg )(- (D )24l mgbc7 物体质量为m ,水平面的滑动摩擦因数为μ,今在力F 作用下物体向右方运动, 如下图所示,欲使物体具有最大的加速度值,则力F 与水平方向的夹角θ应满足( ) (A )1cos =θ (B )1sin =θ (C )μθ=tg (D )μθ=ctg8.质量分别为m 和m '滑块,叠放在光滑水平桌面上,如下图所示,m 和m '间静摩擦因数为0μ,滑动摩擦因数为μ,系统原处于静止。

若有水平力F 作用于上,欲使m '从m 中抽出来,则( ) (A )g m m F ))((0'++>μμ(B )g m m F )(0μμ+'>(C )g m m m F )]([0'++>μμ (D )m m m mgF ''+≥)(μ9 如下图所示,质量为m 的均匀细直杆AB ,A 端靠在光滑的竖直墙壁上,杆身与竖直方向成θ角,A 端对壁的压力大小为( )(A )θcos 41mg (B )θmgtg 21(C )θsin mg (D )θsin 31mg10 一质量为m 的猫,原来抓住用绳子吊着的一根垂直长杆,杆子的质量为m ',当悬线突然断裂,小猫沿着杆子竖直向上爬,以保持它离地面的距离不变,如图所示,则此时杆子下降的加速度为( )(A)g (B) gm m' (C)g m m m ''+ (D) g m m m '-'11 一弹簧秤,下挂一滑轮及物体1m 和2m ,且21m m ≠,如右图所示,若不计滑轮和绳子的质量, 不计摩擦,则弹簧秤的读数( )(A )小于g m m )(21+(B )大于g m m )(21+(C )等于g m m )(21+(D )不能确定12 几个不同倾角的光滑斜面有共同的底边,顶点也在同一竖直面上,如右图所示,若使一物体从斜面上端滑到下端的时间最短,则斜面的倾角应选( ) (A )30o(B )45o(C )60o(D )75o13 水平面转台可绕通过中心的竖直轴匀速转动。

角速度为ω,台上放一质量为m 的物体, 它与平台间的摩擦因数为μ,如果m 距轴为R 处不滑动,则ω满足的条件是( )(A )R gμ2≤ (B )R g μ≤(C )gRμ≤(D )gR μ21≤14 水平放置的轻质弹簧,劲度系数为k ,其一端固定,另一端系一质量为m 的滑块A ,A 旁又有一质量相同的滑块B ,如下图所示,设两滑块与桌面间无摩擦,若加外力将A 、B 推进,弹簧压缩距离为d ,然后撤消外力,则B 离开A 时速度为( )(A )k d2(B )m k d(C )m k d 2(D )m k d 315 用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时,它( ) (A )将受到重力,绳的拉力和向心力的作用 (B )将受到重力,绳的拉力和离心力的作用 (C )绳子的拉力可能为零 (D )小球可能处于受力平衡状态16 一轻绳经过两定滑轮,两端各挂一质量相同的小球m ,如果左边小球在平衡位置来摆动,如下图所示,那么右边的小球,将( )(A )保持静止(B )向上运动(C )向下运动(D )上下来回运动17 水平的公路转弯处的轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率( ) (A )不得小于gRμ (B )不得大于gRμ(C )必须等于gRμ2 (D )必须大于gRμ318 质量为m 的物体放在升降机底板上,物体与底板的摩擦因数为μ,当升降机以加速度a 上升时,欲拉动m 的水平力至少为多大( )(A )mg (B )mg μ(C ))(a g m +μ (D ))(a g m -μ19 可以认为,地球是一个匀角速转动的非惯性系,因此,通常所说的物体的重力实际上是地球引力和地球自转引起的惯性离心力的合力,由此可见,重力和地球的引力两者无论大小,方向都不相同,那么两者大小相差最多的,应该是() (A )在赤道上 (B )在南北极 (C )在纬度45o处 (D )在纬度60 o处20 如下图所示,1m 与2m 与桌面之间都是光滑的,当1m 在斜面上滑动时,1m 对2m 的作用力为( )(A )大于θcos 1g m (B )等于θcos 1g m (C )小于θcos 1g m (D )无法确定守恒定律1 质量为m 的铁锤竖直从高度h 处自由下落,打在桩上而静止,设打击时间为t ∆,则铁锤所受的平均冲力大小为( )(A )mg (B )tghm ∆2 (C )mgtghm +∆2 (D )mgtghm -∆22 一个质量为m 的物体以初速为0v 、抛射角为o30=θ从地面斜上抛出。

相关文档
最新文档