10知识讲解_基因自由组合定律的判断及应用

合集下载

基因的自由组合定律 必备知识

基因的自由组合定律 必备知识

基因的自由组合定律必备知识一、基因的概念基因是生物体内控制遗传特征的分子单位,是DNA分子上的特定区域。

基因决定了生物体的遗传特征,包括外貌、性状、生理功能以及疾病易感性等。

基因是遗传物质的基本单位,是生物多样性的基础。

二、基因的自由组合定律的概念基因的自由组合定律是遗传学中的一项重要定律,它揭示了基因在生殖中的自由组合规律。

基因的自由组合定律是遗传学的基础,对于理解遗传现象、进行遗传工程以及解读基因组学数据具有重要意义。

三、孟德尔的实验基因的自由组合定律最早由孟德尔通过豌豆杂交实验得出。

孟德尔选取了豌豆的7个性状进行杂交实验,得出了两个重要规律:显性性状和隐性性状的比例为3:1,两个基因型的自由组合规律。

四、基因的自由组合规律1. 随机分配规律基因在生殖过程中是随机分配的,每一个基因在生殖过程中有等同的机会和可能性组合在一起。

2. 独立分离规律不同的基因在生殖过程中独立分离,并且每个基因以独立的方式传递给后代。

3. 互不干扰规律不同基因的组合在生殖过程中是互不干扰的,它们之间的组合是随机的,不会相互影响。

五、基因的连锁与重组基因的自由组合定律揭示了基因在生殖过程中的自由组合规律,但是在染色体上有些基因是连锁的,它们无法独立分离和组合。

然而,由于染色体的重组作用,连锁基因之间也会发生重组。

重组是基因组合的一种特殊情况,是遗传变异和进化的重要机制。

六、基因的多态性与变异基因的自由组合定律也揭示了基因的多态性与变异。

基因由于突变、重组和再组合等机制会产生多种形态和类型,这种多样性是生物进化和适应环境的基础。

七、基因的应用基因的自由组合定律为现代生物技术的发展提供了理论基础。

基因工程、转基因技术、育种改良以及个体基因检测等都离不开对基因自由组合规律的深入研究和应用。

八、结语基因的自由组合定律是遗传学中的重要定律,它揭示了基因在生殖过程中的自由组合规律,为我们理解生物遗传现象提供了理论基础。

基因的自由组合定律为生物技术的发展和应用提供了重要的参考。

高一生物必修课件基因的自由组合定律

高一生物必修课件基因的自由组合定律
THANKS
感谢观看
表现型概念及影响因素
表现型概念
指生物个体表现出来的性状,即生物体所表现的形态特征和 生理特性。
影响因素
表现型是受到基因型和环境的共同影响。基因型是决定个体 表现型的内在因素,而环境条件则影响基因型的表达。
基因型与表现型之间关系
基因型决定表现型
个体的基因型决定了其潜在的表现型。具有相同基因型的个体在相同环境条件下会表现出 相同的性状。
使用图表等方式直观地展示实验结果,以 便于理解和分析。
讨论部分的撰写
结论部分的撰写
对实验结果进行深入分析和讨论,解释实 验现象的原因和意义,提出可能的改进方 案或进一步的研究方向。
总结实验的主要发现和意义,指出实验的 局限性和不足之处,提出建议或展望。
XX
REPORTING
2023 WORK SUMMARY
XX
REPORTING
2023 WORK SUMMARY
高一生物必修课件基 因的自由组合定律
汇报人:XX
20XX-01-13
XX
目录
• 基因自由组合定律概述 • 基因型与表现型关系 • 遗传规律解析 • 基因突变和重组对自由组合影响 • 人类遗传病与优生优育策略探讨 • 实验设计与数据分析能力培养
传状况及后代患病风险。
产前诊断
利用遗传学检测技术对胎儿进行遗 传病筛查和诊断,以便早期发现并 采取措施防止患儿出生。
遗传病治疗
针对某些遗传病,通过药物治疗、 基因治疗等手段改善患者症状,提 高生活质量。
伦理道德问题思考
01
隐私权保护
在进行遗传咨询和产前诊断时,应充分尊重患者及其家庭的隐私权,避
免泄露个人信息和遗传信息。

高考生物复习指导:基因的自由组合定律

高考生物复习指导:基因的自由组合定律

高考生物复习指导:基因的自由组合定律【】查字典生物网为大家带来2021年高考生物温习指点:基因的自在组合定律,希望大家喜欢下文!基因的自在组合定律名词:1、基因的自在组合规律:在F1发生配子时,在等位基因分别的同时,非同源染色体上的非等位基因表现为自在组合,这一规律就叫~。

语句:1、两对相对性状的遗传实验:①P:黄色圆粒X绿色皱粒F1:黄色圆粒F2:9黄圆:3绿圆:3黄皱:1绿皱。

②解释:1)每一对性状的遗传都契合分别规律。

2)不同对的性状之间自在组合。

3)黄和绿由等位基因Y和y控制,圆和皱由另一对同源染色体上的等位基因R和r控制。

两亲本基因型为YYRR、yyrr,它们发生的配子区分是YR和yr,F1的基因型为YyRr。

F1(YyRr)构成配子的种类和比例:等位基因分别,非等位基因之间自在组合。

四种配子YR、Yr、Yr、yr的数量相反。

4)黄色圆粒豌豆和绿色皱粒豌豆杂交实验剖析图示解:F1:YyRr黄圆(1YYRR、2YYRr、2YyRR、4YyRr):3绿圆(1yyRR、2yyRr):黄皱(1Yyrr、2Yyrr):1绿皱(yyrr)。

5)黄圆和绿皱为亲本类型,绿圆和黄皱为重组类型。

3、对自在组合现象解释的验证:F1(YyRr)X隐性(yyrr)(1YR、1Yr、1yR、1yr)XyrF2:1YyRr:1Yyrr:1yyRr:1yyrr。

4、基因自在组合定律在实际中的运用:1)基因重组使后代出现了新的基因型而发生变异,是生物变异的一个重要来源;经过基因间的重新组合,发生人们需求的具有两个或多个亲本优秀性状的新种类。

5、孟德尔取得成功的缘由:1)正确地选择了实验资料。

2)在剖析生物性状时,采用了先从一对相对性状入手再墨守成规的方法(由单一要素到多要素的研讨方法)。

3)在实验中留意对不同世代的不异性状停止记载和剖析,并运用了统计学的方法处置实验结果。

4)迷信设计了实验顺序。

6、基因的分别规律和基因的自在组合规律的比拟:①相对性状数:基因的分别规律是1对,基因的自在组合规律是2对或多对;②等位基因数:基因的分别规律是1对,基因的自在组合规律是2对或多对;③等位基因与染色体的关系:基因的分别规律位于一对同源染色体上,基因的自在组合规律位于不同对的同源染色体上;④细胞学基础:基因的分别规律是在减I分裂前期同源染色体分别,基因的自在组合规律是在减I分裂前期同源染色体分别的同时,非同源染色体自在组合;⑤实质:基因的分别规律是等位基因随同源染色体的分开而分别,基因的自在组合规律是在等位基因分别的同时,非同源染色体上的非等位基因表现为自在组合。

基因的自由组合定律课件

基因的自由组合定律课件

01
基因的自由组合定 律的实质
基因的分离定律
基因的分离定律是孟德尔遗传学说的 基本原理,它指出等位基因随同源染 色体的分开而分离,分别进入不同的 配子中,并随配子遗传给后代。
基因的分离定律适用于单基因遗传的 情况,即一对等位基因的情况。
基因的自由组合定律的实质
基因的自由组合定律是孟德尔在观察多对相对性状的遗传时发现的,它指出非同 源染色体上的非等位基因在遗传时可以自由组合,不受彼此的影响。
品种选育优化
基于基因自由组合定律, 可以对现有品种进行优化 选育,提高农作物的产量 和品质。
在医学中的应用
疾病诊断与预防
个性化医疗与精准治疗
基因自由组合定律有助于理解疾病的 发生机制,为疾病的诊断和预防提供 理论支持。
基因自由组合定律有助于实现个性化 医疗和精准治疗,为患者提供更加有 效的治疗方案。
分子生物学方法
通过检测特定基因的表达情况或特定DNA片段的序列,可以验证基因的自由组合定律。 例如,检测不同组织中特定基因的表达情况,可以了解该基因是否受到其他基因的调控。
01
基因自由组合定律 的应用
在遗传学中的应用
01
02
03
解析遗传现象
基因自由组合定律可以用 来解析和预测遗传现象, 例如解释性状分离比和基 因型之间的相互关系。
基因的自由组合定律的实质是多个等位基因的分离和组合互不干扰,各自独立地 分配到配子中去。
基因自由组合定律的验证
测交法
通过将F1与隐性纯合子进行杂交,观察后代的表现型及比例,可以验证基因的自由组合定 律。如果后代出现四种表现型,且比例为9:3:3:1,则说明基因的自由组合定律成立。
自交法
如果F1自交,后代出现四种表现型,且比例为9:3:3:1,也可以验证基因的自由组合定律 。

基因的自由组合定律的实质与应用

基因的自由组合定律的实质与应用

一、两对相对性状的杂交实验:P : 黄圆×绿皱 P :YYRR×yyrr↓ ↓F 1: 黄圆 F 1: YyRr↓自交 ↓自交F 2:黄圆 绿圆 黄皱 绿皱 F 2:Y --R -- yyR -- Y --rr yyrr9 :3 : 3 : 1 9 : 3 : 3 :1在F 2 代中:4 种表现型: 两种亲本型:黄圆9/16 绿皱1/16两种重组型:黄皱3/16 绿皱3/169种基因型: 纯合子 YYRR yyrr YYrr yyRR 共4种×1/16 半纯半杂 YYRr yyRr YyRR Yyrr 共4种×2/16 完全杂合子 YyRr 共1种×4/16 研究方法:假说演绎法事实:两对相对性状的杂交实验,F1自交后代出现四种表现型,比例9: 3: 3: 1假说:F1(AaBb )形成配子时,产生AB :Ab :aB: ab 配子 =1:1:1:1演绎:测交实验(F1与隐性纯合子aabb 测交)预期结果:测交后代出现四种表现型,比例1: 1: 1: 1预期结果与实际结果相符,证明假说二、自由组合定律的实质:在减数分裂过程中,同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合。

三、自由组合定律的应用:1、配子类型、基因型类型、表现型类型计算求有关配子的几个问题:①已知某生物体的基因型,求其产生的配子的种数和类型。

例:基因型为 AaBbCC 的个体进行减数分裂时可产生_____类型的配子,它们分别是______ (注:三对基因分别位于不同对同源染色体上)②已知某生物体的基因型,求其产生的某一种类型的配子所占的比例例:基因型为 AaBbCC 的个体,产生基因组成为AbC 的配子的几率为______。

(设此题遵循基因的自由组合规律)③求配子的组合方式例:已知基因型为AaBbcc 与aaBbCC 的两个体杂交,其产生的配子有_____种组合方式?求基因型的几个问题:①已知后代的某些遗传特征,推亲代的基因型例:豚鼠的皮毛黑色(D)对白色(d)为显性,粗糙(R)对光滑(r)为显性,现有皮毛为黑色光滑与白色粗糙的豚鼠杂交,其后代表现型为:黑色粗糙18只、黑色光滑15只、白色粗糙16只、白色光滑19只,则亲本的基因型为______________②求子代基因型的几个问题:i)求子代基因型的种数、类型及其比例例:已知基因型为AaBbCc ×aaBbCC的两个体杂交,能产生____种基因型的个体,其基因型分别是_________________________,比例为________________________。

教案:基因自由组合定律的运用(分解组合法)

教案:基因自由组合定律的运用(分解组合法)

教案:基因自由组合定律的运用(分解组合法)第一章:引言1.1 课程背景本课程旨在帮助学生理解基因自由组合定律及其在实际应用中的重要性。

通过分解组合法,学生将能够更好地理解基因的组合和遗传规律。

1.2 教学目标了解基因自由组合定律的基本概念。

掌握分解组合法的基本步骤和应用。

能够运用基因自由组合定律解决实际问题。

1.3 教学方法讲授:讲解基因自由组合定律的基本原理和概念。

案例分析:分析实际案例,引导学生运用分解组合法解决问题。

小组讨论:分组讨论,促进学生之间的交流和合作。

第二章:基因自由组合定律的基本概念2.1 基因自由组合定律的定义解释基因自由组合定律是指在生殖过程中,基因的组合是随机的,相互独立的。

2.2 基因的自由组合原则讲解基因的自由组合原则,即在生殖细胞形成过程中,每个基因的分离和组合是独立的,不受其他基因的影响。

2.3 基因型的组合方式介绍基因型的组合方式,包括同源染色体上的基因组合和异源染色体上的基因组合。

第三章:分解组合法的基本步骤3.1 确定问题引导学生明确问题,确定需要解决的具体遗传问题。

3.2 构建基因型树讲解如何构建基因型树,展示不同基因型的可能性。

3.3 应用孟德尔遗传规律运用孟德尔遗传规律,分析基因型的组合和分离情况。

3.4 得出结论根据分析结果,得出结论并解释遗传现象。

第四章:分解组合法的应用案例4.1 案例一:植物杂交育种分析植物杂交育种中的基因自由组合问题,运用分解组合法解决具体问题。

4.2 案例二:动物遗传疾病探讨动物遗传疾病的基因自由组合问题,运用分解组合法进行分析和解决。

回顾本课程的主要内容和知识点,巩固学生对基因自由组合定律和分解组合法的理解。

5.2 学生评估评估学生在课程中的参与程度和理解程度,提供反馈和建议。

第六章:基因自由组合定律在遗传育种中的应用6.1 遗传育种概述介绍遗传育种的基本概念,包括遗传改良和选择育种等方法。

6.2 基因自由组合定律在植物育种中的应用讲解基因自由组合定律在植物育种中的应用,如杂交水稻、抗病小麦等。

基因的分离定律和自由组合定律

基因的分离定律和自由组合定律

基因的分离定律和自由组合定律引言基因是生物遗传信息的基本单位,它决定了个体的遗传特征。

基因的分离定律和自由组合定律是遗传学的基本原理,对于理解基因的传递和变异具有重要意义。

本文将详细探讨基因的分离定律和自由组合定律的概念、实验证据以及在实际应用中的意义。

I. 基因的分离定律基因的分离定律是指在杂交过程中,父本的两个基因分离并独立地传给子代的定律。

这一定律由格里高利·孟德尔在19世纪提出,并通过豌豆杂交实验得到了验证。

A. 孟德尔的豌豆实验孟德尔通过对豌豆的杂交实验,发现了基因的分离定律。

他选取了具有明显差异的性状进行杂交,例如花色、种子形状等。

通过连续进行多代的杂交实验,孟德尔观察到了一些规律性的现象。

B. 孟德尔定律的内容孟德尔总结出了三个基本定律: 1. 第一定律:也称为单因素遗传定律或分离定律。

即在杂交过程中,两个互相对立的基因副本(等位基因)分别来自于父本的两个基因组合,并独立地传给子代。

这就保证了基因的纯合性和杂合性的维持。

2. 第二定律:也称为双因素遗传定律或自由组合定律。

即两个不同的性状在杂交过程中独立地传递给子代。

这说明基因在遗传过程中是相互独立的。

3. 第三定律:也称为自由组合定律的互换定律。

即在同一染色体上的基因通过互换(交叉互换)来进行重组,从而形成新的基因组合。

C. 孟德尔定律的意义孟德尔的豌豆实验揭示了基因的分离和自由组合的规律,为后续的遗传学研究奠定了基础。

这些定律对于理解基因的传递、变异以及遗传规律具有重要意义。

此外,孟德尔的定律还为遗传育种提供了理论依据,对农业和生物学领域产生了深远的影响。

II. 自由组合定律自由组合定律是指在杂交过程中,不同染色体上的基因在配子形成过程中独立地组合的定律。

这一定律由托马斯·亨特·摩尔根等科学家在20世纪初通过果蝇实验得到了验证。

A. 摩尔根的果蝇实验摩尔根通过对果蝇的杂交实验,发现了基因的自由组合定律。

基因的自由组合定律课件

基因的自由组合定律课件

遗传漂变
遗传漂变是群体基因组结构和 变异的重要驱动力,受到突变、 选择和遗传漂移等因素的共同 作用。
基因表达调控机制
1 基因表达调控概述
2 转录调控
3 后转录调控
基因表达调控是指通过调 节基因的转录和翻译过程, 控制基因产物(RNA和蛋 白质)的生成和功能。
转录调控包括启动子结构、 转录因子结合和DNA甲基 化等多个层面的调控机制。
重组频率
重组频率的大小决定了基因连锁 的紧密程度,对遗传基因图谱的 构建具有重要意义。
遗传图谱
遗传连锁的研究可以帮助我们绘 制遗传图谱,了解基因在染色体 上的位置关系。
基因突变及其影响
1
突变类型
基因突变包括点突变、插入突变、缺失突变等多种类型,每种类型都可能对基因功能产生不 同程度的影响。
2
影响因素
基因的自由组合定律
基因的自由组合定律(Law of Independent Assortment)是遗传学中的重要 原理,解释了基因在遗传过程中的自由组合和随机分离。
孟德尔遗传定律回顾
第一定律
孟德尔遗传定律的第一定律,也被称为分离定律,描述了基因在遗传过程中的分离和再组合。
第二定律
孟德尔遗传定律的第二定律,也被称为自由组合定律,解释了基因的自由组合和独立分离。
突变的影响受到基因的作用环境、突变类型和突变位置等多种因素的综合影响。
3
突变的后果
突变可能导致基因功能的丧失、改变或增强,进而影响个体的遗传性状和适应能力。
群体基因组结构和变异
基因组结构
群体基因组结构是指某个群体 中基因的分布和组合情况,对 群体的适应性和遗传多样性具 有重要影响。
基因变异
基因变异是指基因在群体中发 生的多样性变化,包括基因频 率变异和基因型变异。

高考生物基因知识点之自由组合定律讲解

高考生物基因知识点之自由组合定律讲解

名词:
1、基因的自由组合规律:在F1产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合,这一规律就叫~。

语句:
1、两对相对性状的遗传试验:①P:黄色圆粒X绿色皱粒→F1:黄色圆粒→F2:9黄圆:3绿圆:3黄皱:1绿皱。

②解释:1)每一对性状的遗传都符合分离规律。

2)不同对的性状之间自由组合。

3)黄和绿由等位基因Y和y控制,圆和皱由另一对同源染色体上的等位基因R和r控制。

两亲本基因型为YYRR、yyrr,它们产生的配子分别是YR和yr,F1的基因型为YyRr。

F1(YyRr)形成配子的种类和比例:等位基因分离,非等位基因之间自由组合。

四种配子YR、Yr、Yr、yr的数量相同。

4)黄色圆粒豌豆和绿色皱粒豌豆杂交试验分析图示解:F1:YyRr→黄圆(1YYRR、2YYRr、2YyRR、4YyRr):3绿圆(1yyRR、2yyRr):黄皱(1Yyrr、2Yyrr):1绿皱(yyrr)。

5)黄圆和绿皱为亲本类型,绿圆和黄皱为重组类型。

3、对自由组合现象解释的验证:F1(YyRr)X隐性(yyrr)→(1YR、1Yr、1yR、1yr)Xyr→F2:1YyRr:1Yyrr:1yyRr:1yyrr。

4、基因自由组合定律在实践中的应用:1)基因重组使后代出现了新的基因型而产生变异,是生物变异的一个重要。

《自由组合定律》 讲义

《自由组合定律》 讲义

《自由组合定律》讲义一、什么是自由组合定律在生物的遗传过程中,存在着许多奇妙而又复杂的规律。

其中,自由组合定律便是遗传学中的一个重要定律。

自由组合定律指的是当具有两对(或更多对)相对性状的亲本进行杂交,在子一代产生配子时,在等位基因分离的同时,非同源染色体上的基因表现为自由组合。

这一定律是孟德尔在研究豌豆杂交实验时发现的。

比如说,我们考虑豌豆的两种性状:种子的形状(圆形和皱形)以及子叶的颜色(黄色和绿色)。

假设控制种子形状的基因用 R 和 r 表示,控制子叶颜色的基因用 Y 和 y 表示。

当亲本为纯合的圆形黄色(RRYY)和皱形绿色(rryy)进行杂交时,子一代(F1)的基因型为RrYy。

在 F1 形成配子时,R 和 r 会分离,Y 和 y 也会分离,同时 R 和Y 或 y 可以自由组合,r 和 Y 或 y 也可以自由组合,从而产生四种比例相等的配子:RY、Ry、rY、ry。

二、自由组合定律的发现过程孟德尔通过多年的豌豆杂交实验,观察和分析了大量的数据,才得出了自由组合定律。

他首先选择了具有明显不同性状的纯种豌豆作为亲本进行杂交。

然后,仔细观察和记录了子一代(F1)和子二代(F2)的性状表现和比例。

在研究一对相对性状时,孟德尔发现了分离定律。

而当他同时研究两对相对性状时,经过精心的实验设计和数据分析,才揭示了自由组合定律。

孟德尔的实验方法严谨而科学,他的发现为遗传学的发展奠定了坚实的基础。

三、自由组合定律的实质自由组合定律的实质在于:在减数分裂形成配子的过程中,同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合。

我们以刚才提到的豌豆为例,在减数第一次分裂后期,同源染色体分离,即携带 R 和 r 的染色体与携带 Y 和 y 的染色体分开。

同时,非同源染色体自由组合,这就导致了 R 和 Y、R 和 y、r 和 Y、r 和 y 能够以不同的组合方式进入配子中。

这一实质解释了为什么在杂交后代中会出现新的性状组合,以及这些组合出现的比例规律。

基因的自由组合定律与应用

基因的自由组合定律与应用

基因的自由组合定律与应用:1.自由组合定律:控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。

2. 实质(1)位于非同源染色体上的非等位基因的分离或组合是互不干扰的。

(2)在减数分裂过程中,同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合。

3.适用条件(1)有性生殖的真核生物。

(2)细胞核内染色体上的基因。

(3)两对或两对以上位于非同源染色体上的非等位基因。

4.细胞学基础:基因的自由组合定律发生在减数第一次分裂后期。

5.应用(l)指导杂交育种,把优良性状重组在一起。

(2)为遗传病的预测和诊断提供理沦依据。

两对相对性状的杂交实验:1.提出问题——纯合亲本的杂交实验和F1的自交实验(1)发现者:孟德尔。

(2)图解:2.作出假设——对自由组合现象的解释(1)两对相对性状(黄与绿,圆与皱)由两对遗传因子(Y与y,R与r)控制。

(2)两对相对性状都符合分离定律的比,即3:1,黄:绿=3:1,圆:皱=3:1。

(3)F1产生配子时成对的遗传因子分离,不同对的遗传因子自由组合。

(4)F1产生雌雄配子各4种,YR:Yr:yR:yr=1:1:1:1。

(5)受精时雌雄配子随机结合。

(6)F2的表现型有4种,其中两种亲本类型(黄圆和绿皱),两种新组合类型(黄皱与绿圆)。

黄圆:黄皱:绿圆:绿皱=9:3:3:1(7)F2的基因型有16种组合方式,有9种基因型。

3.对自由组合现象解释的验证(1)方法:测交。

(2)预测过程:(3)实验结果:正、反交结果与理论预测相符,说明对自由组合现象的解释是正确的。

自由组合类遗传中的特例分析9:3:3:1的变形:9:3:3:1是独立遗传的两对相对性状自由组合时出现的表现型比例,题干中如果出现附加条件,则可能出现9:3:4、9:6:1、15:1、9:7等一系列的特殊分离比。

特殊条件下的比例关系总结如下:∙注:利用“合并同类项”巧解特殊分离比(1)看后代可能的配子组合,若组合方式是16种,不管以什么样的比例呈现,都符合基因自由组合定律。

2019届高考一轮复习——基因的自由组合定律

2019届高考一轮复习——基因的自由组合定律

验证基因的自由组合定律三种方法
(1)根据双杂个体自交法验证:双杂个体自交,若后代出现4种
表现型,且比例为9∶3∶3∶1(或其变式),则这两对相对性状的遗 传遵循自由组合定律。 (2)根据双杂个体测交法判断双杂个体进行测交,若后代出现4 种表现型,且比例为1∶1∶1∶1(或其变式),则这两对相对性状的
遗传实验的设计与判断: 1.显隐性的判断 (1)已知个体纯合时,不同性状杂交后代所表现的 性状即为显性性状。 (2)不知个体是否纯合时,应选择相同性状个体交 配或自交(植物),后代出型的遗传实验设计 待测对象若为雄性动物, 条件:完全显性 应与多个隐性雌性个体交配, 以使后代产生更多的个体, (1)测交法 待测个体×隐性纯合子 使结果更有说服力。 结果分析 若后代表现型一致,则待测个体为纯合子
判断是否遵循自由组合定律的三种方法
(1) 根据基因在染色体上的位置判断:若两对或多对基因位 于同一对同源染色体上,则它们不遵循自由组合定律。 (2) 根据双杂个体自交法判断:具有两对相对性状的纯合子 杂交,F1自交,若后代出现 4种表现型,且比例为9∶3∶3∶1(或 其变式),则这两对相对性状的遗传遵循自由组合定律。 (3) 根据双杂个体测交法判断:具有两对相对性状的纯合子 杂 交 , 对 F1 进 行 测 交 , 若 后 代 出 现 4 种 表 现 型 , 且 比 例 为 1∶ 1∶ 1∶1(或其变式 ) ,则这两对相对性状的遗传遵循自由组合 定律。
遗传遵循自由组合定律。
(3)单倍体育种法:花药离体培养 →秋水仙素处理单倍体幼苗。 若植株有四种表现型,比例为1∶1∶1∶1,则符合自由组合定律
(4)花粉鉴定法:双杂个体产生的花粉才可以
验证基因的自由组合定律三种方法 花粉鉴定法:双杂个体产生的花粉才可以

高考生物总复习例题讲解基因自由组合定律判断及应用

高考生物总复习例题讲解基因自由组合定律判断及应用

一、如何判断遗传现象是否符合自由组合定律辨析下列说法是否正确1.控制一对相对性状的基因遵循分离定律()2.控制多对相对性状的基因遵循自由组合定律()3.若每一对性状子代的分离比为3:1或1:1,综合考虑这几对相对性状,它们遵循自由组合定律()通过下面例题来总结规律:1、百合的黄花(M)对白花(m)为显性,阔叶(N)对窄叶(n)为显性。

一株杂种百合(MmNn)与“某植株”杂交的后代表型比为:3黄阔:1黄窄:3白阔:1白窄。

“某植株”的基因型和表型为分析过程:“某植株”的性状表现遵循规律。

把两对相对性状分开考虑花色—=1:1,则另一亲本为;叶形—=3:1,则另一亲本为;两对性状综合考虑,某植株的基因型为。

2、下列杂交后代遗传表现属于自由组合现象的是A牵牛花的花色与叶形 B香豌豆花色与花粉粒 C玉米的粒色与粒形 D果蝇体色与翅形红花阔叶37.5%红花窄叶12.5%白花阔叶37.5%白花窄叶12.5% 紫花长粒44%紫花圆粒6%红花长粒6%红花圆粒44% 有色饱满73%有色皱缩2%无色饱满2%无色皱缩23% 灰身长翅50%黑身残翅50%分析过程:把两对相对性状分开考虑,以选项B为例只看花色——紫:红=1:1只看形状——长:圆=1:1 分别都符合定律综合上述两对相对性状,推知紫圆:紫长:红长:红圆=,与实际题目中所给比例不统一,所以B不属于自由组合现象。

自由组合现象判断依据:注意:自由组合定律只适用于两对等位基因位于两对非同源染色体上的情况,对于两对等位基因位于一对同源染色体上的,不遵循该规律。

需要关注的比例(1:1)×(1:1)=1 :1 :1 :1杂交亲本:或(3:1)×(1:1)=3 :1 :3 :1杂交亲本:(3:1)×(3:1)=9 :3 :3 :1 杂交亲本:二、判定基因自由组合定律的规律总结下面基因自由组合定律的特殊形式。

高考生物一轮复习基因的自由组合定律知识点

高考生物一轮复习基因的自由组合定律知识点

高考生物一轮复习基因的自由组合定律知识点位于非同源染色体上的非等位基因的分离或组合是互不干扰的。

以下是基因的自由组合定律知识点,请考生仔细阅读。

名词:1、基因的自由组合规律:在F1产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合,这一规律就叫~。

语句:1、两对相对性状的遗传试验:①P:黄色圆粒X绿色皱粒F1:黄色圆粒F2:9黄圆:3绿圆:3黄皱:1绿皱。

②解释:1)每一对性状的遗传都符合分离规律。

2)不同对的性状之间自由组合。

3)黄和绿由等位基因Y和y控制,圆和皱由另一对同源染色体上的等位基因R和r控制。

两亲本基因型为YYRR、yyrr,它们产生的配子分别是YR和yr,F1的基因型为YyRr。

F1(YyRr)形成配子的种类和比例:等位基因分离,非等位基因之间自由组合。

四种配子YR、Yr、Yr、yr的数量相同。

4)黄色圆粒豌豆和绿色皱粒豌豆杂交试验分析图示解:F1:YyRr黄圆(1YYRR、2YYRr、2YyRR、4YyRr):3绿圆(1yyRR、2yyRr):黄皱(1Yyrr、2Yyrr):1绿皱(yyrr)。

5)黄圆和绿皱为亲本类型,绿圆和黄皱为重组类型。

3、对自由组合现象解释的验证:F1(YyRr)X隐性(yyrr)(1YR、1Yr、1yR、1yr)XyrF2:1YyRr:1Yyrr:1yyRr:1yyrr。

4、基因自由组合定律在实践中的应用:1)基因重组使后代出现了新的基因型而产生变异,是生物变异的一个重要来源;通过基因间的重新组合,产生人们需要的具有两个或多个亲本优良性状的新品种。

5、孟德尔获得成功的原因:1)正确地选择了实验材料。

2)在分析生物性状时,采用了先从一对相对性状入手再循序渐进的方法(由单一因素到多因素的研究方法)。

3)在实验中注意对不同世代的不同性状进行记载和分析,并运用了统计学的方法处理实验结果。

4)科学设计了试验程序。

6、基因的分离规律和基因的自由组合规律的比较:①相对性状数:基因的分离规律是1对,基因的自由组合规律是2对或多对;②等位基因数:基因的分离规律是1对,基因的自由组合规律是2对或多对;③等位基因与染色体的关系:基因的分离规律位于一对同源染色体上,基因的自由组合规律位于不同对的同源染色体上;④细胞学基础:基因的分离规律是在减I分裂后期同源染色体分离,基因的自由组合规律是在减I分裂后期同源染色体分离的同时,非同源染色体自由组合;⑤实质:基因的分离规律是等位基因随同源染色体的分开而分离,基因的自由组合规律是在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合。

高中生物知识点总结 自由组合定律高中生物知识点

高中生物知识点总结 自由组合定律高中生物知识点

高中生物知识点总结自由组合定律高中生物知识点基因的自由组合定律与应用:1.自由组合定律:控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。

2. 实质(1)位于非同源染色体上的非等位基因的分离或组合是互不干扰的。

(2)在减数分裂过程中,同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合。

3.适用条件(1)有性生殖的真核生物。

(2)细胞核内染色体上的基因。

(3)两对或两对以上位于非同源染色体上的非等位基因。

4.细胞学基础:基因的自由组合定律发生在减数第一次分裂后期。

5.应用(l)指导杂交育种,把优良性状重组在一起。

(2)为遗传病的预测和诊断提供理沦依据。

两对相对性状的杂交实验:1.提出问题——纯合亲本的杂交实验和F1的自交实验(1)发现者:孟德尔。

(2)图解:2.作出假设——对自由组合现象的解释(1)两对相对性状(黄与绿,圆与皱)由两对遗传因子(Y与y,R与r)控制。

(2)两对相对性状都符合分离定律的比,即3:1,黄:绿=3:1,圆:皱=3:1。

(3)F1产生配子时成对的遗传因子分离,不同对的遗传因子自由组合。

(4)F1产生雌雄配子各4种,YR:Yr:yR:yr=1:1:1:1。

(5)受精时雌雄配子随机结合。

(6)F2的表现型有4种,其中两种亲本类型(黄圆和绿皱),两种新组合类型(黄皱与绿圆)。

黄圆:黄皱:绿圆:绿皱=9:3:3:1(7)F2的基因型有16种组合方式,有9种基因型。

3.对自由组合现象解释的验证(1)方法:测交。

(2)预测过程:(3)实验结果:正、反交结果与理论预测相符,说明对自由组合现象的解释是正确的。

自由组合类遗传中的特例分析9:3:3:1的变形:9:3:3:1是独立遗传的两对相对性状自由组合时出现的表现型比例,题干中如果出现附加条件,则可能出现9:3:4、9:6:1、15:1、9:7等一系列的特殊分离比。

基因自由组合定律的适用范围

基因自由组合定律的适用范围

基因自由组合定律的适用范围引言基因自由组合定律是遗传学中的重要理论之一,它描述了基因在遗传过程中的自由组合方式。

本文将全面、详细、完整地探讨基因自由组合定律的适用范围。

什么是基因自由组合定律基因自由组合定律是指基因在遗传过程中的自由组合方式。

根据该定律,基因在遗传中相互独立地进行组合,不受其他基因的干扰。

这意味着基因之间的组合是随机的,每个基因都有机会与其他基因自由组合,从而产生不同的遗传结果。

基因自由组合定律的适用范围基因自由组合定律适用于以下情况:1. 单个基因的自由组合基因自由组合定律适用于单个基因的自由组合。

当只考虑一个基因时,它可以与其他基因自由组合,产生不同的遗传结果。

例如,在孟德尔的豌豆实验中,他发现红花色基因和白花色基因可以自由组合,产生红色和白色的花。

2. 多个基因的自由组合基因自由组合定律同样适用于多个基因的自由组合。

当考虑多个基因时,它们之间可以自由组合,产生更加复杂的遗传结果。

例如,在人类的眼睛颜色遗传中,多个基因共同决定了眼睛的颜色,这些基因之间的自由组合会导致不同的眼睛颜色。

3. 不同染色体上基因的自由组合基因自由组合定律还适用于不同染色体上基因的自由组合。

在遗传过程中,不同染色体上的基因可以自由组合,产生新的遗传组合。

例如,通过不同染色体上的基因自由组合,父母可以将各自的基因传递给下一代,从而形成新的遗传特征。

4. 交叉互换的自由组合基因自由组合定律还适用于交叉互换的自由组合。

在染色体互换的过程中,染色体上的基因可以自由组合,产生新的遗传组合。

例如,在有性生殖中,交叉互换可以使染色体上的基因重新组合,从而增加遗传的多样性。

基因自由组合定律的意义基因自由组合定律的发现对于遗传学的发展具有重要意义。

它揭示了基因在遗传过程中的自由组合方式,为遗传学的研究提供了理论基础。

同时,基因自由组合定律也为人们理解遗传变异、进化和疾病的发生提供了重要线索。

结论基因自由组合定律适用于单个基因和多个基因的自由组合,以及不同染色体上基因和交叉互换的自由组合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考总复习10 基因自由组合定律判断及应用【考纲要求】1.基因的分离定律和自由组合定律。

2.应用遗传基本规律分析解决一些生产、生活中生物的遗传问题。

【考纲要求】 要点一、分离定律与自由组合定律的关系区别分离定律 自由组合定律 研究性状一对 两对或两对以上 控制性状的等位基因一对 两对或两对以上 等位基因与染色体关系位于一对同源染色体上 分别位于两对或两对以上 同源染色体上 细胞学基础(染色体的活动)减Ⅰ后期同源染色体分离 减Ⅰ后期非同源染色体自 由组合 遗传实质 等位基因分离 非同源染色体上非等位基 因之间的自由组合 F 1 基因对数1 n (n ≥2) 配子类型及其比例2(1 :1) 2n (数量相等) F 2 配子组合数4 4n 基因型种类3 3n 表现型种类2 2n 表现型比3 :1 (3 :1)n F 1 测交 子代基因型种类2 2n 表现型种类2 2n 表现型比 1 :1 (1 :1)n 联系 (1)形成配子时(减Ⅰ后期),两项定律同时起作用 (2)分离定律是自由组合定律的基础要点二、用“分解法”解自由组合定律习题“分解法”是以一对基因的杂交组合的结果为基础,根据题意,灵活地分解题目的杂交组合、表现型比例、基因型比例等条件,直接利用一对基因交配的结果,从而简化问题,快速求解的一种解题方法。

“分解法”的应用举例如下。

1.计算概率例:基因型为AaBb 的个体(两对基因独立遗传)自交,子代基因型为AaBB 的概率为________。

将AaBb 自交分解为Aa 自交和Bb 自交,则Aa ⊗−−→1/2Aa ,Bb ⊗−−→1/4BB 。

故子代基因型为AaBB 的概率为1/2Aa ×1/4BB=1/8AaBB 。

2.推断亲代的基因型例:小麦的毛颖(P )对光颖(p )是显性,抗锈病(R )对不抗锈病(r )为显性。

这两对性状的遗传遵循自由组合定律。

已知以毛颖感锈病与光颖抗锈病两植株作亲本杂交,子代有毛颖抗锈病∶毛颖感锈病∶光颖抗锈病∶光颖感锈病=1∶1∶1∶1,写出两亲本的基因型。

将两对性状分解为:毛颖∶光颖=1∶1,抗锈病∶感诱病=1∶1。

根据亲本的表现型确定亲本部分基因型是P_rr ×ppR_,只有即Pp ×pp ,子代才能表现为毛颖∶光颖=1∶1,同理,只有rr ×Rr ,子代才能表现为抗锈病∶感锈病=1∶1。

综上所述,亲本基因型分别是Pprr 与ppRr 。

3.推算子代的基因型和表现型的种类例:基因型为AaBB的个体与aaBb的个体杂交(两对基因自由组合),子代的基因型、表现型各有多少种?将AaBB×aaBb分解为Aa×aa和BB×Bb,Aa×aa→2种基因型,2种表现型;BB×Bb→2种基因型,1种表现型。

综合起来,子代的基因型种类为2×2=4种,表现型种类为2×1=2种。

4.子代中基因型、表现型比例例:求ddEeFF与DdEeff杂交后代中基因型比例,表现型比例。

(三对基因自由组合)分解:dd×Dd后代:基因型比例为1∶1,表现型比例为1∶1;Ee×Ee后代:基因型比例为1∶2∶1,表现型比例为3∶l;FF×ff后代:基因型1种,表现型1种。

所以,后代中基因型比例为:(1∶1)×(1∶2∶1)×1=1∶2∶1∶l∶2∶1;表现型比例为:(1∶1)×(3∶1)×1=3∶1∶3∶1。

要点三、自由组合定律特殊比例分析已知两对等位基因(如A、a与B、b)分别位于两对同源染色体上,现有基因型为AABB 与aabb的个体进行杂交,产生的F1再自交产生F2,F2中同样是16种基因组合方式,但出现不同于9∶3∶3∶1的其它比例,即9∶3∶3∶1比例的变式,如下:(1)15∶1由于两对等位基因控制同一对相对性状,且只要存在一个显性基因,个体便表现为显性。

(2)9∶7由于两对等位基因控制同一对相对性状,只有A、B同时存在时,个体才表现为显性,否则都表现为隐性性状。

(3)9∶6∶1由于A、B同时存在时,个体表现出一种性状(或是相互加强作用形成的性状),而只有一个A或B时则表现出另一种性状(或是相对弱的性状),aabb则表现出一种隐性性状(或是最弱的性状)。

(4)12∶3∶1由于只有存在A或B才表现出一种性状,没有A(存在B)或B(存在A)时可表现为另一种性状,而aabb又可表现出一种隐性性状。

【典型例题】类型一:亲子代基因型的确定【例1】动物甲状腺功能有缺陷会导致甲状腺激素分泌不足。

有一种耕牛,其甲状腺缺陷可由两种原因引起:一是缺碘,二是一种常见染色体上的隐性基因纯合所致。

下列有关这种牛的叙述中不正确的是()A.缺少甲状腺激素的牛,其双亲可以是正常的B.甲状腺功能正常的个体,可能具有不同的基因型C.甲状腺功能有缺陷的个体,一定具有相同基因型D.双亲有一方是缺陷者,后代可能出现正常个体【解析】(1)缺少甲状腺激素的牛,若是由缺碘引起的,其双亲就可以是正常的。

(2)甲状腺功能正常的个体,基因型可以是纯合的AA或杂合的Aa。

(3)甲状腺功能有缺陷的个体,可能是隐性基因纯合所致,也可能是显性纯合子或杂合子,基因型不一定相同。

(4)双亲有一方是缺陷者,若另一方为显性纯合子,则后代也可能正常。

【答案】C【总结升华】本题的解题思路为:举一反三:【变式1】下图为蛇斑颜色性状的遗传实验图:若再让F1黑斑蛇之间自交,在F2中有黑斑蛇和黄斑蛇两种表现型同时出现。

根据上述杂交实验,下列结论中不正确的是()。

A.F1黑斑蛇的基因型与亲代黑斑蛇的基因型相同B.F2黑斑蛇的基因型与F1黑斑蛇的基因型相同C.所有黑斑蛇的亲代中至少有一方是黑斑蛇D.黄斑是隐性性状【答案】B【变式2】(2015 海南高考)下列叙述正确的是A.孟德尔定律支持融合遗传的观点B.孟德尔定律描述的过程发生在有丝分裂中C.按照孟德尔定律,AaBbCcDd个体自交,子代基因型有16种D.按照孟德尔定律,对AaBbCc个体进行测交,测交子代基因型有8种【答案】D【解析】孟德尔遗传定律的前提是遗传因子独立存在,不相融合,A错误;孟德尔遗传定律描述的是减数分裂过程,B错误;AaBbCcDd个体自交,子代基因型:3×3×3=27,C错误;AaBbCc个体测交,子代基因型:2×2×2=8,D正确。

【变式3】下表是大豆的花色四个组合的遗传实验结果。

按照孟德尔杂交实验的分析方法,根据哪个组合能判断出显性的花色类型?组合亲本表现型F1的表现型和植株数目紫花白花一紫花×白花405 411二紫花×白花807 0三紫花×紫花1240 413四紫花植株自交1245 417具有相对性状的亲本组合只有组一和组二,组一子一代有二种表现型,不符合上述条件;组二子一代只显现亲本的一个性状,因此由组二可判断紫花为显性性状,白花为隐性性状。

【答案】组合二【解析】具有相对性状的亲本组合只有组一和组二,组一子一代有二种表现型,不符合上述条件;组二子一代只显现亲本的一个性状,因此由组二可判断紫花为显性性状,白花为隐性性状。

组合三和组合四的亲本表现为同一性状,后代表现为性状分离,因此可判断占3/4的紫花为显性性状,新出现的白花为隐性性状.综上所述,组合二三四都能判断出来显隐性状,但本题要求按照孟德尔杂交实验的分析方法,对照教材,孟德尔是根据具有相对性状的亲本杂交F1显现出来的性状定义为显性性状,F1未显现出来的性状定义为隐性性状,因此组合二更符合题目要求。

类型二:自由组合定律特殊比例分析【高清课堂:04-基因自由组合定律判断及应用】【例2】某种自花受粉植物的花色分为白色、红色和紫色。

现有4个纯合品种:1个紫色(紫)、1个红色(红)、2个白色(白甲和白乙)。

用这4个品种做杂交实验,结果如下:实验1:紫×红,F1表现为紫,F2表现为3紫:1红;实验2:红×白甲,F1表现为紫,F2表现为9紫:3红;4白;实验3:白甲×白乙,F1表现为白,F2表现为白;实验4:白乙×紫,F1表现为紫,F2表现为9紫:3红:4白。

综合上述实验结果,请回答:(1)上述花色遗传所遵循的遗传定律是。

(2)写出实验1(紫×红)的遗传图解,(若花色由一对等位基因控制,用A、a表示,若由两对等位基因控制,用A、a和B、b表示,以此类推)。

遗传图解为:(3)为了验证花色遗传的特点。

可将实验2(红×白甲)得到F2植株自交,单株收获F2中紫花植株所结的种子,每株的所有种子单独种植在一起可得到一个株系。

观察多个这样的株系,则理论上,在所有株系中有4/9的株系F3花色的表现型及其数量比为。

【答案】(1)自由组合定律(2)(3)9紫:3红:4白【例3】(2015 安徽高考)Ⅰ.已知一对等位基因控制鸡的羽毛颜色,BB为黑羽,bb为白羽,Bb为蓝羽;另一对等位基因C L和C控制鸡的小腿长度,C L C为短腿,CC为正常,但C L C L胚胎致死。

两对基因位于常染色体上且独立遗传。

一只黑羽短腿鸡与一只白羽短腿鸡交配,获得F1。

(1)F1的表现型及比例是___________________________________。

若让F1中两只蓝羽短腿鸡交配,F2中出现_______________中不同表现型,其中蓝羽短腿鸡所占比例为_______。

(2)从交配结果可判断C L和C的显隐性关系,在决定小腿长度性状上,C L是____________;在控制致死效应上,C L是________________。

(3)B基因控制色素合成酶的合成,后者催化无色前体物质形成黑色素。

科研人员对B和b基因进行测序并比较,发现b基因的编码序列缺失一个碱基对。

据此推测,b基因翻译时,可能出现_________________或__________________,导致无法形成功能正常的色素合成酶。

(4)在火鸡(ZW型性别决定)中,有人发现少数雌鸡的卵细胞不与精子结合,而与某一极体结合形成二倍体,并能发育成正常个体(注:WW胚胎致死)。

这种情况下,后代总是雄性,其原因是______________________。

【答案】(1)蓝羽短腿:蓝羽正常=2:1 6 1/3(2)显性隐性(3)提前终止从缺失部位以后翻译的氨基酸序列发生变化(4)卵细胞只与次级卵母细胞形成的极体结合,产生的ZZ为雄性,WW胚胎致死【解析】(1)由题意可知亲本的一只黑羽短腿鸡的基因型为BBCtC,一只白羽短腿鸡的基因型为bbCtC,得到F1的基因型为BbCC:BbCtC:BbCtCt=1:2:1,其中BbCtCt胚胎致死,所以F1的表现型及比例为蓝羽正常:蓝羽短腿=1:2;若让F1中两只蓝羽短腿鸡交配,F2的表现型的种类数为3×2=6种,其中蓝羽短腿鸡BbCtC所占比例为1/2×2/3=1/3。

相关文档
最新文档