中考数学经典几何综合题旋转平移典型例题质量不错
2023中考数学图形的旋转与平移历年真题及答案
2023中考数学图形的旋转与平移历年真题及答案在中考数学中,图形的旋转和平移是重要的考点之一。
它们不仅需要掌握旋转和平移的概念和性质,还需要能够熟练运用相关的公式和方法解决问题。
为了帮助同学们更好地复习,本文将介绍几道历年真题,并提供详细的解答和答案。
一、旋转图形的例题例题1:如图所示,正方形ABCD绕点O逆时针旋转90°后得到正方形A’B’C’D’。
已知点A的坐标为(2, 4),求点A'的坐标。
解答:首先,我们需要确定旋转的中心点O。
由于正方形绕点O逆时针旋转90°后得到A’B’C’D’,因此点O是正方形对角线的交点。
正方形的对角线是AC,且AC的中点为O。
由于正方形的边长相等,所以AC的中点O坐标为[(2+6)/2, (4+4)/2] = (4, 4)。
接下来,我们需要确定旋转后的点A'在坐标系中的位置。
根据旋转的性质,点A与点A'的距离等于点A与旋转中心点O的距离。
由于A和O的横坐标相等,纵坐标相等,所以点A'的坐标为(4-4, 4+4),即A'的坐标为(0, 8)。
所以,点A'的坐标为(0, 8)。
例题2:已知点A(3, 2),顺时针旋转90°后得到点A',求点A'的坐标。
解答:顺时针旋转90°相当于逆时针旋转270°,所以我们只需将问题转化为逆时针旋转,然后求解。
逆时针旋转270°相当于绕原点逆时针旋转90°。
因此,我们需要找到点A的逆时针旋转90°后的坐标,再取其相反数即可得到点A'的坐标。
根据逆时针旋转90°的公式,点A逆时针旋转90°后的坐标为(-2, 3)。
然后,取其相反数即得到点A'的坐标。
所以,点A'的坐标为(2, -3)。
二、平移图形的例题例题3:如图所示,矩形ABCD平移后得到矩形A'B'C'D',已知平移向量为(-3, 4),求点A'的坐标。
(完整)中考数学几何旋转经典例题
旋转知识点归纳知识点1:旋转的定义及其有关概念在平面内,将一个图形绕一个定点O 沿某个方向转动一个角度,这样的图形运动称为旋转,定点O 称为旋转中心,转动的角称为旋转角;如果图形上的点P 经过旋转到点P ',那么这两个点叫做这个旋转的对应点. 如图1,线段AB 绕点O 顺时针转动090得到B A '',这就是旋转,点O 就是旋转中心,A AOB BO '∠'∠,都是旋转角。
说明: 旋转的范围是在平面内旋转,否则有可能旋转为立体图形,因此“在平面内”这一条件不可忽略。
决定旋转的因素有三个:一是旋转中心;二是旋转角;三是旋转方向.知识点2:旋转的性质由旋转的定义可知,旋转不改变图形的大小和形状,这说明旋转前后的两个图形是全等的。
由此得到如下性质:⑴经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,对应点的排列次序相同. ⑵任意一对对应点与旋转中心的连线所成的角都是旋转角。
⑶对应点到旋转中心的距离相等。
⑷对应线段相等,对应角相等。
例1 、如图2,D 是等腰Rt △ABC 内一点,BC 是斜边,如果将△ADB 绕点A 逆时针方向旋转到△C D A '的位置,则ADD '∠的度数是( )DA.25B.30 C.35 D.45知识点3:旋转作图1。
明确作图的条件:(1)已知旋转中心;(2)已知旋转方向与旋转角.2.理解作图的依据:(1)旋转的定义: 在平面内,将一个图形绕一个定点O 沿某个方向转动一个角度的图形变换叫做旋转;(2)旋转的性质:经过旋转,图形上的每一点都绕旋转中心沿相同的方向转动了相同的角度,任意一对对应点与旋转中心的连线所组成的角都是旋转角,对应点到旋转中心的距离相等.3.掌握作图的步骤:(1)分析题目要求,找出旋转中心、旋转角;(2)分析图形,找出构成图形的关键点;(3)沿一定的方向,按一定的角度,通过截取线段的方法,找出各个关键点;(4)连接作出的各个关键点,并标上字母;(5)写出结论.'图1图2例2 如图3,小明将△ABC 绕O 点旋转得到△C B A ''',其中点C B A '''、、分别是A 、B 、C 的对应点.随即又将△ABC 的边AC 、BC 及旋转中心O 擦去(不留痕迹),他说他还能把旋转中心O 及△ABC 的位置找到,你认为可以吗?若可以,试确定旋转中心及的位置;如不可以,请说明理由。
2020中考数学压轴题图形的平移、翻折与旋转
图形的平移、翻折与旋转图形的平移图形的翻折图形的旋转三角形四边形圆函数的图象及性质图形的平移例1 泰安市中考第15题如图1,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2, 0),点A 在第一象限内,将△OAB沿直线OA的方向平移至△O′B′A′的位置,此时点A′的横坐标为3,则点B′的坐标为().A.(4,23)B.(3,33)C.(4,33)D.(3,23)答案A.思路如下:如图2,当点B的坐标为(2, 0),点A的横坐标为1.当点A'的横坐标为3时,等边三角形A′OC的边长为6.在Rt△B′CD中,B′C=4,所以DC=2,B′D=23.此时B′(4,23).图1 图2例 2 咸宁市中考第14题如图1,在平面直角坐标系中,点A 的坐标为(0, 6),将△OAB 沿x 轴向左平移得到△O ′A ′B ′,点A 的对应点A ′落在直线34y x =-上,则点B 与其对应点B ′间的距离为______.图1 图2 图 1图2答案 8.思路如下:当y =6时,解方程364x -=,得x =-8.所以AA ′=8.图形在平移的过程中,对应点的连线平行且相等,所以BB ′=AA ′=8. 例 3 株洲市中考第14题已知直线y =2x +(3-a )与x 轴的交点在A (2, 0),B (3, 0)之间(包括A 、B 两点)则a 的取值范围是_____________.答案 7≤a ≤9.思路如下:如图1,将点A (2, 0)代入y =2x +(3-a ),得4+(3-a )=0.解得a =7.如图2,将点B (3, 0)代入y =2x +(3-a ),得6+(3-a )=0.解得a =9.例 4 2016年上海市虹口区中考模拟第18题如图1,已知△ABC 中,AB =AC =5,BC =6,将△ABC 沿射线BC 方向平移m 个单位得到△DEF ,顶点A 、B 、C 分别与D 、E 、F 对应,若以点A 、D 、E为顶点的三角形是等腰三角形,且AE为腰,则m的值是__________.图1图 2 图 3 图4.思路如下:如图2,四边形ABED保持平行四边形,AM=EN 答案6或256=4,BM=DN=3,AD=BE=m.①如图3,当EA=ED时,点E在AD的垂直平分线上,此时AD=2ND=6.②如图4,当AE=AD时,根据AE2=AD2,得m2=42+(m-3)2.解得25m=.6图形的翻折例5 上海市奉贤区中考模拟第18题如图1,在△ABC中,∠B=45°,∠C=30°,AC=2,点D在BC上,将△ACD沿直线AD翻折后,点C落在点E处,边AE交边BC于点F,如果DE//AB,那么CFBF的值是______.答案31+.思路如下:如图2,作AH⊥BC于H.在Rt△ACH中,∠C=30°,AC=2,所以AH=1,CH=3.在Rt△ABH中,∠B=45°,所以BH=AH=1.所以BC=31+.如图3,当DE//AB时,∠BAE=∠AED=∠C=30°.此时∠AFC=∠B+∠BAE=75°.在△ACF中,∠C=30°,∠AFC=75°,所以∠FAC=75°.所以CF=CA=2.所以BF =BC -CF =312+-=31-.所以23131CF BF ==+-.另解:也可以根据△BAF ∽△BCA 先求得BF 的长.由BA 2=BF ·BA ,得2(2)(31)BF =⋅+.所以31BF =-.图1图2 图3例6图1例 6 2016年上海市静安区青浦区中考模拟第18题如图1,在△ABC 中,AB =AC =4,cos C =14,BD 是中线,将△CBD 沿直线BD 翻折,点C 落在点E ,那么AE 的长为_______.答案 6.思路如下:如图2,作AM 作BC 于M ,DN ⊥BC 于N .在Rt △ACM 中,AC =4,cos C =14,所以CM =1.所以BC =2CM =2已知D 是AC 的中点,所以BC =DC =2.如图3,由BE =BC ,BC =DC ,DC =DA ,得BE =DA .由∠1=∠2,∠1=∠3,得∠2=∠3.所以EB //AC .所以四边形AEBD 是平行四边形.所以AE =BD .如图2,在Rt △DCN 中,DC =2,CN =12,所以DN =15.在Rt △DBN 中,BN =32,所以BD =6.所以AE =6.图2 图3图1图2例 7 2016年上海市闵行区中考模拟第18题如图1,已知在△ABC 中,AB =AC ,tan ∠B =13,将△ABC 翻折,使点C 与点A 重合,折痕DE 交边BC 于点D ,交边AC 于点E ,那么BDDC的值为_________.答案135.思路如下:如图2,作AH ⊥BC 于H ,那么BH =CH .已知tan ∠B =AH BH =13,设AH =1,BH =3.设DC =DA =m .在Rt △ADH 中,由勾股定理,得m 2=12+(3-m )2.解得53m =.所以BD =BC -DC =563-=133.所以135BD DC =. 例 8 2016年上海市浦东新区中考模拟第18题Rt △ABC 中,∠ACB =90°,BC =15,AC =20,点D 在边AC 上,DE ⊥AB ,垂足为E ,将△ADE 沿直线DE 翻折,翻折后点A 的对应点为点P ,当∠CPD 为直角时,AD 的长是_________.答案358.思路如下:如图1,作CH ⊥AB 于H .在Rt △ABC 中,BC =15,AC =20,所以AB =25,cos B =35,cos A =45.在Rt△BCH 中,BH =BC ·cos B =3155⨯=9.当∠CPD =90°时,∠CPH 与∠DPE 互余.又因为∠B 与∠A 互余,∠DPE =∠A ,所以∠CPH =∠B .于是可得PH =BH =9.所以AP =25-18=7.所以AE =72.所以AD =54AE =358.图1 图1 图2例9 2016年上海市普陀区中考模拟第18题如图1,在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和边BC分别交于点E、F.然后再展开铺平,以B、E、F为顶点的△BEF 称为矩形ABCD的“折痕三角形”.如图2,在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”的面积最大时,点E的坐标是___________.答案3(,2)2.思路如下:设菱形BFGE的边长为m.如图4,当G、D重合时,在Rt△ABE中,AB=2,BE=m,AE=4-m.由勾股定理,得m2=22+(4-m)2.解得m=52.此时AE=4-m=32,点E的坐标为3(,2)2.图3 图4图1图2例10 2016年张家界市中考第14题如图1,将矩形ABCD沿GH对折,点C落在Q处,点D落在AB边上的点E处,EQ与BC相交于F,若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是cm.答案8.思路如下:设HE=HD=m,那么AH=8-m.在Rt△AHE中,由HE2=AE2+AH2,得m2=42+(8-m)2.解得m=5.所以△AHE的周长为3+4+5=12.因为△AHE∽△BEF,AH∶BE=3∶2,根据相似三角形的周长比等于对应边的比,可得△BEF的周长为8.例11 2016年常德市中考第15题如图1,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=_________.图1图2 图3答案55°.思路如下:如图2,连结FC、DD1.因为四边形AECF是菱形,根据中心对称性,∠DCA=∠BAE.如图3,因为A与C、D与D1关于直线EF对称,所以四边形ACDD1是等腰梯形,所以对角线AD与CD1交于对称轴上的点F,根据对称性,∠D1AD=∠DCA.例12 2016年淮安市中考第18题如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF =3,点E为边BC上的动点,将△CEF沿直线EF折叠,点C落在点P处,则点P到边AB的距离的最小值是________.答案6.思路如下:如图2,作PG⊥5AB 于G ,作FH ⊥AB 于H .在Rt △AFH 中,FH =AF ·sin ∠A =445⨯=165.在△PFG 中,PF =2为定值,PF +PG >FG .而FG 的最小值是FH ,所以PG 的最小值是FH -PF =1625-=65(如图3). 图1图形的旋转 例 15 2016年上海三模联考第18题如图1,已知AD 是等腰三角形ABC 底边BC 上的高,AD ∶DC =1∶3,将△ADC 绕着点D 旋转,得△DEF ,点A 、C 分别与点E 、F 对应,且EF 与直线AB 重合,设AC 与DF 相交于点O ,那么S △AOF ∶S △DOC =__________.图1图2答案 32∶45.思路如下:如图2,设AD =m ,DB =DC =3m ,那么AC =EF 10,cos ∠BAD 10DH ⊥AB 于H ,那么AH =AD ·cos ∠BAD =10.所以AE 10. 于是AF =EF -AE 410m .由△AOF ∽△DOC ,得S △AOF ∶S △DOC =AF 2∶DC 2=22410()(3)m m ÷=32∶45. 例 16 2016年上海市崇明县中考模拟第18题如图1,在Rt △ABC 中,∠ABC =90°,AB =BC =2,将△ABC 绕点C 逆时针旋转60°,得到△MNC ,联结BM ,那么BM 的长是___________.图1图2 例17图1图2答案 262,在等腰Rt △ABC 中,AB =BC =2,高BH 2.在等边三角形AMC 中,AC =2MH 6. 例 17 2016年上海市黄浦区中考模拟第18题如图1,在Rt △ABC 中,∠BAC =90°,将△ABC 绕点C 逆时针旋转,旋转后的图形是△A ′B ′C ,点A 的对应点A ′落在中线AD 上,且点A ′是△ABC 的重心,A ′B ′与BC 相交于点E ,那么BE ∶CE =___________.答案 4∶3.思路如下:根据旋转前后的对应边相等,对应角相等,可知∠ACB =∠A ′CB ′,CA =CA ′.所以∠CAA ′=∠CA ′A .又因为直角三角形斜边上的中线等于斜边的一半,所以DA =DC .所以∠CAA ′=∠ACB .所以∠A ′CB ′=∠CA ′A .所以AD // B ′C .根据重心的性质,可得1'3DA DA =.又因为12DA CB =,所以1'6DA CB =.所以'1'6DE DA CE CB ==.所以71847163BE CE +===-.例 18 2016年上海市嘉定区宝山区中考模拟第18题如图1,点D 在边长为6的等边三角形ABC 的边AC 上,且AD =2,将△ABC 绕点C 顺时针方向旋转60°,若此时点A 和点D 的对应点分别记为点E 和点F ,联结BF 交边AC 于点G ,那么tan ∠AEG =__________.图1 图2 图3答案33.思路如下:如图2,将△ABC 绕点C 顺时针方向旋转60°,得到菱形ABCE .延长AE 交BF 的延长线于M .因为12ME EF BC CF ==,所以32AG MA CG BC ==.设菱形的边长为10m ,那么AG =6m .如图3,作GH ⊥AE 于H .在Rt △AGH 中,∠GAH =60°,所以AH =12AG =3m ,GH =33m .在Rt △EGH 中,EH =AE -AH =7m ,所以tan ∠AEG =333377GH m EH m ==. 例 19 2016年上海市闸北区中考模拟第18题如图1,底角为α的等腰三角形ABC 绕着点B 顺时针旋转,使得点A 与BC 边上的点D 重合,点C 与点E 重合,联结AD 、CE ,已知tan α=34,AB =5,则CE =_________.·第 11 页 共 11 页 图1图2 图3答案 8105.思路如下:如图2,作AH ⊥BC 于H ,那么BH =CH .在Rt △ABH 中,tan ∠B =34,AB =5,由此可得AH =3,BH =4.所以BC =8.在Rt △ADH 中,DH =BD -BH =5-4=1,所以AD =223110+=.如图3,由△BAD ∽△BCE ,得AD BA CE BC =,即1058=.所以8105CE =.例 20 2016年邵阳市中考第13题如图1,将等边三角形CBA 绕点C 顺时针旋转∠α得到三角形CB ′A ′,使得B 、C 、A ′三点在同一条直线上,则∠α的大小是_________.图1图2答案 120°.思路如下:。
整理中考数学几何图形旋转试题经典问题及解答
几何图形旋转常见问题一、填空题1.如图1,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,那么它们的公共局部的面积等于.2.如图2,将一块斜边长为12cm,∠B=60°的直角三角板ABC,绕点C沿逆时针方向旋转90°至△A′B′C′的位置,再沿CB向右平移,使点B′刚好落在斜边AB上,那么此三角板向右平移的距离是cm.3.正△ABC的边长为3cm,边长为1cm的正△RPQ的顶点R与点A重合,点P,Q分别在AC,AB上,将△RPQ沿着边AB,BC,CA顺时针连续翻转〔如图3所示〕,直至点P第一次回到原来的位置,那么点P运动路径的长为cm.4.如图4,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,∠BCD=45°,将腰CD 以点D为中心逆时针旋转90°至ED,连结AE,CE,那么△ADE的面积是.二、解答题5.如图5-1,P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD 于点F.(1) 求证:BP=DP;(2) 如图5-2,假设四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?假设是,请给予证明;假设不是,请用反例加以说明;(3) 试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连结,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论 .6.如图6-1是一个美丽的风车图案,你知道它是怎样画出来的吗?按以下步骤可画出这个风车图案:在图6-2中,先画线段OA,将线段OA平移至CB处,得到风车的第一个叶片F1,然后将第一个叶片OABC绕点O逆时针旋转180°得到第二个叶片F2,再将F1、F2同时绕点O逆时针旋转90°得到第三、第四个叶片F3、F4.根据以上过程,解答以下问题:(1)假设点A的坐标为(4,0),点C的坐标为(2,1),写出此时点B的坐标;(2)请你在图6-2中画出第二个叶片F2;(3)在(1)的条件下,连接OB,由第一个叶片逆时针旋转180°得到第二个叶片的过程中,线段OB扫过的图形面积是多少?7.如图7,在直角坐标系中,点P0的坐标为(1,0),将线段OP按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OPn〔n为正整数〕.〔1〕求点P6的坐标;〔2〕求△P5OP6的面积;〔3〕我们规定:把点Pn (xn,yn)〔n=0,1,2,3,…〕的横坐标xn、纵坐标yn都取绝对值后得到的新坐标(|xn |,|yn|)称之为点Pn的“绝对坐标〞.根据图中点Pn的分布规律,请你猜测点Pn的“绝对坐标〞,并写出来.8.把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H 〔如图8〕.试问线段HG与线段HB相等吗?请先观察猜测,然后再证明你的猜测.9.如图9-1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片〔如图9-2〕,量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角形纸片摆成如图9-3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合〔在图9-3至图9-6中统一用F表示〕图9-1 图9-2 图9-3 小明在对这两张三角形纸片进展如下操作时遇到了三个问题,请你帮助解决.〔1〕将图9-3中的△ABF沿BD向右平移到图9-4的位置,使点B与点F 重合,请你求出平移的距离;F交DE于〔2〕将图9-3中的△ABF绕点F顺时针方向旋转30°到图9-5的位置,A1点G,请你求出线段FG的长度;交DE于点H,请证明:〔3〕将图9-3中的△ABF沿直线AF翻折到图9-6的位置,AB1AH﹦DH.图9-4 图9-5 图9-6参考答案一、1. 2. 6-2 3二、5. 解:〔1〕解法一:在△ABP与△ADP中,利用全等可得BP=DP.解法二:利用正方形的轴对称性,可得BP=DP.〔2〕不是总成立 .当四边形PECF绕点C按逆时针方向旋转,点P旋转到BC边上时,DP>DC>BP,此时BP=DP 不成立.〔3〕连接BE、DF,那么BE与DF始终相等.在图1-1中,可证四边形PECF为正方形,在△BEC与△DFC中,可证△BEC≌△DFC .从而有 BE=DF .6. 解:〔1〕B〔6,1〕〔2〕图略〔3〕线段OB扫过的图形是一个半圆.过B作BD⊥x轴于D.由〔1〕知B点坐标为〔6,1〕,∴OB2=OD2+BD2=62+12=37.∴线段OB扫过的图形面积是.7. 解:〔1〕根据旋转规律,点P6落在y轴的负半轴,而点Pn到坐标原点的距离始终等于前一个点到原点距离的倍,故其坐标为P6(0,26),即P6(0,64).〔2〕由可得,△P0OP1∽△P1OP2∽…∽△Pn-1OPn,设P1(x1,y1),那么y1=2sin45°=,∴.又∵,∴.〔3〕由题意知,OP0旋转8次之后回到x轴正半轴,在这8次中,点Pn分别落在坐标象限的平分线上或x轴或y轴上,但各点绝对坐标的横、纵坐标均为非负数,因此,点Pn的坐标可分三类情况:令旋转次数为n.①当n=8k或n=8k+4时〔其中k为自然数〕,点Pn 落在x轴上,此时,点Pn的绝对坐标为(2n,0);②当n=8k+1或n=8k+3或n=8k+5或n=8k+7时〔其中k为自然数〕,点Pn落在各象限的平分线上,此时,点P n的绝对坐标为,即.③当n=8k+2或n=8k+6时〔其中k为自然数〕,点Pn落在y轴上,此时,点P n的绝对坐标为(0,2n).8. 解:HG=HB.证法1:连结AH〔如图10〕.∵四边形ABCD,AEFG都是正方形,∴∠B=∠G=90°.由题意,知AG=AB,又AH=AH,∴Rt△AGH≌Rt△ABH〔HL〕.∴HG=HB.证法2:连结GB〔如图11〕.∵四边形ABCD,AEFG都是正方形,∴∠ABC=∠AGF=90°.由题意知AB=AG.∴∠AGB=∠ABG.∴∠HGB=∠HBG.∴HG=HB.9. 解:〔1〕图形平移的距离就是线段BC的长.∵在Rt△ABC中,斜边长为10cm,∠BAC=30°,∴BC=5cm.∴平移的距离为5cm.〔2分〕〔2〕∵∠A1FA=30°,∴∠GFD=60°.又∠D=30°,∴∠FGD=90°.在Rt△EFD中,ED=10 cm,∴ .∵FG=cm.〔3〕在△AHE与△DHB1中,∠FAB1=∠EDF=30°.∵FD=FA,EF=FB=FB1,∴FD-FB1=FA-FE,即AE=DB1.又∵∠AHE=∠DHB1,∴△AHE≌△DHB1〔AAS〕.∴AH=DH.。
【复习专题】中考数学复习:几何综合题
几何综合题(旋转为主的题型)一、知识梳理二、教学重、难点三、作业完成情况四、典题探究例1 已知:如图,点P 是线段AB 上的动点,分别以AP 、BP 为边向线段AB 的同侧作正△APC和正△BPD ,AD 和BC 交于点M.(1)当△APC 和△BPD 面积之和最小时,直接写出AP : PB 的值和∠AMC 的度数; (2)将点P 在线段AB 上随意固定,再把△BPD 按顺时针方向绕点P 旋转一个角度α,当α<60°时,旋转过程中,∠AMC 的度数是否发生变化?证明你的结论.(3)在第(2)小题给出的旋转过程中,若限定60°<α<120°,∠AMC 的大小是否会发生变化?若变化,请写出∠AMC 的度数变化范围;若不变化,请写出∠AMC 的度数.例2 探究:(1)如图1,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,试判断BE 、DF 与EF 三条线段之间的数量关系,直接写出判断结果: ;(2)如图2,若把(1)问中的条件变为“在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF=21∠BAD ”,则(1)问中的结论是否仍然成立?若成立,请给出证明,若不成立,请说明理由;(3)在(2)问中,若将△AEF 绕点A 逆时针旋转,当点分别E 、F 运动到BC 、CD 延长线上时, 如图3所示,其它条件不变,则(1)问中的结论是否发生变化?若变化,请给出结论并予以证明..例3 已知:△ABC 和△ADE 是两个不全等的等腰直角三角形,其中BA =BC ,DA =DE ,联结EC ,取EC 的中点M ,联结BM 和DM .(1)如图1,如果点D 、E 分别在边AC 、AB 上,那么BM 、DM 的数量关系与位置关系是 ;(2)将图1中的△ADE 绕点A 旋转到图2的位置时,判断(1)中的结论是否仍然成立,并说明理由.DCB AEMMEABCD图1 图2例4 在ABCD 中,A DBC ∠=∠,过点D 作DE DF =,且EDF ABD =∠,连接EF ,EC ,N 、P 分别为EC ,BC 的中点,连接NP . (1)如图1,若点E 在DP 上,EF 与DC 交于点M ,试探究线段NP 与线段NM 的数量关系及ABD ∠与MNP ∠满足的等量关系,请直接写出你的结论;(2)如图2,若点M 在线段EF 上,当点M 在何位置时,你在(1)中得到的结论仍然成立,写出你确定的点M 的位置,并证明(1)中的结论.五、演练方阵A 档(巩固专练)1.(1)如图1,△ABC 和△CDE 都是等边三角形,且B 、C 、D 三点共线,联结AD 、BE相交于点P ,求证: BE = AD .(2)如图2,在△BCD 中,∠BCD <120°,分别以BC 、CD 和BD 为边在△BCD 外部作等边三角形ABC 、等边三角形CDE 和等边三角形BDF ,联结AD 、BE 和CF 交于点P ,下列结论中正确的是 (只填序号即可)①AD=BE=CF ;②∠BEC=∠ADC ;③∠DPE=∠EPC=∠CPA =60°; (3)如图2,在(2)的条件下,求证:PB+PC+PD=BE .2. 已知:2AD =,4BD =,以AB 为一边作等边三角形ABC .使C 、D 两点落在直线AB 的两侧. (1)如图,当∠ADB=60°时,求AB 及CD 的长;(2)当∠ADB 变化,且其它条件不变时,求CD 的 最大值,及相应∠ADB 的大小.3. 如图,△ABC 中,∠ACB=90°,AD=AC,AB=AN,连结CD 、BN,CD 的延长线交BN 于点F . (1)当∠ADN 等于多少度时,∠ACE=∠EBF,并说明理由;(2)在(1)的条件下,设∠ABC=α,∠CAD =β,试探索α、β满足什么关系时,△ACE ≌△FBE ,并说明理由.4. 在△ABC 中,AB =4,BC =6,∠ACB =30°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1. (1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数; (2)如图2,连接AA 1,CC 1.若△CBC 1的面积为3,求△ABA 1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转的过程中,点P 的对应点是点P 1,直接写出线段EP 1长度的最大值与最小值.图2AFAB 图1C 1C BA 1A图2A 1C 1ABC图1图3A5. 问题1:如图1,在等腰梯形ABCD 中,AD ∥BC ,AB =BC =CD ,点M ,N 分别在AD ,CD 上,若∠MBN =12∠ABC ,试探究线段MN ,AM ,CN 有怎样的数量关系?请直接写出你的猜想,不用证明;问题2:如图2,在四边形ABCD 中,AB =BC ,∠ABC +∠ADC =180°,点M ,N 分别在DA ,CD 的延长线上,若∠MBN =12∠ABC 仍然成立,请你进一步探究线段MN ,AM ,CN 又有怎样的数量关系?写出你的猜想,并给予证明.6. 如图,四边形ABCD 、1111A B C D 是两个边长分别为5和1且中心重合的正方形.其中,正方形1111A B C D 可以绕中心O 旋转,正方形ABCD 静止不动.(1)如图1,当11D D B B 、、、四点共线时,四边形11DCC D 的面积为 __; (2)如图2,当11D D A 、、三点共线时,请直接写出11CD DD = _________; (3)在正方形1111A B C D 绕中心O 旋转的过程中,直线1CC 与直线1DD 的位置关系是______________,请借助图3证明你的猜想.B 档(提升精练)1. 如图,△ABC 中,∠90ACB =︒, 2=AC ,以AC 为边向右侧作等边三角形ACD . (1)如图24-1,将线段AB 绕点A 逆时针旋转︒60,得到线段1AB ,联结1DB ,则与1DB 长度相等的线段为 (直接写出结论);(2)如图24-2,若P 是线段BC 上任意一点(不与点C 重合),点P 绕点A 逆时针旋转︒60得到点Q ,求ADQ ∠的度数; (3)画图并探究:若P 是直线BC 上任意一点(不与点C 重合),点P 绕点A 逆时针旋转︒60得到点Q ,是否存在点P ,使得以 A 、 C 、 Q 、 D 为顶点的四边形是梯形,若存在,请指出点P 的位置,并求出PC 的长;若不存在,请说明理由.2. 如图1,△ABC 是等腰直角三角形,四边形ADEF 是正方形,D 、F 分别在AB 、AC 边上,此时BD=CF ,BD ⊥CF 成立.(1)当正方形ADEF 绕点A 逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF 成立吗? 若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF 绕点A 逆时针旋转45°时,如图3,延长BD 交CF 于点G . ①求证:BD ⊥CF ; ②当AB=4,AD=时,求线段BG 的长.3. 已知:在△AOB 与△COD 中,OA =OB ,OC =OD ,︒=∠=∠90COD AOB .(1)如图1,点C 、D 分别在边OA 、OB 上,连结AD 、BC ,点M 为线段BC 的中点,连结OM ,则线段AD 与OM 之间的数量关系是 ,位置关系是 ; (2)如图2,将图1中的△COD 绕点O 逆时针旋转,旋转角为α (︒<<︒900α).连结AD 、BC ,点M 为线段BC 的中点,连结OM .请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由;(3)如图3,将图1中的 △COD 绕点 O 逆时针旋转到使 △COD 的一边OD 恰好与△AOB 的边OA 在同一条直线上时,点C 落在OB 上,点M 为线段BC 的中点.请你判断(1)中线段AD 与OM 之间的数量关系是否发生变化,写出你的猜想,并加以证明.4. 在Rt △ABC 中,AB =BC ,∠B =90°,将一块等腰直角三角板的直角顶点O 放在斜边AC 上,将三角板绕点O 旋转. (1)当点O 为AC 中点时,①如图1, 三角板的两直角边分别交AB ,BC 于E 、F 两点,连接EF ,猜想线段AE 、CF 与EF 之间存在的等量关系(无需证明);②如图2, 三角板的两直角边分别交AB ,BC 延长线于E 、F 两点,连接EF ,判断①中的猜想是否成立.若成立,请证明;若不成立,请说明理由;(2)当点O 不是AC 中点时,如图3,,三角板的两直角边分别交AB ,BC 于E 、F 两点,若14AO AC ,求OE OF的值.5. 如图1,四边形ABCD ,将顶点为A 的角绕着顶点A 顺时针旋转,若角的一条边与DC 的延长线交于点F ,角的另一条边与CB 的延长线交于点E ,连接EF . (1)若四边形ABCD 为正方形,当∠EAF=45°时,有EF=DF -BE .请你思考如何证明这个结论(只思考,不必写出证明过程);(2)如图2,如果在四边形ABCD 中,AB=AD ,∠ABC=∠ADC=90°,当∠EAF=21∠BAD 时,EF 与DF 、BE 之间有怎样的数量关系?请写出它们之间的关系式(只需写出结论); (3)如图3,如果四边形ABCD 中,AB=AD ,∠ABC 与∠ADC 互补,当∠EAF=21∠BAD 时,EF 与DF 、BE 之间有怎样的数量关系?请写出它们之间的关系式并给予证明.(4)在(3)中,若BC=4,DC=7,CF=2,求△CEF 的周长(直接写出结果即可).C 档(跨越导练)1. 已知:正方形ABCD 中,45MAN ∠=,绕点A 顺时针旋转,它的两边分别交CB 、DC (或它们的延长线)于点M 、N . (1)如图1,当M A N ∠绕点A 旋转到BM DN =时,有BM DN MN +=.当M A N ∠ 绕点A 旋转到BM DN ≠时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当MAN ∠绕点A 旋转到如图3的位置时,线段BM DN ,和MN 之间有怎样的等量关系?请写出你的猜想,并证明.2. 如图,已知四边形ABCD 是正方形,对角线ACBD 相交于O .(1) 如图1,设 E 、F 分别是AD 、AB 上的点,且∠EOF =90°,线段AF 、BF 和EF 之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设 E 、F 分别是AB 上不同的两个点,且∠EOF =45°,请你用等式表示线段AE 、BF 和EF 之间的数量关系,并证明.3. 问题:如图1, 在Rt △ABC 中,90C ∠=︒,30ABC ∠=︒,点D 是射线CB 上任意一点,△ADE 是等边三角形,且点D 在ACB ∠的内部,连接BE .探究线段BE 与DE 之间的数量关系. 请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1) 当点D 与点C 重合时(如图2),请你补全图形.由BAC ∠的度数为 ,点E落在 ,容易得出BE 与DE 之间的数量关系为 ;(2) 当点D 在如图3的位置时,请你画出图形,研究线段BE 与DE 之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.4. 在△ABC 中,AB=AC ,∠BAC=α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD 。
中考数学压轴题专题旋转的经典综合题及答案解析
一、旋转真题与模拟题分类汇编(难题易错题)1.如图所示,(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF 形成的锐角β.【答案】(1)DF=BE且DF⊥BE,证明见解析;(2)数量关系改变,位置关系不变,即DF=kBE,DF⊥BE;(3)不改变.DF=kBE,β=180°-α【解析】【分析】(1)根据旋转的过程中线段的长度不变,得到AF=AE,又∠BAE与∠DAF都与∠BAF互余,所以∠BAE=∠DAF,所以△FAD≌△EAB,因此BE与DF相等,延长DF交BE于G,根据全等三角形的对应角相等和四边形的内角和等于360°求出∠EGF=90°,所以DF⊥BE;(2)等同(1)的方法,因为矩形的邻边不相等,但根据题意,可以得到对应边成比例,所以△FAD∽△EAB,所以DF=kBE,同理,根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EHF=90°,所以DF⊥BE;(3)与(2)的证明方法相同,但根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EAF+∠EHF=180°,所以DF与BE的夹角β=180°﹣α.【详解】(1)DF与BE互相垂直且相等.证明:延长DF分别交AB、BE于点P、G在正方形ABCD和等腰直角△AEF中AD=AB,AF=AE,∠BAD=∠EAF=90°∴∠FAD =∠EAB ∴△FAD ≌△EAB ∴∠AFD =∠AEB ,DF =BE ∵∠AFD+∠AFG =180°, ∴∠AEG+∠AFG =180°, ∵∠EAF =90°,∴∠EGF =180°﹣90°=90°, ∴DF ⊥BE(2)数量关系改变,位置关系不变.DF =kBE ,DF ⊥BE . 延长DF 交EB 于点H ,∵AD =kAB ,AF =kAE ∴AD k AB =,AFk AE= ∴AD AFAB AE= ∵∠BAD =∠EAF =a ∴∠FAD =∠EAB ∴△FAD ∽△EAB∴DF AFk BE AE == ∴DF =kBE∵△FAD ∽△EAB , ∴∠AFD =∠AEB , ∵∠AFD+∠AFH =180°, ∴∠AEH+∠AFH =180°, ∵∠EAF =90°,∴∠EHF =180°﹣90°=90°, ∴DF ⊥BE(3)不改变.DF =kBE ,β=180°﹣a . 延长DF 交EB 的延长线于点H ,∵AD =kAB ,AF =kAE ∴AD k AB =,AFk AE = ∴AD AFAB AE= ∵∠BAD =∠EAF =a ∴∠FAD =∠EAB ∴△FAD ∽△EAB∴DF AFk BE AE == ∴DF =kBE由△FAD ∽△EAB 得∠AFD =∠AEB ∵∠AFD+∠AFH =180° ∴∠AEB+∠AFH =180°∵四边形AEHF 的内角和为360°, ∴∠EAF+∠EHF =180° ∵∠EAF =α,∠EHF =β ∴a+β=180°∴β=180°﹣a 【点睛】本题(1)中主要利用三角形全等的判定和性质以及正方形的性质进行证明;(2)(3)利用相似三角形的判定和性质证明,要解决本题,证明三角形全等和三角相似是解题的关键,也是难点所在.2.如图1,在□ABCD 中,AB =6,∠B = (60°<≤90°). 点E 在BC 上,连接AE ,把△ABE 沿AE 折叠,使点B 与AD 上的点F 重合,连接EF . (1)求证:四边形ABEF 是菱形;(2)如图2,点M 是BC 上的动点,连接AM ,把线段AM 绕点M 顺时针旋转得到线段MN ,连接FN ,求FN 的最小值(用含的代数式表示).【答案】(1)详见解析;(2)FE·sin(-90°)【解析】【分析】(1)由四边形ABCD是平行四边形得AF∥BE,所以∠FAE=∠BEA,由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA,所以∠BAE=∠FEA,故有AB∥FE,因此四边形ABEF是平行四边形,又BE=EF,因此可得结论;(2)根据点M在线段BE上和EC上两种情况证明∠ENG=90°-,利用菱形的性质得到∠FEN=-90°,再根据垂线段最短,求出FN的最小值即可.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠BEA,由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA, BE=EF,∴∠BAE=∠FEA,∴AB∥FE,∴四边形ABEF是平行四边形,又BE=EF,∴四边形ABEF是菱形;(2)①如图1,当点M在线段BE上时,在射线MC上取点G,使MG=AB,连接GN、EN.∵∠AMN=∠B=,∠AMN+∠2=∠1+∠B∴∠1=∠2又AM=NM,AB=MG∴△ABM≌△MGN∴∠B=∠3,NG=BM∵MG=AB=BE∴EG=AB=NG∴∠4=∠ENG= (180°-)=90°-又在菱形ABEF中,AB∥EF∴∠FEC=∠B=∴∠FEN=∠FEC-∠4=- (90°-)=-90°②如图2,当点M在线段EC上时,在BC延长线上截取MG=AB,连接GN、EN.同理可得:∠FEN=∠FEC-∠4=- (90°-)=-90°综上所述,∠FEN=-90°∴当点M在BC上运动时,点N在射线EH上运动(如图3)当FN⊥EH时,FN最小,其最小值为FE·sin(-90°)【点睛】本题考查了菱形的判定与性质以及求最短距离的问题,解题的关键是分类讨论得出∠FEN =-90°,再运用垂线段最短求出FN的最小值.3.如图1,在Rt△ABC中,∠ACB=90°,AC=BC.点D、E分别在AC、BC边上,DC=EC,连接DE、AE、BD.点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN.(1)PM与BE的数量关系是,BE与MN的数量关系是.(2)将△DEC绕点C逆时针旋转到如图2的位置,判断(1)中BE与MN的数量关系结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;(3)若CB =6.CE =2,在将图1中的△DEC 绕点C 逆时针旋转一周的过程中,当B 、E 、D 三点在一条直线上时,求MN 的长度. 【答案】(1)1,22PM BE BE MN ==;(2)成立,理由见解析;(3)MN =17﹣1或17+1 【解析】 【分析】(1)如图1中,只要证明PMN 的等腰直角三角形,再利用三角形的中位线定理即可解决问题;(2)如图2中,结论仍然成立,连接AD 、延长BE 交AD 于点H .由ECB DCA ≅,推出BE AD =,DAC EBC ∠=∠,即可推出BH AD ⊥,由M 、N 、P 分别AE 、BD 、AB 的中点,推出//PM BE ,12PM BE =,//PN AD ,12PN AD =,推出PM PN =,90MPN ∠=︒,可得22222BE PM MN MN ==⨯=; (3)有两种情形分别求解即可. 【详解】 (1)如图1中,∵AM =ME ,AP =PB ,∴PM ∥BE ,12PM BE =, ∵BN =DN ,AP =PB ,∴PN ∥AD ,12PN AD =, ∵AC =BC ,CD =CE , ∴AD =BE , ∴PM =PN , ∵∠ACB =90°, ∴AC ⊥BC ,∴∵PM ∥BC ,PN ∥AC , ∴PM ⊥PN ,∴△PMN 的等腰直角三角形, ∴2MN PM =,∴122MN BE =⋅, ∴2BE MN =,故答案为12PM BE =,2BE MN =. (2)如图2中,结论仍然成立.理由:连接AD 、延长BE 交AD 于点H . ∵△ABC 和△CDE 是等腰直角三角形, ∴CD =CE ,CA =CB ,∠ACB =∠DCE =90°, ∵∠ACB ﹣∠ACE =∠DCE ﹣∠ACE , ∴∠ACD =∠ECB , ∴△ECB ≌△DCA , ∴BE =AD ,∠DAC =∠EBC , ∵∠AHB =180°﹣(∠HAB +∠ABH ) =180°﹣(45°+∠HAC +∠ABH ) =∠180°﹣(45°+∠HBC +∠ABH ) =180°﹣90° =90°, ∴BH ⊥AD ,∵M 、N 、P 分别为AE 、BD 、AB 的中点,∴PM ∥BE ,12PM BE =,PN ∥AD ,12PN AD =, ∴PM =PN ,∠MPN =90°,∴22222BE PM MN MN ==⨯=. (3)①如图3中,作CG ⊥BD 于G ,则2CG GE DG ===当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-=,∴342BE BG GE =-=-, ∴21712MN BE ==-. ②如图4中,作CG ⊥BD 于G ,则2CG GE DG ===,当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-=∴342BE BG GE =+=, ∴21712MN BE ==. 综上所述,MN 17﹣117. 【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.4.在Rt △ABC 中,AB=BC=5,∠B=90°,将一块等腰直角三角板的直角顶点放在斜边AC 的中点O 处,将三角板绕点O 旋转,三角板的两直角边分别交AB ,BC 或其延长线于E ,F 两点,如图①与②是旋转三角板所得图形的两种情况.(1)三角板绕点O旋转,△OFC是否能成为等腰直角三角形?若能,指出所有情况(即给出△OFC是等腰直角三角形时BF的长);若不能,请说明理由;(2)三角板绕点O旋转,线段OE和OF之间有什么数量关系?用图①或②加以证明;(3)若将三角板的直角顶点放在斜边上的点P处(如图③),当AP:AC=1:4时,PE和PF 有怎样的数量关系?证明你发现的结论.【答案】(1)△OFC是能成为等腰直角三角形,(2)OE=OF.(3)PE:PF=1:3.【解析】【小题1】由题意可知,①当F为BC的中点时,由AB=BC=5,可以推出CF和OF的长度,即可推出BF的长度,②当B与F重合时,根据直角三角形的相关性质,即可推出OF 的长度,即可推出BF的长度;【小题2】连接OB,由已知条件推出△OEB≌△OFC,即可推出OE=OF;【小题3】过点P做PM⊥AB,PN⊥BC,结合图形推出△PNF∽△PME,△APM∽△PNC,继而推出PM:PN=PE:PF,PM:PN=AP:PC,根据已知条件即可推出PA:AC=PE:PF=1:4.5.如图(1)所示,将一个腰长为2等腰直角△BCD和直角边长为2、宽为1的直角△CED 拼在一起.现将△CED绕点C顺时针旋转至△CE’D’,旋转角为a.(1)如图(2),旋转角a=30°时,点D′到CD边的距离D’A=______.求证:四边形ACED′为矩形;(2)如图(1),△CED绕点C顺时针旋转一周的过程中,在BC上如何取点G,使得GD’=E’D;并说明理由.(3)△CED绕点C顺时针旋转一周的过程中,∠CE’D=90°时,直接写出旋转角a的值.【答案】1【解析】分析:(1)过D′作D′N⊥CD于N.由30°所对直角边等于斜边的一半即可得结论.由D’A∥CE且D’A=CE=1,得到四边形ACED’为平行四边形.根据有一个角为90°的平行四边形是矩形,即可得出结论;(2)取BC中点即为点G,连接GD’.易证△DCE’≌△D’CG,由全等三角形的对应边相等即可得出结论.(3)分两种情况讨论即可.详解:(1)D’A=1.理由如下:过D′作D′N⊥CD于N.∵∠NCD′=30°,CD′=CD=2,∴ND′= 12CD′=1.由已知,D’A∥CE,且D’A=CE=1,∴四边形ACED’为平行四边形.又∵∠DCE=90°,∴四边形ACED’为矩形;(2)如图,取BC中点即为点G,连接GD’.∵∠DCE=∠D’CE’=90°,∴∠DCE’=∠D’CG.又∵D’C= DC,CG=CE’,∴△DCE’≌△D’CG,∴GD’=E’D.(3)分两种情况讨论:①如图1.∵∠CE′D=90°,CD=2,CE′=1,∴∠CDE′=30°,∴∠E′CD=60°,∴∠E′CB=30°,∴旋转角=∠ECE′=180°+30°=210°.②如图2,同理可得∠E′CE=30°,∴旋转角=360°-30°=330°.点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.6.如图1,△ABC中,CA=CB,∠ACB=90°,直线l经过点C,AF⊥l于点F,BE⊥l于点E.(1)求证:△ACF≌△CBE;(2)将直线旋转到如图2所示位置,点D是AB的中点,连接DE.若AB=42,∠CBE=30°,求DE的长.【答案】(1)答案见解析;(226+【解析】试题分析:(1)根据垂直的定义得到∠BEC=∠ACB=90°,根据全等三角形的性质得到∠EBC=∠CAF,即可得到结论;(2)连接CD,DF,证得△BCE≌△ACF,根据全等三角形的性质得到BE=CF,CE=AF,证得△DEF是等腰直角三角形,根据等腰直角三角形的性质得到EF2DE,EF=CE+BE,进而得到DE的长.试题解析:解:(1)∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF.∵AF⊥l于点F,∴∠AFC=90°.在△BCE与△ACF中,∵90AFC BECEBC ACFBC AC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△CBE(AAS);(2)如图2,连接CD,DF.∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF.∵AF⊥l于点F,∴∠AFC=90°.在△BCE与△CAF中,∵90AFC BECEBC ACFBC AC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△CAF(AAS);∴BE=CF.∵点D是AB的中点,∴CD=BD,∠CDB=90°,∴∠CBD=∠ACD=45°,而∠EBC=∠CAF,∴∠EBD=∠DCF.在△BDE与△CDF中,∵BE CFEBD FCDBD CF=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△CDF(SAS),∴∠EDB=∠FDC,DE=DF.∵∠BDE+∠CDE=90°,∴∠FDC+∠CDE=90°,即∠EDF=90°,∴△EDF是等腰直角三角形,∴EF=2DE,∴EF=CE+CF =CE+BE.∵CA=CB,∠ACB=90°,AB=42,∴BC=4.又∵∠CBE=30°,∴CE=12BC=2,BE=3CE=23,∴EF=CE+BE=2+23,∴DE=2EF=2232+=2+6.点睛:本题考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形斜边上的中线的性质,证得△BCE≌△ACF是解题的关键.7.边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中, AB边交DF于点M,BC边交DG于点N.(1)求边DA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;(3)如图3,设△MBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.【答案】(1);(2);(3)不变化,证明见解析.【解析】试题分析:(1)将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,DA旋转了,从而根据扇形面积公式可求DA在旋转过程中所扫过的面积.(2)旋转过程中,当MN和AC平行时,根据平行的性质和全等三角形的判定和性质可求正方形ABCD旋转的度数为.(3)延长BA交DE轴于H点,通过证明和可得结论.(1)∵A点第一次落在DF上时停止旋转,∴DA旋转了.∴DA在旋转过程中所扫过的面积为.(2)∵MN∥AC,∴,.∴.∴.又∵,∴.又∵,∴.∴.∴.∴旋转过程中,当MN和AC平行时,正方形ABCD旋转的度数为. (3)不变化,证明如下:如图,延长BA交DE轴于H点,则,,∴.又∵.∴.∴.又∵, ,∴.∴.∴.∴.∴在旋转正方形ABCD的过程中,值无变化.考点:1.面动旋转问题;2.正方形的性质;3.扇形面积的计算;4.全等三角形的判定和性质.8.如图,点P是正方形ABCD内一点,点P到点A,B和D的距离分别为1,22,10.△ADP沿点A旋转至△ABP′,连接PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.【答案】(1)证明见解析;(2)∠BPQ=45°.【解析】【分析】(1)根据旋转的性质可知,△APD≌△AP′B,所以AP=AP′,∠PAD=∠P′AB,因为∠PAD+∠PAB=90°,所以∠P′AB+∠PAB=90°,即∠PAP′=90°,故△APP′是等腰直角三角形;(2)根据勾股定理逆定理可判断△PP′B是直角三角形,再根据平角定义求出结果.【详解】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵△ADP沿点A旋转至△ABP′,∴AP=AP′,∠PAP′=∠DAB=90°,∴△APP′是等腰直角三角形;(2)∵△APP′是等腰直角三角形,∴22,∠APP′=45°,∵△ADP沿点A旋转至△ABP′,∴,在△PP′B中,,,,∵)2+(2=)2,∴PP′2+PB2=P′B2,∴△PP′B为直角三角形,∠P′PB=90°,∴∠BPQ=180°﹣∠APP′﹣∠P′PB=180°﹣45°﹣90°=45°.【点睛】本题主要考查了旋转的性质、等腰三角形的判定与性质、勾股定理及逆定理的综合运用,有一定难度,关键是明确旋转的不变性.。
中考数学初中数学 旋转(大题培优 易错 难题)及答案解析
中考数学初中数学 旋转(大题培优 易错 难题)及答案解析一、旋转1.请认真阅读下面的数学小探究系列,完成所提出的问题:()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=o ,BC a =,将边AB 绕点B顺时针旋转90o 得到线段BD ,连接.CD 求证:BCD V 的面积为21.(2a 提示:过点D 作BC 边上的高DE ,可证ABC V ≌)BDE V()2探究2:如图2,在一般的Rt ABC V 中,90ACB ∠=o ,BC a =,将边AB 绕点B 顺时针旋转90o 得到线段BD ,连接.CD 请用含a 的式子表示BCD V 的面积,并说明理由.()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针旋转90o 得到线段BD ,连接.CD 试探究用含a 的式子表示BCD V 的面积,要有探究过程.【答案】(1)详见解析;(2)BCD V 的面积为212a ,理由详见解析;(3)BCD V 的面积为214a . 【解析】 【分析】()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC V ≌BDE V ,就有DE BC a.==进而由三角形的面积公式得出结论;()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC V ≌BDE V ,就有DE BC a.==进而由三角形的面积公式得出结论;()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形的性质可以得出1BF BC 2=,由条件可以得出AFB V ≌BED V 就可以得出BF DE =,由三角形的面积公式就可以得出结论. 【详解】()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,BED ACB 90∠∠∴==o ,由旋转知,AB AD =,ABD 90∠=o ,ABC DBE 90∠∠∴+=o , A ABC 90∠∠+=o Q ,A DBE ∠∠∴=, 在ABC V 和BDE V 中,ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABC ∴V ≌()BDE AAS VBC DE a ∴==,BCD 1S BCDE 2=⋅V Q ,2BCD 1S a 2∴=V ;()2BCD V 的面积为21a 2,理由:如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,BED ACB 90∠∠∴==o ,Q 线段AB 绕点B 顺时针旋转90o 得到线段BE ,AB BD ∴=,ABD 90∠=o ,ABC DBE 90∠∠∴+=o , A ABC 90∠∠+=o Q ,A DBE ∠∠∴=, 在ABC V 和BDE V 中,ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABC ∴V ≌()BDE AAS V , BC DE a ∴==,BCD 1SBC DE 2=⋅V Q ,2BCD 1S a 2∴=V ;()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,AFB E 90∠∠∴==o ,11BF BC a 22==, FAB ABF 90∠∠∴+=o , ABD 90∠=o Q , ABF DBE 90∠∠∴+=o ,FAB EBD ∠∠∴=,Q 线段BD 是由线段AB 旋转得到的,AB BD ∴=,在AFB V 和BED V 中, AFB E FAB EBD AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, AFB ∴V ≌()BED AAS V , 1BF DE a 2∴==, 2BCD 1111S BC DE a a a 2224=⋅=⋅⋅=V Q , BCD ∴V 的面积为21a 4.【点睛】本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运用相关的性质与定理是解题的关键.2.如图1,点O是正方形ABCD两对角线的交点. 分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0°< <360°)得到正方形,如图2.①在旋转过程中,当∠是直角时,求的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)②若正方形ABCD的边长为1,在旋转过程中,求长的最大值和此时的度数,直接写出结果不必说明理由.【答案】(1)DE⊥AG (2)①当∠为直角时,α=30°或150°.②315°【解析】分析:(1)延长ED交AG于点H,证明≌,根据等量代换证明结论;(2)根据题意和锐角正弦的概念以及特殊角的三角函数值得到,分两种情况求出的度数;(3)根据正方形的性质分别求出OA和OF的长,根据旋转变换的性质求出AF′长的最大值和此时的度数.详解:如图1,延长ED交AG于点H,点O是正方形ABCD两对角线的交点,,,在和中,,≌,,,,,即;在旋转过程中,成为直角有两种情况:Ⅰ由增大到过程中,当时,,在中,sin∠AGO=,,,,,即;Ⅱ由增大到过程中,当时,同理可求,.综上所述,当时,或.如图3,当旋转到A、O、在一条直线上时,的长最大,正方形ABCD的边长为1,,,,,,,此时.点睛:考查了正方形的性质,全等三角形的判定与性质,锐角三角形函数,旋转变换的性质的综合应用,有一定的综合性,注意分类讨论的思想.3.如图l,在AABC中,∠ACB=90°,点P为ΔABC内一点.(1)连接PB,PC,将ABCP沿射线CA方向平移,得到ΔDAE,点B,C,P的对应点分别为点D、A、E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长(2)如图3,以点A为旋转中心,将ΔABP顺时针旋转60°得到△AMN,连接PA、PB、PC,当AC=3,AB=6时,根据此图求PA+PB+PC的最小值.【答案】(1)①补图见解析;②;(2)【解析】(1)①连接PB、PC,将△BCP沿射线CA方向平移,得到△DAE,点B、C、P的对应点分别为点D、A、E,连接CE,据此画图即可;②连接BD、CD,构造矩形ACBD和Rt△CDE,根据矩形的对角线相等以及勾股定理进行计算,即可求得CE的长;(2)以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN,根据△PAM、△ABN都是等边三角形,可得PA+PB+PC=CP+PM+MN,最后根据当C、P、M、N四点共射线,PA+PB+PC的值最小,此时△CBN是直角三角形,利用勾股定理即可解决问题.解:(1)①补全图形如图所示;②如图,连接BD、CD∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,;(2)证明:如图所示,当C、P、M、N四点共线时,PA+PB+PC最小由旋转可得,△AMN≌△APB,∴PB=MN易得△APM、△ABN都是等边三角形,∴PA+PB+PC=PM+MN+PC=CN,∴BN=AB=6,∠BNA=60°,∠PAM=60°∴∠CAN=∠CAB+∠BAN=60°+60°=120°,∴∠CBN=90°在Rt△ABC中,易得∴在Rt△BCN中,“点睛”本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定和性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.4.小明在矩形纸片上画正三角形,他的做法是:①对折矩形纸片ABCD(AB>BC),使AB与DC重合,得到折痕EF,把纸片展平;②沿折痕BG折叠纸片,使点C落在EF上的点P 处,再折出PB、PC,最后用笔画出△PBC(图1).(1)求证:图1中的PBC是正三角形:(2)如图2,小明在矩形纸片HIJK上又画了一个正三角形IMN,其中IJ=6cm,且HM=JN.①求证:IH=IJ②请求出NJ的长;(3)小明发现:在矩形纸片中,若一边长为6cm,当另一边的长度a变化时,在矩形纸片上总能画出最大的正三角形,但位置会有所不同.请根据小明的发现,画出不同情形的示意图(作图工具不限,能说明问题即可),并直接写出对应的a的取值范围.【答案】(1)证明见解析;(2)①证明见解析;②1233)3<a<3,a>3【解析】分析:(1)由折叠的性质和垂直平分线的性质得出PB=PC,PB=CB,得出PB=PC=CB即可;(2)①利用“HL”证Rt△IHM≌Rt△IJN即可得;②IJ上取一点Q,使QI=QN,由Rt△IHM≌Rt△IJN知∠HIM=∠JIN=15°,继而可得∠NQJ=30°,设NJ=x,则IQ=QN=2x、3,根据IJ=IQ+QJ求出x即可得;(3)由等边三角形的性质、直角三角形的性质、勾股定理进行计算,画出图形即可.(1)证明:∵①对折矩形纸片ABCD(AB>BC),使AB与DC重合,得到折痕EF∵沿折痕BG 折叠纸片,使点C 落在EF 上的点P 处 ∴PB=BC ∴PB=PC=BC∴△PBC 是正三角形: (2)证明:①如图∵矩形AHIJ ∴∠H=∠J=90° ∵△MNJ 是等边三角形 ∴MI=NI在Rt △MHI 和Rt △JNI 中MI NIMH NJ=⎧⎨=⎩ ∴Rt △MHI ≌Rt △JNI (HL ) ∴HI=IJ②在线段IJ 上取点Q ,使IQ=NQ∵Rt △IHM ≌Rt △IJN , ∴∠HIM=∠JIN , ∵∠HIJ=90°、∠MIN=60°, ∴∠HIM=∠JIN=15°, 由QI=QN 知∠JIN=∠QNI=15°, ∴∠NQJ=30°,设NJ=x ,则IQ=QN=2x ,22=3QN NJ -x , ∵IJ=6cm , ∴3,∴33cm ). (3)分三种情况: ①如图:设等边三角形的边长为b,则0<b≤6,则tan60°=3=2ab,∴a=32b,∴0<b≤632=33;②如图当DF与DC重合时,DF=DE=6,∴a=sin60°×DE=63=33,当DE与DA重合时,a=643sin603==︒,∴33<a<43;③如图∵△DEF是等边三角形∴∠FDC=30°∴DF=6643 cos3032==︒∴a >43点睛:本题是四边形的综合题目,考查了折叠的性质、等边三角形的判定与性质、旋转的性质、直角三角形的性质、正方形的性质、全等三角形的判定与性质等知识;本题综合性强,难度较大.5.在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.(1)如图1,若α=90°,则AB=,并求AA′的长;(2)如图2,若α=120°,求点O′的坐标;(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.【答案】(1)10,102;(2)(33,9);(3)123545(,)【解析】试题分析:(1)、如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)、作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)、由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D 和DO′的长,从而可得到P′点的坐标.试题解析:(1)、如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)、作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+,∴O′点的坐标为();(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P(,0),∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=,∴DH=O′H﹣O′,∴P′点的坐标为(,).考点:几何变换综合题6.如图1,△ABC中,CA=CB,∠ACB=90°,直线l经过点C,AF⊥l于点F,BE⊥l于点E.(1)求证:△ACF≌△CBE;(2)将直线旋转到如图2所示位置,点D是AB的中点,连接DE.若AB=42,∠CBE=30°,求DE的长.【答案】(1)答案见解析;(226+【解析】试题分析:(1)根据垂直的定义得到∠BEC=∠ACB=90°,根据全等三角形的性质得到∠EBC=∠CAF,即可得到结论;(2)连接CD,DF,证得△BCE≌△ACF,根据全等三角形的性质得到BE=CF,CE=AF,证得△DEF是等腰直角三角形,根据等腰直角三角形的性质得到EF2DE,EF=CE+BE,进而得到DE的长.试题解析:解:(1)∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF.∵AF⊥l于点F,∴∠AFC=90°.在△BCE与△ACF中,∵90AFC BECEBC ACFBC AC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△CBE(AAS);(2)如图2,连接CD,DF.∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF.∵AF⊥l于点F,∴∠AFC=90°.在△BCE与△CAF中,∵90AFC BECEBC ACFBC AC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△CAF(AAS);∴BE=CF.∵点D是AB的中点,∴CD=BD,∠CDB=90°,∴∠CBD=∠ACD=45°,而∠EBC=∠CAF,∴∠EBD=∠DCF.在△BDE与△CDF中,∵BE CFEBD FCDBD CF=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△CDF(SAS),∴∠EDB=∠FDC,DE=DF.∵∠BDE+∠CDE=90°,∴∠FDC+∠CDE=90°,即∠EDF=90°,∴△EDF是等腰直角三角形,∴EF2DE,∴EF=CE+CF=CE+BE.∵CA=CB,∠ACB=90°,AB=42,∴BC=4.又∵∠CBE=30°,∴CE=12BC=2,BE=3CE=23,∴EF=CE+BE=2+23,∴DE=2=2232=2+6.点睛:本题考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形斜边上的中线的性质,证得△BCE≌△ACF是解题的关键.7.在正方形ABCD中,连接BD.(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.①依题意补全图1;②用等式表示线段BM、DN和MN之间的数量关系,并证明.(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF 分别与BD交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)【答案】(1)45°;(2)①补图见解析;②BM、DN和MN之间的数量关系是BM2+MD2=MN2,证明见解析;(3)答案见解析.【解析】(1)利用等腰直角三角形的性质即可;(2)依题意画出如图1所示的图形,根据性质和正方形的性质,判断线段的关系,再利用勾股定理得到FB2+BM2=FM2,再判断出FM=MN即可;(3)利用△CEF周长是正方形ABCD周长的一半,判断出EF=EG,再利用(2)证明即可.解:(1)∵BD是正方形ABCD的对角线,∴∠ABD=∠ADB=45°,∵AE⊥BD,∴∠ABE=∠BAE=45°,(2)①依题意补全图形,如图1所示,②BM、DN和MN之间的数量关系是BM2+MD2=MN2,将△AND绕点D顺时针旋转90°,得到△AFB,∴∠ADB=∠FBA,∠BAF=∠DAN,DN=BF,AF=AN,∵在正方形ABCD中,AE⊥BD,∴∠ADB=∠ABD=45°,∴∠FBM=∠FBA+∠ABD=∠ADB+∠ABD=90°,在Rt△BFM中,根据勾股定理得,FB2+BM2=FM2,∵旋转△ANE得到AB1E1,∴∠E1AB1=45°,∴∠BAB1+∠DAN=90°﹣45°=45°,∵∠BAF=DAN,∴∠BAB1+∠BAF=45°,∴∠FAM=45°,∴∠FAM=∠E1AB1,∵AM=AM,AF=AN,∴△AFM≌△ANM,∴FM=MN,∵FB2+BM2=FM2,∴DN2+BM2=MN2,(3)如图2,将△ADF绕点A顺时针旋转90°得到△ABG,∴DF=GB,∵正方形ABCD的周长为4AB,△CEF周长为EF+EC+CF,∵△CEF周长是正方形ABCD周长的一半,∴4AB=2(EF+EC+CF),∴2AB=EF+EC+CF∵EC=AB﹣BE,CF=AB﹣DF,∴2AB=EF+AB﹣BE+AB﹣DF,∴EF=DF+BE,∵DF=GB,∴EF=GB+BE=GE,由旋转得到AD=AG=AB,∵AM=AM,∴△AEG≌△AEF,∠EAG=∠EAF=45°,和(2)的②一样,得到DN2+BM2=MN2.“点睛”此题是四边形综合题,主要考查了正方形的性质、旋转的性质,三角形的全等,判断出(△AFN≌△ANM,得到FM=MM),是解题的关键.8.已知:如图1,将两块全等的含30º角的直角三角板按图所示的方式放置,∠BAC=∠B1A1C=30°,点B,C,B1在同一条直线上.(1)求证:AB=2BC(2)如图2,将△ABC绕点C顺时针旋转α°(0<α<180),在旋转过程中,设AB与A1C、A1B1分别交于点D、E,AC与A1B1交于点F.当α等于多少度时,AB与A1B1垂直?请说明理由.(3)如图3,当△ABC绕点C顺时针方向旋转至如图所示的位置,使AB∥CB1,AB与A1C 交于点D,试说明A1D=CD.【答案】(1)证明见解析(2)当旋转角等于30°时,AB与A1B1垂直.(3)理由见解析【解析】试题分析:(1)由等边三角形的性质得AB=BB1,又因为BB1=2BC,得出AB=2BC;(2) 利用AB与A1B1垂直得∠A1ED=90°,则∠A1DE=90°-∠A1=60°,根据对顶角相等得∠BDC=60°,由于∠B=60°,利用三角形内角和定理得∠A1CB=180°-∠BDC-∠B=60°,所以∠ACA1=90°-∠A1CB=30°,然后根据旋转的定义得到旋转角等于30°时,AB与A1B1垂直;(3)由于AB∥CB1,∠ACB1=90°,根据平行线的性质得∠ADC=90°,在Rt△ADC中,根据含30度的直角三角形三边的关系得到CD=12AC,再根据旋转的性质得AC=A1C,所以CD=12A1C,则A1D=CD.试题解析:(1)∵△ABB1是等边三角形;∴AB=BB1∵BB1=2BC∴AB=2BC(2)解:当AB与A1B1垂直时,∠A1ED=90°,∴∠A1DE=90°-∠A1=90°-30°=60°,∵∠B=60°,∴∠BCD=60°,∴∠ACA1=90°-60°=30°,即当旋转角等于30°时,AB与A1B1垂直.(3)∵AB∥CB1,∠ACB1=90°,∴∠CDB=90°,即CD是△ABC的高,设BC=a,AC=b,则由(1)得AB=2a,A1C=b,∵1122ABC S BC AC AB CD ∆=⨯=⨯, 即11222ab a CD =⨯⨯ ∴12CD b =,即CD=12A 1C , ∴A 1D=CD.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了含30度的直角三角形三边的关系.9.如图,△ABC 是等边三角形,AB=6cm ,D 为边AB 中点.动点P 、Q 在边AB 上同时从点D 出发,点P 沿D→A 以1cm/s 的速度向终点A 运动.点Q 沿D→B→D 以2cm/s 的速度运动,回到点D 停止.以PQ 为边在AB 上方作等边三角形PQN .将△PQN 绕QN 的中点旋转180°得到△MNQ .设四边形PQMN 与△ABC 重叠部分图形的面积为S (cm 2),点P 运动的时间为t (s )(0<t <3). (1)当点N 落在边BC 上时,求t 的值. (2)当点N 到点A 、B 的距离相等时,求t 的值. (3)当点Q 沿D→B 运动时,求S 与t 之间的函数表达式.(4)设四边形PQMN 的边MN 、MQ 与边BC 的交点分别是E 、F ,直接写出四边形PEMF 与四边形PQMN 的面积比为2:3时t 的值.【答案】(1)(2)2(3)S=S 菱形PQMN =2S △PNQ =t 2;(4)t=1或【解析】试题分析:(1)由题意知:当点N 落在边BC 上时,点Q 与点B 重合,此时DQ=3; (2)当点N 到点A 、B 的距离相等时,点N 在边AB 的中线上,此时PD=DQ ; (3)当0≤t≤时,四边形PQMN 与△ABC 重叠部分图形为四边形PQMN ;当≤t≤时,四边形PQMN 与△ABC 重叠部分图形为五边形PQFEN .(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值.试题解析:(1)∵△PQN与△ABC都是等边三角形,∴当点N落在边BC上时,点Q与点B重合.∴DQ=3∴2t=3.∴t=;(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,∴PD=DQ,当0<t<时,此时,PD=t,DQ=2t∴t=2t∴t=0(不合题意,舍去),当≤t<3时,此时,PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2;综上所述,当点N到点A、B的距离相等时,t=2;(3)由题意知:此时,PD=t,DQ=2t当点M在BC边上时,∴MN=BQ∵PQ=MN=3t,BQ=3﹣2t∴3t=3﹣2t∴解得t=如图①,当0≤t≤时,S△PNQ=PQ2=t2;∴S=S菱形PQMN=2S△PNQ=t2,如图②,当≤t≤时,设MN、MQ与边BC的交点分别是E、F,∵MN=PQ=3t,NE=BQ=3﹣2t,∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,∵△EMF是等边三角形,∴S△EMF=ME2=(5t﹣3)2.;(4)MN、MQ与边BC的交点分别是E、F,此时<t<,t=1或.考点:几何变换综合题10.(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.22.【解析】【分析】(1)根据等腰三角形性质证△ACD ≌△BCE (SAS ),得AD=BE ,∠EBC=∠CAD ,延长BE 交AD 于点F ,由垂直定义得AD ⊥BE .(2)根据等腰三角形性质证△ACD ≌△BCE (SAS ),AD=BE ,∠CAD=∠CBE ,由垂直定义得∠OHB=90°,AD ⊥BE ;(3)作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP ,PC=BE ,当P 、E 、B 共线时,BE 最小,最小值=PB-PE ;当P 、E 、B 共线时,BE 最大,最大值=PB+PE ,故5-32≤BE≤5+32. 【详解】(1)结论:AD=BE ,AD ⊥BE . 理由:如图1中,∵△ACB 与△DCE 均为等腰直角三角形, ∴AC=BC ,CE=CD , ∠ACB=∠ACD=90°, 在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩=== ∴△ACD ≌△BCE (SAS ), ∴AD=BE ,∠EBC=∠CAD 延长BE 交AD 于点F , ∵BC ⊥AD , ∴∠EBC+∠CEB=90°, ∵∠CEB=AEF , ∴∠EAD+∠AEF=90°, ∴∠AFE=90°,即AD ⊥BE . ∴AD=BE ,AD ⊥BE . 故答案为AD=BE ,AD ⊥BE . (2)结论:AD=BE ,AD ⊥BE .理由:如图2中,设AD 交BE 于H ,AD 交BC 于O .∵△ACB 与△DCE 均为等腰直角三角形, ∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°, ∴ACD=∠BCE , 在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===, ∴△ACD ≌△BCE (SAS ), ∴AD=BE ,∠CAD=∠CBE ,∵∠CAO+∠AOC=90°,∠AOC=∠BOH , ∴∠BOH+∠OBH=90°, ∴∠OHB=90°, ∴AD ⊥BE , ∴AD=BE ,AD ⊥BE .(3)如图3中,作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP , ∴PC=BE ,图3-1中,当P 、E 、B 共线时,BE 最小,最小值2, 图3-2中,当P 、E 、B 共线时,BE 最大,最大值2, ∴22, 即22【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.11.如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.【答案】(1)详见解析;(2)①详见解析;②2;③62 4.【解析】【分析】(1)只要证明△BAE≌△CDE即可;(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-2)2+2,∵-12<0,∴x=2时,△BMN的面积最大,最大值为2.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.∴3(3m,∵S△BEG=12•EG•BN=12•BG•EH,∴EH=3?(13)m m+3+3m,在Rt△EBH中,sin∠EBH=3+362246EHEB m==.【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,12.小明合作学习小组在探究旋转、平移变换.如图△ABC ,△DEF 均为等腰直角三角形,各顶点坐标分别为A (1,1),B (2,2),C (2,1),D (2,0),E (22, 0),F (32,22-).(1)他们将△ABC 绕C 点按顺时针方向旋转450得到△A 1B 1C .请你写出点A 1,B 1的坐标,并判断A 1C 和DF 的位置关系;(2)他们将△ABC 绕原点按顺时针方向旋转450,发现旋转后的三角形恰好有两个顶点落在抛物线2y 22x bx c =++上.请你求出符合条件的抛物线解析式;(3)他们继续探究,发现将△ABC 绕某个点旋转45,若旋转后的三角形恰好有两个顶点落在抛物线2y x =上,则可求出旋转后三角形的直角顶点P 的坐标.请你直接写出点P 的所有坐标.【答案】解:(1)222222b c 0{3232222c +=+=⎝⎭. A 1C 和DF 的位置关系是平行.(2)∵△ABC 绕原点按顺时针方向旋转45°后的三角形即为△DEF ,∴①当抛物线经过点D 、E 时,根据题意可得:(222222b c 0{2222b c 0++=++=,解得b 12{c 82=-= ∴2y 2x 12x 82=-+②当抛物线经过点D、F时,根据题意可得:22c0{b c222++=⎛++=⎝⎭,解得b11{c=-=∴2y11x=-+③当抛物线经过点E、F时,根据题意可得:(22c0{b c222++=⎛++=⎝⎭,解得b13{c=-=∴2y13x=-+(3)在旋转过程中,可能有以下情形:①顺时针旋转45°,点A、B落在抛物线上,如答图1所示,易求得点P坐标为(0,12).②顺时针旋转45°,点B、C落在抛物线上,如答图2所示,设点B′,C′的横坐标分别为x1,x2,易知此时B′C′与一、三象限角平分线平行,∴设直线B′C′的解析式为y=x+b.联立y=x2与y=x+b得:x2=x+b,即2x x b0--=,∴1212x x1x x b+==-,.∵B′C′=1,∴根据题意易得:12x x-=,∴()2121x x2-=,即()212121x x4x x2+-=.∴114b2+=,解得1b8=-.∴21x x08-+=,解得2x4+=x或2x4-=.∵点C′的横坐标较小,∴x=当2x4=时,23y x8-==.∴P(2438-).③顺时针旋转45°,点C 、A 落在抛物线上,如答图3所示, 设点C′,A′的横坐标分别为x 1,x 2.易知此时C′A′与二、四象限角平分线平行,∴设直线C′A′的解析式为y x b =-+. 联立y=x 2与y x b =-+得:2x x b =-+,即2x x b 0+-=,∴1212x x 1x x b +=-=-,.∵C′A′=1,∴根据题意易得:12x x -=,∴()2121x x 2-=,即()212121x x 4x x 2+-=. ∴114b 2+=,解得1b 8=-.∴21x x 08++=,解得2x 4-+=x 或2x 4-=.∵点C′的横坐标较大,∴x =.当2x 4-+=时,23y x 8-==.∴P (24-+,38-). ④逆时针旋转45°,点A 、B 落在抛物线上.因为逆时针旋转45°后,直线A′B′与y 轴平行,因为与抛物线最多只能有一个交点,故此种情形不存在.⑤逆时针旋转45°,点B 、C 落在抛物线上,如答图4所示,与③同理,可求得:P (24-+,38-). ⑥逆时针旋转45°,点C 、A 落在抛物线上,如答图5所示,与②同理,可求得:P (24+,38+).综上所述,点P 的坐标为:(0),P ,38-【解析】(1)由旋转性质及等腰直角三角形边角关系求解.(2)首先明确△ABC绕原点按顺时针方向旋转45°后的三角形即为△DEF,然后分三种情况进行讨论,分别计算求解.(3)旋转方向有顺时针、逆时针两种可能,落在抛物线上的点有点A和点B、点B和点C、点C和点D三种可能,因此共有六种可能的情形,需要分类讨论,避免漏解.考点:旋转变换的性质,曲线上点的坐标与方程的关系,平行线的性质,等腰直角三角形的性质,分类思想的应用.13.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,求∠BAB′的度数.【答案】40°.【解析】【分析】先根据平行线的性质,由CC′∥AB得∠AC′C=∠CAB=70°,再根据旋转的性质得AC=AC′,∠BAB′=∠CAC′,于是根据等腰三角形的性质有∠ACC′=∠AC′C=70°,然后利用三角形内角和定理可计算出∠CAC′=40°,从而得到∠BAB′的度数.【详解】∵CC′∥AB,∴∠A CC′=∠CAB=70°,∵△ABC绕点A旋转到△AB′C′的位置,∴AC=AC′,∠BAB′=∠CAC′,在△ACC′中,∵AC=AC′∴∠ACC′=∠AC′C=70°,∴∠CAC′=180°-70°-70°=40°,∴∠BAB′=40°.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.14.在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.【答案】(1)BE=DF;(2)四边形BC1DA是菱形.【解析】【分析】(1)由AB=BC得到∠A=∠C,再根据旋转的性质得AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,则可证明△ABE≌△C1BF,于是得到BE=BF(2)根据等腰三角形的性质得∠A=∠C=30°,利用旋转的性质得∠A1=∠C1=30°,∠ABA1=∠CBC1=30°,则利用平行线的判定方法得到A1C1∥AB,AC∥BC1,于是可判断四边形BC1DA是平行四边形,然后加上AB=BC1可判断四边形BC1DA是菱形.【详解】(1)解:BE=DF.理由如下:∵AB=BC,∴∠A=∠C,∵△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,∴AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,在△ABE和△C1BF中,∴△ABE≌△C1BF,∴BE=BF(2)解:四边形BC1DA是菱形.理由如下:∵AB=BC=2,∠ABC=120°,∴∠A=∠C=30°,∴∠A1=∠C1=30°,∵∠ABA1=∠CBC1=30°,∴∠ABA1=∠A1,∠CBC1=∠C,∴A1C1∥AB,AC∥BC1,∴四边形BC 1DA 是平行四边形. 又∵AB=BC 1, ∴四边形BC 1DA 是菱形 【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的判定方法.15.如图,已知Rt △ABC 中,∠ACB =90°,AC =BC ,D 是线段AB 上的一点(不与A 、B 重合).过点B 作BE ⊥CD ,垂足为E .将线段CE 绕点C 顺时针旋转90︒,得到线段CF ,连结EF .设∠BCE 度数为α. (1)①补全图形;②试用含α的代数式表示∠CDA . (2)若32EF AB =,求α的大小. (3)直接写出线段AB 、BE 、CF 之间的数量关系.【答案】(1)①答案见解析;②45α︒+;(2)30α=︒;(3)22222AB CF BE =+.【解析】试题分析:(1)①按要求作图即可;②由∠ACB=90°,AC=BC ,得∠ABC=45°,故可得出结论; (2)易证FCE ∆∽ ACB ∆,得32CF AC =;连结FA ,得△AFC 是直角三角形,求出∠ACF=30°,从而得出结论; (3)222A 22B CF BE =+. 试题解析:(1)①补全图形.②∵∠ACB=90°,AC=BC ,∴∠ABC=45°∵∠BCE=α ∴∠CDA=45α︒+(2)在FCE ∆和ACB ∆中,45CFE CAB ∠=∠=︒ ,90FCE ACB ∠=∠=︒ ∴ FCE ∆∽ ACB ∆ ∴ CF EF AC AB = Q 3EF AB = ∴ 32CF AC = 连结FA .Q 90,90FCA ACE ECB ACE ∠=︒-∠∠=︒-∠ ∴ FCA ECB ∠=∠=α在Rt CFA ∆中,90CFA ∠=︒,3cos FCA ∠= ∴ 30FCA ∠=︒即30α=︒.(3)22222AB CF BE =+。
2020中考数学几何专题:平移和旋转(含详解版)
2020中考数学几何专题:平移和旋转(含答案)例题1.如图,△ ABC绕点A顺时针旋转45°得到△ A' B' C',若/BAC=90° AB=AC^2,则图中阴影部分的面积等于3例题2.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3 ,点Q为对角线AC上的动点,则△ BEQ周长的最小值为 .例题3. 如图,在△ ABC中,AB=2, AC=4,将△ ABC绕点C按逆时针方向旋转得到^ A' B' C,使CB' // AB,分别延长AB, CA '相交于点D ,贝U线段BD的长为.例题4.如图,把△ ABC绕点C按顺时针方向旋转35° ,得到△ A' B' C, A' B'交AC 于点D.若/ A' DC=90。
,贝U Z A=.巩固练习-旋转1.如图,在^ ABC中,NCAB =70。
在同一平面内,将^ ABC绕点A旋转到△ AB/C/的位置,使得CC / // AB ,则NBAB/ =()A. 30:B. 35:C. 40:D. 50:B2.如图,APQR是AABC经过某种变换后得到的图形.如果AABC中任意一点M的坐标为3.如图,在Rt△ ABC 中,Z ACB=90o, Z BAC= 60o, AB=6. RtAAB' C'可以看作是由RtA ABC绕A点逆时针方向旋转60o得到的,则线段B' C的长为4.如图,£AOB=90°, NB=30°, △ A’OB’可以看作是由△ AOB绕点。
顺时针旋转"角度得到的.若点A '在AB上,则旋转角的大小可以是( )A、30°B、450C、600D、90°5.如图,若将AABC绕点C,顺时针旋转90。
后得到MBC,贝U A点的对应点6.下列图形中,中心对称图形有(). ® OA,1个2个C. 3个D. 4个中7.下列几何图形中,即是中心对称图形又是轴对称图形的是()A .正三角形 B.等腰直角三角形C.等腰梯形8.如图,点A, B, C的坐标分别为(2, 4) , (5, 2) , (3, — 1).若以点D为顶点的四边形既是轴对称图形,又是中心对称图形,则点D的坐标为A'的坐标D.正方形A, B, C,9.如图,在平面直角坐标系中,△ ABC的三个顶点的坐标分别为 A (0,1) , B (-1,1),C (-1,3)。
平移、旋转与对称-历届中考真题汇总专题(含解析答案)(原卷版)
备战2015中考系列:数学2年中考1年模拟第五篇图形的变化专题26 平移、旋转与对称☞解读考点知识点名师点晴图形的平移1.平移的概念知道什么是图形的平移。
2.平移的性质掌握平移的性质。
3.平移的条件了解平移条件。
4.平移作图能准确利用平移作图。
图形的旋转 5.旋转的定义知道什么是旋转。
6.旋转的性质掌握旋转的性质。
7.中心对称及中心对称图形了解中心对称和中心对称图形概念,能区分两个概念。
8.中心对称的性质能掌握中心对称的性质,能正确作图。
图形的轴对称 9.轴对称、轴对称图形的定义能区别两个概念。
10.轴对称的性质能正确应用性质。
11.轴对称作图会正确作出一个图形关于某直线的轴对称图形。
☞2年中考[2014年题组]1. (2014年广西来宾)将点P(﹣2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是【】A.(﹣5,﹣3)B.(1,﹣3)C.(﹣1,﹣3)D.(5,﹣3)2. (2014年广西玉林、防城港)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x ,两个三角形重叠面积为y ,则y 关于x 的函数图象是【 】A .B .C .D .3. (2014年贵州遵义)如图,已知△ABC 中,∠C=90°,AC=BC=,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B ,则C′B 的长为【 】A .22-B .32C .31-D .1 4. (2014年江苏苏州)如图,△AOB 为等腰三角形,顶点A 的坐标为(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A'O'B ,点A 的对应点A'在x 轴上,则点O'的坐标为【 】A .(203,103) B .(16345) C .(20345) D .(163,35.(2014年贵州黔东南)如图,在矩形ABCD 中,AB=8,BC=16,将矩形ABCD 沿EF 折叠,使点C 与点A 重合,则折痕EF 的长为【 】A.6 B.12 C.25D.456.(2014年湖南邵阳)如图,A点的初始位置位于数轴上的原点,现对A点做如下移动:第1次从原点向右移动1个单位长度至B点,第2次从B点向左移动3个单位长度至C点,第3次从C点向右移动6个单位长度至D点,第4次从D点向左移动9个单位长度至E点,…,依此类推,这样至少移动▲ 次后该点到原点的距离不小于41.7.(2014年黑龙江齐齐哈尔、大兴安岭地区、黑河)如图,在在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2014OB2014,则点A2014的坐标为▲ .8.(2014年湖南张家界)如图,AB、CD是⊙O两条弦,AB=8,CD=6,MN是直径,AB⊥MN于E,CD⊥MN 于点F,P为EF上任意一点,,则PA+PC的最小值为▲ .9. (2014年江苏连云港)如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF,如图2,展开再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为M,EM交AB于N,则tan∠ANE= ▲ .10.(2014年辽宁本溪)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC 不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.[2013年题组]1. (2013年湖北荆门)如下图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是【】A.B.C.D.2. (2013年湖北荆州)如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线kyx(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是【】A.1 B.2 C.3 D.43. (2013年湖北恩施)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为【】A.122π+B.12π+C.1π+D.3-4. (2013年贵州黔东南)如图,直线y=2x与双曲线2yx=在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为【】A.(1.0)B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)5. (2013年江苏苏州)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C的坐标为(12,0),点P为斜边OB上的一动点,则PA+PC的最小值为【】A .132B .312 C .3192+ D .276.(2013年湖南岳阳)夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m ,且桥宽忽略不计,则小桥总长为 ▲ m .7.(2013年黑龙江牡丹江市区)菱形ABCD 在平面直角坐标系中的位置如图所示,A (0,6),D (4,0),将菱形ABCD 先向左平移5个单位长度,再向下平移8个单位长度,然后在坐标平面内绕点O 旋转90°,则边AB 中点的对应点的坐标为 ▲ .8. (2013年河南省)如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当△CEB '为直角三角形时,BE 的长为 ▲ .9. ( 2013年广西钦州)如图,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是 ▲ .10.(2013年湖北随州)在平面直角坐标系xOy 中,矩形ABCO 的顶点A 、C 分别在y 轴、x 轴正半轴上,点P 在AB 上,PA=1,AO=2.经过原点的抛物线2y mx x n =-+的对称轴是直线x=2. (1)求出该抛物线的解析式.(2)如图1,将一块两直角边足够长的三角板的直角顶点放在P点处,两直角边恰好分别经过点O和C.现在利用图2进行如下探究:①将三角板从图1中的位置开始,绕点P顺时针旋转,两直角边分别交OA、OC于点E、F,当点E和点A重合时停止旋转.请你观察、猜想,在这个过程中,PEPF的值是否发生变化?若发生变化,说明理由;若不发生变化,求出PEPF的值.②设(1)中的抛物线与x轴的另一个交点为D,顶点为M,在①的旋转过程中,是否存在点F,使△DMF 为等腰三角形?若不存在,请说明理由.☞考点归纳归纳 1:判断图形的平移基础知识归纳:把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。
中考数学历年各地市真题平移旋转
中考数学历年各地市真题平移与旋转(2010哈尔滨)1.下列图形中,是中心对称图形的是().D(2010哈尔滨)2.点A(-l,4)和点B(-5,1)在平面直角坐标系中的位置如图所示.(1)将点A、B分别向右平移5个单位,得到点A1、B1,请画出四边形AA1B1B;(2)画一条直线,将四边形AA1B1B分成两个全等的图形,并且每个图形都是轴对称图形.(2010珠海)3.在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位得到点Q,则点Q的坐标是() DA.(-2,6)B.(-2,0)C.(-5,3)D.(1,3)(2010珠海)4.现有如图1所示的四张牌,若只将其中一张牌旋转180后得到图2,则旋转的牌是()B图1 图2A. B C D(2010年镇江市)21.动手操作(本小题满分6分)在如图所示的方格纸中,△ABC的顶点都在小正方形的顶点上,以小正方形互相垂直的两边所在直线建立直角坐标系.(1)作出△ABC关于y轴对称的△A1B1C1,其中A,B,C分别和A1,B1,C1对应;(2)平移△ABC,使得A点在x轴上,B点在y轴上,平移后的三角形记为△A2B2C2,作出平移后的△A2B2C2,其中A,B,C分别和A2,B2,C2对应;(3)填空:在(2)中,设原△ABC的外心为M,△A2B2C2的外心为M,则M与M2之间的距离为 .(1)见图21;(2分)(2)见图21;(4分)17(6分)(3).(2010遵义市)下列图形中既是中心对称图形,又是轴对称图形的是答案:B(2010台州市)23.如图1,Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的中点D旋转,DE,DF分别交线段..AC于点M,K.(1)观察:①如图2、图3,当∠CDF=0°或60°时,AM+CK_______MK(填“>”,“<”或“=”).②如图4,当∠CDF=30°时,AM+CK___MK(只填“>”或“<”).(2)猜想:如图1,当0°<∠CDF<60°时,AM+CK_______MK,证明你所得到的结论.(3)如果222AM CKMK,请直接写出∠CDF 的度数和AMMK 的值.解:23.(12分)(1)①= …………………………………………………………………2分②>…………………………………………………………………………………2分(2)> (2)分证明:作点C 关于FD 的对称点G ,连接GK ,GM ,GD ,则CD =GD ,GK = CK ,∠GDK =∠CDK ,∵D 是AB 的中点,∴AD =CD =GD .∵A30°,∴∠CDA =120°,∵∠EDF =60°,∴∠GDM +∠GDK =60°,∠ADM +∠CDK =60°.∴∠ADM =∠GDM ,………………………………………………………………………3分∵DM =DM ,∴△ADM ≌△GDM ,∴GM =AM .∵GM +GK >MK ,∴AM +CK >MK . (1)分(3)∠CDF =15°,23AMMK.…………………………………………………………2分(玉溪市2010)6. 如图3是把一张长方形的纸沿长边中点的连线对折两次后得到的图形.再沿虚线裁剪,外面部分展开后的图形是(D )B AC D图3图1图2图3(第23题)(M )EKDCA BF MEKDCABF MEK D C ABF 图4LM EDC AB(F,K)GM EKDCABFA第24题BCDOA 第24题BCDO'C'B'()A (')D (玉溪市2010)10. 如图5是汽车牌照在水中的倒影,则该车牌照上的数字是21678 .一项是符合题目要求的.)(2010年兰州)1观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有A .1个B .2个C .3个D .4个答案B(2010年无锡)4.下列图形中,是中心对称图形但不是轴对称图形的是(▲)答案 B (2010年连云港)5.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的是()A .①②B .②③C .②④D .①④答案 C(2010年连云港)24.(本题满分10分)如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD 的四个顶点都在格点上,O 为AD 边的中点,若把四边形ABCD 绕着点O 顺时针旋转,试解决下列问题:(1)画出四边形ABCD 旋转后的图形;(2)求点C 旋转过程事所经过的路径长;(3)设点B 旋转后的对应点为B ’,求tan ∠DAB ’的值.答案A .B .C .D .图5B.A.C.D.(2)易知点C 的旋转路径是以为O 圆心,OC 为半径的半圆因为OC=22125,所以半圆的周长为5π .............................................6分(3)'22'22112,3332B D AB,224225AD所以2'2'2ADB D AB所以ADB是直角三角形,且90AB D (8)分所以tan21332DB DABAB.................................................................... (10)分(2010宁波市)3.下列各图是选择自历届世博会会徽中的图案,其中是中心对称图形的是 C2.(2010年怀化市)下列图形中,是中心对称图形但不是轴对称图形的是()答案:B13. (2010年济宁市)如图,PQR 是ABC 经过某种变换后得到的图形.如果ABC 中任意一点M 的坐标为(a ,b ),那么它的对应点N 的坐标为 .答案:(a ,b );19. (2010年郴州市)ABC 在平面直角坐标系中的位置如图所示,将ABC 沿y 轴翻折得到111A B C ,再将111A B C 绕点O 旋转180°得到222A B C . 请依次画出111A B C 和222A B C .答案:y xCBA O(第13题)19.答案如图每个图形3分毕节13.正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD绕D 点顺时针方向旋转90后,B 点的坐标为(D )A .(22),B .(41),C .(31),D .(40),2.(10湖南怀化)下列图形中,是中心对称图形但不是轴对称图形的是()B1、(2010年泉州南安市)请写出一个既是轴对称,又是中心对称的几何图形名称:答案:如:矩形(答案不惟一)(2010年天津市)(2)下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为(B )(A )(B )(C )(D )(2010年天津市)(14)如图,已知正方形ABCD 的边长为3,E 为CD 边上一点,1DE .以点A 为中心,把△ADE 顺时针旋转90,得△ABE ,连接EE ,则EE 的长等于25.第(14)题EAD EBCC 2A 2C 1B 1B 2A 1yxC BAO(2010年天津市)(18)有一张矩形纸片ABCD ,按下面步骤进行折叠:第一步:如图①,将矩形纸片ABCD 折叠,使点B 、D 重合,点C 落在点C 处,得折痕EF ;第二步:如图②,将五边形AEFC D 折叠,使AE 、C F 重合,得折痕DG ,再打开;第三步:如图③,进一步折叠,使AE 、C F 均落在DG 上,点A 、C 落在点A 处,点E 、F 落在点E 处,得折痕MN 、QP .这样,就可以折出一个五边形DMNPQ .(Ⅰ)请写出图①中一组相等的线段AD C D (答案不惟一,也可以是AE C F 等)(写出一组即可);(Ⅱ)若这样折出的五边形DMNPQ (如图③)恰好是一个正五边形,当ABa ,AD b ,DM m 时,有下列结论:①222tan18a b ab ;②22tan18m a b;③tan18bma ;④3tan182bm m .其中,正确结论的序号是①②③(把你认为正确结论的序号都.填上).(2010年天津市)(25)(本小题10分)在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,3OA ,4OB,D 为边OB 的中点.(Ⅰ)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;第(18)题ADCCB EFGADC CBE F 图①图②图③C DFCAENP BEAM QG 温馨提示:如图,可以作点D 关于x 轴的对称点D ,连接CD 与x 轴交于点E ,此时△CDE 的周长是最小的.这样,你只需求出OE 的长,就可以确定点E 的坐标了.(Ⅱ)若E、F为边OA上的两个动点,且2EF,当四边形CDEF的周长最小时,求点E、F的坐标.解:(Ⅰ)如图,作点D关于x轴的对称点D,连接CD与x轴交于点E,连接DE.若在边OA上任取点E(与点E不重合),连接CE、DE、D E.由DE CE D E CE CD D E CE DE CE,可知△CDE的周长最小.∵在矩形OACB中,3OA,4OB,D为OB的中点,∴3BC,2D O DO,6D B.∵OE∥BC,∴Rt△D OE∽Rt△D BC,有OE D O BC D B.∴2316D O BCOED B.∴点E的坐标为(1,0). ................................6分(Ⅱ)如图,作点D关于x轴的对称点D,在CB边上截取2CG,连接D G与x轴交于点E,在EA上截取2EF.∵GC∥EF,GC EF,∴四边形GEFC为平行四边形,有GE CF.又DC、EF的长为定值,∴此时得到的点E、F使四边形CDEF的周长最小.∵OE∥BC,∴Rt△D OE∽Rt△D BG, 有OE D O BG D B.∴()21163D O BG D O BC CGOED B D B.第(25)题yBODCA xEDyBODCA xyBODCA xEDGFyBODCA xE ED∴17233OF OE EF.∴点E 的坐标为(13,0),点F 的坐标为(73,0). ...............10分(2010年天津市)(26)(本小题10分)在平面直角坐标系中,已知抛物线2yxbxc 与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴的正半轴交于点C ,顶点为E .(Ⅰ)若2b ,3c,求此时抛物线顶点E 的坐标;(Ⅱ)将(Ⅰ)中的抛物线向下平移,若平移后,在四边形ABEC中满足S △BCE = S △ABC ,求此时直线BC 的解析式;(Ⅲ)将(Ⅰ)中的抛物线作适当的平移,若平移后,在四边形ABEC中满足S △BCE = 2S △AOC ,且顶点E 恰好落在直线43y x 上,求此时抛物线的解析式. 解:解:(Ⅰ)当2b,3c时,抛物线的解析式为223yxx,即2(1)4yx.∴抛物线顶点E 的坐标为(1,4)..................2分(Ⅱ)将(Ⅰ)中的抛物线向下平移,则顶点E 在对称轴1x上,有2b ,∴抛物线的解析式为22y xxc (0c).∴此时,抛物线与y 轴的交点为0()C c ,,顶点为1( 1)E c ,.∵方程220xxc的两个根为111x c ,211x c ,∴此时,抛物线与x 轴的交点为110()A c ,,110()B c ,.如图,过点E 作EF ∥CB 与x 轴交于点F ,连接CF ,则S △BCE = S △BCF .∵S △BCE = S △ABC ,∴S △BCF = S △ABC .∴21BFABc .设对称轴1x 与x 轴交于点D ,则1312DFABBFc .由EF ∥CB ,得EFDCBO .EyxFBDA OC 1x∴Rt△EDF∽Rt△COB.有ED CO DF OB.∴13111c cc c.结合题意,解得54c.∴点54(0)C,,52( 0)B,.设直线BC 的解析式为y mx n ,则5,450.2n mn 解得1,25.4mn ∴直线BC 的解析式为1524y x. .........................6分(Ⅲ)根据题意,设抛物线的顶点为()E h k ,,(0h ,0k)则抛物线的解析式为2()yxh k ,此时,抛物线与y 轴的交点为2(0)C hk ,,与x 轴的交点为0()A h k ,,0()B hk ,.(0kh)过点E 作EF ∥CB 与x 轴交于点F ,连接CF ,则S △BCE = S △BCF . 由S △BCE = 2S △AOC ,∴S △BCF = 2S △AOC . 得22()BF AOkh .设该抛物线的对称轴与x 轴交于点D .则1322DFABBFkh .于是,由Rt △EDF ∽Rt △COB ,有ED CO DFOB.∴232k h k khh k ,即22520h khk .结合题意,解得12hk .①∵点()E h k ,在直线43y x上,有43k h .②∴由①②,结合题意,解得1k.有1k,12h.∴抛物线的解析式为234yxx..........................10分(2010山西20.(本题6分)山西民间建筑的门窗图案中,隐含着丰富的数学艺术之美.图1是其中一个代表,该窗格图案是以图2为基本图案经过图形变换得到的.图3是图2放大后的部分,虚线给出了作图提示,请用圆规和直尺画图.(1)根据图2将图3补充完整;第14题图DABEF(2)在图4的正方形中,用圆弧和线段设计一个美观的轴对称或中心对称图形.(1)将图3补充完整得3分(画出虚线不扣分)(2)图略,答案不唯一,只要符合题目要求均得3分1.(2010宁德)下列四张扑克牌图案,属于中心对称的是().B1.(2010山东济南)如图所示,△DEF 是△ABC 沿水平方向向右平移后的对应图形,若∠B =31°,∠C =79°,则∠D 的度数是度.答案:701.(2010山东德州)下面的图形中,既是轴对称图形又是中心对称图形的是(A)(B)(C)(D)答案:B(2010年常州)24.如图在△ABC 和△CDE 中,AB=AC=CE ,BC=DC=DE ,AB>BC ,∠BAC=∠DCE=∠,点B 、C 、D 在直线l 上,按下列要求画图(保留画图痕迹);(1)画出点E 关于直线l 的对称点E ’,连接CE ’、DE ’;(2)以点C 为旋转中心,将(1)中所得△CDE ’按逆时针方向旋转,使得CE ’与CA 重合,得到△CD ’E ’’(A ).画出△CD ’E ’’(A ).解决下面问题:①线段AB 和线段CD ’的位置关系是 .理由是:②求∠的度数.A. B. C. D.(2010年安徽)18.在小正方形组成的15×15的网络中,四边形ABCD 和四边形D C B A 的位置如图所示。
初中数学图形的平移,对称与旋转的经典测试题及答案解析
【答案】B
【解析】
【分析】
由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数.
【详解】
解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°,
由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°,
9.如图,△ABC绕点A逆时针旋转使得点C落在BC边上的点F处,则以下结论:
①AC=AF;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC.
其中正确的结论有()
A.4个B.3个
C.2个D.1个
【答案】B
【解析】
【分析】
根据旋转的性质,旋转前后对应线段相等、对应角相等即可解答.
【详解】
由旋转可知△ABC≌△AEF,
若旋转角度为15°,则∠ACO=30°+15°=45°.
∴∠AOC=180°-∠ACO-∠CAO=90°.
在等腰Rt△ABC中,AB=4,则AO=OC=2.
在Rt△AOD1中,OD1=CD1-OC=3,
由勾股定理得:AD1= .
故选A.
考点: 1.旋转;2.勾股定理.
14.如图, 的三个顶点都在方格纸的格点上,其中点 的坐标是 .现将 绕点 顺时针旋转 ,则旋转后点 的坐标是()
【详解】
解:作C'D⊥OA于D,设AO交BC于E,如图所示:
则∠C'DA=90°,
∵∠CAB=90°,AB=AC,
∴△ABC是等腰直角三角形,
∴∠B=45°,
专题11 几何图形中的平移、翻折、旋转-2023年中考数学毕业班二轮热点题型归纳与变式演练(解析版)
专题11 几何图形中的平移、翻折、旋转目录最新模考题热点题型归纳【题型一】 平移运动【典例分析】(2022春·上海长宁·九年级校考期中)如图,在梯形ABCD 中,AB CD ∥,3AB =,8CD =,点E 是边CD 的中点,联结AE 交BD 于点F ,将ACD V 沿着射线DC 方向平移,如果点F 的对应点恰好落在ABC V 内,那么平移的距离m 的取值范围是________.【答案】122477m <<##241277m >>【分析】过点F 作CD 或AB 的平行线交AC 于点P ,交BC 于点Q ,此时由平移的性质可得FP FQ 、都为平移距离m ,如图所示,分别求得平移距离m FP =和m FQ =即可求得点F 的对应点恰好落在ABC V 内时,平移的距离m 的取值范围.【详解】解:过点F 作CD 或AB 的平行线交AC 于点P ,交BC 于点Q ,此时由平移的性质可得FP FQ 、都为平移距离m ,如图所示,【提分秘籍】图形的平移规律找特殊点1.图形的平移即是图形中各个点的平移,解题时只需选取线段端点或三角形顶点等这样的特殊点即可.2.在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数b,相应的新图形就是把原图形向上(或向下)平移b 个单位长度。
(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.【变式演练】1.(2020·上海浦东新·统考一模)如图,将ABC D 沿射线BC 方向平移得到DEF D ,边DE与AC 相交于点G ,如果6BC cm =,ABC D 的面积等于29cm ,GEC D 的面积等于24cm ,那么CF =____________cm .【答案】2【分析】根据平移性质得AC DF ∥,易证△EGC EDF ∽△,根据相似三角形的面积的比等于相似比的平方,求得EC 的长,即可求CF 的长.2.(2021·上海浦东新·模拟预测)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为16,阴影部分三角形的面积为9.如果AA'=1,那么A'D的长为_____.【题型二】 翻折运动【典例分析】(2022·上海·二模)已知在平行四边形ABCD 中,AB BC ¹,将ABC V 沿直线AC 翻折,点B 落在点尽处,AD 与CE 相交于点O ,联结DE .(1)如图1,求证://AC DE ;(2)如图2,如果90B Ð=°,AB ==BC OAC V 的面积;(3)如果30B Ð=°,AB =AED △是直角三角形时,求BC 的长.②如图4,当90AEDÐ=°时AD BC=Q,BC EC=,AD EC\=,由折叠的性质得:AE AB=,AE CD\=,在ACED和CADD中,AE CDCE ADAC CA=ìï=íï=î,()ACE CAD SSS\D@D,ECA DAC\Ð=Ð,OA OC\=,OE OD\=,OED ODE\Ð=Ð,AED CDE\Ð=Ð,90AEDÐ=°Q,90CDE\Ð=°,//AE CD\,又//AB CDQ,【提分秘籍】解决折叠问题的思维方法(1)折叠后能够重合的线段相等,能够重合的角相等,能够重合的三角形全等,折叠前后的图形关于折痕对称,对应点到折痕的距离相等。
中考数学复习 图形的平移和旋转 专题练习 含答案和部分解析
初三中考数学复习图形的平移与旋转专题复习练习1. 下列图案中,可以看做是由图案自身的一部分经平移后得到的是()A B C D2. 如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连结BB′,若AC′∥BB′,则∠CAB′的度数为()A.45°B.60°C.70°D.90°3. 如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位,得到△A1B1C1,则点B1的坐标是( )A.(-2,3) B.(3,-1) C.(-3,1) D.(-5,2)4. 已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(-2,1),则点B的对应点的坐标为( ) A.(5,3) B.(-1,-2) C.(-1,-1) D.(0,-1)5. 如图,△DEF是由△ABC绕点O旋转180°而得到的,则下列结论不成立的是( )A.点A与点D是对应点 B.BO=EO C.AB∥DE D.∠ACB=∠FDE6. 如图,点A,B的坐标分别为(1,0),(0,2),若将线段AB平移至A1B1,则a -b的值为( )A.1 B.-1 C.0 D.27. 如图,在方格图上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得到△A′B′O,则点A′的坐标为( )A.(3,1) B.(3,2) C.(2,3) D.(1,3)8. 如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A按顺时针方向旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为( )A.5 B.23 C.7 D.299. 如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,△ABC绕点C按顺时针方向旋转得△A1B1C,当点A1落在AB边上时,连结B1B,取BB1的中点D,连结A1D,则A1D的长度是( )A.7 B.2 2 C.3 D.2 310. 把一副三角尺按如图①放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角尺DCE绕点C按顺时针方向旋转15°得到△D1CE1(如图②),此时AB与CD1交于点O,则线段AD1的长度为( )图①图②A.3 2 B.5 C.4 D.3111. 如图,将△ABC绕点A按顺时针方向旋转60°得△ADE,则∠BAD=°.12. 将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为.13. 如图,两个全等的三角尺重叠摆放在△ACB的位置,将其中一个三角尺绕点C按逆时针方向旋转到△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8 cm,则CF= cm.14. 如图,P是等边三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC 绕点A按逆时针方向旋转后,得到△MAB,则点P与点M之间的距离为,∠APB=°.15. 在4×4的方格图中,△ABC的三个顶点都在格点上.(1)在图①中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图②中的△ABC绕点C按顺时针方向旋转90°,画出旋转后的三角形.16. 如图,在菱形ABCD中,∠BAD=α,点E在对角线BD上,将线段CE绕点C 按顺时针方向旋转α,得到CF,连结DF.(1)求证:BE=DF;(2)连结AC,若EB=EC,求证:AC⊥CF.17. 如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于点E,D′C′交CB于点F,连结EF,当四边形EDD′F 为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.答案与解析: 1. A 2. D 3. C 4. C 5. D 6. C 7. D 8. D9. A 解析:∵∠ACB =90°,∠ABC =30°,AC =2,∴∠A =60°,AB =4,BC =2 3.∵CA =CA 1,∴△ACA 1是等边三角形,AA 1=AC =BA 1=2,∴∠A 1CB =∠A 1BC =30°,∠BCB 1=∠ACA 1=60°.∵CB =CB 1,∴△BCB 1是等边三角形,∴BB 1=23.∵BA 1=2,∠A 1BB 1=∠A 1BC +∠CBB 1=90°,BD =DB 1=3,∴A 1D =A 1B 2+BD 2=7.故选A .10. B 解析:∵∠ACB=∠DEC=90°,∠D =30°,∴∠DCE =90°-30°=60°,∴∠ACD =90°-60°=30°.∵旋转角为15°,∴∠ACD 1=30°+15°=45°.又∵∠CAB=45°, ∴△ACO ,△ACB 均是等腰直角三角形,∴AO =CO =12AB=12×6=3,AB ⊥CO.∵DC =7,∴D 1C =DC =7,∴D 1O =7-3=4.在Rt △AOD 1中,AD 1=AO 2+D 1O 2=32+42=5.故选B . 11. 60 12. 10 13. 2 3解析:∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A 恰好落在边DE上,∴DC=AC,∴∠D=∠DAC=∠CAB.∵∠ACB=∠DCE=90°,∠B=30°,∴∠D=∠DAC=∠CAB=60°,∴∠DCA=60°,∴∠ACF=30°,可得∠AFC=90°.∵AB=8 cm,∴AC=4 cm,∴CF=4×cos 30°=23(cm).14. 6 150解析:如图,连结MP.∵△ABC为等边三角形,∴AB=AC,∠BAC=60°.∵△PAC 绕点A逆时针旋转后,得到△MAB,∴AM=AP,∠MAP=∠BAC=60°,BM=CP=10,∴△AMP为等边三角形,∴MP=AP=6,∠APM= 60°.在△PBM中,PM =6,BM=10,PB=8,∵62+82=102,∴PM2+PB2=BM2,∴∠BPM=90°,∴∠APB =∠APM+∠BPM=60°+90°=150°.故答案为6,150.15. (1) 解:画出下列其中一个即可.△AB′C为所求作的三角形△A′BC为所求作的三角形.(2) 解:△A′B′C′即为所求作的三角形.16. (1) 证明:∵四边形ABCD为菱形,∴BC=CD=AB,∠BAD=∠BCD=α.∵∠ECF=∠BCD,∴∠BCE =∠DCF.又∵BC=CD ,CE =CF ,∴△BEC ≌△DFC ,∴BE =DF.(2) 证明:如图,连结AC 交BD 于点O.∵四边形ABCD 是菱形,∴AC ⊥BD .∵BE =EC ,BC =DC ,∴∠EBC =∠ECB,∠CBD =∠BDC,∴∠BDC =∠ECB=∠DCF,∴BD ∥CF 且AC⊥BD,∴AC ⊥CF.17. 解:当四边形EDD′F 为菱形时,△A′DE 是等腰三角形,△A′DE≌△EFC′.理由如下:∵△ABC 是直角三角形,∠ACB=90°,AD =DB ,∴CD=DA =DB ,∴∠DAC =∠DCA.∵A′C′∥AC ,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE ,∴△A′DE 是等腰三角形.∵四边形DEFD′是菱形,∴EF=DE =DA′,EF∥DD′,∴∠C′EF=∠DA′E,∠EFC′=∠C′D′A′.∵CD∥C′D′,∴∠A′DE=∠A′D′C′=∠EFC′.在△A′DE 和△EFC′中,⎩⎪⎨⎪⎧∠EA′D=∠C′EF,A′D=EF ,∠A′DE=∠EFC′,∴△A′DE≌△EFC′.。
中考数学几何旋转经典例题
临床研究对象的基线资料目录一、一般信息 (4)1.1 基本人口统计学特征 (4)1.2 病史采集 (5)1.2.1 既往病史 (6)1.2.2 家族病史 (7)1.2.3 过敏史 (8)1.2.4 用药史 (9)1.2.5 现病史 (9)二、生活方式 (10)2.1 饮食习惯 (11)2.1.1 膳食结构 (12)2.1.2 饮食频率与量 (13)2.1.3 特殊饮食要求 (14)2.2 运动情况 (15)2.2.1 运动频率 (16)2.2.2 运动类型 (17)2.2.3 运动强度 (18)2.3 生活作息 (18)2.3.1 睡眠模式 (19)2.3.2 工作与休息时间安排 (20)2.3.3 生活压力 (21)三、体征检查 (21)3.1 一般检查 (23)3.2 皮肤黏膜 (24)3.2.1 皮肤颜色 (25)3.2.2 皮肤完整性 (26)3.3 淋巴结与肿大 (28)3.3.1 淋巴结位置 (29)3.3.2 淋巴结大小 (29)3.3.3 淋巴结活动度 (30)四、实验室检查 (31)4.1 血液检查 (32)4.1.1 血红蛋白 (33)4.1.2 血小板计数 (34)4.1.3 白细胞计数与分类 (35)4.1.4 血清生化指标 (35)4.2 尿液检查 (37)4.2.1 尿液颜色 (38)4.2.2 尿液比重与透明度 (39)4.2.3 尿蛋白 (40)4.3 粪便检查 (41)4.3.1 大便常规 (42)4.3.2 肠道寄生虫检查 (43)4.4 其他实验室检查 (44)4.4.1 肝肾功能 (45)4.4.2 血清免疫学指标 (45)4.4.3 血清病毒学指标 (46)五、影像学检查 (47)六、其他基线资料 (49)6.1 健康行为问卷调查 (50)6.1.1 吸烟与饮酒情况 (51)6.1.2 药物使用情况 (52)6.1.3 心理健康状况 (53)6.2 家族史与遗传病史 (54)6.2.1 家族成员疾病史 (55)6.2.2 遗传性疾病筛查 (56)6.3 可能影响研究结果的疾病或症状 (57)6.3.1 糖尿病 (58)6.3.2 高血压 (60)6.3.3 心脏病 (62)6.4 其他特殊人群信息 (63)6.4.1 儿童与青少年 (64)6.4.2 老年人 (66)6.4.3 孕妇与哺乳期妇女 (67)一、一般信息职业背景:患者来自不同的职业领域,包括工人、农民、职员、学生等。
中考数学总复习之图形的旋转综合训练(30题)
中考数学总复习之图形的旋转综合训练(30题)1.如图,点A在射线OX上,OA=a.如果OA绕点O按逆时针方向旋转n°(0<n≤360)到OA′,那么点A′的位置可以用(a,n°)表示.(1)按上述表示方法,若a=3,n=37,则点A′的位置可以表示为;(2)在(1)的条件下,已知点B的位置用(3,74°)表示,连接A′A、A′B.求证:A′A=A′B.2.如图1,D为等边△ABC内一点,将线段AD绕点A逆时针旋转60°得到AE,连接CE,BD的延长线与AC交于点G,与CE交于点F.(1)求证:BD=CE;(2)如图2,连接F A,小颖对该图形进行探究,得出结论:∠BFC=∠AFB=∠AFE.小颖的结论是否正确?若正确,请给出证明;若不正确,请说明理由.3.如图,点M是∠ABC的边BA上的动点,BC=6,连接MC,并将线段MC绕点M逆时针旋转90°得到线段MN.(1)作MH⊥BC,垂足H在线段BC上,当∠CMH=∠B时,判断点N是否在直线AB上,并说明理由;(2)若∠ABC=30°,NC∥AB,求以MC、MN为邻边的正方形的面积S.4.如图,点E是矩形ABCD的边BC上一点,将△ABE绕点A逆时针旋转至△AB1E1的位置,此时E、B1、E1三点恰好共线.点M、N分别是AE和AE1的中点,连接MN、NB1.(1)求证:四边形MEB1N是平行四边形;(2)延长EE1交AD于点F,若EB1=E1F,,判断△AE1F与△CB1E 是否全等,并说明理由.5.如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为△ABC内一点,将线段AD绕点A逆时针旋转90°得到AE,连接CE,BD的延长线与CE交于点F.(1)求证:BD=CE,BD⊥CE;(2)如图2,连接AF,DC,已知∠BDC=135°,判断AF与DC的位置关系,并说明理由.6.下面是小明关于“对称与旋转的关系”的探究过程,请你补充完整.(1)三角形在平面直角坐标系中的位置如图1所示,简称G,G关于y轴的对称图形为G1,关于x轴的对称图形为G2.则将图形G1绕点顺时针旋转度,可以得到图形G2.(2)在图2中分别画出G关于y轴和直线y=x+1的对称图形G1,G2.将图形G1绕点(用坐标表示)顺时针旋转度,可以得到图形G2.(3)综上,如图3,直线l1:y=﹣2x+2和l2:y=x所夹锐角为α,如果图形G关于直线l1的对称图形为G1,关于直线l2的对称图形为G2,那么将图形G1绕点(用坐标表示)顺时针旋转度(用α表示),可以得到图形G2.7.如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.8.如图,是边长为1的小正方形组成的8×8方格,线段AB的端点在格点上.建立平面直角坐标系,使点A、B的坐标分别为(2,1)和(﹣1,3).(1)画出该平面直角坐标系xOy;(2)画出线段AB关于原点O成中心对称的线段A1B1;(3)画出以点A、B、O为其中三个顶点的平行四边形.(画出一个即可)9.如图,在2×6的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上).(1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移2个单位后的图形.(2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转180°后的图形.10.如图所示的方格纸(1格长为一个单位长度)中,△AOB的顶点坐标分别为A(3,0),O(0,0),B(3,4).(1)将△AOB沿x轴向左平移5个单位,画出平移后的△A1O1B1(不写作法,但要标出顶点字母);(2)将△AOB绕点O顺时针旋转90°,画出旋转后的△A2O2B2(不写作法,但要标出顶点字母);(3)在(2)的条件下,求点B绕点O旋转到点B2所经过的路径长(结果保留π).11.如图是由小正方形组成的9×6网格,每个小正方形的顶点叫做格点.△ABC的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D,E分别是边AB,AC与网格线的交点.先将点B绕点E旋转180°得到点F,画出点F,再在AC上画点G,使DG∥BC;(2)在图(2)中,P是边AB上一点,∠BAC=α.先将AB绕点A逆时针旋转2α,得到线段AH,画出线段AH,再画点Q,使P,Q两点关于直线AC对称.12.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△DEF关于点O成中心对称,△ABC与△DEF的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O的位置.(2)将△ABC先向右平移4个单位长度,再向下平移2个单位长度,得到△A1B1C1,请画出△A1B1C1;(3)在网格中画出格点M,使A1M平分∠B1A1C1.13.如图,方格纸上每个小正方形的边长均为1个单位长度,△ABC的顶点A、B、C都在格点上(两条网格线的交点叫格点).请仅用无刻度的直尺按下列要求画图,并保留画图痕迹(不要求写画法).(1)将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B1,点C的对应点为C1,画出△AB1C1;(2)连接CC1,△ACC1的面积为;(3)在线段CC1上画一点D,使得△ACD的面积是△ACC1面积的.14.如图,在平面直角坐标系中,线段AB的两个端点的坐标分别是A(﹣1,4),B(﹣3,1).(1)画出线段AB向右平移4个单位后的线段A1B1;(2)画出线段AB绕原点O旋转180°后的线段A2B2.15.数学活动课上,张老师组织同学们设计多姿多彩的几何图形,如图都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影,请同学们在余下的空白小等边三角形中选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形或中心对称图形,请画出4种不同的设计图形.(规定:凡通过旋转能重合的图形视为同一种图形)16.如图,在△ABC中,,D,E,F分别为AC,AB,BC的中点,连接DE,DF.(1)如图1,求证:;(2)如图2,将∠EDF绕点D顺时针旋转一定角度,得到∠PDQ,当射线DP交AB于点G,射线DQ交BC于点N时,连接FE并延长交射线DP于点M,判断FN与EM的数量关系,并说明理由;(3)如图3,在(2)的条件下,当DP⊥AB时,求DN的长.17.在△ABC中,∠BAC=90°,AB=AC,线段AB绕点A逆时针旋转至AD(AD不与AC 重合),旋转角记为α,∠DAC的平分线AE与射线BD相交于点E,连接EC.(1)如图①,当α=20°时,∠AEB的度数是;(2)如图②,当0°<α<90°时,求证:BD+2CE=AE;(3)当0°<α<180°,AE=2CE时,请直接写出的值.18.在△ABC中,点D,E分别是AB,AC边上的点,DE∥BC.基础理解:(1)如图1,若AD=4,BD=3,求的值;证明与拓展:(2)如图2,将△ADE绕点A逆时针旋转度,得到△AD1E1,连接BD1,CE1.①求证:=;②如图3,若∠BAC=90°,AB<AC,AD=6,△ADE在旋转过程中,点D1恰好落在DE上时,连接EE1,=,则△E1D1E的面积为.19.【特例感知】(1)如图1,△AOB和△COD是等腰直角三角形,∠AOB=∠COD=90°,点C在OA 上,点D在BO的延长线上,连接AD,BC,线段AD与BC的数量关系是;【类比迁移】(2)如图2,将图1中的△COD绕着点O顺时针旋转α(0°<α<90°),那么第(1)问的结论是否仍然成立?如果成立,证明你的结论;如果不成立,说明理由.【方法运用】(3)如图3,若AB=8,点C是线段AB外一动点,AC=3,连接BC.①若将CB绕点C逆时针旋转90°得到CD,连接AD,则AD的最大值是;②若以BC为斜边作Rt△BCD(B,C,D三点按顺时针排列),∠CDB=90°,连接AD,当∠CBD=∠DAB=30°时,直接写出AD的值.20.在Rt△ABC中,AC=BC,将线段CA绕点C旋转α(0°<α<90°),得到线段CD,连接AD、BD.(1)如图1,将线段CA绕点C逆时针旋转α,则∠ADB的度数为;(2)将线段CA绕点C顺时针旋转α时①在图2中依题意补全图形,并求∠ADB的度数;②若∠BCD的平分线CE交BD于点F,交DA的延长线于点E,连结BE.用等式表示线段AD、CE、BE之间的数量关系,并证明.21.【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中∠ACB=∠DEB=90°,∠B=30°,BE=AC=3.【问题探究】小昕同学将三角板DEB绕点B按顺时针方向旋转.(1)如图2,当点E落在边AB上时,延长DE交BC于点F,求BF的长.(2)若点C、E、D在同一条直线上,求点D到直线BC的距离.(3)连接DC,取DC的中点G,三角板DEB由初始位置(图1),旋转到点C、B、D 首次在同一条直线上(如图3),求点G所经过的路径长.(4)如图4,G为DC的中点,则在旋转过程中,点G到直线AB的距离的最大值是.22.在△ABC中,∠BAC=90°,AB=AC=2,D为BC的中点,E,F分别为AC,AD 上任意一点,连接EF,将线段EF绕点E顺时针旋转90°得到线段EG,连接FG,AG.(1)如图1,点E与点C重合,且GF的延长线过点B,若点P为FG的中点,连接PD,求PD的长;(2)如图2,EF的延长线交AB于点M,点N在AC上,∠AGN=∠AEG且GN=MF,求证:AM+AF=AE;(3)如图3,F为线段AD上一动点,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH沿EH翻折至△ABC所在平面内,得到△B′EH,连接B′G,直接写出线段B′G的长度的最小值.23.如图,在Rt△ABC中,AC=BC,∠ACB=90°,点O在线段AB上(点O不与点A,B重合),且OB=kOA,点M是AC延长线上的一点,作射线OM,将射线OM绕点O 逆时针旋转90°,交射线CB于点N.(1)如图1,当k=1时,判断线段OM与ON的数量关系,并说明理由;(2)如图2,当k>1时,判断线段OM与ON的数量关系(用含k的式子表示),并证明;(3)点P在射线BC上,若∠BON=15°,PN=kAM(k≠1),且<,请直接写出的值(用含k的式子表示).24.如图,在△ABC中,AB=AC,∠BAC=120°,点D在直线AC上,连接BD,将DB 绕点D逆时针旋转120°,得到线段DE,连接BE,CE.(1)求证:BC=AB;(2)当点D在线段AC上(点D不与点A,C重合)时,求的值;(3)过点A作AN∥DE交BD于点N,若AD=2CD,请直接写出的值.25.如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.(1)判断线段BD与CE的数量关系并给出证明;(2)延长ED交直线BC于点F.①如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为;②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数并说明理由.26.如图,在矩形ABCD中,AD=nAB(n>1),点E是AD边上一动点(点E不与A,D 重合),连接BE,以BE为边在直线BE的右侧作矩形EBFG,使得矩形EBFG∽矩形ABCD,EG交直线CD于点H.【尝试初探】(1)在点E的运动过程中,△ABE与△DEH始终保持相似关系,请说明理由.【深入探究】(2)若n=2,随着E点位置的变化,H点的位置随之发生变化,当H是线段CD中点时,求tan∠ABE的值.【拓展延伸】(3)连接BH,FH,当△BFH是以FH为腰的等腰三角形时,求tan∠ABE的值(用含n 的代数式表示).27.如图,在锐角△ABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE 交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想;(3)若AB=AC,且BD=AE,将△ABC沿直线AB翻折至△ABC所在平面内得到△ABP,点H是AP的中点,点K是线段PF上一点,将△PHK沿直线HK翻折至△PHK所在平面内得到△QHK,连接PQ.在点D,E运动过程中,当线段PF取得最小值,且QK⊥PF时,请直接写出的值.28.在△ABC中,AB=AC,D是边BC上一动点,连接AD,将AD绕点A逆时针旋转至AE的位置,使得∠DAE+∠BAC=180°.(1)如图1,当∠BAC=90°时,连接BE,交AC于点F.若BE平分∠ABC,BD=2,求AF的长;(2)如图2,连接BE,取BE的中点G,连接AG.猜想AG与CD存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接DG,CE.若∠BAC=120°,当BD>CD,∠AEC =150°时,请直接写出的值.29.在△ABC中,AB=AC,△CDE中,CE=CD(CE≥CA),BC=CD,∠D=α,∠ACB+∠ECD=180°,点B,C,E不共线,点P为直线DE上一点,且PB=PD.(1)如图1,点D在线段BC延长线上,则∠ECD=,∠ABP=(用含α的代数式表示);(2)如图2,点A,E在直线BC同侧,求证:BP平分∠ABC;(3)若∠ABC=60°,BC=+1,将图3中的△CDE绕点C按顺时针方向旋转,当BP⊥DE时,直线PC交BD于点G,点M是PD中点,请直接写出GM的长.30.如图,在△ABC中,AB=AC,∠BAC=α(0°<α<180°),过点A作射线AM交射线BC于点D,将AM绕点A逆时针旋转α得到AN,过点C作CF∥AM交直线AN于点F,在AM上取点E,使∠AEB=∠ACB.(1)当AM与线段BC相交时,①如图1,当α=60°时,线段AE,CE和CF之间的数量关系为.②如图2,当α=90°时,写出线段AE,CE和CF之间的数量关系,并说明理由.(2)当tanα=,AB=5时,若△CDE是直角三角形,直接写出AF的长.。
2020年中考数学图形的平移、旋转、翻折综合题(相似必考)专题训练(无答案)
图形的平移、旋转、翻折综合题(相似必考)1.如图1,一副直角三角板满足AB=BC,AC=DE;ABC4 DEF=90 ,/EDF=30操作:将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E 旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.探究一:在旋转过程中,(1)如图2,当CE EA=1 时,EP与EQ满足怎样的数量关系?并给出证明;(2)如图3,当CE EA=2时,EP与EQ满足怎样的数量关系?并说明理由;(3)根据彳^对(1)、(2)的探究,试写出当CE EA=m时,EP与EQ满足的数量关系式结果为,其中m的取值范围是.(直接写出结论,不必证明)探究二:若CE EA=2且AC=30cm连接PQ设4EPQ的面积为S(cm2),在旋转过程中:(1)S是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由。
(2)随着S取不同的值,对应4EPQ的个数有哪些变化,求出相应S的值或取值范围。
2.在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C, D两端点),过点P作PF//BC,交对角线BD于点F.(1)如图1,将4PDF沿对角线BD翻折得到^QD^ QF交AD于点E. 求证:4DEF是等腰三角形;(2)如图2,将△ PDF绕点D逆时针方向旋转得到△P' DF连接P' ,C F' .B设旋转角为a (0 <a<180 ). ①若0° <a2BDG 即DF' 在/BDC的内部时,求证:△ DP' 0ZXDF'3②如图3,若点P是CD的中点,ADF'能否为直角三角形?如果能,试求出此时tan/DBF' 的值,如果不能,请说明理由。
3.如图1,在矩形ABCD中,E是AD的中点,以点E为直角顶点的直角三角形EFG的两边EF, EG分别过点B, C, /F=30° .(1)求证:BC=CE(2)将4£5潮点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动,若EF, EG分别与AB, BC相交于点M , N (如图2).①求证:△ BE阵ACEN②若AB=2,求z\BMNa积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin/EBGB值.4.将一副三角尺按图1摆放,等腰直角三角尺的直角边DF恰好垂直平分AB,与AC相交于点G, BC=2v3 cm.(1)求GC的长;(2)如图2,将^ DEF 绕点D顺时针旋转,使直角边DF经过点C,另一直角边DE与AC相交于点H,分别过H、C作AB的垂线,垂足分别为M、N,通过观察,猜想MD与ND的数量关系,并验证你的猜想.⑶在(2)的条件下,将4 DEF方向平移得到△ D'E'F;都能够DE恰好经过(1)中的点G时, 请直接写出DD'的长度.5.如图,在等腰RtAABC中,/ ACB=90 ,AB=14M2,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.⑴如图1,若AD=BD,点E与点C重合,AF与DC相交于点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本图形及辅助线解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积 累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的 模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学 知识来解决问题。
在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。
举例: 1、与相似及圆有关的基本图形3、基本辅助线(1)角平分线——过角平分线上的点向角的两边作垂线(角平分线的性质)、翻折;【参 见(一)1 ;(二) 1;西城中考总复习 P57例 6】*(2)与中点相关——倍长中线 (八字全等) ,中位线, 直角三角形斜边中线; 【参见( 一)2、 3、4、5】*(3)共端点的等线段——旋转基本图形( 60°, 90°),构造圆;垂直平分线,角平分线 ——翻折; 转移线段——平移基本图形(线段)线段间有特殊关系时,翻折;【参见第1页几何综合题CEC'AACC 形BDOB(一)6,7,8,9 】(4)特殊图形的辅助线及其.迁.移..——梯形的辅助线(什么时候需要这样添加?)等【参见(一)7 】作双高——上底、下底、高、腰(等腰梯形)三推一;面积;锐角三角函数平移腰——上下底之差;两底角有特殊关系(延长两腰);梯形——三角形平移对角线——上下底之和;对角线有特殊位置、数量关系。
(P5——2006 北京,25* )注:在绘制辅助线时要注意同样辅助线的不同说法,可能会导致解题难度有较大差异。
题目举例在几何综合题解题教学中,建议可以分为以下三个阶段:第一阶段:基本图形、辅助线等的积累——在讲授综合题目前,搭配方法类似的中档题,或者给有阅读材料(小问递进启发)的综合题目,给学生入手点的启发。
注重提升学生的迁移能力,培养转化数学思想方法。
第二阶段:反思与总结——引导学生在解题遇到困难时,记录思维卡点,分析问题所在;注重一题多解,并注重各种解法的可迁移性;在解题后,能够抽离出题目的基本型,将题目的图形,方法进行归类整理。
第三阶段:综合能力的提升——学生在遇到综合问题时能够联想到之前的经验,形成所谓的“几何感觉”。
此时练习可以综合性较强的题目为主,要注重书写过程时抓住要点,简明有条理性。
(一)基本图形与辅助线的添加#角平分线(【类】P5——2006北京,23;西城中考总复习P57-例6)1、(2010 宣武一模,23)已知:AC平分MAN(1)在图1中,若MAN 120 ,ABC ADC 90 ,AB AD ___ AC 。
(填写“ ”或“ ”或“ ”)(2)在图 2 中,若MAN 120 ,ABC ADC 180 ,则(1)中结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)在图 3 中:①若MAN 60 ,ABC ADC 180 ,判断AB AD与AC的数量关系,并说明理由;②若MAN (0 180),ABC ADC 180 ,则AB AD ________________ AC(用含的三角函数表示,直接写出结果,不必证明)23. (1) AB ADAC.(2) 仍然成立.证明:如图 2 过C作CE⊥AM 于E,CF⊥AN 于F,则∠CEA=∠CFA=90°.∵ AC 平分∠ MAN,∠MAN=12°0 ,∴ ∠ MAC∠= NAC=6°0 .又∵ AC=AC,∴ △AEC≌△ AFC,∴ AE=AF,CE=CF.∵ 在Rt △ CEA 中,∠ EAC=6°0 ,∴ ∠ ECA=3°0 ,∴ AC=2AE.∴ AE+AF=2AE=AC.∴ ED+DA+AF=AC.∵ ∠ ABC+∠ AD C=180°,∠ CDE∠+ ADC=18°0 ,∴ ∠ CDE∠= CBF.又∵ CE=CF,∠ CED∠= CFB,∴ △CED≌△ CFB.∴ ED=FB,∴ FB+DA+AF=AC.∴ AB+AD=AC.-----------------------分(3) ①AB+AD= 3AC.证明:如图3,方法同(2) 可证△ AGC≌△AHC.∴AG=AH.∵∠MAN=6°0 ,∴∠GAC∠= HAC=3°0 .∴AG=AH= 3 AC.∴ AG+AH= 3AC.2∴GD+DA+AH=3 AC.方法同(2) 可证△ GDC≌△HBC.∴GD=H,B ∴ HB+DA+AH=3 AC.∴AD+AB= 3 AC.--------------------------------- 6 分②AB+AD=2cos·AC.--------------------2分中位线/ 中线*2 、(2010 海淀一模,25)已知:△AOB中,AB OB 2 ,△COD 中,CD OC 3, ∠ABO ∠DCO. 连接AD 、BC ,点M 、N 、P分别为OA、OD、BC的中点.C图2(2) 如图 2,若A 、O 、 C 三点在同一直线上,且 ∠ABO 2 ,证明 △PMN ∽△BAO ,AD并计算 AD 的值(用含 的式子表示) ;BC(3) 在图 2中,固定 △AOB ,将△COD 绕点O 旋转,直接写出 PM 的最大值 .1直角三角形斜边中线 3、(2011 海淀一模, 25)在 Rt △ ABC 中, ∠ACB=90°, tan ∠BAC= .2 点D 在边 AC 上(不与 A ,C 重合),连结 BD ,F 为 BD 中点.(1) 如图 1,若 A 、O 、 C 三点在同一直线上,且∠ABO 60o ,则 △PMN 的形状是,此时AD BC页(2)若将图 1 中的△ ADE绕点A旋转,使得D、E、B 三点共线,点 F 仍为BD中点,如图 2 所示.求证:BE-DE=2CF;(3)若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点 F 始终为BD 中点,求线段CF长度的最大值.图 1 图 2 备图25.解:(1)k=1;2分2)如图2,过点C 作CE的垂线交BD于点G,设BD与AC的交点为1由题意,tan ∠BAC=2BCACDEAED、E、B 三点共线,∴ AE⊥ DB.∠BQC=∠AQD,∠ ACB=90°∠QBC=∠EAQ.∠ECA+∠ ACG=90°,∠ BCG∠+ ACG=90°,∠ECA=∠BCG. ∴ △BCG∽△ACE.BC GB 1. ∴ GB=DE.AC AE 2F 是BD中点,∴ F 是EG中点.1在Rt△ECG 中,CF EG, ∴ BE DE EG 2CF .213)情况1:如图,当AD= AC 时,取AB的中点M,连结MF和CM,31∵∠ ACB=90°,tan ∠BAC= ,且BC= 6,2 ∴AC=12,AB= 6 5 . ∵M为AB中点,∴ CM=3 5 ,1∵AD= AC ,3 ∴AD=4. ∵M为AB中点,F为BD中点,1 ∴FM= AD = 2.2∴当且仅当 M 、 F 、 C 三点共线且 M 在线段 CF 上时 CF 最大,此时 CF =CM +FM = 2 3 5 .6 分2 情况 2:如图,当 AD = AC 时,取 AB 的中点 M , 3连结 MF 和 CM ,类似于情况 1,可知 CF 的最大值为 4 3 5 . ⋯7 分 综合情况 1 与情况 2,可知当点 D 在靠近点 C 的三等分点时,线段 CF 的长度取得最大值为 4 3 5 .⋯⋯⋯8 分#直角三角形斜边中线 +四点共圆(【类】西城中考总复习 P61-17 )*4 、已知:在△ ABC 中, ∠ABC =90 , 点 E 在直线 AB 上, ED 与直线 AC 垂直, 垂足为 D ,且点 M 为 EC 中点, 连接 BM , DM .(1)如图 1,若点 E 在线段 AB 上,探究线段 BM 与 DM 及∠ BMD 与∠ BCD 所满足的数量关系 , 并直接写出你得到的结论;(2)如图 2,若点 E 在 BA 延长线上,你在( 1)中得到的结论是否发生变化?写出 你的猜想并加以证明 ;( 3)若点 E 在 AB 延长线上,请你根据条件画出相应的图形,并直接写出线段 BM#倍长过中点的线段 5、(2008 年北京, 25)请阅读下列材料:问题:如图 1,在菱形 ABCD 和菱形 BEFG 中,点 A ,B ,E 在同一条直线上, P 是线段DF 的中点,连结 PG ,PC .若 ABC BEF 60o ,探究 PG 与PC 的位置关系及 PG的PC值.请你参考小聪同学的思路,探究并解决下列问题:ABCD 的边 AB 在同一条直线上,原问题中的其他条件不变(如图 2).你在( 1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.PG PC 2)将图 1 中的菱形 BEFG 绕点 B 顺时针旋转,使菱形1)写出上面问题中线段 PG 与 PC 的位置关系及的值; BEFG 的对角线 BF 恰好与菱形小聪同学的思路是:3)若图 1 中ABC BEF 2 (0o90o) ,将菱形BEFG 绕点B顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PG的值(用含PC解:( 1)线段PG 与PC 的位置关系是;PGPCPG25.解:(1) 线段PG与PC的位置关系是PG⊥PC; 3 .PC(2) 猜想:(1) 中的结论没有发生变化.证明:如图,延长GP,交AD于点H,连结CH、CG.∵P 是线段DF的中点,∴FP=DP.由题意可知AD∥ FG.的式子表示)∴∠ GFP=∠HDP.又∵∠ GPF=∠ HPD,∴△≌∴GP=HP,GF=HD.∵四边形ABCD是菱形,∴ CD=CB,∠ HDC=∠ ABC=60°.由∠ ABC=∠ BEF=60°,且菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,可得∠ GBC=60°.∴∠ HDC=∠ GBC.∵四边形BEFG是菱形,∴GF=GB.∴HD=GB.∴△ HDC≌△ GBC.∴ CH=CG,∠ DCH=∠ BCG.∴∠ DCH+∠ HCB=∠ BCG+∠ HCB=120°.即∠HCG=120°.∵ CH=CG,PH=PG,∴ PG⊥ PC,∠ GCP=∠HCP=60°PG 3 .PCPG(3) tan(90PC).#共端点的等线段,旋转第25 题答图6、(2010 西城一模,24)如图1,在□ABCD中,AE⊥BC于E,E恰为BC的中点,tanB 2.1)求证:AD=AE;2)如图2,点P 在BE上,作EF⊥DP于点F,连结AF.求证:DF EF 2AF ;3)请你在图 3 中画图探究:当P 为射线E C 上任意一点(P 不与点E 重合)时,作EF⊥ DP于点F,连结AF,线段DF、EF与AF之间有怎样的数量关系?直接写出你的结论.AE∴tanB 2BE∴ AE 2BE . ······ ∵E 为 BC 的中点, ∴ BC 2BE .∴ AE=B .C∵ ABCD 是平行四边形, ∴ AD=B .C∴ AE=A .D ········2 )在 DP 上截取 DH =EF (如图 8).∵四边形 ABCD 是平行四边形, AE ⊥ BC , ∴∠ EAD=90°.∵ EF ⊥ PD ,∠ 1=∠ 2, ∴∠ ADH =∠AEF . ∵ AD =AE ,∴△ ADH ≌△ AEF . ········ 4分 ∴∠ HAD =∠FAE ,AH =AF . ∴∠ FAH ==90°.在 Rt △FAH 中, AH =AF ,∴ FH 2AF . ∴ FH FD HD FD EF 2AF . 即 DF3)按题目要求所画图形见图 9, 线段 DF 、EF 、AF 之间的数量关系为: DF EF 2AF .利用平移变换转移线段,类比梯形平移对角线 7、(2006 年北京, 25)我们给出如下定义: 若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形。