二次方程根的分布情况归纳(完整版)

合集下载

一元二次方程根的分布情况归纳(完整版)

一元二次方程根的分布情况归纳(完整版)
a0


0
出 的
b0

2a

f0 0



0
论 (
b0

2a


af 0 0
a

0 b0 2a f0 0
0 b0 2a af0 0
f0 0 a f0 0
1
分 布 情 况
大 致 图 象 (
a0

表二:(两根与 k 的大小比较)
两根都小于 k 即 x1 k, x2 k
两根都大于 k 即 x1 k, x2 k
例 3、已知二次函数 y m 2 x2 2m 4 x 3m 3 与 x 轴有两个交点,一个大于 1,一个小于 1,求实数 m
的取值范围。
解:由 m 2 f 1 0 即 m 2 2m 1 0
1 2 m 即为所求的范围。
2
例 4、已知二次方程 mx2 2m 3 x 4 0 只有一个正根且这个根小于 1,求实数 m 的取值范围。
解:对称轴 x0 2
( 1)当 2 t 即 t 2 时, ymin f t t2 4t 3 ;( 2)当 t 2 t 1 即 1 t 2 时, ymin f 2
1;
( 3)当 2 t 1 即 t 1 时, ymin f t 1 t 2 2t
例 4、讨论函数 f x x2 x a 1的最小值。
解: f x
3
fm 0
( 1) a 0时,

fn 0
fm 0 ( 2) a 0 时,
fn 0
对以上的根的分布表中一些特殊情况作说明:
( 1)两根有且仅有一根在 m, n 内有以下特殊情况:
若 f m 0 或 f n 0 ,则此时 f m f n 0 不成立,但对于这种情况是知道了方程有一根为

一元二次方程根的分布情况归纳(完整版)

一元二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:若()0f m =或()0f n =,则此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。

如方程()2220mx m x -++=在区间()1,3上有一根,因为()10f =,所以()()()22212mx m x x mx -++=--,另一根为2m,由213m <<得223m <<即为所求;方程有且只有一根,且这个根在区间()n m ,内,即0∆=,此时由0∆=可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。

如方程24260x mx m -++=有且一根在区间()3,0-内,求m 的取值范围。

分析:①由()()300f f -<即()()141530m m ++<得出15314m -<<-;②由0∆=即()2164260m m -+=得出1m =-或32m =,当1m =-时,根()23,0x =-∈-,即1m =-满足题意;当32m =时,根()33,0x =∉-,故32m =不满足题意;综上分析,得出15314m -<<-或1m =-根的分布练习题例1、已知二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。

一元二次方程根的分布情况归纳(完整版)

一元二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况 设方程()200axbx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:若()0f m =或()0f n =,则此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。

如方程()2220mx m x -++=在区间()1,3上有一根,因为()10f =,所以()()()22212mx m x x mx -++=--,另一根为2m,由213m <<得223m <<即为所求;方程有且只有一根,且这个根在区间()n m ,内,即0∆=,此时由0∆=可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。

如方程24260x mx m -++=有且一根在区间()3,0-内,求m 的取值范围。

分析:①由()()300f f -<即()()141530m m ++<得出15314m -<<-;②由0∆=即()2164260m m -+=得出1m =-或32m =,当1m =-时,根()23,0x =-∈-,即1m =-满足题意;当32m =时,根()33,0x =∉-,故32m =不满足题意;综上分析,得出15314m -<<-或1m =-根的分布练习题例1、已知二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。

一元二次方程根的分布情况归纳(完整版)

一元二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表〔每种情况对应的均是充要条件〕表一:〔两根与0的大小比拟即根的正负情况〕分布情况两个负根即两根都小于0()120,0x x << 两个正根即两根都大于0()120,0x x >>一正根一负根即一个根小于0,一个大于0()120x x <<大致图象〔>a 〕得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()00<f大致图象〔<a 〕得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()00>f综合结论〔不讨论a〕()00200b a a f ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()00200b a a f ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()00<⋅f a表二:〔两根与k 的大小比拟〕分布情况两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即21x k x <<大致图象〔>a 〕得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()0<k f大致图象〔<a 〕得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()0>k f综合结论〔不讨论a〕()020b k a a f k ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()020b k a a f k ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()0<⋅k f akkk表三:〔根在区间上的分布〕分布情况两根都在()n m ,内两根有且仅有一根在()n m ,内〔图象有两种情况,只画了一种〕 一根在()n m ,内,另一根在()q p ,内,q p n m <<<大致图象〔>a 〕得出的结论()()0002f m f n b m na ∆>⎧⎪>⎪⎪>⎨⎪⎪<-<⎪⎩()()0<⋅n f m f()()()()0000f m f n f p f q ⎧>⎪<⎪⎨<⎪⎪>⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩ 大致图象〔<a 〕得出的结论()()0002f m f n b m na ∆>⎧⎪<⎪⎪<⎨⎪⎪<-<⎪⎩()()0<⋅n f m f()()()()0000f m f n f p f q ⎧<⎪>⎪⎨>⎪⎪<⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩ 综合结论〔不讨论a〕——————()()0<⋅n f m f()()()()⎪⎩⎪⎨⎧<<00q f p f n f m f 根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,〔图形分别如下〕需满足的条件是〔1〕0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; 〔2〕0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: 〔1〕两根有且仅有一根在()n m ,内有以下特殊情况:假设()0f m =或()0f n =,那么此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。

一元二次方程根的分布情况归纳(完整版)

一元二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)分布情况两个负根即两根都小于0()120,0x x << 两个正根即两根都大于0()120,0x x >>一正根一负根即一个根小于0,一个大于0()120x x <<大致图象(>a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()00<f大致图象(<a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()00>f综合结论(不讨论a)()00200b a a f ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()00200b a a f ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()00<⋅f a分布情况两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即21x k x <<大致图象(>a )得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()0<k f大致图象(<a )得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()0>k f综合结论(不讨论a)()020b k a a f k ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()020b k a a f k ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()0<⋅k f akkk分布情况两根都在()n m ,内两根有且仅有一根在()n m ,内(图象有两种情况,只画了一种) 一根在()n m ,内,另一根在()q p ,内,q p n m <<<大致图象(>a )得出的结论()()0002f m f n b m na ∆>⎧⎪>⎪⎪>⎨⎪⎪<-<⎪⎩()()0<⋅n f m f()()()()0000f m f n f p f q ⎧>⎪<⎪⎨<⎪⎪>⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩ 大致图象(<a )得出的结论()()0002f m f n b m na ∆>⎧⎪<⎪⎪<⎨⎪⎪<-<⎪⎩()()0<⋅n f m f()()()()0000fm f n f p f q ⎧<⎪>⎪⎨>⎪⎪<⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩综合结论(不讨论a)——————()()0<⋅n f m f()()()()⎪⎩⎪⎨⎧<<00q f p f n f m f 根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:若()0f m =或()0f n =,则此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。

二次函数实根分布(正式版)

二次函数实根分布(正式版)

二次方程f(x)=0的两实根x1、x2的分布情况, 可有如下几种(m、n为常数):
y
(1)若x1<x2<m ,则应有
Δ=b2-4ac>0, f(mb )>0, -
2a
<m,
x1 O
x2
m
x
Δ=b2-4ac>0,
或 (x1-m)(x2-m)>0,
(x1-m)+(x2-m)<0.
二次方程f(x)=0的两实根x1、x2的分布情况, 可有如下几种(m、n为常数):
表示比较复杂, 繁琐 Δ=b2-4ac>0, f(m)>0, f(n)>0, b m<- <n.
方法
b <m, 2a
b >m, 2a
f(m)<0
2a
例1:方程 x 2 (m 2) x 5 m 0. 1)两根一源自比 2大,一个比 2小,求 m的范围。
2)两根都比 2大,求 m的范围。
3)两根都比 1小,求 m的范围。
4)两根都在区间( 2, 3)内,求 m的范围。
二次方程根分布问题总结
2 ax bx c 0(a 0) 在某个区间 ★一元二次方程 上有实根,求其中字母系数的问题称为实根分布问题。
实根分布问题一般考虑四个方面,即: (1)开口方向 (2)判别式 (3)对称轴 (4)端点值
b 4ac
2
b x 2a f ( m) 的符号。
y
(1)若x1>x2>m ,则应有
Δ=b2-4ac>0,
b>0, f(m)

2a
>m,
O m
x1
x2 x
Δ=b2-4ac>0,
或 (x1-m)(x2-m)>0,
(x1-m)+(x2-m)>0.

一元二次方程根的分布情况归纳(完整版)

一元二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程ax 2 +bx +c = 0根的分布情况设方程ax 2+bx +c =0(a 0)的不等两根为x ,x 且x x ,相应的二次函数为 f (x )=ax 2+bx +c =0,方程的 根即为二次函数图象与 x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与 0 的大小比较即根的正负情况)分布情况小)都根2根x 1大)都根2,根x 1)2小0 一x 1即(根负于一负大根个正一 一大致图象()a得出的结论00b 2a()0-f00b 2a()0-f0 ) (0 (f大致图象()a得出的结论00b 2a()0-f00b 2a ()0-f0 ) (0 f综合结论(不讨论a)0 0 0)b -a2(f 0a0 0 0)b -a2(f 0a0 ) (0 f a表二:(两根与k的大小比较)表三:(根在区间上的分布)两根有且仅有一根在(m , n )内 (图象有两种情况,只画了一种)一根在 (m ,n )内,另一根在(p ,q ) 内, mn p qf (m )f (n ) 0f (p )f (q )根在区间上的分布还有一种情况:两根分别在区间(m ,n )外,即在区间两侧x 1m ,x 2 n ,(图形分别如下)需满 足的条件是大致图象(a得出的结f (m ) 0 f (n ) 0bm - n2af (m ) f (n ) 0或0 00 )m )n )p )q f (m ) f (n ) 0 f (p ) f (q ) 0 0大致图象(a得出的结f (m ) 0 f (n ) 0bm - n2af (m ) f (n ) 0f (m )f (n)0 f (m ) f (n )0 f (p )0 f (p ) f (q )f (q ) 0 分布情况两根都在(m , n )内综合结论(不讨论af (m ) f (n )2g2 f (0)(m +1) - 8mm - 1mm 3-2 2或m 3+2 2m对以上的根的分布表中一些特殊情况作说明:1)两根有且仅有一根在(m ,n )内有以下特殊情况: 若 f(m )=0或 f (n )=0,则此时 f (m )g f (n )0不成立,但对于这种情况是知道了方程有一根为m 或n ,可以 求出另外一根,然后可以根据另一根在区间(m ,n )内,从而可以求出参数的值。

二次方程根的分布情况归纳(完整版)

二次方程根的分布情况归纳(完整版)

二次方程根的分布
1、一元二次方程
02=++c bx ax 根的分布情况 设方程()2
00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的
根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)
表一:(两根与0的大小比较 即根的正负情况)
k k k
根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是
(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()
0f m f n >⎧⎪⎨>⎪⎩
根的分布练习题
例1、已知二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。

例2、已知方程()2210x m x m -++=有两个不等正实根,求实数m 的取值范围。

例3、已知二次函数()()()2
22433y m x m x m =+-+++与x 轴有两个交点,一个大于1,一个小于1,求实数m
的取值范围。

例4、已知二次方程()2
2340mx m x +-+=只有一个正根且这个根小于1,求实数m 的取值范围。

二次函数在闭区间上的最值练习
例2、求函数()[]2
21,1,3f x x ax x =-+∈的最小值。

例3、求函数2
43y x x =-+在区间[],1t t +上的最小值。

一元二次方程根的分布情况归纳(完整版)

一元二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳21、一元二次方程ax bxO 根的分布情况设方程ax 2 bx O a = O 的不等两根为x 1 ,x 2且x 1 ::: X 2,相应的二次函数为 f X = ax 2 bx O ,方程的 根即为二次函数图象与 X 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与O 的大小比较即根的正负情况)Δ >0-b : O 2aa f O O分布情况两个负根即两根都小于 0 X 1 :: O, x 2 :: O两个正根即两根都大于 0x 1 O, x 2 O一正根一负根即一个根小于 0, 一个大于 OX 1 ::: O :::X 2得出的结论O OO O OOf O :O得出的结论O OOO OO综合结论{不讨论a2a表二:(两根与k的大小比较)分布情况两根都小于k即x1:: k,X2:: k两根都大于k即x1 k, x2k一个根小于k ,一个大于k即x1::k x2( >0 ) 0I∖ // J∖J ka 得出的结论b- k2ab2af k ::得出的结论Δ Ao-b:k2a f k<0Δ>0-b k2a fk :0综合结论{不讨论aA >0-Hk2aa f k 0Δ >02aa f k C 0表三:(根在区间上的分布)分布情况两根都在m,n 内大致图象∖1√两根有且仅有一根在m,n 内一根在 m, n 内,另一根在 p, q内,m ::: n ::: p .- q得出的结论Δ >0 f (m )A 0 * f (n )>0 bm £ ------ Cn2af m f n :: 0得出的结论Δ>0 f (m )v 0« f (n )<0bm £ —一 C n2a综合结论{不讨论af n )<0 或 J f (m f n )^° f ( p )<0 I f (P )f (q )c ° f q )>of (m )c 0 f (n )>0[f (m )f ( n )c °«或Qf ( p )A 0 I f (P )f (q )<°f q )c 0f m f n :: 0f P f q : : 0根在区间上的分布还有一种情况:两根分别在区间 m, n 夕卜,即在区间两侧 x 1 :::m,x 2 ∙n ,(图形分别如下)需满 足的条件是(2) a对以上的根的分布表中一些特殊情况作说明:(1)两根有且仅有一根在m,n内有以下特殊情况:若f m =0或f n =0,则此时f m =f n ::: 0不成立,但对于这种情况是知道了方程有一根为m或n ,可以求出另外一根,然后可以根据另一根在区间m,n内,从而可以求出参数的值。

二次方程根的分布情况归纳(完整版)

二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳
1、一元二次方程ax2 bx c 0根的分布情况
设方程ax2bx c 0 a 0的不等两根为x i,x2且x1 x2,相应的二次函数为f x ax2bx c 0,方程的根即为二次函数图象与x轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)
表一:(两根与0的大小比较即根的正负情况)
分布情况两个负根即两根都小于0
x1 0, x20
两个正根即两根都大于0
X 0, x20
一正根一负根即一个根小于0,
一个大于0 X1 0 x2
得出的结论得出的结
论综合结论
{不讨论a
2a
2a
表二:(两根与k的大小比较)
分布情况两根都小于k即
x1 k, x2k
两根都大于k即
x1 k, x2k
得出的
结论
2a f k
得出的结论综合结论{不讨论a
b k
2a
f k 0
2a
a f k 0
表三:(根在区间上的分布)
分布情况
o o
n q
f f m p f f

o o o
o
o
n n
o b a
t 2 n 得出的结论
o o
n q
f f m p f f

o o o
o
o
n
n
o o
b
m n f f m
得出的结论
综合结论{不讨论
a
m,n 夕卜,即在区间两侧 x i m,X 2 n,(图形分别如下)需满
根在区间上的分布还有一种情况:两根分别在区间
足的条件是。

二次方程根的分布情况归纳(完整版)

二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)k k k根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:1︒ 若()0f m =或()0f n =,则此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。

如方程()2220mx m x -++=在区间()1,3上有一根,因为()10f =,所以()()()22212mx m x x mx -++=--,另一根为2m,由213m <<得223m <<即为所求;2︒ 方程有且只有一根,且这个根在区间()n m ,内,即0∆=,此时由0∆=可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。

如方程24260x mx m -++=有且一根在区间()3,0-内,求m 的取值范围。

分析:①由()()300f f -<即()()141530m m ++<得出15314m -<<-;②由0∆=即()2164260m m -+=得出1m =-或32m =,当1m =-时,根()23,0x =-∈-,即1m =-满足题意;当32m =时,根()33,0x =∉-,故32m =不满足题意;综上分析,得出15314m -<<-或1m =-根的分布练习题例1、已知二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。

二次方程根的分布情况归纳

二次方程根的分布情况归纳

二次方程()200axbx c a ++=≠根的分布一元二次方程02=++c bx ax 根的分布情况【一元二次方程根的分布的类型:】 1、零分布(1)有两正根 (2)有两负根 (3)一正一负2、k 分布(1)有两个大于k 的根 (2)有两个小于k 的根 (3)一个大于k,一个小于k, (4)有一个根在区间(k 1,k 2)内 (5)区间(k 1,k 2)有两个根 【引例】设方程的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)分布情况两个负根即两根都小于0()120,0x x << 两个正根即两根都大于0()120,0x x >>一正根一负根即一个根小于0,一个大于0()120x x <<大致图象(>a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()00<f大致图象(<a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()00>f综合结论(不讨论a)()00200b a a f ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()00200b a a f ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()00<⋅f a分布情况两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即21x k x <<大致图象(>a )得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()0<k f大致图象(<a )得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()0>k f综合结论(不讨论a)()020b k a a f k ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()020b k a a f k ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()0<⋅k f akkk分布情况两根都在()nm,内两根有且仅有一根在()nm,内(图象有两种情况,只画了一种)一根在()nm,内,另一根在()qp,内,qpnm<<<大致图象(0 > a)得出的结论()()2f mf nbm na∆>⎧⎪>⎪⎪>⎨⎪⎪<-<⎪⎩()()0<⋅nfmf()()()()f mf nf pf q⎧>⎪<⎪⎨<⎪⎪>⎩或()()()()f m f nf p f q<⎧⎪⎨<⎪⎩大致图象(0 < a)得出的结论()()2f mf nbm na∆>⎧⎪<⎪⎪<⎨⎪⎪<-<⎪⎩()()0<⋅nfmf()()()()f mf nf pf q⎧<⎪>⎪⎨>⎪⎪<⎩或()()()()f m f nf p f q<⎧⎪⎨<⎪⎩综合结论(不讨论a )——————()()0<⋅nfmf()()()()⎪⎩⎪⎨⎧<<qfpfnfmf根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩一元二次方程根的分布题型例1、已知二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次方程根的分布与二次函数在闭区间上的最值归纳
1、一元二次方程ax2+bx+c = 0根的分布情况
设方程ar+bx+c = 0(d H 0)的不等两根为心兀且片 < 心,相应的二次函数为f (x) = or? +bx+c = 0, 方程的根即为二次函数图象与X轴的交点,它们的分布情况见下而各表(每种情况对应的均是充要条件)
表一:(两根与0的大小比较即根的正负情况)
表二:(两根与£的大小比较)
表三:(根在区间上的分布)
需满足的条件是
对以上的根的分布表中一些特殊情况作说明:
(1)两根有且仅有一根在(/,")有以下特殊情况:
1°若/(/«) = 0或/(") = 0,则此时/(/«>/(/?)< 0不成立,但对于这种情况是知道了方程有一根为加或",
可以求出另外一根,然后可以根据另一根在区间(加丿),从而可以求出参数的值。

如方程〃区2—(加+ 2)x+2 = 0
2 2
在区间(1,3)上有一根,因为/(1) = 0> 所以mx2—(m+2)x+2 = (x—l)(mr—2)> 另一根为— > 由1 < — <3 2
得一<tn<2即为所求;
3
2°方程有且只有一根,且这个根在区间(〃?,〃),即△ = 0,此时由4 = 0可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给左的区间,如若不在,舍去相应的参数。

如方程x2-4/^ +2w+ 6 = 0
有且一根在区间(-3,0),求加的取值围。

分析:①由/(-3>/(0)< 0即(14加+ 15)(加+ 3)< 0得出
]5 3
一3<〃?<一訂:②由△ = ()即16〃/一4(2〃? + 6) = 0得出〃?= -1 或加=;,当〃? = 一1 时,根兀= -2e(-3,0),
3 3 15即〃2 = —1满足题意:当/« = -时,根兀=3点(一3,0),故/// = -不满足题意:综上分析,得出一3<〃2<-一或
2 v 7 2 14
m = -1
根的分布练习题
例1、已知二次方程(2加+ 1)疋_2皿+(加_1) = 0有一正根和一负根,数加的取值圉。

解:由(2^ + 1)./(0)<0即(2加+ 1)伽一1)<0,从而得一|</»< 1即为所求的围。

例2、已知方程2/一(加+ 1)尤+〃7 = 0有两个不等正实根,数川的取值風
解:由
△ >0
>0 => <
0 v 也v 3 - 2 >/亍或加> 3 + 2 即为所求的用。

例3、已知二次函数y = (m+2)^-(2m+4)x+(3m+3)与x 轴有两个交点,一个大于1, 一个小于1,数加 的取值围。

解:由(?«+2)./(1)<0即(加+ 2)・(2加+ 1)<0 => -2<m<-即为所求的围。

2
例4、已知二次方程77U-2+(2/77-3)% +4 = 0只有一个正根且这个根小于1,数川的取值围。

解:由题意有方程在区间(0,1)上只有一个正根,则/(0>/(1)<0 => 4.(3/?? + 1)<0 => m<~-即为所 求围。

(注:本题对于可能岀现的特殊情况方程有且只有一根且这个根在(0,1),由4 = 0汁算检验,均不复合题意,
计算量稍大)
_(〃2 +
l )
2.2 /(0)
>0 (加+ 1)~ -
8/77 > 0
Hl > -1
〃? v 3 — 2
近或 u >
3 + 2 >/2
=>
解:对称轴x 0 = l^[2,3],故函数/(x)在区间[2,3] ±单凋。

卩(心—(2)
(1)当。

>0时,函数/(X )在区间[2,3]上是增函数,故<
=> 3a + b + 2 =
5
2+b = 2 => (2)当avO 时,函数/(A )^E 区间[2,3] h 是减函数,故
=>
nun
h + 2 = 5 3a+b + 2 = 2
=>
a = -1
b = 3
2、二次函数在闭区间加司上的最大、最小值问题探讨
设/(x) = ax 2
+bx + c = 0(a >0),则二次函数在闭区间[加丿]上的最大、最小值有如下的分布情况:
(1) 若一? € [心]'则 /(^)max = maX 1 ' /Wmin =
min
1
r/OOf ;
2a \ 2a )
2a)
J
J 、"
丿
⑵若-f ■丘[加/],则/(A )max = max{/(/«),/(/:)}, /(x)min =nin{/(m),/(n)}
2a
另外,当二次函数开口向上时,自变量的取值离开X 轴越远,则对应的函数值越大;反过来,当二次函数开 口向下时,自变量的取值离开X 轴越远,则对应的函数值越小。

二次函数在闭区间上的最值练习
二次函数在闭区间上求最值,讨论的情况无非就是从三个方而入手:开口方向.对称轴以及闭区间,以下三 个例题各代表一种情况。

例1、函数f(x) = ax 2
-2cix+2+b(a^O)在[2,3]上有最大值5和最小值2,求的值。

例2、求函数f (x) = x2-2ax+l y x^[1,3]的最小值。

解:对称轴x^=a
(1)当“V1 时,y mn=f(l) = 2-2a:
⑵ 当\<a<3时,)爲=/(。

) = 1一圧;
(3)当"3时,=7(3) = 10-66/
改:1.本题若修改为求函数的最大值,过程又如何?
解:(1)当a <2时,/(x)nux =/(3)= 10-66/;
(2)当a>2时,/(x)n^ =/(1) = 2-2^/«
2.本题若修改为求函数的最值,讨论又该怎样进行?
解:(1)当“vl 时,/⑴唤*(3) = 10—&, /W nun =7(1) = 2-267 ;
⑵当1K2 时,f(x)n^=f⑶=10-&八 /(叽n=/(“) = l_/:
(3)当2"<3时,/(^)_=/(1) = 2-2«,心)—⑷= 1";
(4)当"3时,/W nm=/(l) = 2-2^, /«_=/(3) = 10-6^
例3、求函数y = F _ 4兀+ 3在区间[/,/ + 1]上的最小值。

解:对称轴x0 = 2
(1)当2vf即/>2时,儿讪=于(/)=尸一4/ + 3:
(2)当t<2<t +1即1 <t<2时,y nMn =/(2) = -1:
(3)当2>『+ 1 即fv 1 时,=/(r + l) = r2-2/
例4、讨论函数/(x) = x2 +|x-«|+l的最小值。

解:f(x) = x2+\x-a\ + \ = \X1+X~a + t'X^a,这个函数是一个分段函数,由于上下两段上的对称轴分别为
7 1 1x2^x+a + \.x<a
直线兀=一丄,x =丄,当a<--9a>-时原函数的图象分别如下(1), (2), (3)
2 2 2 2 2 2
⑵当时,/W nwi=/(«) = «2+l:
(3)当“ n —时,f (x) . = f — \ = — +a
2、7m,n{2) 4
以上容是自己研究整理,有什么错误的地方,欢迎各位指正,不胜感激!。

相关文档
最新文档