2019学年中考数学《二次函数》专项训练(含详解)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018~2019数学中考专项训练:二次函数
【沙盘预演】
1.计算(﹣2a2b)3的结果是()
A.﹣6a6b3B.﹣8a6b3C.8a6b3 D.﹣8a5b3
【解析】解:(﹣2a2b)3=﹣8a6b3.
故选B.
2.列式子的计算结果为26的是()
A.23+23B.23•23 C.(23)3D.212÷22
【解析】解:A、原式=23•(1+1)=24,不合题意;
B、原式=23+3=26,符合题意;
C、原式=29,不合题意;
D、原式=212﹣2=210,不合题意.
故选B.
3.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:
①abc>0;②9a+3b+c<0;③c>﹣1;④关于x的方程ax2+bx+c(a≠0)有一个根为﹣
其中正确的结论个数有()
A.1个B.2个C.3个D.4个
【分析】由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断①;由图象可知当x=3时,y<0,可判断②;由OA=OC,且OA<1,可判断③;把﹣代入方程整理可得ac2﹣bc+c=0,结合③可判断④;从而可得出答案.
4.设边长为3的正方形的对角线长为a.下列关于a的四种说法:
①a是无理数;
②a可以用数轴上的一个点来表示;
③3<a<4;
④a是18的算术平方根.
其中,所有正确说法的序号是()
A.①④ B.②③ C.①②④D.①③④
【解析】解:∵边长为3的正方形的对角线长为a,
∴a===3.
①a=3是无理数,说法正确;
②a可以用数轴上的一个点来表示,说法正确;
③∵16<18<25,4<<5,即4<a<5,说法错误;
④a是18的算术平方根,说法正确.
所以说法正确的有①②④.
故选C.
5.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:
①该抛物线的对称轴在y轴左侧;
②关于x的方程ax2+bx+c+2=0无实数根;
③a﹣b+c≥0;
④的最小值为3.
其中,正确结论的个数为()
A.1个B.2个C.3个D.4个
【解析】解:∵b>a>0
∴﹣<0,
所以①正确;
∵抛物线与x轴最多有一个交点,
∴b2﹣4ac≤0,
∴关于x的方程ax2+bx+c+2=0中,△=b2﹣4a(c+2)=b2﹣4ac﹣8a<0,
所以②正确;
∵a>0及抛物线与x轴最多有一个交点,
∴x取任何值时,y≥0
∴当x=﹣1时,a﹣b+c≥0;
所以③正确;
当x=﹣2时,4a﹣2b+c≥0
a+b+c≥3b﹣3a
a+b+c≥3(b﹣a)
≥3
所以④正确.
故选:D.
6.如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?()
A.1 B.C.D.
【解析】解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,
∴顶点D(2,4﹣k),C(0,﹣k),
∴OC=k,
∵△ABC的面积=AB•OC=AB•k,△ABD的面积=AB(4﹣k),△ABC
与△ABD的面积比为1:4,
∴k=(4﹣k),
解得:k=.
故选:D.
7.计算(2a3)2的结果是()
A.4a6B.4a5C.2a6D.2a5
【解析】解:(2a3)2=4a6.故选A.
8.下列计算中,正确的是()
A.a+a11=a12B.5a﹣4a=a C.a6÷a5=1 D.(a2)3=a5
【解析】解:A、a与a11是相加,不是相乘,所以不能利用同底数幂相乘的性质计算,故A错误;
B、5a﹣4a=a,故B正确;
C、应为a6÷a5=a,故C错误;
D、应为(a2)3=a6,故D错误.
故选:B.
9.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()
A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3
【解析】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,
∴①若h<1≤x≤3,x=1时,y取得最小值5,
可得:(1﹣h)2+1=5,
解得:h=﹣1或h=3(舍);
②若1≤x≤3<h,当x=3时,y取得最小值5,
可得:(3﹣h)2+1=5,
解得:h=5或h=1(舍).
综上,h的值为﹣1或5,
故选:B.
10.点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是()
A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y3
【解析】解:∵y=﹣x2+2x+c,
∴对称轴为x=1,
P2(3,y2),P3(5,y3)在对称轴的右侧,y随x的增大而减小,
∵3<5,