16.1.2 二次根式的乘法

合集下载

(整理版)最新人教版八年级数学下册全册教案

(整理版)最新人教版八年级数学下册全册教案

义务教育课程标准人教版数学教案九年级下册科任老师二次根式16.1二次根式⑴一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。

2、掌握二次根式有意义的条件。

3、掌握二次根式的基本性质:,a 0(a 0)和(._a)2 a(a 0)二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质 " 0(a 0)和(、a)2 a(a 0)。

三、学习过程(一)复习引入:(1)已知x2 = a,那么a是x的_________; x 是a 的____________ , 记为________a 一定是___________ o _(2)4的算术平方根为2,用式子表示为仏 __________________ ;正数a的算术平方根为____________ ,0的算术平方根为___________ ;式子■, a 0(a 0)的意义是________________________o(二)提出问题1、式子a表示什么意义?2、什么叫做二次根式?3、式子、a 0(a 0)的意义是什么?4、(、a)2 a(a 0)的意义是什么?5、如何确定一个二次根式有无意义?(三)自主学习自学课本第2页例前的内容,完成下面的问题:1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?_ _ 运律—V3 訥6 3:yJ~53心)V x212、计算:⑵(-3)2⑴(.4)2(3)(..0.5)2(4) ( )2V3根据计算结果,你能得出结论:(尉 ___________________ 其中a 0,( a)2 a(a 0)的意义是__________________________ 。

3、当a为正数时指a的___________________________ ,而0的算术平方根是________ ,负数__________ ,只有非负数a才有算术平方根。

所以,在二次根式中,字母a必须满足, 才有意义。

专题16.1 二次根式的化简求值(压轴题专项讲练)(解析版)-八年级数学下册

专题16.1 二次根式的化简求值(压轴题专项讲练)(解析版)-八年级数学下册

专题16.1二次根式的化简求值整体思想:指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。

整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。

一、二次根式的定义形如(≥0)的式子叫做二次根式,叫做二次根号,叫做被开方数.二、二次根式有意义的条件1.二次根式中的被开方数是非负数;2.二次根式具有非负性:≥0.三、判断二次根式有意义的条件1.如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数;2.如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.四、二次根式的性质性质1:2=(≥0),即一个非负数的算术平方根的平方等于它本身;性质2:2==(≥0)−(<0),即一个任意实数平方的算术平方根等于它本身的绝对值.五、同类二次根式把几个二次根式化为最简二次根式以后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.①同类二次根式类似于整式中的同类项;②几个同类二次根式在没有化简之前,被开方数完全可以互不相同;③判断两个二次根式是否是同类二次根式,首先要把它们化为最简二次根式,然后再看被开方数是否相同.六、二次根式的加减法则二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.七、二次根式的乘除法则①二次根式的乘法法则:∙=∙o≥0,≥0);②积的算术平方根:∙=∙o≥0,≥0);≥0,>0);=≥0,>0).八、最简二次根式我们把满足①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.这两个条件的二次根式,叫做最简二次根式.九、分母有理化1.分母有理化是指把分母中的根号化去:分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式;2.两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.一个二次根式的有理化因式不止一个.【典例1】阅读下列材料,然后回答问题.====3−1以上这种化简的步骤叫做分母有理化.②学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知a+b=2,ab=-3,求2+2.我们可以把a+b和ab看成是一个整体,令x=a+b,y=ab,则2+2=(+p2−2B=2−2=4+6=10.这样,我们不用求出a,b,就可以得到最后的结果.(1(2)m是正整数,a b22+1823B+22=2019.求m.(3)已知15+2−26−2=1,求15+2+26−2的值.(1)由题目所给出的规律进行计算即可;(2)先求出+=2(2+1),B=1再由22+1823B+22=2019进行变形再求值即可;(3)先得到15+2⋅26−2=20,然后可得(15+2+26−2)2=(15+2−26−2)2+415+2⋅26−2=81,最后由15+2≥0,26−2≥0,求出结果.解:(1)原式=2+++⋯+2=3−1+5−3+7−5+⋯+2019−20172=(2)∵a b∴+==2(2+1),B=1,∵22+1823B+22=2019,∴2(2+2)+1823=2019,∴2+2=98,∴4(2+1)2=100,∴2=±5−1,∵m是正整数,∴m=2.(3)由15+2−26−2=1得出(15+2−26−2)2=1,∴15+2⋅26−2=20,∵(15+2+26−2)2=(15+2−26−2)2+415+2⋅26−2=81,又∵15+2≥0,26−2≥0,∴15+2+26−2=9.1.(2023下·浙江·八年级阶段练习)已知=2−3,=2+3,则代数式2+2B+2+−−4的值为()A B.34C.3−1D【思路点拨】根据已知,得到+=2−3+2+3=22,−=2−3−2−3=−23,整体思想带入求值即可.【解题过程】解:∵=2−3,=2+3,∴+=2−3+2+3=22,−=2−3−2−3=−23,∴2+2B+2+−−4=+2+−−4=222−23−4=8−23−4=4−23=32−23+1=3−12=3−1.故选C.2.(2022下·广西钦州·八年级统考阶段练习)已知+1=7(0<<1),则−)【思路点拨】,故<,将−由0<<1,得0<<1【解题过程】解:∵0<<1,∴0<<1,∴<2=−2+1,+1=7(0<<1),∵(−∴(−∴=-5或−=5,∵<0,∴∴故选B.3.(2023·浙江宁波·校考一模)若2+2=1,则2−4+4+B−3+−3的值为()A.0B.1C.2D.3【思路点拨】先根据2+2=1得出−1≤≤1,−1≤≤1,根据2−4+4+B−3+−3要有意义,得出+ 1−3≥0,根据−3<0得出+1≤0,从而得出J−1,将J−1代入即可求出式子的值.【解题过程】解:∵2+2=1,∴−1≤≤1,−1≤≤1,∵2−4+4+B−3+−3要有意义,∴B−3+−3≥0,整理得:+1−3≥0,∵−3<0,∴+1≤0,∴J−1,∴2−4+4+B−3+−3=−22++1−3=−1−22+−1+1−3=3+0=3,故D正确.故选:D.4.(2023上·四川达州·八年级校考期中)已知xx6﹣22019x5﹣x4+x3﹣22020x2+2x﹣2020的值为()A.0B.1C.2019D.2020【思路点拨】对已知进行变形,再代入所求式子,反复代入即可.【解题过程】解:∵=2020−=2020+2019,∴6−220195−4+3−220202+2−2020,=5−22019−4+2−22020+2−2020,=52020+2019−22019−4+22020+2019−22020+2−2020,=52020−2019−4+22019−2020+2−2020,=42020−2019−1+22019−2020+2−2020,=2020+20192019−2020+2−2020=−+2−2020,=−2020,=2019,故选:C.5.(2023·安徽·校联考模拟预测)设a为3+5−3−5的小数部分,b为6+33−6−33的小数部分,则2b−1的值为()A.6+2−1B.6−2+1C.6−2−1 D.6+2+1【思路点拨】首先分别化简所给的两个二次根式,分别求出a、b对应的小数部分,然后化简、运算、求值,即可解决问题.【解题过程】解:3+5−3−5-=5+15-1=2∴a的小数部分为2-1,6+336−33−=3+33-3=6∴b的小数部分为6-2,∴2b−1=6+2-2-1=6-2+1,故选:B.6.(2022上·湖南益阳·八年级统考期末)设1=1+112+122,2=1+122+132,3=1+132+142,……,=1+ 12+1(r1)2.其中n为正整数,则1+2+3+⋅⋅⋅+2021的值是()A.202020192020B.202020202021C.202120202021D.202120212022【思路点拨】根据题意,先求出=1+1or1),然后把代数式进行化简,再进行计算,即可得到答案.【解题过程】解:∵n为正整数,∴=2+r1or1)=1+1or1);∴1+2+3+⋯+2021=(1+11×2)+(1+12×3)+(1+13×4)+…+(1+12021×2022)=2021+1﹣12+12−13+13−14+⋯+12021−12022=2021+1﹣12022=202120212022.故选:D.7.(2023上·上海金山·八年级校考期中)如果=5−2,则1=.【思路点拨】本题考查了二次根式的化简求值,熟练掌握二次根式的性质、完全平方公式是解题关键.先根据二次根式的分母有理化可得1,从而可得1−>0,再利用完全平方公式化简二次根式,代入计算即可得.【解题过程】解:∵=5−2,∴1=5−2=5−2=5+2,∴1−55−2∴1=1+=1+−=5+2+4=5+6.故答案为:5+6.8.(2022上·湖南长沙·七年级校联考阶段练习)已知==42−3B+42=.【思路点拨】先把和的值分母有理化得到==−=−12,B=1,再利用完全平方公式变形原式得到4(−p2+5B,然后利用整体代入的方法计算.【解题过程】解:∵==∴====∴−=−12,B=1,∴原式=4(−p2+5B=4×(−12)2+5×1=6.故答案为6.9.(2022下·浙江杭州·八年级校考期中)已知=2的值等于.【思路点拨】通过完全平方公式求出+1=2,把待求式的被开方数都用+1的代数式表示,然后再进行计算.【解题过程】=2,解:∵+∴=4,∴+1+2=4∴+12===10.(2023下·广东深圳·九年级深圳中学校考自主招生)已知x,y为正整数,+−7−7+ 7B=7,求+=.【思路点拨】将等式进行因式分解,得到++7B−7=0,求得B=7,即可求解.【解题过程】解:∵+−7−7+7B=7,∴+−7−7+7B−7=0,∴B+−7++7B−7=0,∴+B−7+7B−7=0,∴++7B−7=0,∵++7>0,∴B−7=0,∴B=7,又x,y为正整数,则s=1,7或7,1,从而+=8,故答案为:8.11.(2023下·黑龙江绥化·八年级校考阶段练习)设=3−2,则6+35+113+2+1=.【思路点拨】利用+22=2+4+4和=3−2,推得2+4+1=0,借助该式将多项式进行降幂化简,即可求解.【解题过程】解:∵=3−2,∴+22=3−2+22=3,又∵+22=2+4+4,即2+4+4=3,整理得2+4+1=0,6+35+113+2+1=42+4+1+35+113+2+1−45−4=−5−4+113+2+1=−32+4+1−4+113+2+1+44+3=34+123+2+1=322+4+1+2+1−32=−32+2+1=−32+4+1+2+1+12+3=14+4,将=3−2代入原式可得14×3−2+4=143−24.故答案为:143−24.12.(2022下·湖北武汉·九年级统考自主招生)已知=则代数式23−32−7+2022的值为.【思路点拨】将已知条件=2−3=−1,再将所求代数式变形为23−62+32−7+2022,由此即可求解.【解题过程】解:已知=∴2=3+5,即2−3=5,等式两边同时平方得,2−32=52,整理得,42−12+9=5,即42−12=−4,∴2−3=−1,∵23−32−7+2022=2o2−3p+32−7+20022把2−3=−1代入得,=2×−1+32−7+2022=32−2−7+2022=32−9+2022=3(2−3p+2022把2−3=−1代入得,=3×−1+2022=2019,故答案为:2019.13.(2022上·上海闵行·=3,=13.【思路点拨】首先对第一个式子的分子利用平方差公式分解,第二个式子利用完全平方公式分解,然后约分,合并同类二次根式即可化简,然后代入数值计算即可.【解题过程】解:原式=K=+++=2+2当=3,=13时,原式=23+=23+=14.(2023·北京·九年级专题练习)已知==,求2+2的值.【思路点拨】首先把x和y进行分母有理化,然后将其化简后的结果代入计算即可.【解题过程】解:∵==5−26,===5+26,∴原式=(5+2(5−26)=2620626206=26)(49206)6)(49206)6)(492026)(49206)=245−1006−986+240+245+1006+986+240=970.15.(2023下·山东威海·九年级校考期中)已知+=−8,B=12,求+【思路点拨】根据题意可判断a和b都是负数,然后二次根式的乘、除法公式和合并同类二次根式法则化简并求值即可.【解题过程】解:∵+=−8,B=12,∴a和b均为负数,2+2−2B=40=B+B=2B2B=2+2B=−−==2=−4012=−401212=−40×2312=−203316.(2023上·上海杨浦·七年级校考阶段练习)已知−2B−15=0【思路点拨】讨论:当>0,>0,利用因式分解的方法得到−5+3=0,解得=25,当I0,<0,则−−+5−−−3−=0,解得=9,然后把=25,=9化简求解.【解题过程】解:∵−2B−15=0要有意义,即B≥0,∴>0且>0或I0且<0,当>0且>0时,∵−2B−15=−5+3=0,∴−5=0或+3=0(舍去),解得:=25,把=25=25r5r225K10r=2;当I0且<0时,∵−2B−15=−−+5−−−3−=0,∴−r5−=0(舍去)或−−3−=0,解得:=9,把=9==9K3r29r6r=12.17.(2023上·四川成都·八年级成都市三原外国语学校校考阶段练习)已知==(2【思路点拨】(1)先将x、y进行分母有理化,再代入式子计算可得;(2)先将式子化简再代入x、y进行计算即可.【解题过程】(1)∵=10−3=10+3,=10−3,=∴+=210,−=6,∴2+2B+2=(+p2=(210)2=40.(2)∵=10+3,=10−3,∴1∴o−2)=−2o−2)−+1o+1)=1−1=1010=10−3−10−3=−6.18.(2023上·河北衡水·八年级校联考阶段练习)已知=2−3,=2+3.(1)求+和B的值;(2)求2+2−3B的值;(3)若的小数部分是,的整数部分是,求B−B的值.【思路点拨】本题考查了二次根式的混合运算、利用完全平方公式进行计算、无理数的估算,熟练掌握以上知识点并灵活运用是解此题的关键.(1)代入=2−3,=2+3即可求出+和B的值;(2)将原式变形为+2−5B,代入数值进行计算即可;(3)先估算出1<3<2,从而得出=2−3,=3,再代入进行计算即可得出答案.【解题过程】(1)解:∵=2−3,=2+3,∴+=2−3+2+3=4,B=2−32+3=4−3=1;(2)解:由(1)得:+=4,B=1,∴2+2−3B=+2−5B=42−5×1=11(3)解:∵1<3<4,∴1<3<4,即1<3<2,∴−2<−3<−1,∴0<2−3<1,∵的小数部分是,∴=2−3,∵3<2+3<4,的整数部分是,∴=3,∴B−B=2−32−3−32+3=4−43+3−6−33=1−73.19.(2023下·广东江门·八年级统考期中)有这样一类题目:将±2化简,如果你能找到两个数m、n,使2+2=且B =,±2将变成2+2±2B ,即变成(±p 2,从而使±2得以化简.(1)例如,∵5+26=3+2+26=(3)2+(2)2+22×3=(3+2)2,∴5+26=(3+2)2=______,请完成填空.(2)仿照上面的例子,请化简4−23;(3)利用上面的方法,设=6+42,=3−5,求A +B 的值.【思路点拨】(1)根据二次根式的性质:2==o >0)0(=0)−o <0),即可得出相应结果.(2)根据(1)中“5+26=3+2+26=(3)2+(2)2+22×3=(3+2)2”,将代数式转化为完全平方公式的结构形式,再根据二次根式的性质化简求值,即可得出结果.(3)根据题意,首先把A 式和B 式分别转化为完全平方公式的结构形式,再根据二次根式的性质把A 式和B 式的结果分别算出,最后把A 式和B 式再代入A +B 中,求出A +B 的值.【解题过程】(1)∵5+26=2+3+26=22+32+2×2×3=2+32∴5+26=(3+2)2=3+2故答案为:3+2(2)∵4−23=3+1−23=32+1−23=3−12∴4−23=(3−1)2=3−1.(3)∵=6+42=4+2+42=42+22+2×4×2=(2+2)2∴=6+42=2+2∵=3−5=∴=3−5====∴把A 式和B 式的值代入A +B 中,得:+=2+2=2+2220.(2023下·广西钦州·八年级校考阶段练习)我们将+、−称为一对“对偶式”,因为+−=(p2−(p2=−,所以构造“和−====3+22.像这中的“”样,通过分子,分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化根据以上材料,理解并运用材料提供的方法,解答以下问题:“>”、“<”或“=”填空);(1(2)已知==,求K2rB2的值;+…+(3【思路点拨】(1)先分母有理化,然后根据作差法,比较大小即可求解;(2)先求得−s B的值,然后代入即可求解;(3)将每一项分母有理化,然后就根据二次根式的加减进行计算即可求解.【解题过程】(17−2=7−2===∵7>6,2>3−137−6+2−3>0,>故答案为:>.(2)∵==5+45+4=9+45,==5+2=5−45+4=9−45,∴+=9+45+9−45=18,−=9+45+−9+45=85,B=9+45945−80=1,∴K 2rB2+⋯+(3=3)2(53−35)35)(5−3979799⋯+2(99979799)(99979799)(9997−97=1−33+33−55+55−77+⋯+9797−9999=1−9999=1−。

人教版数学八年级下册16.1《二次根式》说课稿1

人教版数学八年级下册16.1《二次根式》说课稿1

人教版数学八年级下册16.1《二次根式》说课稿1一. 教材分析人教版数学八年级下册16.1《二次根式》是初中数学的重要内容,主要让学生了解二次根式的概念、性质和运算。

本节内容是在学生已经掌握了实数、有理数、无理数等基础知识的基础上进行学习的,为后续学习二次根式的应用和进一步学习高中数学打下基础。

二. 学情分析八年级的学生已经具备了一定的数学基础,对实数、有理数、无理数等概念有一定的了解。

但是,对于二次根式的概念和性质,学生可能初次接触,理解起来有一定的难度。

因此,在教学过程中,需要引导学生通过观察、思考、讨论等方式,逐步理解和掌握二次根式的相关知识。

三. 说教学目标1.知识与技能:让学生掌握二次根式的概念、性质和运算方法。

2.过程与方法:通过观察、思考、讨论等方式,培养学生的逻辑思维能力和团队合作能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自主学习能力。

四. 说教学重难点1.教学重点:二次根式的概念、性质和运算方法。

2.教学难点:二次根式的性质和运算规律。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、积极思考。

2.教学手段:利用多媒体课件、实物模型等教学手段,帮助学生形象直观地理解二次根式的概念和性质。

六. 说教学过程1.导入新课:通过复习实数、有理数、无理数等基础知识,引出二次根式的概念。

2.探究二次根式的性质:让学生观察、分析例子,引导学生发现二次根式的性质。

3.学习二次根式的运算:通过讲解和练习,让学生掌握二次根式的运算方法。

4.应用拓展:布置一些相关的练习题,让学生巩固所学知识,并能够灵活运用。

七. 说板书设计板书设计要简洁明了,突出二次根式的概念、性质和运算方法。

可以设计如下:1.二次根式的概念–定义:形如√a(a≥0)的式子称为二次根式。

2.二次根式的性质–√a = √b(a=b≥0)–√a × √b = √(ab)(a≥0,b≥0)–√a ÷ √b = √(a/b)(a≥0,b>0)3.二次根式的运算方法–加减法:同底数相加减,指数不变;–乘除法:底数相乘除,指数相加减。

人教版初中数学八年级下册第十六章:二次根式(全章教案)

人教版初中数学八年级下册第十六章:二次根式(全章教案)

第十六章二次根式教材简析本章的内容主要包括:二次根式的概念和性质、二次根式的乘除、二次根式的加减.在中考中,本章重在考查二次根式的概念和性质以及运用二次根式的运算法则进行化简、求值.教学指导【本章重点】二次根式的性质和运算.【本章难点】灵活运用二次根式的性质及运算法则进行相关的化简与实数的简单运算.【本章思想方法】1.掌握类比思想.如:类比算术平方根的概念理解二次根式的性质,类比整式的运算法则理解二次根式的运算法则.2.掌握分类讨论思想.如:在进行二次根式的化简时,当被开方数中有字母且没有给出字母的取值范围时,应考虑对字母的取值进行分类讨论.3.体会整体思想.如:在求含有二次根式的代数式的值时,有时从整体角度考虑,将已知条件和待求值的式子进行变形后整体代入求值.课时计划16.1二次根式2课时16.2二次根式的乘除2课时16.3二次根式的加减2课时16.1二次根式第1课时二次根式的概念教学目标一、基本目标【知识与技能】理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围.【过程与方法】经历观察、比较、总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.【情感态度与价值观】经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用意识.二、重难点目标【教学重点】二次根式的概念,二次根式有意义的条件.【教学难点】求二次根式中字母的取值范围.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P2~P3的内容,完成下面练习.【3 min反馈】1.一个正数有两个平方根;0的平方根为0;在实数范围内,负数没有平方根.因此,在实数范围内开平方时,被开方数只能是正数或0.2.一般地,我们把形如a(a≥0)的式子叫做二次根式,“”称为二次根号.3.下列式子中,不是二次根式的是(B)A.45B.-3C.a2+3D.2 3环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】下列各式中,哪些是二次根式,哪些不是二次根式?11,-5,(-7)2,313,15-16,3-x(x≤3),-x(x≥0),(a-1)2,-x2-5,(a-b)2(ab≥0).【互动探索】(引发学生思考)要判断一个根式是不是二次根式,一是看根指数是不是2,二是看被开方数是不是非负数.【解答】因为11,(-7)2,15-16=130,3-x(x≤3),(a-1)2,(a-b)2(ab≥0)中的根指数都是2,且被开方数均为非负数,所以都是二次根式.313的根指数不是2,-5,-x(x≥0),-x2-5的被开方数都小于0,所以不是二次根式.【互动总结】(学生总结,老师点评)判断一个式子是不是二次根式,要看所给的式子是否具备以下条件:(1)带二次根号;(2)被开方数是非负数.【例2】当x________,x+3+1x+1在实数范围内有意义.【互动探索】(引发学生思考)二次根式有意义要满足什么条件?本题是否还要考虑其他条件?【分析】要使x+3+1x+1在实数范围内有意义,必须同时满足被开方数x+3≥0和分母x+1≠0,解得x≥-3且x≠-1.【答案】≥-3且x≠-1【互动总结】(学生总结,老师点评)使一个代数式有意义的未知数的取值范围通常要考虑三种情况:一是分母不为零,二是偶次方根的被开方数为非负数,三是零次幂的底数不为零.活动2巩固练习(学生独学)1.下列式子中,是二次根式的是(A)A.-7B.3 7C.x D.x 2.使式子-(x-5)2有意义的未知数x有(B) A.0 个B.1 个C.2 个D.无数个3.当x是多少时,2x+3x+x2在实数范围内有意义?解:依题意,得⎩⎪⎨⎪⎧2x +3≥0,x ≠0,解得⎩⎪⎨⎪⎧x ≥-32,x ≠0.∴当x ≥-32且x ≠0时,2x +33+x 2在实数范围内没有意义.活动3 拓展延伸(学生对学)【例3】若实数x 、y 满足y >x -2+6-3x +3,求|y -3|-(x -y )2的值.【互动探索】要求|y -3|-(x -y )2的值,需确定出x 、y 的取值范围.根据式子y >x -2+6-3x +3,可以确定出x 、y 的取值范围.【解答】由题意,得x -2≥0且6-3x ≥0, 解得x =2,则y >3.故|y -3|-(x -y )2=y -3-y +2=2-3=-1.【互动总结】(学生总结,老师点评)利用二次根式有意义的条件求出x 的值,从而确定y 的取值范围,然后利用二次根式的性质化简代数式.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式⎩⎪⎨⎪⎧概念有意义的条件——被开方数是非负数练习设计请完成本课时对应训练!第2课时 二次根式的性质教学目标一、基本目标 【知识与技能】理解a (a ≥0)是一个非负数、(a )2=a (a ≥0)和a 2=a (a ≥0),并利用它们进行计算和化简;了解代数式的概念.【过程与方法】在明确(a )2=a (a ≥0)和a 2=a (a ≥0)的算理的过程中,感受数学的实用性;通过小组合作交流,培养学生的合作意识.【情感态度与价值观】通过二次根式的相关计算,进而解决一些实际问题,培养学生解决问题的能力. 二、重难点目标 【教学重点】 二次根式的性质. 【教学难点】运用二次根式的性质进行有关计算.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P3~P4的内容,完成下面练习. 【3 min 反馈】1.(1)当a >0时,a 表示a ;(2)当a =0时,a 表示0概括:一般地,a (a ≥0)是一个非负数.2.教材P3“探究”,根据算术平方根的意义填空: (1)(4)2=4; (2)2=2;⎝⎛⎭⎫132=13; (0)2=0. (2)一般地,(a )2=a (a ≥0). 3.教材P4“探究”,填空: (1)22=2;0.012=0.01; ⎝⎛⎭⎫232=23; 02=0.(2)一般地,a 2=a (a ≥0).教师点拨:二次根式的三个性质:(1)a (a ≥0)是一个非负数;(2)(a )2=a (a ≥0);(3)a 2=a (a ≥0).4.用基本运算符号把数或表示数的字母连结起来的式子,我们称这样的式子为代数式. 5.计算:0.019 6×22 500=21;549=73. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:(1)( 1.5)2; (2)(25)2; (3)16; (4)(-5)2.【互动探索】(引发学生思考)一个非负数的算术平方根的平方等于什么?当二次根式的被开方数是一个完全平方数,开方时有什么规则?【解答】(1)()1.52 =1.5. (2)(25)2=22×(5)2=4×5=20. (3)16=(42)=4. (4)()-52=52=5.【互动总结】(学生总结,老师点评)一个非负数的算术平方根的平方等于这个非负数.当二次根式的被开方数是一个完全平方数时,a 2=||a =⎩⎨⎧a ()a ≥0;-a()a <0.【例2】化简下列二次根式. (1)8a 3b (a ≥0,b ≥0); (2)(-36)×169×(-9).【互动探索】(引发学生思考)根据开方的定义化简.注意:二次根式的结果是最简二次根式.【解答】(1)8a 3b =22·a 2·2ab =(2a )2·2ab =2a 2ab . (2)(-36)×169×(-9)=36×169×9=6×13×3=234.【互动总结】(学生总结,老师点评)(1)若被开方数中含有负因数,则应先化成正因数;(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(式),即化为最简二次根式.活动2 巩固练习(学生独学) 1.下列各式正确的是( D ) A .(-4)×(-9)=-4×-9 B .16+94=16×94C .449=4×49D .4×9=4×92.计算:(1)(9)2; (2)-(3)2; (3)64; (4)a 2+2a +1. 解:(1)9. (2)-3. (3)8. (4)a 2+2a +1=()a +12=||a +1.当a ≥-1时,原式=a +1;当a <-1时,原式=-a-1.3.已知实数a 、b 在数轴上的位置如图所示,化简:(a +1)2+2(b -1)2-|a -b |.解:从数轴上a 、b 的位置关系,可知-2<a <-1,1<b <2,且b >a ,故a +1<0,b -1>0,a -b <0,原式=|a +1|+2|b -1|-|a -b |=-(a +1)+2(b -1)+(a -b )=b -3.活动3 拓展延伸(学生对学)【例3】 已知a 、b 、c 是△ABC 的三边长,化简(a +b +c )2-(b +c -a )2+(c -b -a )2. 【互动探索】根据三角形的三边关系,得出b +c >a ,b +a >c .根据二次根式的性质得出含有绝对值的式子,然后去绝对值符号合并即可.【解答】∵a 、b 、c 是△ABC 的三边长,∴b +c >a ,b +a >c ,∴原式=|a +b +c |-|b +c -a |+|c -b -a |=a +b +c -(b +c -a )+(b +a -c )=a +b +c -b -c +a +b +a -c =3a +b -c .【互动总结】(学生总结,老师点评)解答本题的关键是根据三角形的三边关系得出不等关系,进行变换后,结合二次根式的性质进行化简.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式的性质⎩⎪⎨⎪⎧a ≥0(a ≥0)(a )2=a (a ≥0)a 2=|a |=⎩⎪⎨⎪⎧a (a ≥0)a (a <0)练习设计请完成本课时对应训练!16.2二次根式的乘除第1课时二次根式的乘法教学目标一、基本目标【知识与技能】理解a·b=ab(a≥0,b≥0),ab=a·b(a≥0,b≥0),并利用它们进行计算和化简.【过程与方法】经历“探索——发现——猜想——验证”的过程,引导学生体会合情推理与演绎推理的相互依赖、相互补充的关系;培养学生用规范的数学语言进行表达的习惯和能力.【情感态度与价值观】鼓励学生积极参与数学活动,激发学生的好奇心和求知欲,体验数学活动中的探索和创新,感受数学的严谨性.二、重难点目标【教学重点】二次根式的乘法运算法则.【教学难点】运用二次根式的乘法运算法则进行简单的运算.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P6~P7的内容,完成下面练习.【3 min反馈】1.教材P6“探究”,计算下列各式,观察计算结果,你能发现什么规律?(1)4×9=6,4×9=6;(2)16×25=20,16×25=20;(3)25×36=30,25×36=30.a≥0,b≥0.规律:一般地,二次根式的乘法法则是a·b=ab()2.把a·b=ab反过来,就得到ab=a·b,利用它可以进行二次根式的化简.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算:(1)3×5; (2)13×27; (3)9×27; (4)12× 6. 【互动探索】(引发学生思考)利用二次根式的乘法运算法则进行计算. 【解答】(1)3×5=15. (2)13×27=13×27=9=3. (3)9×27=9×27=92×3=9 3. (4)12×6=12×6= 3. 【互动总结】(学生总结,老师点评)利用二次根式的乘法运算法则进行计算时,注意被开方数必须是非负数.【例2】化简:(1)9×16; (2)16×81; (3)81×100; (4)4a 2b 3; (5)54.【互动探索】(引发学生思考)利用二次根式积的算术平方根的性质进行化简时,需要注意什么?【解答】(1)9×16=9×16=3×4=12. (2)16×81=16×81=4×9=36. (3)81×100=81×100=9×10=90. (4)4a 2b 3=4·a 2·b 3=2·a ·b 2·b =2ab b . (5)54=9×6=32×6=3 6.【互动总结】(学生总结,老师点评)积的算术平方根是二次根式乘法法则的逆用,注意被开方数必须是非负数.活动2 巩固练习(学生独学)1.等式x +1·x -1=x 2-1成立的条件是( A ) A .x ≥1 B .x ≥-1 C .-1≤x ≤1 D .x ≥1或x ≤-12.计算: (1)12×3; (2)23×315; (3)23×3512×5936. 解:(1)6. (2)310. (3)18.3.判断下列各式是否正确,不正确的请予以改正: (1)(-4)×(-9)=-4×-9; (2)41225×25=4×1225×25=4×1225×25=412=8 3. 解:(1)不正确.改正:(-4)×(-9)=4×9=36=6. (2)不正确. 改正:41225×25=11225×25=11225×25=112=47. 活动3 拓展延伸(学生对学) 【例3】比较大小:(1)35与53; (2)-413与-511.【互动探索】由于根号外的因数不为1,可以将根号外的因数移到根号内,再比较被开方数的大小.【解答】(1)35=9×5=45, 53=25×3=75. 因为45<75,所以35<5 3. (2)-413=-16×13=-208, -511=-25×11=-275.因为208<275,所以-208>-275,所以-413>-511.【互动总结】(学生总结,老师点评)要比较两个二次根式的大小,可以先运用二次根式的乘法运算法则,将根号外的数移到根号内,再比较被开方数的大小.环节3 课堂小结,当堂达标 (学生总结,老师点评)练习设计请完成本课时对应训练!第2课时二次根式的除法教学目标一、基本目标【知识与技能】1.理解ab=ab(a≥0,b>0)和ab=ab(a≥0,b>0)及利用它们进行运算;2.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【过程与方法】通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.【情感态度与价值观】在经历二次根式除法运算法则的过程中,获得成就感,建立学习数学的信心和兴趣.二、重难点目标【教学重点】最简二次根式的概念,二次根式的除法运算法则.【教学难点】二次根式商的算术平方根的运用.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P8~P10的内容,完成下面练习.【3 min反馈】(一)二次根式的除法1.教材P8“探究”,计算下列各式,观察计算结果,你能发现什么规律?(1)49=23,49=23;(2)1625=45,1625=45;(3)3649=67,3649=67.规律:一般地,二次根式的除法法则是ab=ab()a≥0,b>0.2.把ab=ab反过来,就得到ab=ab()a≥0,b>0,利用它可以进行二次根式的化简.(二)最简二次根式1.观察教材P8~P9例4、例5、例6中各小题的最后结果,比如22,310,2aa等,可以发现这些式子有如下两个特点:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.2.在二次根式的运算中,一般要把最后结果化为最简二次根式,并且分母中不含二次根式.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算:(1)123;(2)32÷18;(3)14÷116;(4)648.【互动探索】(引发学生思考)利用二次根式的除法运算法则进行计算.【解答】(1)原式=123=4=2 .(2)原式=32÷18=32×8=3×4=2 3.(3)原式=14÷116=14×16=4=2.(4)原式=648=8=2 2.【互动总结】(学生总结,老师点评)利用二次根式的除法运算法则进行计算时,注意被开方数必须是非负数,结果必须是最简二次根式.【例2】化简:(1)364;(2)64b29a2;(3)35;(4)22-1.【互动探索】(引发学生思考)利用二次根式的除法运算法则和商的算术平方根的性质将二次根式进行化简.【解答】(1)原式=364=38.(2)原式=64b29a2=8b3a.(3)原式=35=3×55×5=155.(4)原式=2×()2+1()2-1()2+1=2+22-1=2+ 2. 【互动总结】(学生总结,老师点评)利用二次根式的除法运算法则和商的算术平方根的性质将二次根式进行化简时,注意将结果化为最简二次根式.活动2 巩固练习(学生独学) 1.计算113÷213÷125的结果是( A ) A .27 5B .27C . 2D .272.如果xy(y >0)是二次根式,那么化为最简二次根式是( C ) A .xy(y >0) B .xy (y >0) C .xyy(y >0) D .以上都不对3.化简: (1)483; (2)0.7; (3)23-1; (4)6-56+5. 解:(1)4. (2)7010. (3)3+1. (4)11-230. 活动3 拓展延伸(学生对学) 【例3】已知9-x x -6=9-xx -6,且x 为偶数,求(1+x )x 2-5x +4x 2-1的值.【互动探索】等式形式符合商的算术平方根公式→确定x 的取值范围→化简所求式子【解答】由题意,得⎩⎪⎨⎪⎧ 9-x ≥0,x -6>0,即⎩⎪⎨⎪⎧x ≤9,x >6,∴6<x ≤9.∵x 为偶数,∴x =8, ∴原式=(1+x )(x -4)(x -1)(x +1)(x -1)=(1+x )x -4x +1=(1+x )x -4(x +1)=(1+x )(x -4). ∴当x =8时,原式=4×9=6.【互动总结】(学生总结,老师点评)根据商的算术平方根的性质化简时,分子中被开方数是非负数,分母中被开方数是正数.环节3课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对应训练!16.3二次根式的加减第1课时二次根式的加减教学目标一、基本目标【知识与技能】通过合并被开方数相同的二次根式,会进行二次根式的加法与减法运算.【过程与方法】在分析问题的过程中,渗透对二次根式加减法的理解,再总结经验,用它来指导二次根式的计算和化简.【情感态度与价值观】鼓励学生积极参与数学活动,体会合作学习的先进性.二、重难点目标【教学重点】会将二次根式化为最简二次根式,掌握二次根式加减法的运算.【教学难点】运用二次根式的加减运算解决问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P12~P13的内容,完成下面练习.【3 min反馈】1.一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.2.计算下列各式.(1)22+32;(2)28-38+58;(3)7+27+9×7;(4)33-23+ 2.解:(1)原式=(2+3)2=5 2.(2)原式=(2-3+5)8=48=8 2.(3)原式=7+27+37=(1+2+3)7=67.(4) 原式=(3-2)3+2=3+ 2.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算: (1)27+13+12; (2)32+48-8+3; (3)3⎝⎛⎭⎫22-63+ 1.5-223;(4)()6-222+()23-1()23+1.【互动探索】(引发学生思考)运用二次根式的加减法法则及乘法公式进行计算,在计算时要注意哪些问题?【解答】(1)27+13+12=33+33+23=1633. (2)32+48-8+3=32+43-22+3=2+5 3. (3)3⎝⎛⎭⎫22-63+ 1.5-223=26-2+62-223=326-53 2.(4)()6-222+()23-1()23+1=6-412+8+()12-1=25-8 3.【互动总结】(学生总结,老师点评)计算二次根式的加减法时,先把二次根式化为最简二次根式,再合并同类二次根式.计算二次根式的混合运算时,注意运算顺序.【例2】已知a -5-2+b -5+2=0,求a 2+b 2+7的值.【互动探索】(引发学生思考)根据算术平方根的非负性,可得a =5+2,b = 5-2,然后再代入求值即可.【解答】由题意,得a -5-2=0,b -5+2=0,解得a =5+2,b =5-2,a 2+b 2+7=5+4+45+5+4-45+7=5.【互动总结】(学生总结,老师点评)此题主要考查了二次根式的加减,关键是掌握算术平方根具有非负性.活动2 巩固练习(学生独学) 1.计算32-2的值是( D ) A .2 B .3 C . 2D .2 22.若最简二次根式3a -8与17-2a 可以合并,则a =5. 3.计算: (1)348-913+312; (2)(48+20)+(12-5). 解:(1)=15 3. (2)63+ 5. 活动3 拓展延伸(学生对学)【例3】已知4x 2+y 2-4x -6y +10=0,求23x 9x +y 2x y 3-x 21x -5x yx的值. 【互动探索】先将已知等式进行变形,把它配成完全平方式,得(2x -1)2+(y -3)2=0,即可求出x 、y 的值.再根据二次根式的加减运算,先把各项化成最简二次根式,再合并同类二次根式,最后代入求值.【解答】∵4x 2+y 2-4x -6y +10=4x 2-4x +1+y 2-6y +9=(2x -1)2+(y -3)2=0,∴x =12,y =3. 原式=23x 9x +y 2x y3-x 21x+5x y x=2x x +xy -x x +5xy =x x +6xy . 当x =12,y =3时,原式=12×12+632=24+3 6. 【互动总结】(学生总结,老师点评)化简求值时一般是先化简为最简二次根式,再代入求值.化简时不能跨度太大,缺少必要的步骤易造成错解.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式的加减法则:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.练习设计请完成本课时对应训练!第2课时 二次根式的混合运算教学目标一、基本目标 【知识与技能】掌握含有二次根式的混合运算和含有二次根式的乘法公式的应用. 【过程与方法】复习整式运算知识并将该知识应用于含有二次根式的混合运算. 【情感态度与价值观】理解知识间的类比,进一步体会数学学习方法的重要性. 二、重难点目标 【教学重点】熟练地进行二次根式的混合运算,进一步提高运算能力. 【教学难点】正确地运用二次根式混合运算法则及运算律进行运算,并把结果化简.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P14的内容,完成下面练习. 【3 min 反馈】1.二次根式的混合运算顺序与整式的混合运算顺序一样,即先乘方,再乘除,最后加减,有括号的先算括号里面的.2.在二次根式的运算中,多项式乘法法则和乘法公式仍然适用. 3.计算: (1)13×27; (2)35; (3)80-45; (4)(25-2)2. 解:(1)3. (2)155. (3) 5. (4)22-410. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)12223×9145÷35; (2)⎝⎛⎭⎫312-213+48÷23+⎝⎛⎭⎫132;(3)2-(3+2)÷3.【互动探索】(引发学生思考)如何进行二次根式的混合运算? 【解答】(1)原式=12×9×83×145×53=12×9×229= 2. (2)原式=⎝⎛⎭⎫63-233+43÷23+13=2833×123+13=143+13=5. (3)原式=2-3+23=2-1-233.【互动总结】(学生总结,老师点评)二次根式的混合运算顺序与整式的混合运算顺序一样,即先乘方,再乘除,最后加减,有括号的先算括号里面的.【例2】计算:(1)(2+3-6)(2-3+6); (2)(2-1)2+22(3-2)(3+2); (3)⎝⎛⎭⎫6-1332-3424×(-26).【互动探索】(引发学生思考)(1)利用平方差公式进行计算即可;(2)先利用完全平方公式和平方差公式进行计算即可;(3)利用乘法分配律进行计算即可.【解答】(1)原式=[2+(3-6)][2-(3-6)]=(2)2-(3-6)2=2-(9-218)=2-9+62=-7+6 2.(2)原式=2-22+1+22×(3-2)=2-22+1+22=3. (3)原式=⎝⎛⎭⎫6-66-326×(-26)=-236×(-26)=8. 【互动总结】(学生总结,老师点评)利用乘法公式进行二次根式混合运算的关键是熟记常见的乘法公式;在二次根式的混合运算中,整式乘法的运算律同样适用.活动2 巩固练习(学生独学) 1.下列计算:①(2)2=2;② (-2)2=2;③(-23)2=12;④(2+3)( 2-3)=-1.其中正确的有( D )A .1个B .2个C .3个D .4个2.如果(2+2)2=a +b 2(a ,b 为有理数),则a = 6,b = 4. 3.计算: (1)(6+8)×3; (2)(46-32)÷22; (3)(5+6)(3-5); (4)(10+7)(10-7).解:(1)32+2 6.(2)23-32.(3)13-3 5.(4)3.活动3拓展延伸(学生对学)【例3】先化简,再求值:1x+y+1y+yx x+y,其中x=5+12,y=5-12.【互动探索】化简式子→代入x、y的值进行计算【解答】1x+y+1y+yx(x+y)=xyxy(x+y)+x(x+y)xy(x+y)+y2xy(x+y)=xy+x(x+y)+y2xy(x+y)=(x+y)2xy(x+y)=x+y xy.当x=5+12,y=5-12时,x+y=5,xy=1,所以原式= 5.【互动总结】(学生总结,老师点评)求代数式的值,如果直接代入计算比较繁琐,可以根据式子特点,整体代入进行计算.环节3课堂小结,当堂达标(学生总结,老师点评)二次根式的混合运算同整式的混合运算顺序相同,乘法公式和乘法法则同样适用.练习设计请完成本课时对应训练!。

人教版八年级数学下册全册集体备课教案

人教版八年级数学下册全册集体备课教案

目录第十六章二次根式16.1 二次根式/2第1课时二次根式的概念/2第2课时二次根式的性质/416.2 二次根式的乘除/6第1课时二次根式的乘法/6第2课时二次根式的除法/8第3课时最简二次根式/1016.3 二次根式的加减/12第1课时二次根式的加减/12第2课时二次根式的混合运算/14 第十七章勾股定理17.1 勾股定理/17第1课时勾股定理/17第2课时勾股定理的应用(1)/19 第3课时勾股定理的应用(2)/21 17.2 勾股定理的逆定理/23第1课时勾股定理的逆定理(1)/23 第2课时勾股定理的逆定理(2)/25 第十八章平行四边形18.1 平行四边形/2818.1.1 平行四边形的性质/28第1课时平行四边形的性质(1)/28 第2课时平行四边形的性质(2)/30 18.1.2 平行四边形的判定/32第1课时平行四边形的判定(1)/32 第2课时平行四边形的判定(2)/34 18.2 特殊的平行四边形/3618.2.1 矩形/36第1课时矩形的性质/36 第2课时矩形的判定/3818.2.2 菱形/40第1课时菱形的性质/40第2课时菱形的判定/4218.2.3 正方形/44第十九章一次函数19.1 函数/4719.1.1 变量与函数/47第1课时变量/47第2课时函数/4919.1.2 函数的图象/5119.2 一次函数/5419.2.1 正比例函数/5419.2.2 一次函数/56第1课时一次函数/56第2课时求一次函数的表达式/59 19.2.3 一次函数与方程、不等式/61 19.3 课题学习选择方案/63第二十章数据的分析20.1 数据的集中趋势/6720.1.1 平均数/6720.1.2 中位数和众数/7020.2 数据的波动程度/7220.3 课题学习体质健康测试中的数据分析(略)/73教材典题变式/74第十六章二次根式主题二次根式课型新授课上课时间教学内容16.1二次根式;16.2二次根式的乘除;16.3二次根式的加减.教材分析二次根式是在学生学习过有理式(包括整式和分式)的基础上,进一步学习最基本的,也是最常用的无理式(无理式还包括n次根式).学习本章不仅是为以后将要学习的“解直角三角形”“一元二次方程”和“二次函数”等内容打下必要的基础,而且也是为继续学习高中数学提供了知识准备.教学目标1.知识与技能(1)理解二次根式的概念.(2)理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0).(3)掌握·=,=·(a≥0,b≥0),=(a≥0,b>0),=(a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并进行计算.(2)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(3)利用最简二次根式的概念,来对相同的二次根式进行合并,达到计算和化简的目的.3.情感、态度与价值观通过本章的学习培养学生利用规定准确计算和化简的严谨的科学精神,经历探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重难点重点:1.二次根式(a≥0)是一个非负数;()2=a(a≥0);=a(a≥0)及其运用.2.二次根式加减乘除法的规定及其运用.3.最简二次根式的概念.难点:1.对(a≥0)是一个非负数的理解;对等式()2=a(a≥0)及=a(a≥0)的理解及应用.2.利用最简二次根式的概念把一个二次根式化成最简二次根式.知识结构课题二次根式课时第1课时上课时间教学目标1.知识与技能理解二次根式的概念,并利用(a≥0)的意义解答具体题目.2.过程与方法提出问题,根据问题给出概念,应用概念解决实际问题.3.情感、态度与价值观通过本节的学习培养学生利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.教学重难点重点:二次根式的概念.难点:利用“(a≥0)”解决具体问题.教学活动设计二次设计课堂导入问题1:你能用带有根号的式子填空吗?(1)面积为3的正方形的边长为,面积为S的正方形的边长为.(2)一个长方形围栏,长是宽的2倍,面积为130 m2,则它的宽为 m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与落下的高度h(单位:m)满足关系h=5t2,如果用含有h的式子表示t,则t= .问题2:上面得到的式子分别表示什么意义?有什么共同特征?探索新知合作探究自学指导教师引导学生思考上面的问题,用算术平方根表示结果,可以进行适当的评价,帮助学生实现从数的算术平方根过渡到用含有字母的式子表示算术平方根.学生自己总结得出二次根式的概念.合作探究小组合作,探究以下例题:【例1】下列式子,哪些是二次根式,哪些不是二次根式:,,,(x>0),,,-,,(x≥0,y≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.【例2】当x是怎样的实数时,在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以x-2≥0,才有意义.续表探索新知合作探究【例3】当x是多少时,+在实数范围内有意义?分析:使+在实数范围内有意义,必须同时满足中的2x+3≥0和中的x+1≠0.教师指导1.易错点:(1)(a≥0)表示a的算术平方根,它是一个非负数,即≥0.(2)从形式上看,二次根式必须有二次根号.(3)二次根式(a≥0)中a可以表示数、单项式、多项式以及符合条件的一切代数式.2.归纳小结:(1)形如(a≥0)的式子叫做二次根式,“”称为二次根号.(2)要使二次根式在实数范围内有意义,必须满足被开方数是非负数.3.规律方法:当a>0时,表示a的算术平方根,因此>0;当a=0时,表示0的算术平方根,因此=0.所以(a≥0)是一个非负数.当堂训练1.下列式子中,是二次根式的是( )(A)-(B)(C)(D)x2.当x是多少时,+x2在实数范围内有意义?3.已知a,b为实数,且+2=b+4,求a,b的值.板书设计二次根式的概念1.二次根式的定义2.二次根式有意义的条件教学反思课题二次根式课时第2课时上课时间教学目标1.知识与技能理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.2.过程与方法通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题.3.情感、态度与价值观通过本节的学习培养学生利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.教学重难点重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.难点:用分类思想的方法导出(a≥0)是一个非负数;用探究的方法导出()2=a(a≥0).教学活动设计二次设计课堂导入等于什么?我们不妨取a的一些值,如2,-2,3,-3,…分别计算对应的a2的值,看看有什么规律:==2;==2;==3;==3;…你能概括一下的值吗?探索新知合作探究自学指导思考:(a≥0)是一个什么数呢?阅读课本后,根据算术平方根的意义填空: ()2= ;()2= ;()2= ;()2= ;2= ;2= ;得出二次根式的性质:()2=a(a≥0).合作探究小组合作,探究以下例题【例1】计算:(1)()2;(2)(2)2.探究:根据算术平方根的意义填空:= ;= ;= ;= .通过计算我们可以得到=2,=0.1,=,=0.一般地,根据算术平方根的意义:=a(a≥0).续表探索新知合作探究【例2】化简(1);(2).教师指导1.易错点:与要注意平方与开方的先后顺序.当先开方时,要求a≥0;当先平方时,a取任何实数都能使二次根式有意义.2.归纳小结:二次根式的性质(1)≥0(a≥0).(2)=a(a≥0).(3)=|a|=3.规律方法:当a是负数时,=-a,当a是非负数时,=a,所以在化简时,要注意把被开方数转化成一个数的平方的形式.当堂训练1.数a没有算术平方根,则a的取值范围是( )(A)a>0 (B)a≥0 (C)a<0 (D)a=02.(-)2= .3.把下列非负数写成一个数的平方的形式:(1)5;(2)3.4;(3);(4)x(x≥0).板书设计二次根式的性质1.二次根式的性质1:=a(a≥0);2.二次根式的性质2:=a(a≥0).教学反思课题二次根式的乘除课时第1课时上课时间教学目标1.知识与技能理解·=(a≥0,b≥0),=·(a≥0,b≥0),并利用它们进行计算和化简.2.过程与方法发展观察、归纳、概括等能力,发展有条理的思考能力以及语言表达能力.3.情感、态度与价值观通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识.教学重难点重点:·=(a≥0,b≥0),=·(a≥0,b≥0)及它们的运用.难点:发现规律,导出·=(a≥0,b≥0).教学活动设计二次设计课堂导入1.上节课我们学习了什么是二次根式以及二次根式的特点,现在,我们一起来复习一下这些基本的知识吧.(引导学生复习基本知识)2.在有理数的运算中,我们学习了加、减、乘、除四则运算,那么,在我们学习了二次根式之后,大家有没有考虑过,两个二次根式能否进行加、减、乘、除运算?怎样运算?让我们从研究乘法开始.探索新知合作探究自学指导自学课本,尝试理解二次根式的乘法法则:一般地,对二次根式的乘法规定为·=.(a≥0,b≥0)合作探究1.小组合作,探究以下等式:=·(a≥0,b≥0)根据这个式子,我们可以利用它对二次根式进行化简.思考这样一个问题,=×成立吗?为什么?2.通过例题,小组可以总结出化简二次根式的一般步骤:(1)将被开方数尽可能分解成几个平方数.(2)应用=·(a≥0,b≥0)(3)应用=a(a≥0)化简3.例题探究(小组合作)【例1】若·=成立,试化简|x-4|+|x|. 【例2】已知是不大于20的整数,求整数x的值.续表探索新知合作探究教师指导1.易错点:在应用二次根式的乘法法则运算时,易忽略被开方数取非负数这个条件.2.归纳小结:(1)二次根式的乘法:·=(a≥0,b≥0).(2)积的算术平方根的性质:积的算术平方根等于积中各因式的算术平方根的积,即:=·(a≥0,b≥0).3.规律方法:(1)两个二次根式相乘,等于被开方数相乘,根指数不变.(2)被开方数a,b可以是非负的数字、字母或代数式.(3)此性质可推广到多个非负因数的情况.当堂训练1.若直角三角形两条直角边的边长分别为 cm和 cm,那么此直角三角形斜边长是( )(A)3 cm (B)3 cm (C)9 cm (D)27 cm2.自由落体的公式为s=gt2(g为重力加速度,它的值为10 m/s2),若物体下落的高度为720 m,则下落的时间是.3.一个底面为30 cm×30 cm长方体玻璃容器中装满水,现将一部分水倒入一个底面为正方形、高为10 cm铁桶中,当铁桶装满水时,容器中的水面下降了20 cm,铁桶的底面边长是多少厘米?板书设计二次根式的乘法1.二次根式的乘法法则:·=(a≥0,b≥0)2.积的算术平方根:=·(a≥0,b≥0)教学反思课题二次根式的乘除课时第2课时上课时间教学目标1.知识与技能(1)会进行简单的二次根式的除法运算.(2)使学生能利用商的算术平方根的性质进行二次根式的化简与运算. 2.过程与方法引导学生从特殊到一般总结归纳的方法以及类比的方法,解决数学问题.3.情感、态度与价值观通过本节课的学习使学生认识到事物之间是相互联系的,相互作用的.教学重难点重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二次根式的除法运算.难点:二次根式的除法与商的算术平方根的关系及应用.教学活动设计二次设计课堂导入计算下列各题,观察有什么规律?(1)= ;= .(2)= ;= .;.探索新知合作探究自学指导自学课本,尝试完成以下活动1.请同学们回忆·=(a≥0,b≥0)是如何得到的?2.观察下面的例子,并计算:==;=类似地,再举几个例子,然后由这些特殊的例子,得出:=(a≥0,b>0)合作探究小组合作,探究以下例题【例1】计算:(1);(2)÷.【例2】化简:(1);(2).续表探索新知合作探究小组讨论,类比上节课内容,把=反过来,就得到=(a≥0,b>0),利用它就可以进行二次根式的化简.教师指导1.易错点:公式中a必须是非负数,b必须是正数,式子才成立.若a,b都是负数,虽然>0,有意义,但和在实数范围内无意义.当b=0时,无意义.2.归纳小结:(1)商的算术平方根的性质(注意公式成立的条件).(2)会利用商的算术平方根的性质进行简单的二次根式的化简.3.规律方法:(1)意义:两个二次根式相除,等于被开方数相除,根指数不变.(2)被开方数a可以是非负的数字、字母或代数式,b可以是正的数字、字母或代数式.(3)商要化成最简二次根式.(4)运算中可以运用分式性质约分.当堂训练1.计算÷÷的结果是( )(A)(B)(C)(D)2.已知x=3,y=4,z=5,那么÷的最后结果是.3.计算题:(1)9÷3×;(2)a2·b÷.板书设计二次根式的除法1.二次根式的除法运算=(a≥0,b>0)2.商的算术平方根=(a≥0,b>0)教学反思课题二次根式的乘除课时第3课时上课时间教学目标1.知识与技能理解最简二次根式的概念,并运用它把不是最简二次根式化成最简二次根式.2.过程与方法通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.3.情感、态度与价值观鼓励学生在探索规律的过程中从多个角度进行考虑,品尝成功的喜悦,激发学生应用数学的热情,培养学生主动探索,敢于实践,善于发现的科学精神以及合作精神,树立创新意识.教学重难点重点:最简二次根式的运用.难点:会判断一个二次根式是否是最简二次根式.教学活动设计二次设计课堂导入请同学们完成下列各题(请三位同学上台板书)1.计算(1),(2),(3).2.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1 km,h2 km,那么它们的传播半径的比是.探索新知合作探究自学指导自学课本,尝试得到最简二次根式概念:若二次根式有如下两个特点:1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.合作探究小组合作,探究以下例题.【例1】 (1)3;(2);(3).【例2】如图,在Rt△ABC中,∠C=90°,AC=2.5 cm,BC=6 cm,求AB的长.续表探索新知合作探究教师指导1.易错点:将根号内指数大于或等于2的因式移到根号外时,要注意字母的取值范围.2.归纳小结:最简二次根式的两个特点:(1)被开方数不含分母.(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.当堂训练1.化简的结果是( )(A)- (B)(C)(D)2.化简= .(x≥0)3.a化简二次根式后的结果是.板书设计最简二次根式1.最简二次根式的概念2.化简二次根式教学反思课题二次根式的加减课时第1课时上课时间教学目标1.知识与技能掌握同类二次根式的概念;掌握二次根式的加减法法则,并能够利用法则进行有关计算.2.过程与方法经历探索二次根式加减法法则的过程,理解掌握二次根式的加减法法则.3.情感、态度与价值观经历探索二次根式加减法法则的过程,类比的数学思想方法.教学重难点重点:掌握二次根式的加减法法则,并能够利用法则进行有关计算.难点:类比合并同类项的法则得出二次根式加减法法则的推导过程.教学活动设计二次设计课堂导入1.二次根式计算、化简的结果符合什么要求?(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.2.问题:现有一块长7.5 dm,宽5 dm的木板,能否采用如图的方式,在这块木板上截出两个分别是8 dm2和18 dm2的正方形木板?探索新知合作探究自学指导自学课本,尝试完成课本习题.合作探究我们可以利用已学知识或已有经验来分组讨论、交流,看看+到底等于什么?小组展示讨论结果.教师引导验证:①设=a,类比合并同类项的方法计算.②学生思考,得出先化简,再合并的解题思路-=-5=-4可由这两道题目总结出方法.先化简,再合并-+=-5+2=3-5学生观察并归纳:二次根式化为最简二次根式后,被开方数相同的能合并.【例1】计算:(1)+; (2)-.分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.【例2】计算:(1)2-6+3;(2)(+)+(-).续表探索新知合作探究探究注意点1.教师出示问题,指定学生板演,其他学生先独立完成,小组内讨论交流,教师巡视指点迷津.2.计算过程中,提示学生二次根式的加减与整式的加减相比较,强调哪些二次根式能合并,哪些不能合并.3.学生先自主、对于有困难的同学可以合作完成.教师指导1.易错点:把二次根式被开方数中能开得尽方的因数分解并开出来,或把被开方数的分母开出来,化成最简二次根式后再进行加减运算,注意不是被开方数相同的二次根式不能合并.2.归纳小结:二次根式相加减,先把各个二次根式化成最简二次根式,找出被开方数相同的二次根式,然后把被开方数相同的二次根式分别合并.3.方法规律:二次根式的加减和整式的加减很相似,前者是合并被开方数相同的二次根式,后者为合并同类项.当堂训练1.以下二次根式:①;②;③;④中,与是同类二次根式的是( )(A)①和②(B)②和③(C)①和④(D)③和④2.计算5-3-7+9= .3.计算:(1)+(-);(2)(+)--.板书设计二次根式的加减1.二次根式的加减2.例题教学反思课题二次根式的加减课时第2课时上课时间教学目标1.知识与技能在有理数的混合运算及整式的混合运算的基础上,使学生了解二次根式的混合运算与以前所学知识的关系,在比较中求得方法,并能熟练地进行二次根式的混合运算.2.过程与方法(1)对二次根式的混合运算与整式的混合运算及数的混合运算作比较,要注意运算的顺序及运算律在计算过程中的作用.(2)通过引导,在多解中进行比较,寻求有效快捷的计算方法.3.情感、态度与价值观通过独立思考与小组讨论,培养良好的学习态度,以及自我意识,并且注重培养学生的类比思想.教学重难点重点:混合运算的法则,明确三级运算的顺序,运算律的合理使用.难点:灵活运用因式分解、约分等技巧,使计算简便.教学活动设计二次设计课堂导入如果梯形的上、下底边长分别为2 cm,4 cm,高为 cm,那么它的面积是多少?毛毛是这样算的:梯形的面积:(2+4)×=(+2)×=×+2×=+2=2+6(cm2).他的做法正确的吗?由此可以看出,二次根式混合运算的依据是实数的运算律.探索新知合作探究自学指导自学课本,尝试完成以下问题【问题1】你能类比单项式与多项式乘除法则计算出下列各式吗?(1)(2-);(2)(-)÷.【问题2】你能根据多项式乘以多项式的方法计算(-2)(2-)吗? 【问题3】你能说出整式的乘法公式吗?你能根据公式计算吗?合作探究可以利用已学知识或已有经验来分组讨论、交流,根据单项式乘以多项式和多项式乘以多项式的方法解决.(1)(2-)=4-(2)(-)÷=-=3-根据多项式相乘的方法进行.(-2)(2-)=6--4+4=10-5整式的乘法法则和公式仍然适用(-2)(+2)=-=-5=3+8-4=11-4.续表探索新知合作探究【例1】计算:(1)(+)×;(2)(4-3)÷2.分析:二次根式仍然满足整式的运算规律,所以直接可用整式的运算规律.【例2】计算:(1)(+3)(-5);(2)(+)(-).探究注意点学生先独自思考,再小组合作,然后再到黑板板书其余学生分组练习.与老师一起分析、总结,交流.掌握运算的规律和方法教师指导1.归纳小结:二次根式的混合运算顺序为:先算乘方,再算乘除,最后算加减,有括号的要先去括号,计算结果中的二次根式必须是最简二次根式.在计算过程中,能用乘法公式的要尽量使用乘法公式,有时还需要逆用公式,这样可以简化计算过程.2.方法规律:在进行二次根式的化简时,要求分母中不含二次根式,而去掉分母中的二次根式的方法就是分母有理化,分母有理化的根据是分式的基本性质.当堂训练1.计算:(1)(-)2×(5+2);(2)(-)2+(+)2;(3)(2+3)(2-3).2.已知a=,b=,求的值.板书设计二次根式的混合运算1.二次根式的四则运算2.运用乘法公式和运算律进行计算教学反思第十七章勾股定理主题勾股定理课型新授课上课时间教学内容17.1勾股定理;17.2勾股定理及其逆定理.教材分析本章的主要内容是勾股定理及勾股定理的应用,教材从实践探索入手,给学生创设学习情境,接着研究直角三角形的勾股定理,介绍勾股定理的逆定理(直角三角形的判定方法),最后介绍勾股定理及勾股定理逆定理的广泛应用.勾股定理是直角三角形的一个很重要的性质,反映了直角三角形三边之间的数量关系.在理论和实践上都有广泛的应用.勾股定理逆定理是判定一个三角形是不是直角三角形的一种古老而实用的方法.在“四边形”和“解直角三角形”相关章节中,勾股定理知识将得到更重要的应用.教学目标1.知识与技能(1)体验勾股定理的探索过程,掌握勾股定理,会运用勾股定理解决相关问题.(2)掌握勾股定理的逆定理(直角三角形的判定方法),会运用勾股定理逆定理解决相关问题.(3)运用勾股定理及其逆定理解决简单的实际问题.2.过程与方法经历由情境引出问题,探索掌握有关数学知识,再运用于实践的过程,培养学数学、用数学的意识与能力.3.情感、态度与价值观感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情.教学重难点重点:1.探索勾股定理并掌握勾股定理;2.直角三角形的判定方法(勾股定理的逆定理);3.勾股定理及其逆定理的应用.难点:1.从多个角度(代数、几何)探究勾股定理;2.勾股定理逆定理的应用;3.在勾股定理的应用过程中构造适用勾股定理的几何模型.知识结构课题勾股定理课时第1课时上课时间教学目标1.知识与技能了解勾股定理的文化背景,体验勾股定理的探索过程.2.过程与方法通过观察、归纳、猜想和验证勾股定理,体验由特殊到一般的探索数学问题的方法和数形结合的思想.3.情感、态度与价值观(1)通过对勾股定理历史的了解,感受数学文化,激发学习热情.(2)对比介绍我国古代和西方数学家关于勾股定理的研究,对学生进行爱国主义教育.教学重难点重点:探索和证明勾股定理.难点:用拼图的方法证明勾股定理.教学活动设计二次设计课堂导入勾股定理是一条古老而又应用十分广泛的定理.早在1955年,希腊发行了一张邮票,图案由三个棋盘排列而成.这个图案是对数学上一个非常重要定理的说明.在我国,人们称它为勾股定理或商高定理;在欧洲,人们称它为毕达哥拉斯定理.如图,我们可以发现,两个较小的正方形与较大的正方形正好围成一个直角三角形,两个较小正方形的面积和等于较大的正方形的面积,如果设较小的两个正方形的边长为a和b,你能表示较大的正方形的边长吗?试试看!探索新知合作探究自学指导自学课本,了解勾股定理的发展史及相关知识.合作探究让学生叙述课本23页猜想、画图,并说出已知、求证.命题1:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.已知:在Rt△ABC中,∠ACB=90°,a,b,c分别为∠A、∠B、∠C的对边.求证:a2+b2=c2.到目前为止,对这个命题的证明方法已有几百种.探究我国数学家赵爽是怎样证明这个命题的.提问:拼接后的图形是否是由原4个直角三角形和小正方形没有重叠、没有空隙地拼成的?拼接后的图形是什么图形?由此得到a2+b2=c2.小结:这种证法是面积证法.图形割补拼接后,只要没有重叠、没有空隙,面积不会改变.续表探索新知 合作探究 小组尝试探究下面的证法:做八个全等的直角三角形和分别以a,b,c 为边长的三个正方形.拼成如下两个图形: 提问:①这两个图形分别是什么图形? ②这两个图形的面积相等吗?③如何利用这两个图形证明a 2+b 2=c 2? 教师指导1.易错点:(1)勾股定理存在于直角三角形中,运用勾股定理必须具备“直角”的条件;(2)运用勾股定理要注意哪个角是直角,由此确定哪条边是斜边,抓住“斜边的平方等于两直角边的平方和”. 2.归纳小结: 勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a 2+b 2=c 2. 3.方法规律:(1)无论求斜边,还是求直角边,最后都要开平方.开平方时,由于边长为正,所以取算术平方根;(2)勾股定理是直角三角形的一条重要性质,它由一个角是直角作“因”,三边的数量关系作“果”,体现了由“形”到“数”的转化,是数形结合思想的一个典范. 当堂训练 1.在Rt △ABC 中,∠C=90°,①若a=5,b=12,则c= ;②若a=15,c=25,则b= ;③若c=61,b=60,则a= ;④若a ∶b=3∶4,c=10则S Rt △ABC = . 2.一个直角三角形的两边长分别为3 cm 和4 cm,则第三边的长为 . 3.已知,如图在△ABC 中,AB=BC=CA=2 cm,AD 是边BC 上的高.求①AD 的长;②△ABC 的面积.板书设计 勾股定理 1.勾股定理2.勾股定理的证明3.利用勾股解决问题教学反思。

人教版数学八年级下册16.1《二次根式的性质》(第2课时)说课稿

人教版数学八年级下册16.1《二次根式的性质》(第2课时)说课稿

人教版数学八年级下册16.1《二次根式的性质》(第2课时)说课稿一. 教材分析人教版数学八年级下册16.1《二次根式的性质》(第2课时)是在学生已经掌握了二次根式的概念、性质和运算法则的基础上进行的一节内容。

本节课的主要内容是进一步探讨二次根式的性质,包括二次根式的乘除运算、合并同类二次根式等。

通过本节课的学习,使学生能够灵活运用二次根式的性质进行各种运算,提高他们的数学思维能力和解决问题的能力。

二. 学情分析在进入本节课的学习之前,学生已经对二次根式有了初步的认识和了解,能够进行一些基本的二次根式运算。

但是,对于一些复杂的二次根式运算,学生可能还存在一定的困难。

因此,在教学过程中,教师需要针对学生的实际情况,采取有效的教学方法,引导学生逐步掌握二次根式的性质,提高他们的运算能力。

三. 说教学目标1.知识与技能目标:使学生掌握二次根式的性质,能够熟练地进行二次根式的乘除运算和合并同类二次根式。

2.过程与方法目标:通过观察、分析、归纳等方法,引导学生自主探索二次根式的性质,培养他们的数学思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们克服困难的勇气和自信心,培养他们的团队协作精神。

四. 说教学重难点1.教学重点:使学生掌握二次根式的性质,能够进行二次根式的乘除运算和合并同类二次根式。

2.教学难点:二次根式的乘除运算和合并同类二次根式的方法。

五. 说教学方法与手段在本节课的教学过程中,我将采用自主探索、合作交流的教学方法,引导学生通过观察、分析、归纳等方法自主学习二次根式的性质。

同时,利用多媒体教学手段,展示二次根式的运算过程,帮助学生更好地理解和掌握二次根式的性质。

六. 说教学过程1.导入:通过复习二次根式的概念和性质,为学生进入本节课的学习做好铺垫。

2.自主探索:引导学生观察、分析、归纳二次根式的性质,使学生能够自主掌握二次根式的性质。

3.合作交流:学生进行小组讨论,分享他们在自主探索过程中得到的二次根式的性质,培养学生团队协作精神。

初二下数学-二次根式

初二下数学-二次根式

二次根式基础知识通关16.1二次根式1.二次根式:一般地,形如 (a≥0)的代数式叫做二次根式,当a >0时, 表示a 的算术平方根,=0.2.二次根式有意义的条件:.3.二次根式的双重非负性:,①0a.4.二次根式的化简:()(0)0(0)a a a a >⎧⎪= = =⎨⎪ <⎩∣∣;()20a a =;)00a b =,;00)a b =>, .16.2二次根式的乘除5.)00a b =, 6.二次根式的除法:)0a = ,7.最简二次根式①被开方数中不含分母;②被开方数中不含能开的尽方的因数或因式.16.3二次根式的加减8.同类二次根式:几个二次根式化成后,如果相同,那么这几个二次根式叫同类二次根式.9.二次根式的加减:二次根式加减时,可以先将二次根式化成,再将被开方数相同的二次根式进行合并.本章知识结构图单元检测一.选择题(共10小题)1.若在实数范围内有意义,则实数x 的取值范围是()A .x ≥1B .x ≤1C .x <1D .x ≠12.若代数式有意义,则x 的取值是()A .x =0B .x ≠0C .x ≥0D .x >03.若代数式在实数范围内有意义,则实数x 的取值范围是()A .x ≠1B .x >﹣3且x ≠1C .x ≥﹣3D .x ≥﹣3且x ≠14.下列二次根式中,是最简二次根式的是()A .B .C .D .5.下列各选项中,化简正确的是()A .B .C .D .|π﹣2|=2﹣π6.下列各式中,最简二次根式是()A .B .C .D .7.下列运算结果正确的是()A .=﹣9B .C .D .8.以下二次根式:①;②;③;④中,与是同类二次根式的是()A .①和②B .②和③C .①和④D .③和④9.下列各式中,运算正确的是()A .B .C .D .10.如图,从一个大正方形中裁去面积为30cm 2和48cm 2的两个小正方形,则余下部分的面积为()A .78cm 2B .cm 2C .cm 2D .cm 2二.填空题(共10小题)11.若a ,b 都是实数,b =+﹣2,则a b 的值为.12.①=;②=.13.已知,化简的结果是.14.在二次根式、、、中,是最简二次根式的是.15.将根号外的因式移入根号内的结果是.16.=,=.17.最简二次根式与是同类二次根式,则mn=.18.如图,在长方形内有两个相邻的正方形A,B,正方形A的面积为2,正方形B的面积为4,则图中阴影部分的面积是.19.当时,代数式x2+2x+2的值是.20.关于x的不等式x﹣<﹣1的非负整数解为.三.解答题(共5小题)21.已知|2018﹣m|+=m,求m﹣20182的值.22.阅读下面的解答过程,然后作答:有这样一类题目:将化简,若你能找到两个数m和n,使m2+n2=a且mn=,则a+2可变为m2+n2+2mn,即变成(m+n)2,从而使得化简.例如:∵5+2=3+2+2=()2+()2+2=(+)2∴==+请你仿照上例将下列各式化简(1)(2).23.若x=,y=,求代数式x2﹣xy+y2的值.24.计算:+﹣9+(3+4)(3﹣4)25.如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB 为3.2m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过估算说明.(参考数据:≈1.7)四、附加题(共2小题)26.在进行二次根式的化简与运算时,如遇到,,这样的式子,还需进一步化简:==①==②===﹣1③以上化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1.④(Ⅰ)请用不同的方法化简(1)参照③式化简=.(2)参照④式化简.(Ⅱ)化简:+++…+.27.阅读学习计算:+++.可以用下面的方法解决上面的问题:+++=(﹣)+(﹣)+(﹣)+(﹣)=(1﹣)+(﹣)+(﹣)+(﹣)=1﹣=1﹣利用上面的方法解决问题:(1)计算++++…+.(2)当n=时,等式++=成立.基础知识通关答案2.被开方数大于等于零4.a0a-6.0>b8.最简二次根式,被开方数9.最简二次根式单元检测答案一.选择题(共10小题)1.【分析】根据二次根式有意义的条件可求出x的取值范围【解答】解:由题意可知:x﹣1≥0,解得x≥1故选:A【知识点】22.【分析】二次根式有意义要求被开方数为非负数,由此可得出x的取值范围【解答】解:由题意得:x≥0故选:C【知识点】23.【分析】如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数.如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.【解答】解:若代数式在实数范围内有意义,则x﹣1≠0,x+3≥0∴实数x的取值范围是x≥﹣3且x≠1故选:D【知识点】24.【分析】直接利用最简二次根式的定义分析得出答案【解答】解:A、是最简二次根式,正确B、不是最简二次根式,错误C、不是最简二次根式,错误D、不是最简二次根式,错误故选:A【知识点】4、95.【分析】根据平方根、立方根、绝对值的意义逐个选择判断得结论.【解答】解:因为±=±3,所以A正确=2≠﹣2,所以B不正确==5≠﹣5,所以C不正确∵π≈3.14>2,∴|π﹣2|=π﹣2≠2﹣π,所以D不正确故选:A【知识点】4、96.【分析】根据最简二次根式的概念判断即可【解答】解:=3,A不是最简二次根式=|n|m2,B不是最简二次根式=,C不是最简二次根式D,是最简二次根式故选:D【知识点】97.【分析】直接利用二次根式的性质以及二次根式除法运算法则计算得出答案【解答】解:A、=9,故此选项错误B、(﹣)2=2,正确C、÷=,故此选项错误D、=5,故此选项错误故选:B【知识点】48.【分析】先把每个二次根式化为最简二次根式,然后根据同类二次根式的定义解答【解答】解:∵,,,∴与是同类二次根式的是①和④故选:C【知识点】4、89.【分析】分别根据合并同类项的法则、二次根式的化简法则对各选项进行逐一分析即可【解答】解:A、3﹣=2≠3,故本选项错误B、=2,故本选项正确C、2与不是同类项,不能合并,故本选项错误D、=2≠﹣2,故本选项错误故选:B【知识点】4、910.【分析】根据题意求出阴影部分的面积进而得出答案【解答】解:从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形大正方形的边长是+=+4留下部分(阴影部分)面积是(+4)2﹣30﹣48=8=24(cm2)故选:D【知识点】9二.填空题(共10小题)11.【分析】直接利用二次根式有意义的条件得出a的值,进而利用负指数幂的性质得出答案【解答】解:∵b=+﹣2,∴1﹣2a=0解得:a=,则b=﹣2,故a b=()﹣2=4故答案为:4【知识点】312.【分析】①先对根式下的数进行变形,(﹣0.3)2=(0.3)2,直接开方即得②已知25 ,所以开方后||=【解答】解:①原式=0.3②原式=||=【知识点】413.【分析】由于,则=x﹣2,|x﹣4|=4﹣x,先化简,再代值计算【解答】解:已知,则=x﹣2+4﹣x=2【知识点】414.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【解答】解:根据最简二次根式的定义可知:(含有分母)、(被开方数含能开得尽方的因数)和(含有分母),故不是最简二次根式符合最简二次根式的定义故答案为:【知识点】915.【分析】根据二次根式有意义的条件先确定a的正负,然后化简根式,约分得出结果【解答】解:∵要使有意义必须﹣>0即a<0所以=﹣=【知识点】416.【分析】根据二次根式乘法法则进行计算即可【解答】解:•==4y•===18【知识点】4、517.【分析】根据最简二次根式以及同类二次根式的定义即可求出答案【解答】解:由题意可知:2m﹣1=34﹣3m,n﹣1=2解得:m=7,n=3∴mn=21故答案为:21【知识点】818.【分析】设两个正方形A ,B 的边长是x 、y (x <y ),得出方程x 2=2,y 2=4,求出x =,y =2,代入阴影部分的面积是(y ﹣x )x 求出即可【解答】解:设两个正方形A ,B 的边长是x 、y (x <y )则x 2=2,y 2=4x =,y =2则阴影部分的面积是(y ﹣x )x =(2﹣)×=2﹣2故答案为:2﹣2【知识点】919.【分析】根据x 的值求出(x +1)2的值,再把(x +1)2展开,即可得出要求的式子【解答】解:∵,∴x +1=∴(x +1)2=5∴x 2+2x +1=5∴x 2+2x =4∴x 2+2x +2=4+2=6故答案为:6【知识点】5、920.【分析】首先解不等式确定不等式的解集,然后确定其整数解即可【解答】解:解不等式x ﹣<﹣1得:x <﹣1∵3<<4∴2<﹣1<3∴x <﹣1的非负整数解为0,1,2故答案为:0,1,2【知识点】7三.解答题(共5小题)21.【分析】直接利用二次根式有意义的条件分别分析得出答案【解答】解:∵m ﹣2019≥0,∴m ≥2019∴2018﹣m ≤0∴原方程可化为:m ﹣2018+=m∴=2018∴m ﹣2019=20182∴m ﹣20182=2019【知识点】322.【分析】(1)利用完全平方公式把4+2化为(1+)2,然后利用二次根式的性质化简即可(2)利用完全平方公式把7﹣2化为(﹣)2然后利用二次根式的性质化简即可【解答】解:(1)∵4+2=1+3+2=12++2=(1+)2∴==1+(2)===﹣【知识点】423.【分析】首先利用完全平方公式将原式变形进而代入已知求出答案【解答】解:∵x2﹣xy+y2=(x﹣y)2+xy∴把x=,y=代入得原式=(﹣)2+×=7+1=8【知识点】5、6、924.【分析】直接利用二次根式的性质化简进而结合乘法公式计算得出答案【解答】解:原式=﹣2+2﹣9×+18﹣16=﹣2+2﹣3+18﹣16=﹣【知识点】4、5、6、925.【分析】首先在AB之间找一点F,且BF=2.5,过点F作GF⊥AB交CD于点G,只要求得GF的数值,进一步与货车高相比较得出答案即可【解答】解:如图在AB之间找一点F,使BF=2.5m过点F作GF⊥AB交CD于点G∵AB=3.2m,CA=0.7m,BF=2.5m∴CF=AB﹣BF+CA=1.4m∵∠ECA=60°,∴GFCF∴GF =CF=1.4≈2.38m∵2.38<3,∴这辆货车在不碰杆的情况下,不能从入口内通过【知识点】5四.附加题(共2小题)26.【分析】(1)分母有理化的两种方法:1.同乘分母的有理化因式;2.因式分解达到约分的目的(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况【解答】解:(1)参照③式化简==﹣故答案是:﹣(2)参照④式化简====﹣故答案是:﹣(Ⅱ)原式=(+++…+)=[(﹣1)+(﹣)+(﹣)+…+(﹣)]=(﹣1)\11/【知识点】4、727.【分析】(1)根据题意首先化简二次根式,进而得出答案(2)首先化简二次根式进而得出关于n的等式求出答案【解答】解:(1)原式=﹣+﹣+…+﹣=1﹣+﹣++…+﹣=1﹣=(2)∵++=∴﹣+﹣+﹣=,则=解得:n=1故答案为:1【知识点】4、7\12/。

(完整版)八年级数学下册电子版教案

(完整版)八年级数学下册电子版教案

老师结合学生的回答 , 强调二次根式的非负性.
当 a> 0 时, a表示 a 的算术平方根 ,因此 a> 0;
当 a= 0 时, a表示 0 的算术平方根 , 因此 a= 0.
也就是说 ,当 a≥ 0 时 , a≥ 0.
三、例题讲解
【例】 当 x 是怎样的实数时 , x- 2在实数范围内有意义? 解:由 x-2≥ 0, 得 x≥ 2.
8= 2a
2 a
a;
(4)
xx23y=
xy y.
教师点评:上面这些式子的结果具有如下两个特点:
1. 被开方数不含分母.
2. 被开方数中不含能开得尽方的因数或因式.
师:我们把满足上述两个条件的二次根式 , 叫做最简二次根式. (教师板书 )
教师强调:在二次根式的运算中 , 一般要把最后结果化为最简二次根式.
重点 最简二次根式的运用. 难点 会判断这个二次根式是否是最简二次根式.
一、复习导入
( 学习活动 )请同学们完成下列各题. ( 请四位同学上台板书 )
计算: (1)
2; (2)2 6;(3)
3
18
8 ; (4) 2a
x3
x2
. y
教师点评:
(1)
2= 3
36;
2 (2)
6= 18
2
3 3; (3)
二、新课教授
所以当 x≥2 时 , x- 2在实数范围内有意义.
四、巩固练习
1. 已知 a- 2+
b+
1= 2
0,
求-
a2b
的值.
【答案】 a- 2≥ 0, b+21≥0, 又∵它们的和为 1
2, b=- 2. ∴- a2b=- 22× (-12)=2.

16.1二次根式的乘法(教案)

16.1二次根式的乘法(教案)
16.1二次根式的乘法(教案)
一、教学内容
16.1二次根式的乘法:本节课我们将学习人教版八年级数学下册第十六章第一节的内容,主要包括以下两个方面:
1.掌握二次根式乘法的法则:即(a√b) × (c√d) = ac√(bd),其中a、b、c、d为正实数。
2.能够运用二次根式乘法法则解决实际问题,提高运算速度和准确性。
4.培养学生的数学建模素养,将现实生活中的问题转化为二次根式乘法模型,并运用所学知识解决实际问题。
5.激发学生的自主学习意识,培养合作交流能力,通过小组讨论和互动,共同探索二次根式乘法的规律和运用。
三、教学难点与重点
1.教学重点
-核心内容:二次根式乘法法则的理解与应用。
-重点细节:
- a.学生需要掌握二次根式乘法的基本公式:(a√b) × (c√d) = ac√(bd),其中a、b、c、d为正实数。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次根式乘法在实际数学运算中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
二、核心素养目标
本节课旨在培养学生以下核心素养:
1.培养学生的数学抽象能力,使其理解并掌握二次根式乘法的法则,能够将具体问题中的数量关系抽象为数学表达式。
2.提高学生的逻辑推理能力,通过运用二次根式乘法法则进行推导和证明,形成严谨的数学逻辑思维。
3.增强学生的数学运算能力,熟练运用二次根式乘法解决实际问题,提高解题速度和准确性。

沪教版八年级数学第十六章二次根式及经典习题与答案

沪教版八年级数学第十六章二次根式及经典习题与答案

二次根式的知识点汇总第十六章 二次根式第一节 二次根式的概念和性质 16.1 二次根式1. 二次根式的概念: 式子)0(≥a a 叫做二次根式.注意被开方数只能是正数或O . 2. 二次根式的性质 ①⎩⎨⎧≤-≥==)0()0(2a a a a a a ;②)0()(2≥=a a a ③)0,0(≥≥⋅=b a b a ab ;④)0,0(>≥=b a ba b a 16.2 最简二次根式与同类二次根式1. 被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.2.化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式 16.3 二次根式的运算1.二次根式的加减:先把各个二次根式化成最简二次根式,再把同类三次根式分别合并.2.二次根式的乘法:等于各个因式的被开方数的积的算术平方根, 即 ).0,0(≥≥=⋅b a ab b a3.二次根式的和相乘,可参照多项式的乘法进行. 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.4.二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.二次根式的运算法则:≥0)).0,0(≥≥=⋅b a ab b a=a ≥0,b>0)n ≥0)知识点一:二次根式的概念形如()的式子叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。

知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。

人教版八年级数学下册第十六章 二次根式(全章)教案

人教版八年级数学下册第十六章  二次根式(全章)教案

16.1 二次根式[学习目标]理解二次根式的概念,并利用(a≥0)的意义解答具体题目.教学重点:形如(a≥0)的式子叫做二次根式的概念教学难点:利用“(a≥0)”解决具体问题.教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法、2、阅读的方法、3、分组讨论法4、练习法[学习过程]一、板书课题(一)讲述:同学们,我们来学习 16.1 二次根式二、出示目标(一)过渡语:要达到什么教学目标呢?请看投影:(二)屏幕显示学习目标理解二次根式的概念,并利用(a≥0)的意义解答具体题目.三、指导自学(一)过渡语:怎样才能当堂达到学习目标呢?请同学们按照指导认真自学.(二)出示自学自导自学指导认真看课本P2全部内容:1.思考“思考1、2”中的问题,完成思考1中的问题,理解二次根式的概念及二次根式有无意义的条件。

2.注意例题1的格式和步骤。

3.讨论回答思考2中的问题。

.如有疑问,可请教同桌或举手问老师.5分钟后,比谁能做对与例题类似的题.四、先学(一)学生看书,教师巡视,师督促每一位学生认真、紧张的自学,鼓励学生质疑问难.(二)过渡语:同学们,看完的请举手?懂了的请举手?好,下面就比一比,看谁能正确做出检测题.(三)检测 : P.3 练习1、2题。

学生练习,教师巡视。

(收集错误进行二次备课)五、后教教师引导学生评议、订正。

归纳小结:1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.五、当堂训练:一、选择题1.下列各式中①;②;③;④;⑤;⑥一定是二次根式的有()个。

A . 1 个 B. 2个 C. 3个 D. 4个2. 若,则b的值为()A.0 B.0或1 C.b≤3 D.b≥33.已知一个正方形的面积是5,那么它的边长是()A .5BC D.以上皆不对二、填空题1.形如________的式子叫做二次根式. 2.面积为a的正方形的边长为________. 3.负数________平方根.三、综合提高题1.若+有意义,则=_______.2.使式子有意义的未知数x有()个.A.0 B.1 C.2 D.无数3.当x是多少时,+在实数范围内有意义?4. 已知y=++5,求的值.教学反思:16.1 二次根式(2)[学习目标]理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.教学重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.教学难点:导出(a≥0)是一个非负数;•用探究()2=a(a≥0).教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法2、阅读的方法3、分组讨论法4、练习法[学习过程]一、板书课题:16.1 二次根式(2)讲述:同学们,我们来学习16.1 二次根式(2)二、出示目标(一)过渡语:要达到什么教学目标呢?请看投影:(二)屏幕显示学习目标理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.三、指导自学(一)过渡语:怎样才能当堂达到学习目标呢?请同学们按照指导认真自学.(二)出示自学自导自学指导认真看课本P.3“探究”至例2结束。

分式乘除教学设计

分式乘除教学设计

分式乘除教学设计第1篇:分式乘除教学设计《16.2 二次根式的乘除》教学设计一.教材分析二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础.基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式.二、学情分析本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行.二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算.教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向.本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.三、目标和目标解析1.教学目标(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;(2)会进行简单的二次根式的除法运算;(3)理解最简二次根式的概念.2.目标解析(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算.(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式.四、教学过程设计1.复习提问,探究规律问题1 二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?师生活动学生回答。

【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.2.观察思考,理解法则问题2 教材第8页“探究”栏目,计算结果如何?有何规律?师生活动学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:.问题3 对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?师生活动学生思考,回答。

新人教版八年级下学期数学各章节重难点以及学习目标大全

新人教版八年级下学期数学各章节重难点以及学习目标大全
第七课时〔习题课〕
18,2特殊的平行四边形
6
第一课时
矩形的性质及其应用
灵活应用举行的定义及性质解决问题
(1)知道矩形的性质及其推论。
(2)会用矩形的性质解决问题。
第二课时
矩形的判定方法
合理应用矩形的判定定理解决问题
〔1〕找我们矩形的判定方法
〔2〕合理应用矩形的判定定理解决问题
第三课时
菱形的性质与应用
1.理解一元一次方程和一元一次不等式的关系,2.会用用函数图像解一元一次方程组和一元一次不等式组。
19.3方案选择
2
第一课时
正确解决问题一哪种上网更省钱
一次函数不等式方程组的综合运
〔1〕正确解决问题一哪种上网更省钱。
〔2〕理解一次函数与不等式方程组和方程组的综合运用。
第二课时
用一次函数解决租车问题
用一次函数不等式方程组的综合运用
画函数图像
〔1〕掌握画函数图像的骤。
〔2〕能用会用描点法画出函数图像。
第六课时
会根据题目中题意或图表写出函数解析式
根据函数解析式解决问题
会根据题目中题意或图表写出函数解析式;
根据函数解析式解决问题。
〔1〕能根据题目中图像或图表写出函数解析式;
〔2〕会根据函数解析式或图像解决问题
19.2一次函数
7
第一课时
〔3〕结合图像理解Y=KX中K的作用。
第三课时
掌握一次函数的定义
会用一次函数关系式表示一些实际问题
用一次函数关系式表示一些实际问题
〔1〕掌握一次函数的定义
〔2〕用一次函数关系式表示一些实际问题。
第四课时
掌握正比例函数与一次函数之间平移关系
会用描点法画一次函数的图象并根据图像确定性质

八年级下册第16章二次根式

八年级下册第16章二次根式

-50-
14.计算: (1) 53× 152; = 35×152 =12
-51-
(2) 5× 15× 12; = 5×15×12 = 52× 32× 22 =5×3×2 =30
-52-
(3) a3b× ab; = a3b×ab =ab
-53-
1 (4)3
45×12
20.
=16× 32× 52× 22 =16×3×5×2 =5
-16-
19.阅读下面的文字,解答问题. 大家知道 2是无理数,而无理数是无限不循环小数,因此 2的小数部 分我们不可能全部地写出来,但是由于 1< 2<2,所以 2的整数部分为 1, 则 2减去其整数部分 1,差就是小数部分 2-1. 根据以上的内容,解答下面的问题: (1) 5的整数部分是__2_,小数部分是__5_-__2_; (2)1+ 2的整数部分是_2__,小数部分是__2_-__1_;
-26-
忽视题设条件而出错 9.化简: 4x2+12x+9+ 4x2-20x+25,其中-32≤x≤52. 解:∵-32≤x≤52,∴-3≤2x≤5, ∴原式= (2x+3)2+ (2x-5)2=2x+3+5-2x=8.
-27-
10.若点(a,b)在第三象限,则 (a+b)2-1 的值为( D )
A
B
C
D
6.当 x__>__12__时,式子 2x1-1有意义.
-6-
二次根式的非负性
同步考点手册 P1
7.已知 x,y 为实数,且 x-1+(y-2)2=0,则 x-y 的值为( D )
A.3
B.-3
C.1
D.-1
8.若|x+y+4|+ (x-2)2=0,则 3x+2y=_-__6__.

数学北师大版八年级上册二次根式的乘除

数学北师大版八年级上册二次根式的乘除

16.2二次根式的乘除1.掌握二次根式的乘法法则,会进行二次根式的乘法运算.2.能利用二次根式的乘、除法法则和性质化简二次根式.1.经历“探索——发现——猜想——验证”的过程,引导学生体会合情推理与演绎推理的相互依赖,相互补充的辩证关系.2.培养学生用规范的数学语言进行表达的习惯和能力.鼓励学生积极参与数学活动,激发学生的好奇心和求知欲,体验数学活动中的探索和创新,感受数学的严谨性.【重点】能熟练进行二次根式的乘法和除法运算.【难点】综合运用有关法则和性质化简二次根式.第课时1.理解=·(a≥0,b≥0),使学生能够利用积的算术平方根的性质进行二次根式的计算和化简.2.掌握二次根式的乘法法则,会进行二次根式的乘法运算.1.经历“探索——发现——猜想——验证”的过程,使学生进一步了解数学知识之间是互相联系的.2.培养学生用规范的数学语言进行表达的习惯和能力.鼓励学生积极参与数学活动,激发学生的好奇心和求知欲,体验数学活动中的探索和创新,感受数学的严谨性.【重点】会利用积的算术平方根的性质化简二次根式,会进行二次根式的乘法运算.【难点】二次根式的乘法与积的算术平方根的关系及应用.【教师准备】教学中出示的教学插图和例题.【学生准备】复习二次根式的定义和代数式的定义.导入一:古希腊的几何家海伦的邻居家有一块三角形的菜地,测得三边的长分别为7 m,5 m,8 m,海伦很快就算出了这块菜地的面积,邻居想了很久也算不出来,你知道海伦是如何将这块地的面积计算出来的吗?原来海伦先算出三角形的周长的一半为10 m,再根据计算三角形的面积公式得=(m2),可是后面这个式子该如何化简呢?这节课我们一起来进行探讨.[设计意图]创设情境导入新课,激发学生学习的兴趣,为本节课学习打下基础.导入二:我们知道长方形的面积等于长乘宽,一个一组邻边长为2和3的长方形,你能算出它的面积吗?其实这个长方形的面积是2×3,你能算出这个结果,求出长方形的面积吗?[设计意图]联系生活实际导入新课,让学生感受到数学来源于生活,唤起学生探究新知的欲望.1.二次根式的乘法思路一计算下列各式,观察计算结果,你能发现什么规律?(1)×=,=;(2)×=,=;(3)×=,=.参考上面的结果,用“>,<或=”填空.×,×,×.老师纠正学生练习中的错误后,引导学生观察运算结果,发现和总结式子有什么规律,指出几名学生回答,其余学生补充.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘法等于一个二次根式,并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.提问:二次根式的乘法法则是什么?字母表达式是怎样的?学生总结二次根式的法则:·=(a≥0,b≥0),即二次根式相乘,把被开方数相乘,根指数不变.[设计意图]培养学生细心观察问题,并合作完成问题的习惯.[知识拓展](1)·=成立的条件是a≥0且b≥0,千万不能忽略.(2)此法则可以推广到多个二次根式的乘法运算中,如··=(a≥0,b≥0,c≥0).在·=(a≥0,b≥0)中,a,b既可以是具体的数,也可以是含有字母的代数式.(3)当二次根式前面有系数时,可以类比单项式乘单项式的法则进行运算,即系数之积作为系数,被开方数之积作为被开方数,如m·n=mn(a≥0,b≥0).思路二出示教材第6页“探究”.计算下列各式,观察计算结果,你能发现什么规律?(1)×=,=;(2)×=,;(3)×=,=.学生自己计算,并力争独立发现规律:×=,×=,×=.教师演算:×=×5=,==,则×=.由上面的特殊例子引导学生总结:·=(a≥0,b≥0),即二次根式相乘,把被开方数相乘,根指计算:(1)×;(2)×.学生独立做完后,同桌内确定答案,并记录下自己的错误之处,以便后面交流.[设计意图]由特殊到一般,由特殊例子推导得出二次根式乘法的法则,通过尝试练习使学生先学会初步掌握如何进行二次根式的乘法.2.积的算术平方根的性质①==,×=2×5=;②==,×=6×=;③==,×=0.1×3=.你认为=(a≥0,b≥0).学生计算后比较每一组的结果,说出自己的发现.教师根据学生情况引导:根据算术平方根的意义,得==10,×=2×5=10,则=×;同样,==,×=6×=,则有=×;==0.3,×=0.1×3=0.3,则有=×.由此可以得出两个非负数积的算术平方根等于它们算术平方根的积.进一步明确:=·(a≥0,b≥0).[设计意图]让学生亲自动手,进行探究,得出结论,激发学生求知欲望.化简:(1);(2)(m>0).学生讨论,得出:(1)先把被开方数化为202×10,再利用=·计算;(2)先把被开方数化为(9m)2与n乘积的形式,再利用=·计算.解:(1)原式=×=20.(2)原式==·=9m.教师针对练习中的错误进行纠正,引导学生归纳:两个非负数积的算术平方根等于它们算术平方根的积,即=·(a≥0,b≥0).[设计意图]鼓励学生尝试练习,练后进行归纳,培养学生主动探究数学规律的能力,提高他们的归纳总结能力.[知识拓展](1)当a<0,b<0时,虽然有意义,但是=·,而不等于·.(2)积的算术平方根性质可推广为:当a≥0,b≥0,c≥0时,=··.(3)公式中a,b既可以是具体的数,也可以是含有字母的代数式,但必须满足a≥0,b≥0.3.例题讲解(教材例1)计算:(1)×;(2)×.引导学生结合前面尝试练习分析:根据二次根式的乘法法则·=(a≥0,b≥0)进行计算.解:(1)×=.(2)×===3.(教材例2)化简:(1);(2).教师引导发现:被开方数4a2b3含4,a2,b3这样的因数或因式,它们被开方后可以移到根号外,是开得尽方的因数或因式.根据积的算术平方根的性质=·进行二次根式的化简.解:(1)=×=4×9=36.(2)=··=2·a·=2ab.(教材例3)计算:(1)×;(2)3×2;(3)·.〔解析〕根据二次根式的乘法法则·=(a≥0,b≥0)计算,其中3×2中,二次根式前面有系数,可以类比单项式乘单项式的法则进行运算,即系数之积作为系数,被开方数之积作为被开方数.解:(1)×===×=7.(2)3×2=3×2=6=6×=6×5=30.(3)·===·=x.[解题策略]化简二次根式的方法:①把被开方数化为能开得尽方的因数(或因式)与其他因数(或因式)积的形式,再开平方即可;②被开方数是小数,要化成分数,可以利用分数的基本性质,使得化简后被开方数不含分母;③当被开方数是和(或差)的形式时,要把被开方数写成一个数或分解因式,再化简.【变式训练】判断下列各式是否正确,不正确的请予以改正.(1)=×;(2)×=4××=4×=4=8.解:(1)不正确.改正:==×=2×3=6.(2)不正确.改正:×=×===4.[设计意图]让学生把所学知识灵活运用,给前面尝试练习错误的学生一次强化训练的机会,力争人人能过关.师生共同回顾本节课所学主要内容:1.·=(a≥0,b≥0),即两个二次根式相乘,把被开方数相乘,根指数不变.二次根式的乘法法则可以推广到多个二次根式进行相乘的运算,如··=(a≥0,b≥0,c≥0).2.=·(a≥0,b≥0),用语言叙述为:积的算术平方根,等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习环节
例 2、化简 (1) 9 16 (2) 16 81
一.前置作业:
填空: (1) 4 × 9 =____
4 9 =___
4 × 9 __ 4 9
( 2 ) 16 ×
25 =____ , 16 25 =___ ;
(3) 81100
(4) 9 x y
2
2
16 × 25 __ 16 25
时间 :
编号 1603
(三) 、小组交流解疑 判断下列各式是否正确,不正确的请予以改正: (1) (4) (9)
2 (3)二次根式 ( 2) 6 的计算结果是( )
4 9
A.2 6 2、化简: (1) 360 ;
B.-2 6
C.6
D.12
(2) 32 x ;
4
(2)
4
12 × 25
(3) 100 × 36 =___, 100 36 =___. (5) 54
100 × 36 __ 100 36
(二) 、探索新知 1、 请交流上面的活动并总结规律. 2、一般地,对二次根式的乘法规定为
a ·
b =
ab . (a≥0,b≥0 反过来:
ab = a · b (a≥0,b≥0)
例 1、计算 (1) 5 × 7 (2)
2 3
(2) 2a
1 2a
=8
4 B. 4 a
4 a 4 2 2 ( a 2 ) 2 2a 2
2
C. 3 4
2
9 16 25 5

D
13 2 12 2 (13 12)(13 12) 13 12 13 12
2、 计算: (1) 6 8× (-2 6 ) ; (2) 8ab 6ab ;
25 =4 ×
12 × 25 =4 25
12 × 25 3、计算:
(1) 18 30 ; (2) 3
25 =4 12 =8 3
2 ; 75
B组 (四)展示反馈 展示学习成果后,请大家讨论:对于 9 × 27 的运算 中不必把它变成 243 后再进行计算,你有什么好办 法? 1、选择题 (1)若 a 2 b 4b 4
2
c2 c
1 0 ,则 4
b 2 a c =( )
A.4 B.2 C.-2 (2)下列各式的计算中,不正确的是( ) A. (4) (6) D.1
4 6 =(-2)×(-4)
注:1、当二次根式前面有系数时,可类比单项式乘以 单项式法则进行计算:即系数之积作为积的系 数,被开方数之积为被开方数。 2、化简二次根式达到的要求: (1)被开方数进行因数或因式分解。 (2)分解后把能开尽方的开出来。 (五)达标测试: A组 1、选择题 (1) 等式 x 1 A.x≥1
课题:二次根式的乘法 学习目标:理解 a · b = ab (a≥0,b≥
0) , ab = a · b (a≥0,b≥0) ,并利用它们进行 计算和化简
课型:自学互学展示课 重点:掌握和应用二次根式的乘法法则和积的 算术平方根的性质。 难点:正确依据二次根式的乘法法则和积的算术平
方根的性质进行二次根式的化简。
3
x 1 x 2 1 成立的条件是 ( )
3、不改变式子的值,把根号外的非负因式适当变形 后移入根号内。 (1) -3
B.x≥-1 C.-1≤x≤1 D.x≥1 或 x≤-1 ) .
(2)下列各等式成立的是( A.4 5 ×2 5 =8 5 C.4 3 ×3 2 =7 5
B.5 3 ×4 2 =20 5 D.5 3 ×4 2 =20 6
通过以上例题说说你做题时的感受并完成下面的练 习 巩固练习 (1) 计算: ①
16 × 8
②5 5 ×2 15
1 × 9 3
③ 12 aΒιβλιοθήκη ·31 2 ay 3
(3)3 6 ×2 10 (4) 5a ·
1 ay 5
(2)化简:
20 ;
12a 2b 2
18 ;
24 ;
54 ;
主备人:
郭海琴
审核人 :
姜瑞风
相关文档
最新文档