第4章-张量分析(清华大学张量分析-你值得拥有)

合集下载

张量分析基础

张量分析基础

张量的性质
张量的定义
— 张量是与坐标系有联系的一组量,并满足一定的坐标变换规律。
张量的性质
— 任何两个张量相乘所得到的新张量的阶数等于原张量阶数之和; — 两个张量间的比例系数一般是一个张量,其阶数等于原张量阶 数之和; — 张量的变换规律与坐标乘积的变换规律相同; — 变换矩阵与二阶张量的区别
二阶对称张量
δ ij =
1 i = j 0 i ≠ j
[ ]
1 0 0 δ ij = 0 1 0 0 0 1
δ ij Pj = Pi δ ij Pi = Pj
δ ijT jl = Til δ ilT jl = T ji
i, j , k顺序轮换 i, j , k反序轮换 两个以上角标同
反对称三重积
ei × e j = ε ijk e j
傀标
Pi = Tij Q j
自由 下标
[A] + [B][C][D] = [E][F]
Aij + BikCkl Dlj = Eik Fkj
坐标变换
坐标轴变换
e1* a11 * e 2 = a 21 * e3 a 31 a12 a 22 a 32
*∧
X3’
X3
θ23
a13 e1 a 23 e 2 a 33 e3
x1* a11 * x 2 = a 21 * x 3 a 31
a12 a 22 a 32
a13 x1 a 23 x 2 a 33 x 3
Neuman原理
物质张量、场张量
— 物质张量是建立晶体在外场作用下的响应与外场之间关系的物理性 能,物质张量受到晶体对称性的制约,如弹性系数 — 场张量:外场张量及晶体对外场响应后所产生的新的物理量,不受 晶体对称性的制约,如应力、电场 — 晶体响应,受外场、物理性能和晶体对称性的共同影响,如应变

张量分析清华大学张量分析你值得拥有

张量分析清华大学张量分析你值得拥有

g是正实数(右手系)
斜角直线坐标系旳基矢量与矢量分量
➢ 三维空间中旳斜角直线坐标系和基矢量
定义逆变基矢量 g j,满足对偶条件:
g j gi ij (i, j = 1, 2,3)
问题:已知 gi,怎样求 g j ?
※ 根据几何图形直接拟定
由对偶条件可知, g1与 g2 、g3 均正交,所以正交于 g2与 g3所
第1章 矢量与张量
2023年12月12日
张量旳两种体现形式
实体形式
分量形式
几何形式 定义式
代数形式 计算式
概念旳内涵和外 延(定量)
怎样计算?
主要内容
➢ 矢量及其代数运算 ➢ 斜角直线坐标系旳基矢量与矢量分量 ➢ 曲线坐标系及坐标转换关系 ➢ 并矢与并矢式 ➢ 张量旳基本概念 ➢ 张量旳代数运算 ➢ 张量旳矢积
g1 1
g2 x1(cos x2 cos x3i cos x2 sin x3 j sin x2k) g2 x1
g3 x1注sin:x2(()s式in 只x3i对 c正os交x3曲j) 线坐标系成立,g3 x1 sin x2
☆正交曲可作线为坐求标正系交与系L中am度é量常张数量旳一种措施。
y
※平面极坐标系
(x, y) (x1, x2)
r
g gr
(r, ) (x1, x2 )
矢径:
r x1i x2 j
j
x1
x2
(x1)2 (x2)2
arctan
x2 x1
x1
x1
cos
x2
x2 x1 sin x2
i
x
平面极坐标系
xi' = xi' xi
r g1 i cos x2 j sin x2

张量分析——精选推荐

张量分析——精选推荐

《连续介质力学》例题和习题第一张、矢量和张量分析第一节 矢量与张量代数一、 矢量代数令 11223A A A =++A e e e 112233B B B =++B e e e 则有 11223A A A αααα=++A e e e 11122233()()()A B A B A B +=+++++A B e ee 1122331122331122()()A A A B B B A B A B A B ∙=++∙++=++A B e e e e e e112233112233111112121313212122222323313132323333()() A A A B B B A B A B A B A B A B A B A B A B A B ⨯=++⨯++=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯A B e e e e e e e e e e e e e e e e e e e e e e e e 又因为 11⨯=e e 0 123⨯=e e e 132⨯=-e e e 213⨯=-e e e 22⨯=e e 0 231⨯=e e e 312⨯=e e e 321⨯=-e e e 33⨯=e e 0则 2332131132122(_)()()A B A B A B A B A B A B⨯=+-+-A B e e e习题1、证明下列恒等式:1)[]2()()()()⨯∙⨯⨯⨯=∙⨯A B B C C A A B C2) [][]()()()()⨯∙⨯=∙⨯-∙⨯A B C D A C D B B C D A2、请判断下列矢量是否线性无关?1232=-+A e e e 23=--B e e 12=-+C e e .其中i e 单位为正交的基矢量。

*补充知识:矩阵及矩阵运算1、定义:[]()111213212223313233,1,2,3ij A A A A A A A i j A AA ⎡⎤⎢⎥⎡⎤===⎣⎦⎢⎥⎢⎥⎣⎦A i 表示行,j 表示列;m 和n 相等表示为方阵,称为m (或n )阶矩阵。

张量分析

张量分析

张量分析张量分析,又称张量微积分,是一门研究多维空间中的向量和张量的数学工具。

它在物理学、工程学、计算机科学等领域有着广泛的应用。

张量分析的核心思想是通过张量的计算和运算,来描述和解释多维空间中的现象和问题。

在数学中,张量是一种广义的向量概念。

它不仅可以表示标量和向量,还可以表示具有更高维度的物理量。

例如,二阶张量可以表示物体的形变和应力分布,三阶张量可以表示电磁场的分布,四阶张量可以表示弹性材料的性质等。

张量分析的基本概念包括张量的定义和表示、张量的变换规律以及张量的运算。

对于二阶张量,可以用一个矩阵来表示。

张量的变换规律与坐标系的选择有关,不同的坐标系下,同一个张量可以表示为不同的矩阵形式。

张量的运算包括加法、数乘、内积和外积等。

这些运算在物理和工程问题中具有重要的意义,可以帮助研究人员推导和解决实际问题。

在物理学中,张量分析被广泛应用于描述和分析物体的运动、形变、应力等问题。

例如,通过分析物体的应力张量,可以判断物体是否会发生破坏或变形。

在工程学中,张量分析可以用于解决弹性力学、流体力学、电磁学等问题。

在计算机科学中,张量分析可以用于图像处理、模式识别等领域。

张量分析的发展离不开数学家们的努力。

早在19世纪,克里斯托弗·亚当斯(Christopher Adams)就提出了张量的概念。

20世纪初,爱因斯坦在相对论的研究中也广泛应用了张量分析。

随着计算机的发展和计算能力的提高,张量分析在科学研究中的应用也越来越广泛。

虽然张量分析在各个领域中都有广泛的应用,但它的理论和方法并不容易掌握。

要学好张量分析,需要对线性代数、微积分和向量分析等数学知识有扎实的掌握。

此外,也需要具备一定的物理学和工程学的基础知识。

对于初学者来说,可以通过学习相关的教材和参考资料,同时结合实际问题进行练习和应用。

总之,张量分析是一门重要的数学工具,对于描述和解决多维空间中的问题具有重要的意义。

它在物理学、工程学、计算机科学等领域有着广泛的应用。

张量分析书籍附详尽易懂

张量分析书籍附详尽易懂

n个
称为n维仿射空间。E n 中旳每一种元素称为点。
记:
o (0, ,0),
x (x1,, xn ) ,
(x1, , xn )
且分别称为放射空间旳原点、位置矢量和负矢量。
对于n维仿射空间,全部旳位置矢量构成一种集合:
V0 x (x1,, xn ) xi , xi F,1 i n
(1 t)(1,1) t(1,1) a t b
(1 2t,1 2t) a t b
当 t b 时:
(2t 1,2t 1) (1,1)
当 t a 时:
(2t 1,2t 1) (1,1)
由此可得 a 0 ,b 1 。显然 r1 等 r2 价。
r1 与 r5 : (取 s b5 b1 )
域上旳矢量空间。且仍记为V0 。
数域上旳矢量空间V0 具有如下性质:x, y, z V0 ,、 F
(1)
x yyx
(2)
(x y) z x ( y z)
(3)V0中存在称为有关加法旳单位元素o,使得:
xo x
x V0
(4)V0中每一种元素x都存在唯一旳(-x ),使得:
x (x) o
当t=b时:位置矢量标
定b点。即:
S
(4b 2,3 2b) (2,1)
由此拟定b=1 。
x2
当t=a时:位置矢量标
3
2
定a点。即:
1
(4a 2,3 2a) (1,1.5 )
由此拟定a=0.75 。
图中画出了计算成果 。
x2 3
2 u ab
1
2 (a)
u xy
x1
4
6
u xy u ab
1
2
。 Vx空间中旳矢量称为约束矢量。

张量分析第四章

张量分析第四章
AQ = Q ⋅ A ⋅ Q *
Q ⋅ F ⋅ Q* = F (Q ⋅ A ⋅ Q*)
例3: 试证明:
ε=
1+υ υ σ − (trσ ) I E E
是各向同性函数。 证: 1+υ υ Q ⋅ ε ⋅ Q* = Q ⋅ σ ⋅ Q * −Q ⋅ (tr σ ) I ⋅ Q * ∵ E E
β i1Lir ≤ A i1Lir ≤ α i1Lir
设 P是 Pr张量空间的开集。按第一章第四节的标量积可以 定义A,B∈ P的标量积: 〈 A, B〉 = A⊙ B = Ai Li Bi Li ; (i1 ,L , ir = 1, 2,3) (4.1-1) 容易证明 〈 , 〉 具有下列性质: i)对称性: 〈 A, B〉 = 〈 B, A〉 ; A⊙ B = B ⊙ A , A, B ∈ P (4.1-2) ii)线性性: 〈 A, B + C 〉 = 〈 A, B〉 + 〈 A, C 〉 ; A ⊙ ( B + C ) = A ⊙ B + A⊙ C , A, B, C ∈ P (4.1-3) 4.1-3 iii)正定性: 〈 A, A〉 > 0 , ∀A ≠ 0 ; A⊙ A > 0 , ∀A ≠ 0 (4.1-4) 对任意Pr中的张量 A, B∈ P 。由(4.1-1)式可引入张量的 模和两张量之间的距离。其定义如下:
i i Q
AQ = ( Aij i i i j ) Q = Aij (Q ⋅ i i )(Q ⋅ i j ) = Q ⋅ A ⋅ Q *
F ( A) = F (Q ⋅ A ⋅ Q*)
∴ iii) ∵ ∴
FQ ( A) = ( Fij i i i j ) Q = Fij (Q ⋅ i i )(Q ⋅ i j ) = Q ⋅ F ⋅ Q *

张量分析课件

张量分析课件

P = ∑αij Ej (i=1,2,3) i
j =1
3
Pi′ = ∑ α i′j′ E j′ (i'=1,2,3)
j ′ =1
3
代 入
将一阶张量Ej和Pi的变换规律
Pi′ = ∑ Ai′i Pi
3
代 入
E j′ = ∑ Aj ′j E j
j =1
i =1 3
∑A
i =1
3
i ′i i
P = ∑∑ α i′j′ Aj′j E j
证: 刚体定轴转动:
ω
(Z轴)转轴
刚 体
(
)
v τi A ni O′ ri
v
刚体定轴转动
r2 r r I 质点:ij = m(rij δ ij − ( r )i ( r ) j ) O
v Ri
= m(δ ij xk xk − xi x j ) (i, j, k=1, 2, 3)
例3. 设质量为m的质点位于点(x1, x2, x3), 证明在 正交变换下,由九个分量构成的一个物理量Iij是一个 二阶张量, 其中: I ij = m(δ ij xk xk − xi x j ) (i, j=1, 2, 3) —称Iij为质点的惯性积,有Iij定义的物理量叫惯性矩. 证: 质点:I ij = m(δ ij xk xk − xi x j ) (i, j, k=1, 2, 3) 九个分量:
δij在坐标变换后,其各个分量的值不变. 即在任意坐 标系中按上式定义的二价对称δ符号是一个二阶张量.
例3. 设质量为m的质点位于点(x1, x2, x3), 证明在 正交变换下,由九个分量构成的一个物理量Iij是一个 二阶张量, 其中: I ij = m(δ ij xk xk − xi x j ) (i, j=1, 2, 3) —称Iij为质点的惯性积,有Iij定义的物理量叫惯性矩.

(完整版)《张量分析》报告

(完整版)《张量分析》报告

一 爱因斯坦求和约定1.1指标变量的集合:n n y y y x x x ,...,,,...,,2121表示为:n j y n i x j i ...,3,2,1,,...,3,2,1,==写在字符右下角的 指标,例如xi 中的i 称为下标。

写在字符右上角的指标,例如yj 中的j 称为上标;使用上标或下标的涵义是不同的。

用作下标或上标的拉丁字母或希腊字母,除非作了说明,一般取从1到n 的所有整数,其中n 称为指标的范围。

1.2求和约定若在一项中,同一个指标字母在上标和下标中重复出现,则表示要对这个指标遍历其范围1,2,3,…n 求和。

这是一个约定,称为求和约定。

例如:333323213123232221211313212111bx A x A x A b x A x A x A bx A x A x A =++=++=++筒写为:ijijbx A =j——哑指标i——自由指标,在每一项中只出现一次,一个公式中必须相同遍历指标的范围求和的重复指标称为“哑标”或“伪标”。

不求和的指标称为自由指标。

1.3 Kronecker-δ符号(克罗内克符号)和置换符号Kronecker-δ符号定义j i ji ij ji ≠=⎩⎨⎧==当当01δδ置换符号ijkijk e e =定义为:⎪⎩⎪⎨⎧-==的任意二个指标任意k j,i,当021)(213,132,3的奇置换3,2,1是k j,i,当112)(123,231,3的偶置换3,2,1是k j,i,当1ijk ijke ei,j,k 的这些排列分别叫做循环排列、逆循环排列和非循环排列。

置换符号主要可用来展开三阶行列式:231231331221233211231231133221332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++==因此有:ijmjimii i i jijAA aa a a a ==++=δδδδδ332211kijjkiijkkjiikjjikijkee e e e e e ==-=-=-=同时有:ijjijij iiiijijijkj ikilkljkijjjiiijijijkjikiie e aa aa a a a aa δδδδδδδδδδδδδδδδδδδ=⋅=++=========++=332211332211331001010100131211232221333231321333222111321321321-=====δδδδδδδδδδδδδδδδδδδδδδδδδδδe e k j i k j i k j i k k k j j j i i i ijk333222111321321321r q p r q p r q p k k k j j j i i i pqr ijke e δδδδδδδδδδδδδδδδδδ⋅=ipp i p i p i p i δδδδδδδδδ==++11332211krkqkpjrjqjpiriqippqrijke e δδδδδδδδδ=jqirjriqjrjqiriqkqrijke e kp δδδδδδδδ-===321321322311332112312213322113312312332211333231232221131211k j i ijkkjiijkaa a e a a a e aa a a a a a a a a a a a a a a a a aaaa a aaa a A ==---++==Kronecker-δ和置换符号符号的关系为:itjsjtiskstkije e δδδδ-=二 张量代数2.1张量的加法(减法)两个同阶、同变异(结构) 的张量可以相加(或相减)。

张量分析

张量分析

张量分析研一 熊焕君 2017.9.281.引论:我们对标量和矢量都非常熟悉。

标量是在空间中没有方向的量,其基本特征是只需要一个数就可以表示,且当坐标系发生转动时这个数保持不变,因此也称其为不变量。

而矢量是个有方向的量,三维空间中矢量需要一组三个数(分量)来表示,其基本特征是当坐标系发生转动时,这三个数按一定规律而变化。

然而在数学物理问题中,还常出现一些更为复杂的量,如描述连续体中一点的应力状态或一个微元体的变形特征等,仅用标量和矢量不足以刻画出他们的性质。

要描述这些量则有必要将标量和矢量的概念加以引申和扩充,即引入新的量——张量。

在概念上,张量和矢量有许多类同之处。

一方面张量也表示某一客观存在的几何量或物理量,显然张量作为一个整体是与描述它所选取的坐标系无关,可像矢量代数那样,用抽象法进行描述;另一方面也可像矢量一样采用坐标法进行描述,此时张量包含有若干个分量元素,各个分量的取值与具体的坐标系相关联。

张量的主要特征是,在坐标系发生变化时,其分量取值遵守着一定的转化定律。

张量方法的核心内容是研究一个复杂的量集坐标转换规律。

我们知道,一个物理定律如果是正确的,就必须不依赖于用来描述它的任何坐标系,张量方法就是既采用坐标系,而又摆脱具体坐标系的影响的不变方法。

于是我们可以在简单的直角坐标系中建立描述某一运动法则的支配方程,如果需要可以用张量方法将其转换到任意一个曲线坐标系中去。

例如对于很大一类边值问题,若选用恰当的曲线坐标系,其边界条件可以简化的表达,那么我们就可以将支配方程用张量方法转化到所采用的坐标系中来,从而使问题的求解容易处理。

2.记号与约定张量是包含有大量分量元素的复杂量集,必须使用适当的记号和约定,才能使其表达形式简化紧凑,从而使分析和讨论有序地进行。

从某种意义上讲,可以说张量是对记号的研究。

所以我们必须熟悉各种约定记号,才能对张量这个工具运用自如。

在张量方法中对一个量的标记采用字母标号法。

张量分析第四章

张量分析第四章

的系数相等, 令两边 xα ′ 的系数相等 得
2 α
不是张量
α′
Γ
α′ β ′γ ′
∂ x ∂x ∂x ∂x β ∂xγ α = ∑ β ′ γ ′ α + ∑ α β ′ γ ′ Γ βγ ∂x ∂x α ∂x ∂x αβγ ∂x ∂x
α
α′
这就是联络 Γ βγ 在坐标 变换时的变换规则. 变换时的变换规则
定义 则
Γ λ , βγ = ∑ gαλ Γ α r 2r ∂x ∂ x Γ λ , βγ = λ ⋅ β γ ∂x ∂x ∂x
α βγ
Γ λ , βγ = ∑ gαλ Γα βγ
α
看成是将 Γ
αλ
α 的上标下降的结果. βγ 的上标下降的结果
反之, 的第一个下标上升, 反之 将 Γ λ , β γ 的第一个下标上升
正好是逆变张量指标α和协变 的变换规则. 张量指标βγ的变换规则
§3. 3. 3
克里斯托菲尔符号
α Tβγ 和度规张量 gαβ的关系 的关系. 讨论联络 r 将 2r r ∂x 点乘 ∂ x α r xλ = λ = ∑ Γ βγ xα β γ ∂x ∂x ∂x α
r 2r r ∂x ∂ x α r ⋅ β γ = ∑ Γ βγ xα ⋅ xλ gαλ λ ri ri ∂x ∂x ∂x r r α r r ∂x ∂x ∂X ∂X gαβ = xα ⋅ xβ ≡ α ⋅ β = ∑ α ⋅ β ∂x ∂x ∂x i ∂x
Γ λ , βγ + Γ γ ,λβ =
∂g βλ ∂x γ
将三个指标进行轮换λ→β→γ→λ, 得
∂x
λγ β
Γ β ,γλ + Γ λ , βγ =

张量

张量

一、概论1.标量:最简单的物理量,是常量,是一个实数,例如:距离、时间、温度等2.矢量:有方向的,需要用空间坐标系中的三个分量来表示的物理量,如位移、速度、力等;3.张量:最复杂的物理量,需要用空间坐标系中的三个矢量,也即九个分量才能完整地表示出来。

例如:应力状态、应变状态等。

张量是矢量的推广,与矢量相类似,可以定义由若干个当坐标系改变时满足转换关系的分量所组成的集合为张量。

这表明张量的分量之间存在一定的函数关系,这些函数值与坐标选取无关。

即张量的不变量性质。

张量所带的下角标的数目称为张量的阶数。

标量为零阶张量,矢量为一阶张量,用矩阵表示的(张量)为二阶张量,三阶张量用图形无法表示出来。

二、张量1:张量(tensor)的理论来源。

亚瑟·凯莱( Arthur Cayley)着力研究的不变量理论( invariant theory)导致了矩阵理论的建立, 引进了现代意义上的行列式的代数表达, 这成为射影几何的重要工具。

凯莱的不变量理论产生于19世纪前半叶的英国着重对代数及代数在几何方面的应用研究这样的背景下。

矩阵理论对线性变换的研究引进了向量的代数定义, 而这是张量概念的先导。

另一方面, 格奥尔格·弗雷德里希·波恩哈德·黎曼( Georg Friedrich Bernhard Riemann)提出的n维流形的概念, 这在客观上提出了深入研究代数形式的课题。

黎曼的几何思想在拓展几何学的同时,提高了代数在表达几何对象方面的抽象程度。

黎曼之后, 在克里斯托弗、里奇和列维-契维塔等人的努力下, 形成了张量分析这样的数学方法, 黎曼几何学也因此而建立起来了。

2:张量的定义、性质与应用价值从代数角度讲,它是向量的推广。

我们知道,向量可以看成一维的“表格”(即分量按照顺序排成一排),矩阵是二维的“表格”(分量按照纵横位置排列),那么n阶张量就是所谓的n维的“表格”。

张量的严格定义是利用线性映射来描述的。

张量分析

张量分析

引言张量是一个数学概念。

我们知道,可以由一个实数值完全确定的物理量(如长度、温度、密度等)称为标量;可以用一个实数值(模值)和空间一定方向来表征的物理量(如力、速度、加速度等)称为矢量。

有许多物理量既不是标量,也不是矢量,它们具有更复杂的性质,需要用更复杂的数学实体—张量来描述。

例如,连续体内一点的应力状态和一点的应变状态需要更分别用应力张量σ和应变张量∈来描述,xx xy xz yx yyyz zx yxzz σττστστττσ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭ 112211221122xxxy xz yxyyyz zx yx zz εγγγεγγγε⎧⎫⎪⎪⎪⎪⎪⎪∈=⎨⎬⎪⎪⎪⎪⎪⎪⎩⎭又如,质点对于某定点的转动惯量需要用惯性张量来描述⋅⋅⋅。

事实上,标量和矢量都是张量的特例,它们分别为零阶张量和一阶张量。

这是两种最简单的张量。

在处理物理学和力学问题中,张量理论是一种有效的数学工具。

它有许多突出的优点,例如:(1)张量方程的一个重要特性是与坐标系的选择无关。

这一特性使它能够很好地反映物理定律和各物理量之间的关系。

张量方程对于任何坐标系都具有统一的形式,因此,当坐标系不确定时,照样可以将物理现象用数学方程表达出来。

(2)张量方程的上述特性使我们能够从某种特殊坐标系中建立起适用于一切坐标系的方程。

(3)属于某阶张量的某种物理量所具有的张量特性,对于所有这类张量(不管它们表达何种物理现象)来说,必定也都具有这些特性。

(例如应力张量是二阶对称张量,倘若我们掌握了应力的张量特性,便可以断定所有二阶对称张量,如应变张量、惯性张量以及平板曲率张量等,也都具有这些特性。

) (4)张量表述和张量算法具有十分清晰、简捷的特点。

张量理论是数学中的一个分支。

张量的普遍概念是十九世纪中叶对连续介质力学有了深入研究之后建立起来的。

(在法文中,张量tension 一词具有“应力”的意思;也就是说,张量是像应力那样具有某些特定性质的量。

张量分析

张量分析
第一节 第二节 第三节
问题的提出 矢量的基本运算 坐标变换及张量的定义
自然法则与坐标无关,坐标系的引入方便 自然法则与坐标无关, 分析,但也掩盖了物理本质; 分析,但也掩盖了物理本质; 坐标系引入后的相关表达式冗长
引入张量方法
§A-1 指标符号
x1 , x2 L xn
记作 xi (i = 1,2,L n )
A1 δ ij Ai = δ 1 j A1 + δ 2 j A2 + δ 3 j A3 = A2 A 3 = Aj
j =1 j=2 j=3
ds 2 = dx 2 + dy 2 + dz 2 = dxi dxi = δ ij dxi dx j
性质: 性质: δijδij = δii = δ11 +δ22 +δ33 = 3
称为指标; 下标符号 i 称为指标;n 为维数 可以是下标, 指标 i 可以是下标,如 xi 也可以是上标, 也可以是上标,如 xi 指标的取值范围如不作说明,均表示从 指标的取值范围如不作说明,均表示从1~3
定义这类符号系统为指标符号, 定义这类符号系统为指标符号,一般采用下标
xi( i=1,2,3)~ x1,x2,x3 ~ x, y, z ui( i=1,2,3)~ u1,u2,u3~ u, v, w
如:
2
a ji xi = b j
aki xi = b j aki xi = bk
wrong right
二.克罗内克(Kronecker-δ)符号 克罗内克( ) 定义: 定义
1 δ ij = 0
由定义
当i = j 当i ≠ j
1 0 0 δ11 δ12 δ13 I = 0 1 0 = δ 21 δ 22 δ 23 = δ ij 0 0 1 δ 31 δ 32 δ 33

第2章-张量分析(清华大学张量分析-你值得拥有)PPT课件

第2章-张量分析(清华大学张量分析-你值得拥有)PPT课件

• 负整数次幂
G T 0 T 1(1) T 1 T 1 T T 1
T 2 T 1 T 1
T m T 1 T 1 T 1 T 1
几种特殊的二阶张量
➢ 正张量:N>0的对称二阶张量
uN u 0
➢ 非负张量:N≥0的对称二阶张量 u N u 0
对称二阶张量总可以化为:
N N1e1e1 N2e2e2 N3e3e3
能量密度。而大变形情况会出现高度非线性,则不能 用加法分解,而要用乘法分解。
• 最简单的坐标变换
y y
x cos sin x
y
sin
cos
y
x
• 椭圆曲线的坐标变换
x
正交变换可使椭圆曲线的方程由以下一般形式
ax2 bxy cy2 d 0
变换为最简形式,即两主轴坐标系下形式。
x a
2
y b
2
1
几种特殊的二阶张量
➢ 正交张量Q
• 正交张量的定义和性质
可证: Q e3 e3
Q e1 cos e1 sin e2 Q e2 cos e2 sin e1
e1, e2 整体绕轴向旋转一个角度
几种特殊的二阶张量
• 正交张量对应的正交变换的特性
① 保内积性质 ② 保长度性质 ③ 保角度性质
(Q u) (Q v) u v
(Q u) (Q u) u u
l i
Tii
J2
1 2!
T T ij l
lm i
m j
1 2
(TiiTll
TliTil )
J3
1 3!
T T ijk l
lmn i
Tm n
j k
det(T )

张量分析初学者必看

张量分析初学者必看

A 张量分析
x1 x1 cos x2 sin x2 x1 sin x2 cos
x1 x1 cos x2 sin x2 x1 sin x2 cos
坐标变换式
xi ii xi xi ii xi
ii cos(xi , xi ) ii cos(xi , xi )
Aijk xi y j zk
代表27项 的和式
二、自由指标
§ A-1 指标符号
A11 x1 A12 x2 A13 x3 b1 A21 x1 A22 x2 A23 x3 b2 A31 x1 A32 x2 A33 x3 b3
筒写为
Aij x j bi
j ——哑指标 i——自由指标,在每一项中只出现一次,一个公式 中必须相同
A 张量分析
张量的定义——在坐标系变换时,满足如下变
换关系的量称为张量
ijkl ii jjkk llijkl
张量的阶——自由指标的数目
不变性记法
ijkl ei e j ek el
§A-3 坐标变换与张量的定义
一、加(减)法
§A-4 张量的代数运算
四、两个张量的点积
A 张量分析
两个张量点积的结果仍为张量。新张量的阶数是 原两个张量的阶数之和减 2
A B ( Aijk ei e j ek ) ( Brs t er es et ) Aijk Brs t ei e j kr es et Aijk Bkst ei e j es et S
§ A-1 指标符号 三、 Kronecker- 符号和置换符号 (Ricci符号) Kronecker-符号定义

张量分析(最后附题目)

张量分析(最后附题目)

x2
5
2 常用总体坐标系(正交系)
z
O
(x0 y0 z0)
·
z (ρ0 ϕ0 z0)
·
θ
O
·(r r
0
θ0 ϕ0 )
y
x
x
ϕ
O
ρ
y
x
ϕ
直角坐标系
柱坐标系
v e v A
v v v e x , e y , ez v v v Ax , Ay , Az
v v v e ρ , eϕ , e z 曲线 v v v 正交 Aρ , Aϕ , Az

矢量微分元
Байду номын сангаас
线元,面元,体元v v v v 例: ∫ F ⋅ dl , ∫ B ⋅ dS , ∫ ρ dV
v v 其中:dl , dS dV 称为微分元。
v dl
v dS
A.直角坐标系 在直角坐标系中,坐标变量为(x,y,z),如图,做一微分体元。 v v r r 线元: dlx = dxa x 面元: dS x = dydzax v v r r dS y = dxdza y dl y = dya y v r v r dS z = dxdyaz dlz = dzaz v r r r 体元: dV = dxdydz dl = dxax + dya y + dzaz
(对各向同性、线性电介质) 电极化率,表征了电介质的性质 r r 对各向异性、非线性电介质, 并不和 E 简单成正比, P 其方向也不一定平行,“电极化率”不是一个简单的数。 r r r P 当 E 不太强时, 和 E 的对应关系仍然是线性关系, 可以用分量表示为:
r r ∑ pi 单位体积内所有分子 电极化强度矢量:P = 的电偶极矩矢量和 ΔV r r P = αE

学习张量必看_一个文档学会张量!!!!张量分析

学习张量必看_一个文档学会张量!!!!张量分析

张量函数及其微积分
Appendix A
引言
广义相对论(1915)、理论物理 连续介质力学(固体力学、流体力学) 现代力学的大部分文献都采用张量表示
主要参考书: W. Flugge, Tensor Analysis and Continuum
Mechanics, Springer, 1972. 黄克智等,张量分析,清华大学出版社,2003.

a13 x3 a23 x3

a1 j x j a2 j x j

x3

a31 x1

a32 x2

a33 x3

a3 j x j
利用爱因斯坦求和约定,写成:
xi aij x j
其中 j 是哑指标,i 是自由指标。
张量基本概念
★ 在表达式或方程中自由指标可以出现多次,但不得 在同项内出现两次,若在同项内出现两次则是哑指 标。例: 若i为自由指标
分量记法: ui
Appendix A.1
张量基本概念
指标符号用法
1. 三维空间中任意点 P 的坐标(x, y, z)可缩写成 xi , 其中x1=x, x2=y, x3=z。
2. 两个矢量 a 和 b 的分量的点积(或称数量积)为:
3
a b= a1b1 a2b2 a3b3 aibi i 1
ji, j fi 0
ji, j fii 0
张量基本概念
★ 自由指标表示:若轮流取该指标范围内的任何值, 关系式将始终成立。
例如:表达式 xi aij x j
在自由指标 i 取1,2,3时该式始终成立,即有

x1 x2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ij,k ilj glk glk ilj
定义式:
ij ,k
g j xi
gk
性质: ij,k ji,k
比较:
ikj
g j xi
gk
Christoffel符号仅有定义式是不够的,必须有计算式!
基矢量的导数,Christoffel符号
➢ 基矢量的导数与Christoffel符号
Christoffel的计算式:用gij来计算 gij gi g j
F;
i j
F,
i j
张量分量对坐标的协变导数
★张量场函数的梯度
T
T ij gi g j
Ti j gi g j
T
i j
gi
g
j
Tij gi g j
右梯度:
T
T xk
gk
T
ij ; k
gi
g
j
g
k
Ti
j ;k
g
i
g
j
g
k
T
i j;k
gi
g
j
g
k
Tij;k gi g j gk
左梯度:
T
gk
T xk
dxi
f xi
gi g jdx j
其中, f xi
gi定义为f (r)的梯度f
;g jdx j 即 dr

因此, df f dr
f
f xk
gk
gk
f xk
梯度的几何意义!
取弧元ds,有方向导数:
df f dr f t t f
ds
ds
张量场函数对矢径的导数、梯度
张(矢)量场函数T(r)的梯度,借助有限微分,得
T (r)
dT dr
T xi
gi
从而可得右梯度和左梯度:
T T (r) T gi xi
T
gi
T xi
由此可得: dT (T) dr dr (T )
张量分量对坐标的协变导数
为了计算
T ,则必须引入协变导数
xi
★矢量场函数的梯度
F x j
(F i gi ) x j
F i x j
gi
Fi
gi x j
F i x j
gi
F
i k ij
gk
F i x j
gi
F k ikj gi
矢量分量的协变导数
F g
F x
i j
F k ikj
gi
i ;j i
张量分量对坐标的协变导数
★矢量场函数的梯度
则右梯度:
F
F x j
gj
F;
i j
gi
g
j
Fi; j gi g j
左梯度:
F
gj
Ti
m
j mk
Ti j;k
T
i j
xk
T
m i
j mk
Tmi
m jk
四者之间满足指标升降关系。
张量分量对坐标的协变导数
★张量场函数的梯度
特殊张量1:度量张量G
g ij ;k
0
G G 0
特殊张量2:置换张量
0
两个张量的并AB的协变导数
Aij Bkl
;m
A B ij ;m kl
Aij Bkl;m
O r r
gi (x j x j )
是坐标的非线性函数
基矢量的导数,Christoffel符号
➢ 基矢量的导数与Christoffel符号
协变基矢量的导数与第二类Christoffel符号
g j xi
ikj gk
ikj
g j xi
gk
定义式
从定义式,可探讨性质:
由于
g j xi
xi
r x j
逆变基矢量的导数
gi x j
i jk
g
k
Hale Waihona Puke g对坐标的导数,j ji
的计算公式
g g1, g2 , g3 g1 g2 g3
g xi
j ji
g
j ji
g
g xi
ln g xi
1 2
ln g
xi
张量场函数对矢径的导数、梯度
标量场函数f (r)的梯度 r r xi
df
f xi
T
ij ; k
g
k
gi
g
j
Ti
j ;k
g
k
g
i
g
j
T
i j;k
g
k
gi
g
j
Tij;k gk gi g j
张量分量对坐标的协变导数
★张量场函数的梯度
其中
T ij ;k
T ij xk
T
im
j mk
T
mj i mk
Tij ;k
Tij xk
Timmjk Tmjimk
Tj i;k
Ti j xk
Tm jimk
gij xk
gi xk
g
j
gi
g j xk
ki, j
kj,i
gij xk
ij ,k
ik , j
g jk xi
jk ,i
ji,k
gki x j
ij ,k
1 g jk
2
xi
gik x j
gij xk
lij g kl ij,k
基矢量的导数,Christoffel符号
➢ 基矢量的导数与Christoffel符号
基矢量的导数,Christoffel符号
➢ 张量场函数:T(r)
r r xi
T(r)之所以被称为场函数,是因为它是矢径r的函数。
在曲线坐标系下,基矢量gi并不是常矢量,如何描 述gi随坐标的变化而变化?
基矢量 gi
r xi
本身重要!
r
gi (x j )
gi gi (x1, x2 , x3 )
但是一般来说, AB A B + AB
张量场函数的散度和旋度
从梯度开始理解散度和旋度
梯度(gradient) 散度(divergence)
(L
)
gk
(L ) xk
(L
)
gk
(L ) xk
旋度(curl)
(L
)
gk
(L xk
)
★矢量场函数F(r)的散度
divF
F
F
F xk
gk
F;ii
第4章 曲线坐标张量分析
2020年6月18日
主要内容
基矢量的导数,Christoffel符号 张量场函数对矢径的导数、梯度 张量分量对坐标的协变导数 张量场函数的散度和旋度 积分定理 Riemann-Christoffel张量(曲率张量) 张量方程的曲线坐标分量表示方法 非完整系与物理分量 正交曲线坐标系中的物理分量
iFi
张量场函数的散度和旋度
★张量场函数T(r)的散度
T
T xk
gk
T ij ;k
gi
g
j
gk
T ij ;k
gi
k j
T ij ; j
gi
T
gk
T xk
gk
T ij ;k
gi
g
j
Tk ij
i ;k
g
j
T ij ;i
g
j
T T
张量场函数的散度和旋度
矢量场函数巨漂亮的结果
2r xix j
2r x jxi
gi x j
ikj
k ji
可证明,ikj 共有18个独立的分量,且 ikj 不是张量分量。
基矢量的导数,Christoffel符号
➢ 基矢量的导数与Christoffel符号
第一类Christoffel符号
g j xi
ikj gk
ilj glk gk
ij,k gk
F x j
F;
i j
g
j
gi
Fi; j g j gi
引入新符号
j
;j
来表示矢量分量的协变导数
F
gj
F x j
F;
i j
g
j
gi
Fi; j g j gi
j F i g j gi j Fi g j gi
张量分量对坐标的协变导数 ★矢量场函数的梯度
特殊矢量:矢径r,有 r r G
注:只有在笛卡尔坐标系下才有
相关文档
最新文档