受力图、汇交力系例题共30页

合集下载

汇交力系例题

汇交力系例题

C
Y P TBD cos cos TBC cos cos 0
Z RA TBD sin TBC sin 0
联立解得
TBC 735 N
TBD 1094 N
RA 1500 N
p.4
例题
例题
例4.已知四根绳索AB、BC、BD、DE相互联接如图所示, DB保持水平,DE和BC分别与水平和铅垂线的夹角均
A
45o
0.8m
CB
0.4m
y
SC
A
45o C
RA
B x
E
P
EB BC 0.4m tg EB 0.4 1
AB 1.2 3 (2) 列出平衡方程;
X 0, RA cos Sc cos 45 0
Y 0,RA sin Sc sin 45 P 0
(3) 求未知力;
P
2
Sc sin 45 cos45tg
C EA
D
B -
y TDB D + x
y
TBE
TBC
B
TBD
x
P
TDA
P
SAB
解: (1) 研究D点,画受力图;
(2) 列出平衡方程并求解;
X 0,TDB cos( ) TDA cos( ) 0
Y 0,TDB sin( ) TDA sin( ) P 0
TDB
NA
O
O’与 O为矩形OAO’B的两个顶点,
O’ B
力的作用线既通过O’点也通过O点。
NB
由几何关系得
P A
90 2
NA
O
OA Lsin
p.6
例题
例题
例6. 铰接四连杆机构CABD的CD边固定。在铰链A上作用一 力Q,BAQ=45。在铰链B上作用一力R,ABR=30,

受力图、汇交力系例题PPT30页

受力图、汇交力系例题PPT30页

66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
受力图、汇交力系例题
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿会因为它们而变得规矩起来。——德谟耶克斯

工程力学题目及答案解析

工程力学题目及答案解析

= 64.5 mm
另一种解法:负面积法
将截面看成是从 200mm×150mm 的 矩形中挖去图中的小矩形(虚线部 分)而得到,从而
A1 = 200×150mm2 = 30000 mm2
2020/8/20
17
x1= 75 mm, y1= 100 mm A2= -180×130 = -23400 mm2 x2= 85 mm, y2= 110 mm
知识点
能力层次
1 力的平移定理
理解
2 平面任意力系的简化
理解
3 力系的主矢与主矩
理解
4 固定端约束
应用
5 平面任意力系的平衡条件、平衡方程形式 理解、应用
6 刚体系的平衡
掌握
7 超静定的概念
向一点简化 平面任意力系
合成 平面汇交力系
合成 平面力偶系
识记
FR (主矢)
MO (主矩)
2020/8/20
平面任意力系平衡条件:FR 0 MO 0 超静定:系统中未知力数目﹥独立的平衡方程数目。
刚体系平衡的特点: ①物系静止 ②物系中每个单体也是平衡的。每个单体可列3个平衡方程,整个系
统可列3n个方程(设物系中有n个物体)
第6章 重 心
知识点 1 重力、重心的概念 2 重心计算方法
确定重心和形心位置的具体方法: (1) 积分法; (2) 组合法; (3) 悬挂法; (4) 称重法。
解:以梁AB 为研究对象,受力图和坐标系如图所示。建立平
衡方程
Fx 0 :
FAx 0
Fy 0 :
FAy q 2l F 0
MA(F) 0 : MA q 2l l M F 2l 0
解得: FAx 0
FAy ql

工程力学第2章(汇交力系)

工程力学第2章(汇交力系)

2.力在平面上的投影
FM F cos
⑴ 力在平面上的投影是矢量。 ⑵ α:力与投影平面的夹角。
3. 力在直角坐标轴上的投影 · 一次投影法 Fx F cos
Fy F cos
Fz F cos
·二次投影法
Fx Fxy cos F cos cos Fy Fxy sin F cos sin
合力FR 的大小
FR ( Fx )2 ( Fy )2 ( Fz )2
合力FR 的方向
R
F cos( F ,i )
x
cos( FR,j )
R
F Fy
F
z
F cos( F ,k ) F
二、汇交力系平衡的解析条件
汇交力系平衡的充分且必要条件是力系的合力等于零。
角为60o ,若接触面光滑,试分别求出圆柱给墙面和夹板的压 力。
解:
FA Gtan30o 500 tan30o 288.7N
G 500 FB 577.4N o o cos 30 cos 30
几何法求解汇交力系简化与平衡问题总结:
⑴ 选择研究对象,分析受力情况,画出全部的 已知力和未知力,利用二力平衡、三力平衡汇交等定 律确定某些力作用方向(必须明确力的方向,否则容 易出错)。
Fx 0 : Fy 0 : F
z
FA FC cos 30o sin 0
FB FC cos 30o cos 0 FC sin30o P 0
0:
由几何关系可得 cos 0.8 sin 0.6 解得: FA 10.39kN
FB 13.85kN FC 20kN
F2 = 4kN,F3 = 5kN,求三个力的合力。 解:

工程力学 03汇交力系-19(例题)

工程力学  03汇交力系-19(例题)

理论力学 Theoretical Mechanics
解: 1. 取杆AB与重物为研究对象,受力分析如图。 与重物为研究对象,受力分析如图。 其侧视图为
z E C F
30o
D
F2
B
z E F
30o
F1
B
F1
α
FA
A
x
G
y
α
FA
A
G
y
理论力学 Theoretical Mechanics
z E F
30o
2
理论力学 Theoretical Mechanics
因为α很小,所以可取
tgα ≈ α
G 800 N = 80kN F TBA = G ctg α = 2 = 2 tg α 0.1
2
显然,拔力为
F
' TBA
= F TBA = 80kN
江苏工业学院机械系力学教研室
理论力学 Theoretical Mechanics
(4)由几何关系得: O =EA= 24 cm 由几何关系得: E
A
P
A
P
α
24
D E tgϕ = = 0.25 O E
C O B D
(a)
O
α ϕ
B
FB
E
6
ϕ = arctg0.25 =14°2'
FD
D
(b)
由力三角形可得: 由力三角形可得: = sin(180°−α−ϕ) P F B
sinϕ
P
J
解得
Fcosθ ⋅ yB −Fsinθ ⋅ xB FD = C l
江苏工业学院机械系力学教研室
理论力学 Theoretical Mechanics

第二章 汇交力系

第二章 汇交力系

同理: FRy F1y F2 y F3y Fy
§1 汇交力系的合成
5、汇交力系合成的解析法
应用合力投影定理求出力系合力的投影后,可用下式 求出合力的大小和方向: 合力的大小:
FR FR2x FR2y FR2z ( Fx )2 ( Fy )2 ( Fz )2
合力FR 的方向余弦:
汇交力系的合成 几何法(矢量法) 解析法(投影法)
汇交力系的平衡条件 几何法(矢量法) 解析法(投影法)
§1 汇交力系的合成
一、力的可传性
F
公理三:加减平衡力系原理 在刚体上增加或减去
一组平衡力系,不会改变 原力系对刚体的作用效应
F’ F”
F A
B
F
A
B
若{P1, P2 ,L , Pm} {0} 则 {F1, F2, , Fn}
例2-3:圆柱重G=500N,搁在光滑墙面与夹板间, 板与墙面夹角为60°,用解析法求:圆柱给墙面和 夹板的压力。
解:1.以圆柱为研究对象,画受力图;
FA
O
G
FB
O
AG
60° B
例2-3:圆柱重G=500N,搁在光滑墙面与夹板间,
板与墙面夹角为60°,用解析法求:圆柱给墙面和
夹板的压力。
解:1.以圆柱为研究对象,画受力图:
Fx + Fy = F
| F | = (Fx)2 + (Fy)2 x
= (Fx)2 + (Fy)2
α = atan (Fy /Fx)
§1 汇交力系的合成
三、汇交力系合成的解析法(投影法)
可见: 力F在垂直坐标轴上的投影分量与沿轴分解的分 力大小相等;力F在相互不垂直的轴上的投影分 量与沿轴分解的分力大小是不相等的。 力在任一轴上的投影大小都不大于力的大小;而 分力的大小却不一定都小于合力大小。 力在任一轴上的投影可求,力沿一轴的分量不可 定。

汇交力系

汇交力系

(2-10)
由式(2-10),得合力矢的大小及方向余弦为
FR = FR ⋅ FR = =
2 x
(F ) + (F ) + (F )
2 2 R x R y R z 2 2 y z
2
(∑ F ) + (∑ F ) + (∑ F )
cos ( FR , i ) = FR x FR FR y FR FR z FR
由式(2-1)可得汇交力系的合力矢为
FR = ( F1 x + L + Fn x ) i + ( F1 y + L + Fn y ) j + ( F1 z + L + Fn z )k = (∑ Fx ) i + (∑ Fy ) j + (∑ Fz )k = FR x i + FR y j + FRz k
o o o o
y F2 FR 60° O 45° F3 F1 x F4 30º 45°
= 10 + 15 3 − 5 2 − 12.5 2 = 11.23kN
(2)求合力矢FR的大小及方向余弦
FR = 12.932 + 11.232 = 17.13 kN 12.93 cos ( FR , i ) = = 0.75 17.13 11.23 cos ( FR , j ) = = 0.66 17.13 (FR , i ) = 40.99° 合力矢FR的方向角为
(2-14)
平衡方程式(2-13)虽然是在直角坐标系下推导 的,但在实际应用中,三根投影轴并不限定必须相互 垂直,只要三个投影轴既不共面,又不相互平行即可。 根据这一原则,可恰当选取投影轴,以简化计算。
例2-3 如图2-8所示简易起重设备,重力G = 20 kN 的重物吊在钢丝绳一端,钢丝绳另一端绕过定滑轮A接 在绞车D上。A、B、C处为铰链连接。不计滑轮和各杆 重力。试求重物匀速提升时,杆AB、AC作用于滑轮上 的力。

汇交力系

汇交力系
=20kN,不计刚架自重。用几何法求支座A、D处的约束反力。
解 (1) 选平面刚架为研究对象,按比例画出其分离体图。
(2) 对刚架进行受力分析,并画出其受力图,如图 b) 所示。
刚架上作用有水平力F,辊轴支座D的反力FD。根据三力平衡汇交 定理,力F和FD交于C点,所以固定铰支座处的反力FA,必沿A、
200 0.5 300 0.866 100 0.707 250 0.707 112 . 3 N
合力:
夹角:
FR
2 2 FRx FRy 171.3N
FRx FR , i arccos arccos( 0.7548 ) 40.99 o FR
力。梁的自重不计。
F
A C 60º B 30º 60º 60º
a
a
30º
30º
解:(1) 取梁AB 作为研究对象。 (2) 画出受力图。 (3) 应用平衡条件画出F、FA 和FB 的闭合力三角形。 (4) 解出:FA = Fcos30 = 17.3 kN,FB = Psin30 = 10 kN
[例] 平面刚架ABCD在B点作用一水平力F,如图所示。已知F
例题 已知 P = 20 kN,求平衡时杆AB 和 BC所受的力 解: 取节点 B 为研究对象,AB 、BC 都是二力杆
A D
60 0
画受力图 建立坐标系如图 B 由平衡方程:
F
x
0
30
0
FBA F1 cos 600 F2 cos300 0
C
F
P
y
30 0
y
0
FBC F1 cos300 F2 cos 600 0
§2-1 汇交力系合成与平衡的几何法

汇交力系课件

汇交力系课件
求:平衡时,压块C对工件与地面的压力,AB杆
受力。
汇交力系
10
解:AB、BC杆为二力杆。
取销钉B。
用解析法
F ix
0
FBA cos θ FBC cos θ 0
Fiy 0
F sin θ F sin θ F 0
BA
BC
解得
F F 11.35kN
BA
BC
汇交力系
11
选压块C
Fix 0
第二章 汇交力系
汇交力系
1
§2-1 汇交力系的合成
一、 汇交力系合成的几何法(矢量法) 1、两个汇交力的合成 力三角形法则
汇交力系
2
F F1 F2 F2 F1
2、多个汇交力的合成
力三角形规则 力多边形规则
汇交力系
3
F F F R1 1 2
3
FR2 FR1 FR3 Fi i1
F F F
F F cosθ x
F F cosβ y
汇交力系
6
F F F
x
y
2、平面汇交力系合成的解析法
因为 F F
R
i
汇交力系
7
由合矢量投影定理,得合力投影定理
FRx Fix
F Ry
F iy
则,合力的大小为: F F 2 F 2
R
Rx
Ry
方向为:cos
F R
,
i
F ix
F
R
cosF , j Fiy
R1
1
2
3
F R2
F R1
F R3
F i
.
.
.i1
.
.
.
.
.

汇交力系例题

汇交力系例题

X 0 ,T DB cos( ) T DA cos( ) 0
Y 0 ,T DB sin( ) T DA sin( ) P 0
Y 0 , T BD sin T BE sin T BC sin 0
D
解: (1) 研究AB杆;
根据三力平衡汇交定理画出受力图;
EB BC 0 . 4 m
tg EB AB 0 .4 1 .2 1 3
A
45o
0.8m
C
0.4m
(2) 列出平衡方程; B
X 0 , R A cos S c cos 45 0
Y 0 , R A sin S c sin 45 P 0

Z R A T BD sin T BC sin 0
T BC 735 N
T BD 1094 N
联立解得
R A 1500 N

p.4




例4.已知四根绳索AB、BC、BD、DE相互联接如图所示, DB保持水平,DE和BC分别与水平和铅垂线的夹角均 为,A处连接一木桩,桩重W。求D处作用的铅垂力P 需多大才能与桩保持平衡。 TBC 解: 研究对象:点B C
B C E A



y
TDB TBC x
y
TBE
x
B

D P
-
TDA
D +


TBD
P
SAB
解:
(1) 研究D点,画受力图; (2) 列出平衡方程并求解;
(3) 研究滑轮B,画受力图; (4) 列出平衡方程并求解;

3-平面力系-汇交力系

3-平面力系-汇交力系

力在轴上的投影等于力的大小乘以力与轴正向之间夹角的余弦.
Fn ab F cos
13
1.力在轴上的投影
补充例题3. F1=F2=F3=F4=100N。求各力在 x 轴上的投影。
300 F1 F2
450
F3 F4
x
F1x = F1sin30o=100×0.5=50N
F2x F2 cos 45 100
FRx
Fx
合力的作用线通过汇交点
19
四、平面汇交力系合成的解析法
补充例题4. 已知 F1 = 100N, F2 =F3 = 70 N, F4 = 90 N,
方向如图所示, 求该力系的合力。
45°
解: 应用解析法(合力投影定理)得:
FRx Fx F1 sin 45 F2 cos30 F3 cos 45 F4 sin 30 F4 30°
5
§2-1 平面汇交力系 一、平面汇交力系合成的几何法、力多边形法则
平面汇交力系可以合成为一个合力,合力大小和方向 由力多边形的封闭边确定,其作用线通过汇交点。合力等 于原力系中所有力的矢量和,即
n
FR F1 F2 Fn Fi i 1
可简写为
FR Fi
n 个力汇交情况
FA

A
注意:列平衡方程时,FA 的指向是以受力图中假定的方向, 若将FA带入解析式计算时仍保留其负号(带入负值)。
正弦定理有
F2
s in

FR1 sin120
得: 25.69
22
§2-1 平面汇交力系
平面汇交力系平衡方程的应用
例题2-1. 已知:F1=130N, F2=100N, F3=80N 。试确定这三个力的合力FR 。

《汇交力系》课件

《汇交力系》课件

二力杆的应用场景
在工程结构中,二力杆广泛应 用于桥梁、建筑和机械等领域
,用以支撑和传递载荷。
力的可传递性
力的可传递性定义
力的可传递性是指在刚体上作用三个或三个以上的共线平 行力,这些力可以沿其作用线任意移动而不改变其作用效 果。
力的可传递性原理
力的可传递性原理表明,对于共线平行的多力合成,不论 这些力在作用线上如何移动,只要不改变其作用点,它们 对刚体的作用效果总是一样的。
05
汇交力系中的特殊问 题
二力杆问题
01
02
03
04
二力杆的定义
二力杆指的是在力的作用下, 只承受两个力且处于平衡状态
的杆件。
二力杆的平衡条件
二力杆在平衡状态下,其两端 的力必须大小相等、方向相反
且作用在同一条直线上。
二力杆的分类
根据其形状和功能,可以将二 力杆分为固定二力杆、活动二
力杆和可变二力杆。
力的可传递性的应用
力的可传递性原理在工程实践中具有广泛的应用,如机械 传动、车辆悬挂系统和船舶推进系统等。
力线平移定理
01 02
力线平移定理的内容
力线平移定理是指如果作用在刚体上的力沿其作用线移动一段距离,而 不改变它对刚体的作用效果,则这个力的作用点沿其作用线所作的移动 距离等于该力的大小。
力线平移定理的证明
吊车吊重分析
总结词
通过汇交力系分析,确定吊车吊重的合理范围,确保安全作 业。
详细描述
在吊车吊重分析中,利用汇交力系的原理,可以确定吊车在 各种工况下的受力情况,从而计算出吊车的最大承载能力和 安全作业范围。这有助于确保吊车在作业过程中不会发生倾 覆或超载等危险情况。
杠杆平衡分析

工程力学例题

工程力学例题
试求: (1)当水平拉力F=5 kN时,碾子对地面和障碍物的压力;
(2)欲将碾子拉过障碍物,水平拉力至少应为多大;
(3)力F沿什么方向拉动碾子最省力,此时力F为多大。
解:1.选碾子为研究对象,受力分析如图b所示。
由已知条件可求得
再由力多边形图c中各矢量的几何关系可得
2.碾子能越过障碍的力学条件是FA=0,得封闭力三角形abc。
My= ∑My=-M2=-80 N·m
Mz= ∑Mz=-M1-M4cos 45o-M5cos 45o=-193.1 N·m
M=Mx2+My2+Mz2= 284.6 N·m
cos (M,i) =MX/M=-0.6786
cos (M,j) =MY/M=-0.2811
cos (M,k) =MZ/M=-0.6786
解:选工件为研究对象
FA= FB
列平衡方程:
∑M= 0,FAl-M1-M2-M3=0
FA= FB=200 N
例题4横梁AB长l,A端用铰链杆支撑,B端为铰支座。梁上受到一力偶的作用,其力偶矩为M,如图所示。不计梁和支杆的自重,求A和B端的约束力。
解:选梁AB为研究对象
FA=FB
列平衡方程:
∑M= 0,M-FAlcos45o= 0
解:取滑轮B为研究对象,忽略滑轮的大小,画受力图。
FT=G列平衡方程:
∑Fx=0-FAB-FT cos30o+ FTcos60o= 0
∑Fy=0FBC-FTcos30o-FTcos60o=0
解方程得:FAB=-0.366G=-7.312KNFBC=1.366G=27.32KN
例题6梯长AB=l,重G=100 N,重心假设在中点C,梯子的上端A靠在光滑的端上,下端B放置在与水平面成40°角的光滑斜坡上,求梯子在自身重力作用下平衡时,两端的约束力以及梯子和水平面的夹角θ。

汇交力系例题

汇交力系例题

= 0 S AB =
SAB’
y
再以压板为研究对象并分析受力: 再以压板为研究对象并分析受力 SAB’, Q, N
B Q
N
x
∑ Y = Q S ′AB cos α = 0
∴Q =
P ctg α 2
讨论:P力一定, 越小,压紧力Q越大。 讨论 P力一定,α 越小,压紧力Q越大。
p.3 p.3例题 Nhomakorabea例

1.12 = 41° 1.29
(3) 画出合力 ; 画出合力R;
p.10 p.10




AB与 构成, 例10.图示一管道支架,由杆AB与CD构成,管道通过拉杆悬挂 .图示一管道支架,由杆AB CD构成 在水平杆AB AB的 每个支架负担的管道重为2KN 2KN, 在水平杆AB的B端,每个支架负担的管道重为2KN,不计 杆重。求杆CD所受的力及支座A CD所受的力及支座 杆重。求杆CD所受的力及支座A的反力 。
OA
受力分析: 受力分析: P,SOA, SAB 选投影轴列方程: 选投影轴列方程:
A P
x
P SAB
A
α
α
B
∑ Y = SOA cos α + S AB cos α = 0
∑ X = P SOA sin α S AB sin α
选投影轴列方程: 选投影轴列方程
SOA = S AB
P 2 sin α
P
4m
B
C
P
B
C
A
8m
D
A RA
θ
D ND c P ND b
解: (1) 研究刚架;根据三力平衡汇交定理画出受力图; 研究刚架;根据三力平衡汇交定理画出受力图;

受力图汇交力系例题

受力图汇交力系例题

方向:平行于Q、P且指向一致
作用点:C处
拟定C点,由合力距定理
mB (R )mB (Q ) 又 R P Q
AB AC CB代入
RCB Q AB 整理得 AC P
CB Q
②两个反向平行力旳合力 大小:R=Q-P
方向:平行于Q、P且与较大旳相同
作用点:C处
(推导同上)
CB Q CA P
性质2:力偶对其所在平面内任一点旳矩恒等于力偶矩,而
①力偶能够在其作用面内任 不变,能够任意变化力偶中力
意移动,而不影响它对刚体 旳大小和相应力偶臂旳长短,
旳作用效应。
而不变化它对刚体旳作用效应。
2、力偶系旳合成与平衡
平面力偶系:作用在物体同一平面旳许多力偶叫平面力偶系 设有两个力偶
d
d
m1 F1d1;
m2 F2d2
又m1 P1d
m2 P2d
Fd mO (R)
因为O点是任取旳
m F d + —
阐明:① m是代数量,有+、-; ②F、 d 都不独立,只有力偶矩 m F d 是独立量; ③m旳值m=±2⊿ABC ; ④单位:N• m
性质3:平面力偶等效定理 作用在同一平面内旳两个力偶,只要它旳力偶矩旳大小相等,
转向相同,则该两个力偶彼此等效。 [证] 设物体旳某一平面 上作用一力偶(F,F') 现沿力偶臂AB方向 加一对平衡力(Q,Q'), 再将Q,F合成R,
与矩心旳位置无关,所以力偶对刚体旳效应用力偶矩度量。
力偶无合力 R=F'-F=0
CB F ' 1 CB CA
CA F
若CB CB d成立,必有CB
d 合力的作用点在无限远处
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档