角平分线的性质 知识点

合集下载

八年级数学角平分线的性质知识点总结

八年级数学角平分线的性质知识点总结

角平分线的性质是八年级数学中的重要内容之一,它是指从一个角的顶点出发,将这个角分成两个相等角的线段。

下面是关于角平分线的性质的总结,包括定义、性质和应用:一、定义:角平分线是指从一个角的顶点出发,将这个角分成两个相等角的线段。

角平分线是角的重要构造之一二、性质:1.角平分线将角分成两个相等的角。

即如果一条线段是一个角的平分线,则它将这个角分成两个度数相等的角。

2.角平分线与角的两边相交于一个点。

即角平分线与角的两边交于角的顶点。

3.角平分线与角的两边垂直相交于角平分线的中点。

即角平分线与角的两边垂直相交于角平分线上的一个点,该点同时也是角平分线的中点。

4.角平分线上的点到角的两边的距离相等。

即角平分线上的任意一点到角的两边的距离相等。

5.两条平行线与角的顶点与顶边所在的线段构成的两个相似三角形,它们的角平分线平行。

即如果一条线段是一个角的平分线,另一条与之平行的线段也是这个角的平分线。

三、应用:1.判断角平分线。

当我们需要判断一个线段是否为一个角的平分线时,可以使用角平分线的定义和性质进行判断,即判断这个线段能否将角分成两个相等的角。

2.利用角平分线的性质解决问题。

当我们遇到需要将角分成两个相等的角的问题时,可以使用角平分线的性质进行解决。

例如,在解决相似三角形的问题中,可以利用角平分线的性质进行角的划分。

3.构造角平分线。

当我们需要构造角的平分线时,可以利用直尺和圆规进行构造。

常见的构造方法有尺规作图法和五线谱法等。

四、例题:1.已知角ABC,其中角平分线AD交角的两边于E、F两点,证明:AE=AF。

证明:根据角平分线的性质4,角平分线上的点到角的两边的距离相等,即DE=DF,又因为AD为角ABC的平分线,所以∠DAE=∠DAF。

再根据等腰三角形的性质,得知AE=AF。

2.已知直角三角形ABC中,角A=90°,角B的平分线BD与AC相交于点D,求证:∠ADB=45°。

证明:由直角三角形的性质,角B=90°-角A=90°-90°=0°,即角B为零角。

七年级角平分线知识点总结

七年级角平分线知识点总结

七年级角平分线知识点总结在七年级的数学学习中,我们学习了很多新知识,其中包括角平分线的知识。

角平分线是指将一个角分成两个相等的角的线段。

在本文中,我将为大家总结七年级角平分线的知识点,让大家更好地掌握这一知识。

一、角平分线的定义角平分线指的是将一个角分成两个相等的角的线段。

通常情况下,我们将这个线段称为这个角的平分线。

二、角平分线的性质角平分线有很多性质,下面我们来一一介绍。

1、角平分线上的点角平分线上的点必须满足点到角两边的距离相等。

也就是说,如果一条线段在角内,并且到角两边的距离相等,那么这条线段就是这个角的平分线。

2、角平分线相交于一点一个角的两条平分线必定相交于一个点,我们称这个点为这个角的内心。

3、内角平分线定理内角平分线定理是指,如果一个点在角内,并且到角的两边的距离相等,那么这个点在这个角的平分线上。

三、角平分线的应用角平分线在数学中有很多应用,下面我们来介绍一下角平分线的常见应用。

1、求角平分线的长度在图形中,如果已知角的大小和角平分线所在两边的长度,那么可以通过余弦定理或正弦定理来求角平分线的长度。

2、利用角平分线证明线段比例当一个角的内部有两个点与角的两边垂直相交时,可利用角平分线来证明线段比例。

四、角平分线的练习题为了更好地掌握角平分线的知识,在此为大家推荐两道练习题,供大家练习。

1、如图,∠A=97.5°,AD为∠A的平分线,AB=6cm,BC=10cm,则AD约等于____cm。

(结果保留一位小数)A、6.6B、5.8C、8.4D、7.2解:根据余弦定理,我们可以得出:AD≈7.2cm。

2、如图,求MN∶KL的值。

解:由角平分线定理可知:$\quad \frac{MK}{AK}=\frac{NL}{AL}\quad $又因为$AK=AL$,所以$MK=NL$又由题可知:$MK+NL=20$,所以$MK=NL=10$所以:$MN∶KL=MK-LM∶NL-LK=10-6∶10-5=4∶5$以上就是本文对七年级角平分线知识点的总结,希望能够对大家的学习有所帮助。

三角形中的角平分线和中线性质

三角形中的角平分线和中线性质

三角形中的角平分线和中线性质一、角平分线性质1.定义:从三角形一个顶点出发,将这个顶点的角平分成两个相等的角的线段,称为这个角的角平分线。

(1)一个角有且只有一条角平分线。

(2)角平分线上的点到这个角的两边的距离相等。

(3)角平分线与这个角的对边相交,交点将对边分为两条线段,这两条线段的长度相等。

二、中线性质1.定义:连接三角形一个顶点与对边中点的线段,称为这个顶点的中线。

(1)一个三角形有且只有三条中线。

(2)中线的长度是该顶点与对边中点距离的一半。

(3)中线平行于第三边,并且等于第三边的一半。

(4)三角形的中线将第三边平分成两条相等的线段。

三、角平分线与中线的交点性质1.定义:三角形的三条角平分线与三条中线的交点,称为三角形的心。

(1)三角形的心是三角形内部的一个点。

(2)三角形的心到三角形的三个顶点的距离相等。

(3)三角形的心到三角形的任意一边的距离相等。

四、角平分线和中线的应用1.判断三角形的形状:(1)如果一个三角形的三条角平分线相等,那么这个三角形是等边三角形。

(2)如果一个三角形的三条中线相等,那么这个三角形是等腰三角形。

2.求解三角形的问题:(1)利用角平分线求解三角形的角度。

(2)利用中线求解三角形的边长。

三角形中的角平分线和中线性质是解决三角形相关问题的重要知识点。

掌握这些性质,可以帮助我们更好地理解和解决三角形的相关问题。

习题及方法:1.习题:在三角形ABC中,角A的角平分线与中线交于点D,若AD=3,BD=4,求AB的长度。

答案:由于点D是角A的角平分线与中线的交点,根据性质可知AD=BD。

又因为AD=3,BD=4,所以AB=5。

2.习题:在等边三角形EFG中,求证:每条角平分线也是中线。

答案:由于三角形EFG是等边三角形,每个角都是60度。

根据角平分线性质,每条角平分线将角平分成两个30度的角。

又因为等边三角形的中线也是角平分线,所以每条角平分线也是中线。

3.习题:在三角形APQ中,若角APQ的角平分线与中线交于点M,且AM=4,PM=6,求AB的长度。

八年级角平分线知识点总结

八年级角平分线知识点总结

八年级角平分线知识点总结角平分线是几何知识中的一个重要概念,也是初中数学中常见的考点之一。

在八年级中学习了角平分线的相关知识后,许多同学还存在一定的困惑。

因此,本文将对八年级角平分线的知识点做一个总结,以帮助大家更好地掌握该知识。

一、角平分线的定义和性质1. 定义所谓“角平分线”,是指将一个角平分为两个角的线段。

在角上下方形成两个新的角,它们的大小相等。

2. 性质(1) 角平分线把原来的角分成两个大小相等的角。

(2) 角平分线的两侧所对的两个角相等。

(3) 在三角形中,若一条线段是一个角的平分线,则它所在的线段所对的两侧角的大小之比等于它所在的线段所对的两侧边的长度之比。

二、与角平分线有关的定理1. 外角定理所谓“外角”,是指一个三角形的一个内角所对的另一个角。

外角定理是指一个三角形的一个外角等于它的不相邻两个内角之和。

2. 内角定理一个多边形的内角和等于这个多边形的狄利克雷函数乘以180°。

三、角平分线的应用了解了角平分线的定义和性质以及与角平分线有关的定理,我们就可以在解题过程中灵活应用,其中最常见的就是角平分线定理的应用。

在三角形中,若已知一条角平分线及其所分割的两边长度,则可以利用角平分线定理求解三角形中其它角的大小。

例如,已知在三角形ABC中,角BAD的平分线交BC边于点E,且BE=7,EC=5,则可以利用角平分线定理求解角DAB和角DAC的大小。

根据角平分线定理,有:$\dfrac{BD}{DC}=\dfrac{AB}{AC}$因此,$\dfrac{BD}{DC}=\dfrac{BE}{EC}=\dfrac{7}{5}$又有:$\dfrac{BD}{DC}=\dfrac{\sin \angle BAD}{\sin \angle DAC}$因此,$\dfrac{\sin \angle DAB}{\sin \angle DAC}=\dfrac{7}{5}$由于$\angle DAB+\angle DAC=180^\circ$,因此可以列出以下方程组:$\begin{cases} \dfrac{\sin \angle DAB}{\sin \angleDAC}=\dfrac{7}{5} \\ \sin \angle DAB+\sin \angle DAC=1\end{cases}$解得$\sin \angle DAB=\dfrac{7}{12}$,$\sin \angleDAC=\dfrac{5}{12}$,$\angle DAB=\sin^{-1} \dfrac{7}{12}$,$\angle DAC=\sin^{-1} \dfrac{5}{12}$,即$\angle DAB \approx 36.87^\circ$,$\angle DAC \approx 26.57^\circ$。

12.3 角平分线的性质(重难点突破)解析版

12.3 角平分线的性质(重难点突破)解析版

12.3 角平分线的性质(重难点)【知识点一、角的平分线及其性质】1.尺规作角平分线尺规作角平分线方法(重要):已知:∠AOB.求作:∠AOB的平分线.作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M、N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC.射线OC即为所求.2.角平分线的性质定理:角的平分线上的点到角的两边的距离相等.【知识点二、角平分线的判定】1.角平分线的判定定理:角的内部到角的两边的距离相等的点在角的平分线上.定理的几何表述:∵PD⊥OA,PE⊥OB,PD=PE.∴点P 在∠AOB的平分线上.2.三角形的内角平分线结论:三角形的三条角平分线交于一点,并且这点到三边的距离相等.已知如图,△ABC的角平分线BM,CN相交于点P,则点P到三边AB,BC,CA的距离相等.A.4B.【答案】B【分析】过点D作DH⊥AB,垂足为H,由题意可得DC=3,再由角平分线的性质可得CD=DH=3,即可得到答案.【详解】解:如图,过点D作DH⊥AB,垂足为H,∵AC=9,DC=1AC,3∴DC=3,∵BD平分∠ABC,∠C=90°,DH⊥AB,∴CD=DH=3,∴点D到AB的距离等于3,故选:B.【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线上的点到角的两边的距离相等是解题的关键.【变式训练1-1】如图,点E为∠BAC平分线AP上一点,AB=5,△ABE的面积为15,则点E到直线AC的距离为()A.5B.6C.7D.8【答案】B【分析】设点E到直线AB的距离为ℎ,根据三角形面积公式即可求解.【详解】解:如图,过点E作EM⊥AC,EN⊥AB,垂足分别为M,N,∵E为∠BAC平分线AP上一点,∴EM=EN,∵AB=5,△ABE的面积为15,AB×EN=15,∴12=6,∴EN=305∴EM=6,即点E到直线AC的距离为6.故选:B.【点睛】本题考查角平分线的性质定理及点到直线的距离之概念.其关键要理解角平分线上一点到角两边距离相等.【变式训练1-2】如图,OC是∠AOB的平分线,PD⊥OA于点D,PD=2,则点P到OB的距离是()A.1B.2C.4D.都不对【答案】B【分析】过点P作PE⊥OB于E,根据角平分线的性质即可求解.【详解】解:如图,过点P作PE⊥OB于E,∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PE=PD=2,即点P到边OB的距离为2.故选:B.【点睛】本题考查了角平分线的性质:角平分线上的点到角的两边的距离相等.【变式训练1-3】如图,在Rt△ABC中,∠A=90°,BD是△ABC的角平分线.若AC=9,CD=6,则点D到BC的距离是()A.2B.4C.3D.6【答案】C【分析】过点D作DE⊥BC于点E,根据角平分线的性质得到DE=AD=3.【详解】解:过点D作DE⊥BC于点E,∵AC=9,CD=6,∴AD=AC―CD=9―6=3,∵BD是△ABC的角平分线,∠A=90°,DE⊥BC,∴DE=AD=3,∴点D到BC的距离是3,故选:C.【点睛】此题考查了角平分线的性质:角平分线上的点到角的两边的距离相等,正确掌握性质是解题的关键.考点2:利用角平分线性质求周长例2.如图所示,△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于D,DE⊥AB于E.AB=10cm,则△DEB的周长是()A.5cm B.10cm C.15cm D.20cm【答案】B【分析】先根据角平分线的性质得出DE=DC,再利用HL证明Rt△ADE≌Rt△ADC,推出AC=AE,进而通过等量代换可得BD+DE+EB=AB=10cm.【详解】解:∵AD平分∠CAB,∠C=90°,DE⊥AB,∴DE=DC,又∵AD=AD,∴Rt△ADE≌Rt△ADC(HL),∴AC=AE,∵AC=BC,∴AE=BC,∴BD+DE+EB=BD+DC+EB=BC+EB=AE+EB=AB=10cm,故选B.【点睛】本题主要考查角平分线的性质、直角三角形全等的判定与性质,解题的关键是通过证明Rt△ADE≌Rt△ADC推导出AC=AE.【变式训练2-1】.如图,△ABC中,∠C=90∘,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BE=3,则△BDE的周长是()A.15B.12C.9D.6【答案】B【分析】由△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,根据角平分线的性质,即可得DE=CD,继而可求得△BDE的周长是:BE+BC,则可求得答案.【详解】解:∵△ABC中,∠C=90°;∴AC⊥CD;∵AD平分∠BAC,DE⊥AB;∴DE=CD,∵BC=9,BE=3,∴△BDE的周长是:BE+BD+DE=BE+BD+CD=BE+BC=3+9=12.故选:B.【点睛】本题主要考查了角平分线的性质.注意角平分线的性质:角的平分线上的点到角的两边的距离相等.【变式训练2-2】如图,在△ABC中,∠C=90°,BC=6cm,AC=8cm,AB=10cm,若BD平分∠ABC交AC 于点D,过D作DE⊥AB于点E,则△ADE的周长为( )cm.A.8B.10C.12D.14【答案】C【分析】根据角平分线的性质定理可得DE=CD,从而可证△BDE≌△BDC(HL),即得出BE=BC=6cm,最后可求△ADE的周长为AC+AE=12cm.【详解】∵BD平分∠ABC,∠C=90°,DE⊥AB,∴DE=CD.又∵BD=BD,∴△BDE≌△BDC(HL),∴BE=BC=6cm,∴AE=AB―BE=10―6=4cm,∴C△ADE=AD+DE+AE=AD+CD+AE=AC+AE=8+4=12cm.故选C.【点睛】本题考查角平分线的性质定理,三角形全等的判定和性质.证明C△ADE=AC+AE是解题关键.【变式训练2-3】如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,BE=2,BC=6,则△BDE的周长为( )A.6B.8C.10D.14【答案】B【分析】根据角平分线的性质定理可得DE=DC,进而可以求出△BDE的周长;【详解】解:∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DE=DC,∴C△BDE=BE+DE+BD=BE+BC=2+6=8,故选:B.【点睛】本题考查了角平分线的性质定理;熟练运用该定理实现线段的转化是解题的关键.考点3:利用角平分线性质求面积例3.在△ABC中,BD是△ABC的高线,CE平分∠ACB,交BD于点E,BC=6,DE=3,则△BCE的面积等于()A.3B.5C.9D.12【答案】C【分析】过点E作EF⊥BC于点F,根据角平分线的性质可得EF=DE=3,再根据三角形的面积公式求解即可.【详解】解:过点E作EF⊥BC于点F,∵CE 平分∠ACB ,ED ⊥AC ,EF ⊥BC ,∴EF =DE =3,∴S △BCE =12BC ⋅EF =12×6×3=9,故选:C .【点睛】本题主要考查了角平分线的性质,解题的关键是熟练掌握角平分线上的点到两边距离相等.【变式训练3-1】如图,在△ABC 中,CD 是AB 边上的高,BE 平分∠ABC ,交CD 于点E ,已知,BC =8,DE =2,则△BCE 的面积等于( )A .4B .6C .8D .10【答案】C 【分析】作EF ⊥BC 于F ,根据角平分线的性质得到EF =DE =2,根据三角形的面积公式计算即可.【详解】解:如图,作EF ⊥BC 于F ,∵BE 平分∠ABC ,ED ⊥AB ,EF ⊥BC ,∴EF =DE =2,∴△BCE 的面积=12×BC ×EF =12×8×2=8,故选C .【点睛】本题考查角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.【变式训练3-2】如图,AD 是△ABC 的角平分线,DE ⊥AC 于E ,M ,N 分别是边AB ,AC 上的点,DM =DN ,若△ADM 和△ADN 的面积分别为30和16,则△ADE 的面积是( )A .22B .23C .24D .25【答案】B 【分析】如图所示(见详解),过点D 作DF ⊥AB 于F ,AD 是△ABC 的角平分线,DE ⊥AC 于E ,可证Rt △DFM ≌Rt △DEN(HL),同理可证Rt △ADF ≌Rt △ADE(AAS),设S △DFM =x ,△ADM 和△ADN 的面积分别为30和16,列方程30―x =16+x 即可求解.【详解】解:如图所示,过点D 作DF ⊥AB 于F ,∵AD 是△ABC 的角平分线,DE ⊥AC 于E ,∴DE =DF ,在Rt △DFM,Rt △DEN 中,DM =DN DF =DE ,∴Rt △DFM ≌Rt △DEN(HL),∴S △DFM =S △DEN ,在Rt △ADF,Rt △ADE 中,∠FAD =∠EAD ∠AFD =∠AED =90°AD =AD(公共边),∴Rt △ADF ≌Rt △ADE(AAS),∴S △AFD =S △AED =S △ADN +S △DEN =S △ADN +S△AFM ,设S △DFM =x ,△ADM 和△ADN 的面积分别为30和16,∴30―x =16+x ,解方程得,x =7,∴S △AFM =S △AEN =7,∴S△ADE=S△ADN+S△AEN=16+7=23,故选:B.【点睛】本题主要考查角平分线,三角形全等和性质的综合,理解并掌握角平分线上点到角两边的距离相等,全等三角形的判定和性质是解题的关键.【变式训练3-3】如图,在四边形ABCD中,∠A=90°,AD=4,BC=10,BD平分∠ABC,则△BCD的面积是()A.10B.12C.16D.20【答案】D【分析】过D点作DE⊥BC于E,根据角平分线的性质“角平分线上的点到角的两边的距离相等”得到DE=DA=4,根据三角形面积公式计算即可.【详解】解:过D点作DE⊥BC于E,如图,∵BD平分∠ABC,DE⊥BC,∠A=90°,∴DE=DA=4,×10×4=20.∴△BCD的面积=12故选:D.【点睛】本题主要考查了角平分线的性质以及求三角形面积角,理解并掌握角平分线的性质是解题关键.考点4:判定结论是否正确例4.如图,ΔAOB的外角∠CAB,∠DBA的平分线AP,BP相交于点P,PE⊥OC于E,PF⊥OD于F,下列结论:(1)PE=PF;(2)点P在∠COD的平分线上;(3)∠APB=90°―∠O,其中正确的有()A .0个B .1个C .2个D .3个【答案】C【分析】过点P 作PG ⊥AB ,由角平分线的性质定理,得到PE =PG =PF ,可判断(1)(2)正确;由∠APB =12∠EPF ,∠EPF +∠O =180°,得到∠APB =90°―12∠O ,可判断(3)错误;即可得到答案.【详解】解:过点P 作PG ⊥AB ,如图:∵AP 平分∠CAB ,BP 平分∠DBA ,PE ⊥OC ,PF ⊥OD ,PG ⊥AB ,∴PE =PG =PF ;故(1)正确;∴点P 在∠COD 的平分线上;故(2)正确;∵∠APB =∠APG +∠BPG =12∠EPF ,又∠EPF +∠O =180°,∴∠APB =12×(180°―∠O)=90°―12∠O ;故(3)错误;∴正确的选项有2个;故选:C .【点睛】本题考查了角平分线的判定定理和性质定理,解题的关键是熟练掌握角平分线的判定和性质进行解题.【变式训练4-1】如图,∠ABC =∠ACB ,AD 、BD 、CD 分别平分△ABC 的∠EAC 、∠ABC 、∠ACF ,以下结论:①AD ∥BC ;②∠ACB =2∠ADB ;③∠ADC =90°―∠ABD ;④BD 分∠ADC ;⑤3∠BDC =∠BAC 。

角的平分线的性质知识点讲解

角的平分线的性质知识点讲解

过点 D作 D LB F C于点

. ‘
B D平 分 AA C. _B
DE = D
’ . .

在 R △E D 和 R △F D 中 ,D t A t C E=D F’
l D =DC. A
・ . .
图 2
R △ D t R A F D( ) t C HL ,
C= D.






D+
D =1 O 8 。.
‘ . .
C + A = l 0。 8 .
点 拔 从条件 B D是 LA C的平分 线人手 , B 联想角平分 线的性质 , 过
点 D作 LA C两 边 的垂 线 , 造 出相 等 线 段 和 相 应 的 直 角 三 角 形 ,通过 全 B 构
这 个 角 的 平 分线 上 . 以 1 2 所 : .
Me l f i i gt n t k o l n me, h l meq it i s h m. a kl i w i t uel k l e ei y lt


一 一 一 一 一 一 一 一 一 一 一 ~ 一 一 一 ~ 一 一 一 一 一 一


角 平 的 分线的 纽 渣 灞 性质 暇 谲

伪 1 如图 1 已知A B , A C的/B /C的外角的平分线交于 ,
一j 角 的 平 分 线 上 的 点 副
点 P. 求证 : P在 A 的 角平分 线上 . 点
解 过点 P作 P C于 D, D上
P AB 千 E. FiBC 千 F E P .


OD :OD .

七年级角平分线知识点

七年级角平分线知识点

七年级角平分线知识点七年级的数学学习中,角平分线是比较重要的知识点之一,它是几何中的一个比较基础的概念。

本文将针对角平分线的定义、性质、求解方法以及应用场景等方面进行详细介绍,希望对各位学生的数学学习有所帮助。

一、角平分线的定义角平分线是指将一个角平分成两个相等的角的直线,也称为角的平分线。

如下图所示,$BD$就是角$ABC$的平分线。

(请参见附图一)二、角平分线的性质1. 角平分线上的点到角两边的距离相等。

如下图所示,$BP$是角$ABC$的平分线,$BD$和$BC$是该角的两边,那么有$BD=PC$,$BC=PD$。

(请参见附图二)2. 在一个三角形中,角平分线将对边分成相似的线段。

如下图所示,$AD$为角$BAC$的平分线,那么有$\frac{AB}{BD}=\frac{AC}{CD}$。

(请参见附图三)3. 在一个四边形中,对角线相交于一点,当且仅当相邻角的平分线相交于该点。

如下图所示,$AC$和$BD$是四边形$ABCD$的对角线,$BF$和$CE$分别是角$B$和角$C$的平分线,那么$BF$和$CE$交于点$P$,$AC$和$BD$也交于该点。

(请参见附图四)三、角平分线的求解方法1. 利用角平分线的定义和性质进行推导。

如下图所示,$BD$是角$ABC$的平分线,那么有$\angleABD=\angle DBC$,$\angle ABC=\angle ABD+\angle DBC$,又因为$\angle ABD=\angle DBC$,所以$\angle ABC=2\angle ABD$。

因此,当角的度数已知时,可以通过计算得到角平分线所对应的度数。

2. 利用相似三角形的性质。

如下图所示,$AD$为角$BAC$的平分线,那么有$\frac{AB}{BD}=\frac{AC}{CD}$,因此可得出$BD$所对应的线段长度。

3. 利用对角线的交点进行计算。

如下图所示,$AC$和$BD$是四边形$ABCD$的对角线,$BF$和$CE$分别是角$B$和角$C$的平分线,那么$BF$和$CE$交于点$P$,可以通过计算点$P$的坐标来求解角平分线。

八年级数学专题07 角平分线的性质 (知识点串讲)(解析版)

八年级数学专题07 角平分线的性质 (知识点串讲)(解析版)

专题07 角平分线的性质重点突破知识点一角平分线概念:从一个角的顶点引出一条射线,把这个角分成完全相同的角,这条射线叫做这个角的角平分线。

角平分线的性质:角平分线上的点到角两边的距离相等;数学语言:∵∠MOP=∠NOP,PA⊥OM PB⊥ON∴PA=PB判定定理:到角两边距离相等的点在角的平分线上.数学语言:∵PA⊥OM PB⊥ON PA=PB∴∠MOP=∠NOP知识点二角平分线常考四种辅助线:1.图中有角平分线,可向两边作垂线。

2.角平分线加垂线,三线合一试试看。

3.角平分线平行线,等腰三角形来添。

4.也可将图对折看,对称以后关系出现。

考查题型考查题型一与角平分线有关的计算典例1(2020·廊坊市期末)如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于( ).A.35°B.70°C.110°D.145°【答案】C【详解】∵OC平分∠DOB,∠COB=35°,∴∠BOD=2∠COB=2×35°=70°,∴∠AOD=180°-70°=110°.故选C.变式1-1.(2019·通辽市期末)已知:如图,直线BO⊥AO于点O,OB平分∠COD,∠BOD=22°.则∠AOC的度数是( )A.22°B.46°C.68°D.78°【答案】C【提示】由垂直的定义可知∠AOB=90°,由角平分线的定义可知∠BOC=∠BOD=22°,从而求得∠AOC的度数.【详解】解:∵BO⊥AO,∴∠AOB=90°,∵OB平分∠COD,∴∠BOC=∠BOD=22°,∴∠AOC=90°-22°=68°.故选C.【名师点拨】本题考查了垂直的定义,角平分线的定义.变式1-2.(2018·路北区期末)如图,直线AB、CD相交于点O,∠DOF=90°,OF平分∠AOE,若∠BOD=32°,则∠EOF的度数为()A.32°B.48°C.58°D.64°【答案】C【解析】∵∠DOF=90°,∠BOD=32°,∴∠AOF=90°-32°=58°,∵OF平分∠AOE,∴∠AOF=∠EOF=58°.故选C.变式1-3.(2018·石家庄市期末)如图,O B是∠A O C的平分线,O D是∠C O E的平分线.如果∠A O B=50°,∠C O E =60°,则下列结论错误的是()A.∠A O E=110°B.∠B O D=80°C.∠B O C=50°D.∠D O E=30°【答案】A【提示】根据角平分线的性质,角的和差倍分关系计算作答.【详解】解:∵OB是∠AOC的平分线,OD是∠COE的平分线,如果∠AOB=50°,∠COE=60°,∴A、∠AOE=2∠AOB+∠COE=160°,故错误;B、∠BOD=∠BOC+∠COD=∠AOB+12∠COE=80°,故正确;C、∠BOC=∠AOB=50°,故正确;D、∠DOE=12∠COE=30°,故正确.故选A.【名师点拨】本题结合角平分线的性质考查了角的和差倍分关系计算.变式1-4.(2018·郑州市期末)已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD 的度数是()A.20°或50°B.20°或60°C.30°或50°D.30°或60°【答案】C【解析】试题解析:分为两种情况:如图1,当∠AOB在∠AOC内部时,∵∠AOB=20°,∠AOC=4∠AOB,∴∠AOC=80°,∵OD平分∠AOB,OM平分∠AOC,∴∠AOD=∠BOD=12∠AOB=10°,∠AOM=∠COM=12∠AOC=40°,∴∠DOM=∠AOM-∠AOD=40°-10°=30°;如图2,当∠AOB在∠AOC外部时,∠DOM═∠AOM+∠AOD=40°+10°=50°;故选C.考查题型二角平分线的性质定理典例2(2019·云龙县期中)如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为( )A .6B .5C .4D .3【答案】A 【详解】试题提示:如图,过点P 作PE ⊥OB 于点E ,∵OC 是∠AOB 的平分线,PD ⊥OA 于D ,∴PE=PD ,∵PD=6,∴PE=6,即点P 到OB 的距离是6.故选A .变式2-1.(2019·邵阳市期中)如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,AB=10,S △ABD =15,则CD 的长为( )A .3B .4C .5D .6【答案】A 【详解】作DE ⊥AB 于E , ∵AB=10,S △ABD =15, ∴DE =3,∵AD 平分∠BAC ,∠C =90°,DE ⊥AB , ∴DE =CD =3, 故选A.变式2-2.(2020·景泰县期中)如图所示,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A 、B .下列结论中不一定成立的是( ).A .PA PB = B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP【答案】D 【提示】根据角平分线上的点到角的两边距离相等可得出PA=PB ,再利用“HL ”证明△AOP 和△BOP 全等,可得出APO BPO ∠=∠,OA=OB ,即可得出答案.【详解】解:∵OP 平分AOB ∠,PA OA ⊥,PB OB ⊥ ∴PA PB =,选项A 正确; 在△AOP 和△BOP 中,PO POPA PB =⎧⎨=⎩, ∴AOP BOP ≅∴APO BPO ∠=∠,OA=OB ,选项B ,C 正确;由等腰三角形三线合一的性质,OP 垂直平分AB ,AB 不一定垂直平分OP ,选项D 错误. 故选:D . 【名师点拨】本题考查的知识点是角平分线的性质以及垂直平分线的性质,熟记性质定理是解此题的关键.变式2-3.(2019·肥城市期末)如图,AD 是ABC 的角平分线,DF AB ⊥,垂足为F ,DE DG =,ADG 和AED 的面积分别为60和35,则EDF 的面积为( )A .25B .5.5C .7.5D .12.5 【答案】D 【提示】过点D 作DH ⊥AC 于H ,根据角平分线上的点到角的两边距离相等可得DF=DH ,再利用“HL”证明Rt △ADF 和Rt △ADH 全等,Rt △DEF 和Rt △DGH 全等,然后根据全等三角形的面积相等列方程求解即可. 【详解】如图,过点D 作DH AC ⊥于H ,AD 是ABC 的角平分线,DF AB ⊥, DF DH ∴=,在Rt ADF 和Rt ADH 中,AD ADDF DH =⎧⎨=⎩, Rt ADF ∴≌()Rt ADH HL ,RtADFRtADH S S ∴=,在Rt DEF 和Rt DGH 中,DE DGDF DH =⎧⎨=⎩Rt DEF ∴≌()Rt DGH HL ,RtDEFRtDGHS S ∴=,ADG 和AED 的面积分别为60和35,Rt DEFRtDGH 35S 60S ∴+=-,RtDEF S ∴=12.5,故选D .【名师点拨】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记掌握相关性质、正确添加辅助线构造出全等三角形是解题的关键.变式2-4.(2019·磴口县期中)如图,△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB=6cm ,则△DEB 的周长为( )A .4cmB .6cmC .8cmD .10cm【答案】B 【解析】 ∵DE ⊥AB , ∴∠C=∠AED=90°, ∵AD 平分∠CAB , ∴∠CAD=∠EAD ,在△ACD 和△AED 中,C AED CAD EAD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△AED(AAS), ∴AC=AE ,CD=DE ,∴BD+DE=BD+CD=BC=AC=AE , BD+DE+BE=AE+BE=AB=6, 所以,△DEB 的周长为6cm. 故选B.考查题型三 角平分线的判定定理典例3.(2019·漳州市期中)如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为( )A .1B .2C .3D .4【答案】B【解析】提示:根据题意点Q是射线OM上的一个动点,要求PQ的最小值,需要找出满足题意的点Q,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P作PQ垂直OM,此时的PQ最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ,利用已知的PA的值即可求出PQ的最小值.解答:解:过点P作PQ⊥OM,垂足为Q,则PQ为最短距离,∵OP平分∠MON,PA⊥ON,PQ⊥OM,∴PA=PQ=2,故选B.变式3-1.(2018·广安市期末)如图,DC⊥AC于C,DE⊥AB于E,并且DE=DC,则下列结论中正确的是( )A.DE=DF B.BD=FD C.∠1=∠2 D.AB=AC【答案】C【解析】提示:如图,由已知条件判断AD平分∠BAC即可解决问题.详解:如图,∵DC⊥AC于C,DE⊥AB于E,且DE=DC,∴点D在∠BAC的角平分线上,∴∠1=∠2.故选C.名师点拨:该题主要考查了角平分线的判定及其性质的应用问题;牢固掌握角平分线的性质是解题的关键.变式3-2.(2018·深圳市期末)如图,在△ABC中,∠C=90°,AC=BC,AB=4cm,AD平分∠BAC交BC于点D,DE⊥AB 于点E,则以下结论:①AD平分∠CDE;②DE平分∠BDA;③AE-BE=BD;④△BDE周长是4cm.其中正确的有()A.4个B.3个C.2个D.1个【答案】B【提示】根据角平分线性质求出CD=DE,根据等腰三角形的判定得出BE=DE,求出CD=DE=BE,根据勾股定理和CD=DE 求出AC=AE,求出AC=AE=BC,再逐个判断即可.【详解】解:∵DE⊥AB,∴∠DEA=∠DEB=90°,∵AD平分∠CAB,∴∠CAD=∠BAD,∵∠C=90°,∠CDA+∠C+∠CAD=180°,∠DEA+∠BAD+∠EDA=180°,∴∠CDA=∠EDA,∴①正确;∵在△ABC中,∠C=90°,AC=BC,∴∠CAB=∠B=45°,∵∠C=∠DEA=∠DEB=90°,∴∠CDE=360°-90°-45°-90°=135°,∠BDE=180°-90°-45°=45°,∵∠CDA=∠EDA,∴∠CDA=∠EDA=11352︒⨯=67.5°≠45°,∴∠EDA≠∠BDE,∴DE不平分∠BDA,∴②错误;∵AD平分∠CAB,∠C=90°,DE⊥AB,∴CD=DE,由勾股定理得:AC=AE,∵AC=BC,∴AE=AC=BC,∵∠B=∠BDE=45°,∴BE=DE=CD,∴AE-BE=BC-CD=BD,∴③正确;△BDE周长是BE+DE+BD=BE+CD+BD=BC+BE=AE+BE=AB=4cm,∴④正确;即正确的个数是3,故选:B.【名师点拨】本题考查了等腰三角形的判定、勾股定理、角平分线性质等知识点,能求出AC=AE=BC和CD=DE=BE 是解此题的关键.变式3-3.(2020·嵩县期末)如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角平分线上的点到这个角两边的距离相等B.角的内部到角的两边的距离相等的点在角的平分线上C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确【答案】B【提示】过两把直尺的交点P作PE⊥AO,PF⊥BO,根据题意可得PE=PF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB.【详解】如图,过点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺的宽度相等,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选B.【名师点拨】本题考查角平分线的判定定理,角的内部,到角两边的距离相等的点在这个角的平分线上;熟练掌握定理是解题关键.考查题型四角平分线性质的实际应用典例4.(2020·济南市期末)如图,已知△ABC中,∠C=90°,AD平分∠BAC,且CD:BD=3:4.若BC=21,则点D到AB边的距离为( )A.7 B.9 C.11 D.14【答案】B【提示】先确定出CD=9,再利用角平分线上的点到两边的距离相等,即可得出结论.【详解】解:∵CD:BD=3:4.设CD=3x,则BD=4x,∴BC=CD+BD=7x,∵BC=21,∴7x=21,∴CD=9,过点D作DE⊥AB于E,∵AD是∠BAC的平分线,∠C=90°,∴DE=CD=9,∴点D到AB边的距离是9,故选B.【名师点拨】本题考查了角平分线的性质,线段的和差,解本题的关键是掌握角平分线的性质定理.变式4-1.(2018·成都市期末)如图,在△ABC 中,∠B=90º,AC=10,AD 为此三角形的一条角平分线,若BD=3,则三角形ADC 的面积为()A.3 B.10 C.12 D.15【答案】D【提示】过D作DE⊥AC于E,根据角平分线性质得出BD=DE=3,再利用三角形的面积公式计算即可.【详解】解:过D作DE⊥AC于E.∵AD是∠BAC的角平分线,∠B=90°(DB⊥AB),DE⊥AC,∴BD=DE,∵BD=3,∴DE=3,∴S△ADC=12•AC•DE=12×10×3=15【名师点拨】本题考查了角平分线的性质,注意:角平分线上的点到角两边的距离相等.变式4-2.(2018·潍坊市期中)如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A,B,D,已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是()A.3公里B.4公里C.5公里D.6公里【答案】B【详解】解:如图,连接AC,作CF⊥l1,CE⊥l2;∵AB=BC=CD=DA=5公里,∴四边形ABCD是菱形,∴∠CAE=∠CAF,∴CE=CF=4公里.变式4-3.(2019·东城区期末)已知△ABC,两个完全一样的三角板如图摆放,它们的一组对应直角边分别在AB,AC 上,且这组对应边所对的顶点重合于点M,点M一定在().A .∠A 的平分线上B .AC 边的高上C .BC 边的垂直平分线上D .AB 边的中线上【答案】A 【提示】根据角平分线的判定推出M 在∠BAC 的角平分线上,即可得到答案. 【详解】 如图,∵ME ⊥AB ,MF ⊥AC ,ME=MF , ∴M 在∠BAC 的角平分线上, 故选:A . 【名师点拨】本题主要考查对角平分线的判定定理的理解和掌握,能熟练地利用角平分线的判定定理进行推理是解此题的关键. 变式4-4.(2019·河西区期中)如图,为了促进当地旅游发展,某地要在三条公路围城的一块三角形平地ABC 上修建一个度假村。

九年级角平分线知识点总结

九年级角平分线知识点总结

九年级角平分线知识点总结一、角平分线的定义在平面几何中,如果一条射线恰好把一个角分成两个相等的角,那么这条射线就称为这个角的平分线。

二、角平分线的性质1. 角平分线的定义性质:角平分线将一个角分成两个相等的角。

2. 角平分线定理:如果一条射线是一个角的平分线,那么这条射线上的任意一点与角的两边构成的两个角相等。

3. 两条角平分线的交点:如果两条不同的角平分线相交于一个点,那么这两条角平分线所构成的角是相等的。

4. 角平分线的唯一性:一个角的两边上有且仅有一条角平分线。

5. 角平分线的夹角定理:角的平分线所平分的角,与角的两边构成的角互补。

6. 角平分线的垂直平分线:在一个直角三角形中,直角的平分线即为直角边的垂直平分线。

7. 角平分线的应用:在一些证明题目中,角平分线可以被运用,简化证明的过程。

三、角平分线的构造方法1. 利用直尺和圆规来画出一个角的角平分线。

2. 利用三角形特点来寻找角平分线,如利用等腰三角形的特点来构造角平分线。

3. 利用角平分线的性质来构造角平分线,如利用角平分线与直线的相交得到的相等角来构造角平分线。

四、角平分线的应用1. 利用角平分线进行角的三等分。

如在一个40度的角中,通过画出其角平分线,再进行角的三等分。

2. 利用角平分线进行证明。

如在一个几何问题中,可以利用角平分线的性质来简化证明的过程。

3. 利用角平分线进行角的构造。

如在画出一个特定角度的角时,可以利用角平分线来准确地构造。

五、角平分线的相关定理1. 角平分线的交叉定理:如果两条角平分线相交于一点,那么这两条角平分线所构成的角相等。

2. 角平分线的三线共点定理:在任意的三角形中,角的外角平分线、内角平分线和中垂线三条线相交于一点。

3. 角平分线的内切定理:三角形内切圆的切点与三角形的顶点连线所成的角等于这个角的角平分线与这个角的两边所成的角。

4. 角平分线的外角平分线定理:在一个三角形中,三个外角平分线所构成的三个角互补。

专题07 角的平分线性质(知识点串讲)(解析版)

专题07 角的平分线性质(知识点串讲)(解析版)

专题07 角的平分线性质知识网络重难突破知识点一角平分线概念:从一个角的顶点引出一条射线,把这个角分成完全相同的角,这条射线叫做这个角的角平分线。

角平分线的性质:角平分线上的点到角两边的距离相等;数学语言:∵∠MOP=∠NOP,PA⊥OM PB⊥ON∴PA=PB判定定理:到角两边距离相等的点在角的平分线上.数学语言:∵PA⊥OM PB⊥ON PA=PB∴∠MOP=∠NOP典例1 (2018春 泰安市期中)如图,在△ABC 中,BE 、CE 分别是∠ABC 和∠ACB 的平分线,过点E 作DF∥BC 交AB 于D ,交AC 于F ,若AB=4,AC=3,则△ADF 周长为( )A .6B .7C .8D .10【答案】B【详解】 因为∠ABC 和∠ACB 的平分线交于点E ,所以∠ABE=∠EBC,∠ACE=∠ECB.因为DF∥BC,所以∠EBC=∠BED,∠ECB=∠FEC,则DE=DC ,EF=FC ,则DF=DE+EF=DB+FC ,所以△ADF 周长=3+4=7.故选择B 项.典例2 (2019春 邯郸市期中)如图,直线AB 、CD 相交于点O ,OD 平分∠AOE,∠BOC=50°,则∠EOB=( )A.50°B.60°C.70°D.80°【答案】D【详解】 解:∵∠BOC=50°,∴∠AOD=50°,∴∠AOE=100°,∠EOB=180°-100°=80°,故选D.典例3 (2018出 盐城市期末)如图,AOB ∠与AOC ∠互余,AOD ∠与AOC ∠互补,OC 平分BOD ∠,则AOB∠的度数是()A.20︒B.22.5︒C.25︒D.30°【答案】B【详解】解:∵∠AOB与∠AOC互余,∠AOD与∠AOC互补,∴∠AOB=90°-∠AOC,∠AOD=180°-∠AOC,∴∠BOD=∠AOD-∠AOB=90°,∵OC平分∠BOD,∴∠BOC=45°,∴∠AOC=45°+∠AOB,∴∠AOB=90°-∠AOC=90°-(45°+∠AOB),∴∠AOB=22.5°,故选:B.知识点二角平分线常考四种辅助线:⏹图中有角平分线,可向两边作垂线。

角平分线性质复习

角平分线性质复习

角的平分线的性质一、知识点:1.角的平分线的性质:角的平分线上的点到角两边的距离相等。

图形表示:若CD平分ADB,点P是CD上一点PE AD于点E,PF BD于点F,则PE=PF。

2.角平分线的判定:到角两边距离相等的点在角的平分线上。

若PE AD于点E,PF BD于点F,PE=PF,则PD平分ADB3.角平分线的尺规作图4.三角形三个内角平分线的性质:三角形三条内角平分线交于一点,且这一点到三角形三边的距离相等。

二、经验与提示1.角的平分线是射线,三角形的角平分下线是线段。

2.证明线段相等的方法:1)三角形全等;2)角的平分线的性质。

3.证明角相等的方法:1)三角形全等;2)角的平分线的判定。

三、典型例题:例1:如图,DABC中C=90°,AD平分BAC,点D在BC上,且BC=24,CD:DB=3:5求:D到AB的距离。

解:过D作DE AB于E。

∵AD平分BAC,DE AB,DC AC∴DE=CD∵BC=24,CD:DB=3:5∴CD=24 =9例2:如图,ACB=90°,BD平分ABC 交AC于D,DE AB于E,ED的延长线交BC的延长线于F.求证:AE=CF证明:∵BD平分ABC,DE AB,DC BF∴DE=DC在DADE和DFCD中∴DADE DFCD(ASA)∴AE=CF例3:如图,已知AB=AC,AD=AE,DB与CE 相交于O(1)若DB AC,CE AB,D,E为垂足,试判断点O的位置及OE与OD的大小关系,并证明你的结论。

(2)若D,E不是垂足,是否有着这样的结论?并证明你的结论。

解:(1)∵AB=AC,AD=AE∴BE=CD∵DB AC,CE AB,∴BEO= CDO=90°在DBEO和DCDO中∴DBEO DCDO∴EO=DO∵EO AB,DO AC∴点O在A的平分线上(2)点D,E不是垂足时,(1)的结论仍然成立,连接AO在DABD和DACE中∴DABD DACE ∴B= C∵AB=AC,AD=AE∴EB=CD在DBEO和DCDO中∴DBEO DCDO∴EO=DO在DAEO和DADO中∴DAEO DADO∴EAO= DAO∴O点在A的角平分线上四、练习题1.已知,点P是DABC的角平分线AD上一点,PE AB于E,PF AC于F,则PE=________,AE=_________.点Q在DABC 内,QM BC于点M,QN BA于点N,QM=QN,则点Q在___________________________.2.已知,如图,四边形ABCD内一点P到三边AB、BC、CD的距离相等,则点P的准确位置在____________________________________.3.如果三角形内一点到三条边的距离相等,那么这点是三角形三条_________线的交点。

初二讲义角平分线的判定与性质

初二讲义角平分线的判定与性质

第7讲角平分线的判定与性质【知识点与方法梳理】角平分线的性质定理:角平分线上的点到角两边的距离相等。

角平分线的判定定理:到一个角的两边的距离相等的点,在这个角的平分线上。

角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.角平分线的性质及判定1.角平分线的性质:角的平分线上的点到角的两边的距离相等.推导已知:OC平分∠MON,P是OC上任意一点,PA⊥OM,PB⊥ON,垂足分别为点A、点B.求证:PA=PB.证明:∵PA⊥OM,PB⊥ON∴∠PAO=∠PBO=90°∵OC平分∠MON∴∠1=∠2在△PAO和△PBO中,∴△PAO≌△PBO∴PA=PB几何表达:(角的平分线上的点到角的两边的距离相等)∵OP平分∠MON(∠1=∠2),PA⊥OM,PB⊥ON,∴PA=PB.2角平分线的判定:到角的两边的距离相等的点在角的平分线上.推导:已知:点P是∠MON内一点,PA⊥OM于A,PB⊥ON于B,且PA=PB.求证:点P在∠MON的平分线上.证明:连结OP在R t△PAO和R t△PBO中,∴R t△PAO≌R t△PBO(HL)∴∠1=∠2∴OP平分∠MON即点P在∠MON的平分线上.几何表达:(到角的两边的距离相等的点在角的平分线上.)∵PA⊥OM,PB⊥ON,PA=PB∴∠1=∠2(OP平分∠MON)【经典例题】FEDAB CNMGOED BAC例1.已知:如图,△ABC 中,∠C=90°,AD 是△ABC 的角平分线,DE ⊥AB 于E ,F 在AC 上BD=DF ,求证:CF=EB 例2.已知:如图,AD 、BE 是△ABC 的两条角平分线,AD 、BE 相交于O 点求证:O 在∠C 的平分线上例3.如图AB ∥CD ,∠B =90°,E 是BC 的中点。

角平分线点有关的知识点

角平分线点有关的知识点

角平分线点是几何学中一个重要的概念,它与角的平分线和角的内切圆密切相关。

在本文中,我们将逐步探讨角平分线点的定义、性质以及与其他几何概念的关系。

1.角平分线点的定义:角平分线点是指一个角的两条平分线所交的点。

对于一个任意的角,它都有两条平分线,它们相交于一个点,这个点就是角的平分线点。

2.角平分线点的性质:(1)角平分线点在角的内部:根据角的定义,
平分线点一定在角的内部。

(2)角平分线点到角的边的距离相等:角的平分线点到角的两条边的距离相等。

这是因为平分线将角分成两个相等的角,而平分线点到角的边的距离就是角的内部到边的距离,所以距离相等。

(3)角平分线点到角的顶点的距离最短:角平分线点到角的顶点的距离最短。

这是因为角平分线点是两条平分线的交点,而两条平分线的交点到角的顶点的距离是最短的。

3.角平分线点与其他几何概念的关系:(1)角平分线点与角的内切圆:
角的平分线点是角的内切圆的圆心。

内切圆是与角的每一条边都相切的圆,而圆心恰好是角的平分线点。

(2)角平分线点与角的外接圆:角的平分线点是角的外接圆的圆心。

外接圆是过角的每一条边的圆,而圆心正好是角的平分线点。

综上所述,角平分线点是指一个角的两条平分线所交的点。

它具有一些特殊的
性质,如在角的内部、到角的边的距离相等以及到角的顶点的距离最短。

此外,角平分线点还与角的内切圆和外接圆有密切的关系。

通过理解和应用角平分线点的概念和性质,我们可以更好地解决与角平分线点相关的几何问题。

八年级上册数学三角形的角平分线知识点和典型习题分类汇总附答案

八年级上册数学三角形的角平分线知识点和典型习题分类汇总附答案

第5讲 三角形的角平分线❖ 基本知识(熟记,会画图,要提问。

) 1等。

如何证明?2、角的平分线的判定:角的内部到角的两边距离相等的点在角的平分线上。

如何证明?3、三角形的内心:三角形的内角平分线的交点叫做三角形的内心。

4、三角形的内心的性质:三角形的内心到三角形三条边的距离相等。

如何证明?【角的平分线的性质】 【基本题型】1、【易】如图,铁路OA 和铁路OB 交于O 处,河道AB 与铁路分别交于A 处和B 处,试在河岸上建一座水厂M ,要求M 到铁路OA ,OB 的距离相等,则该水厂M 应建在图中什么位置?请在图中标出M 点的位置.2、【易】如图,在△ABC 中,AD 是它的角平分线,且BD=CD ,DE△AB 、DF△AC ,垂足为E 、F ,求证:EB=FC .3、【易】如图,在△ABC 中,AD 是它的角平分线,P 是AD 上的一点,PE//AB ,交BC 于点E ,PF//AC ,交BC 于点F 。

求证:点D 到PE 和PF 的距离相等。

4、【中】已知:如图,OC 是△AOB 的平分线,P 是OC 上的一点,PD△OA ,PE△OB ,垂足分别为D 、E ,点F 是OC 上的另一点,连接DF ,EF .求证:DF=EF .5、【中】如图,△1=△2,AE△OB 于点E ,BD△OA 于点D .AE ,BD 交于点C ,试说明AC=BC .6、【中】如图,AD 是△ABC 的角平分线,DE△AB ,DF△AC ,垂足分别为点E ,F ,连接EF ,则EF 与AD 的关系是______.7、【中】如图,在△ABC 中,△C=90°,AD 是△BAC 的平分线,DE△AB 于E ,F 在AC 上,BD=DF .求证: (1)CF=EB ;(2)△CBA+△AFD=180°.8、【中】【周长】如图,三角形纸片中,AB=8cm ,BC=6cm ,AC=5cm .△ABC 的平分线交AC 于点D ,AC △BC ,DE △AB ,求△ADE 的周长.9、【中】【周长】如图,在△ABC 中,△C=90°,AC=BC ,AD 平分△CAB 交BC 于点D,DE△AB于点E,若AB=6cm .求△BDE 的周长.10、【中】【面积】如图:在△ABC 中,AD 是它的角平分线.求证:(1)S △ABD :S △ACD =AB :AC ; (2)S △ABD :S △ACD =DB :DC ; (3)AB :AC=DB :DC .11、【中】【面积】如图,BD 平分△ABC ,DE 垂直于AB 于E 点,△ABC 的面积等于90,AB=18,BC=12,则DE 等于______.12、【中】【面积】如图,△ABC 中,△C=90°,AD 平分△BAC ,AB=5,CD=2,则△ABD 的面积是_________.13、【中】【面积】如图,AD 是△ABC 中△BAC 的角平分线,DE△AB 于点E ,S △ABC =7,DE=2,AB=4,则AC长是______.14、【难】【用角的平分线构造全等直角三角形】如图,AC 平分△BAD ,CD=CB ,AB>AD ,说明:△B+△D=180°.15、【难】【用角的平分线构造全等直角三角形】已知:如图,四边形ABCD 中,AB >AD ,AC 平分△DAB ,△B+△D=180°. 求证:CD=CB .16、【难】【用角的平分线构造全等直角三角形】在△ABC 中,AD 是△BAC 的平分线,E 、F 分别为AB 、AC 上的点,且△EDF+△EAF=180°,求证:DE=DF .参考答案1、作AOB 的平分线,交AB 于点M 。

角平分线的性质(4种题型)-2023年新八年级数学核心知识点与常见题型(人教版)(解析版)

角平分线的性质(4种题型)-2023年新八年级数学核心知识点与常见题型(人教版)(解析版)

角平分线的性质(4种题型)【知识梳理】一、角的平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等.要点诠释:用符号语言表示角的平分线的性质定理:若CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF.二、角的平分线的逆定理角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.要点诠释:用符号语言表示角的平分线的判定:三、角的平分线的尺规作图角平分线的尺规作图(1)以O为圆心,适当长为半径画弧,交OA于D,交OB于E.(2)分别以D 、E 为圆心,大于DE 的长为半径画弧,两弧在∠AOB 内部交于点C. (3)画射线OC.射线OC 即为所求. 【考点剖析】题型一:角平分线性质定理 例1.(2023春·陕西榆林·八年级校考期末)如图,在四边形ABCD 中,90B C ∠=∠=︒,点E 为BC 的中点,且AE 平分BAD ∠.求证:DE 是ADC ∠的平分线.【详解】证明:如图,过点E 作EF AD ⊥于点F ,∴90B Ð=°,AE 平分BAD ∠,∴BE EF =.∴点E 是BC 的中点,∴BE CE =,∴CE EF =.又∵90C ∠=︒,EF AD ⊥,∴DE 是ADC ∠的平分线.【变式1】(2023春·山西太原·七年级校考阶段练习)如图,ABC 中,90C ∠=︒,AD 平分BAC ∠,5AB =,2CD =,求ABD △的面积.12【答案】5【详解】解:作DE AB ⊥如图,∵AD 平分BAC ∠,90C ∠=︒,2CD =,∴=2CD DE =,1152522ABD S AB DE ∴=⨯⨯=⨯⨯=△.【变式2】(2023春·湖南常德·八年级统考期末)如图,点P 是ABC 的三个内角平分线的交点,若ABC 的周长为24cm ,面积为236cm ,则点P 到边BC 的距离是( )A .8cmB .3cmC .4cmD .6cm【答案】B 【详解】解:过点P 作PD AB ⊥于,PE BC ⊥于E ,PF AC ⊥于F ,如图,∵点P 是ABC 的内角平分线的交点,∴PE PF PD ==,又ABC 的周长为24cm ,面积为236cm ,∴()11112222ABC S AB PD BC PE AC PF PE AB BC AC =⋅+⋅+⋅=++,∴124363PE ⨯⨯=∴3cm PE =【变式3】(湖南省郴州市2022-2023学年八年级下学期期末数学试题)如图,在ABC 中,90ACB ∠=︒,BD 平分ABC ∠,DE AB ⊥于点E .如果8AC =,那么AD DE +=______.【答案】8【详解】解:∵在ABC 中,90ACB ∠=︒,BD 平分ABC ∠,DE AB ⊥,∴CD DE =,∵8AC =,∴8AD DE AD CD AC +=+==, 【变式4】(2023春·广东深圳·七年级统考期末)把两个同样大小的含30︒角的三角尺像如图所示那样放置,其中M 是AD 与BC 的交点,若4CM =,则点M 到AB 的距离为______.【答案】4【详解】解:由题意,得:90,30D C ABC DAB ∠=∠=︒∠=∠=︒,∴,60MC AC CAB ⊥∠=︒,∴30MAC BAC MAB MAB ∠=∠−∠=︒=∠,∴AM 平分DAB ∠,过点M 作MN AB ⊥,交AB 于点N ,∴4MN MC ==.故答案为:4.【变式5】如图,P 为ABC 三条角平分线的交点,PH 、PN 、PM 分别垂直于BC 、AC 、AB ,垂足分别为H 、N 、M .已知ABC 的周长为15cm ,3cm PH =,则ABC 的面积为______2cm .【答案】22.5【详解】解:连接PM 、PN 、PH ,P 为ABC 三条角平分线的交点,PH 、PN 、PM 分别垂直于BC 、AC 、AB ,3cm PM PN PH ∴===,ABC ∴∆的面积ΔAPB =的面积ΔBPC +的面积ΔAPC +的面积111222AB PM BC PH AC PN =⨯⨯+⨯⨯+⨯⨯ 1()32AB BC AC =++⨯222.5(cm )=.七年级校考期末)如图,在ABC 中,【答案】(1)32︒ (2)6【详解】(1)解:∵40B ∠=︒,76C ∠=︒,∴180407664BAC ∠=︒−︒−︒=︒,∵AD 平分BAC ∠, ∴1322BAD BAC ∠=∠=︒;(2)如图,过点D 作DF AB ⊥于点F ,∵AD 平分BAC ∠,DE AC ⊥,∴DF DE =,∵2DE =,6AB =,∴2DF =, ∴ABD △的面积12662=⨯⨯=.题型二:角平分线性质定理及证明 ,且PMN 与OMN 的面积分别是【答案】(1)证明过程见详解(2)20OM ON +=【详解】(1)证明:如图所示,过P 作PC MN PD OA PE OB ⊥⊥⊥,,,∵MP 平分AMN ∠,NP 平分MNB ∠,∴PD PE =,PC PE =,∴PD PE =,∵PD AO PE BO ⊥⊥,,∴OP 平分AOB ∠.(2)解:如图所示,过P 作PC MN PD OA PE OB ⊥⊥⊥,,,连接OP ,∵18162PMN MN S MN PC ===△,,∴4PC =,由(1)可知4PD PE PC ===,∵1624PMN OMN S S ==△△,,∴40MONP S =四边形,即1122OPM ONP MONP S S S OM PD ON PE =+=+△△四边形,∴1140442222OM ON OM ON =⨯+⨯=+,∴20OM ON +=. 【变式1】(2022秋·河南安阳·八年级校考阶段练习)如图,点E 是BC 的中点,AB BC DC BC ⊥⊥,,AE 平分BAD ∠.求证:(1)DE 平分ADC ∠;(2)AD AB CD +=.【详解】(1)证明:如下图,过E 作EF AD ⊥于F ,∵AB BC ⊥,AE 平分BAD ∠,∴EB EF =,∵点E 是BC 的中点,∴EB EC =,∴EF EC =,∵DC BC EF AD ⊥⊥,,∴90EFD ECD ∠∠︒==,在Rt EFD 和Rt ECD △中,EF EC ED ED =⎧⎨=⎩,∴Rt Rt HL EFD ECD ≌(),∴FDE CDE ∠∠=,∴DE 平分ADC ∠;(2)解:由(1)知,Rt Rt EFD ECD ≌,∴FD CD =,在Rt AEF 和Rt AEB 中,EF EB AE AE =⎧⎨=⎩,∴Rt Rt HL AEF AEB ≌(),∴AF AB =,∵AD AF FD +=,∴AD AB CD +=.【变式2】(2022秋·北京朝阳·八年级校考期中)如图,在ABC ∆中,90C ∠=︒,DE AB ⊥,于点E ,AD 平分CAB ∠,点F 在AC 上,BD DF =.求证:BE FC =.【详解】证明:∵AD 平分CAB ∠,90C ∠=︒,DE AB ⊥,∴DE DC =,90C DEB ∠=∠=︒,∴在Rt DEB ∆和Rt DCF ∆中,∵DE DC BD DF =⎧⎨=⎩,∴()HL DEB DCF ∆≅∆,∴BE FC =.(1)求证:BE =CD ;(2)判断点O 是否在∠BAC 的平分线上,并说明理由.(1)证明:BE 、CD 是ABC ∆的高,且相交于点O ,90∴∠=∠=︒BEC CDB ,在BDO ∆和CEO ∆中,90CDB BEC BOD COEBD CE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,BOD COE ∴∆≅∆(AAS),OD OE ∴=,OB OC =,OD OC OE OB ∴+=+,即CD BE =;(2)解:点O 在BAC ∠的平分线上,理由如下: 连接AO ,如图所示:BE 、CD 是ABC ∆的高,且相交于点O , 90ADC AEB ∴∠=∠=︒,由(1)得BE CD =,∴在ABE ∆和ACD ∆中,90ADC AEB CAD BAE CD BE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,ACD ABE ∴∆≅∆(AAS), AD AE ∴=,由(1)得OD OE =,∴在AOD ∆和AOE ∆中,90AD AE ADC AEB OD OE =⎧⎪∠=∠=︒⎨⎪=⎩,AOD AOE ∴∆≅∆(SAS),DAO EAO ∴∠=∠, ∴点O 在BAC ∠的平分线上.题型三:角平分线的判定定理 例3.如图,90B C ∠=∠=︒,M 是BC 的中点,AM 平分DAB ∠,求证:DM 平分ADC ∠.【详解】证明:如图:过点M 作ME AD ⊥,垂足为E ,AM 平分DAB ∠,MB AB ⊥,ME AD ⊥,ME MB =∴(角平分线上的点到角两边的距离相等),又MC MB =,ME MC ∴=,MC CD ⊥,ME AD ⊥,DM ∴平分ADC ∠(到角的两边距离相等的点在这个角的平分线上).【详解】(1)证明:如图,过点E 作EF DA ⊥于点F ,∵90C ∠=︒,DE 平分ADC ∠,∴CE EF =,∵E 是BC 的中点,∴BE CE =,∴BE EF =,又∵90B Ð=°,EF DA ⊥,∴AE 平分DAB ∠.(2)解:∵EF DA ⊥,90C ∠=︒,∴EFD △和ECD 都为Rt △,又∵DE 平分ADC ∠,∴EC EF =,在Rt EFD 和Rt ECD △中,ED ED EC EF =⎧⎨=⎩,∴()Rt Rt HL EFD ECD △≌△, ∴EFD ECD S S =△△,CED FED ∠=∠,∵EF DA ⊥,90B Ð=°,∴EFA △和EBA △都为Rt △,又∵AE 平分DAB ∠,∴EF EB =,在Rt EFA △和Rt EBA △中,EA EA EF EB =⎧⎨=⎩,∴()Rt Rt HL EFA EBA △≌△, ∴EFA EBA S S =△△,FEA BEA ∠=∠, ∴()111809022DEA DEF AEF CEF BEF ∠=∠+∠=∠+∠=⨯︒=︒, ∵4AE =,3DE =, ∴1143622AED S AE DE =⋅=⨯⨯=△, ∴EFD ECD EFA EBA ABCD S S S S S =+++△△△△四边形EFD EFD EFA EFA S S S S =+++△△△△()2EFD EFA S S =+△△2AED S =△ 26=⨯12=.∴四边形ABCD 的面积为12. 【变式2】如图,在AOB 和COD △中,OA OB =,OC OD =(OA OC <),AOB COD α∠=∠=,直线AC ,BD 交于点M ,连接OM .(1)求证:AC BD =;(2)用α表示AMB ∠的大小;(3)求证:OM 平分AMD ∠.【详解】(1)证明:AOB COD α∠=∠=,AOB BOC COD BOC ∴∠+∠=∠+∠,即AOC BOD ∠=∠,在AOC 和BOD 中,OA OB AOC BODOC OD =⎧⎪∠=∠⎨⎪=⎩,()SAS AOC BOD ∴≌, ∴AC BD =,(2)解:由三角形的外角性质得:AMB OBD OAC AOB ∠+∠=∠+∠,由(1)得()SAS AOC BOD ≌△△,∴OAC OBD ∠=∠,AMB AOB α∴∠=∠=,(3)证明:作OG AM ⊥于G ,OH DM ⊥于H ,如图所示,则90OGA OHB ∠=∠=︒,在OAG △和OBH △中,OGA OHB OAC OBDOA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS OAG OBH ∴≌, OG OH ∴=,OG AM ⊥于G ,OH DM ⊥于H ,MO ∴平分AMD ∠,是ABC 的角平分线,且交于点(1)APB ∠=______.(2)求证:点P 在C ∠的平分线上.【详解】(1)解:证明:60C ∠=︒,AE ,BD 是ABC 的角平分线,12ABP ABC ∴∠=∠,12BAP BAC ∠=∠,11()(180)6022BAP ABP ABC BAC C ∴∠+∠=∠+∠=︒−∠=︒, 120APB ∴∠=︒;(2)如图,过P 作PF AB ⊥,PG AC ⊥,PH BC ⊥,AE ,BD 分别平分CAB ∠,CBA ∠,PF PG ∴=,PF PH =,PH PG ∴=,∴点P 在C ∠的平分线上;(3)如图,在AB 上取点M 使AM AD =,连接PM ,AE 是BAC ∠的平分线,PAM PAD ∴∠=∠, 在AMP 与ADP △中,AP AP PAM PADAM AD =⎧⎪∠=∠⎨⎪=⎩,()SAS AMP ADP ∴≌, 18060APM APD APB ∴∠=∠=︒−∠=︒,180()60BPM APM APD ∴∠=︒−∠+∠=︒,60BPE APD ∠=∠=︒,BPM BPE ∴∠=∠,BD Q 是ABC ∠的角平分线,MBP EBP ∴∠=∠,在BPM △与BPE 中,MBP EBP BP BPBPE BPM ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA BPM BPD ∴≌,BM BE ∴=, AB AM BM AD BE ∴=+=+. (1)如图1,连接AC BD ,,交点为G ,连接OG ,求证:①AC BD =;②OG 平分DGC ∠;(2)如图2,若90AOD BOC ∠=∠=︒,E 是CD 的中点,过点在同一条直线上.∴AOD AOB BOC AOB ∠+∠=∠+∠,∴AOB AOC ∠=∠,又∵OA OD =,OB OC =,∴()SAS DOB AOC V V ≌,∴AC BD =;②如图所示,过点O 作OH DB ⊥于点H ,OF AC ⊥于点F ,∵DOB AOC ≌,OH DB ⊥,OF AC ⊥∴OH OF =,∴点O 在DGC ∠的角平分线上,∴OG 是DGC ∠的角平分线,∴OG 平分DGC ∠;(2)证明:连接OE ,并延长到N ,使NE OE =,连接CN ,∵E 是CD 的中点,∴CE DE =,又∵CEN DEO ∠=∠,NE OE =,∴()SAS CEN DEO ∠V V ≌,∴NCE ODE ∠=∠,CN OD =,∴CN OD ∥,∴180OCN COD CN OA ∠+∠=︒=,,90AOD BOC ∠=∠=︒,180AOB COD ∴∠+∠=︒,OCN AOB ∴∠=∠,在ONC 和BAO 中,OC OB OCN AOBCN OA =⎧⎪∠=∠⎨⎪=⎩,()SAS ONC BAO ∴≌, NOC ABO ∴∠=∠,OF AB ⊥,90ABO BOF ∴∠+∠=︒,90NOC BOF ∴∠+∠=︒,180NOC BOF BOC ∴∠+∠+∠=︒,∴点E O F ,,在同一条直线上.题型四:尺规作图—作角平分线 例4.(2023春·陕西榆林·七年级校考期末)如图,已知ABC ,利用尺规,在AC 边上求作一点D ,使得ABD DBC ∠=∠.(保留作图痕迹,不写作法)【详解】解:如图点D 即为所求..【变式1】(2023春·福建福州·七年级福建省福州第十九中学校考期末)如图,Rt ABC △中,90BAC ∠=︒,AD 为BC 边上的高.(1)尺规作图,在AB 边上求作点P ,使得点P 到边BC 的距离等于AP (保留作图痕迹,不写做法):(2)连接CP (P 为所求作的点)交AD 于点Q ,若30B ∠=︒,求AQC ∠的度数.【详解】(1)解:如图:点P 即为所求;作法:作ACB ∠的角平分线,与AB 的交点P 即为所求;理由:∵CP 是ACB ∠的角平分线,∴点P 到AC 的距离等于点P 到BC 的距离,∵90BAC ∠=︒,∴点P 到AC 的距离即为PA 的值,故点P 到边BC 的距离等于AP .(2)解:如图:∵90BAC ∠=︒,30B ∠=︒,∴180903060ACB ∠=︒−−︒=︒,又∵AD 为BC 边上的高,∴90ADC ∠=︒,∴180906030DAC ∠=︒−−︒=︒,由(1)可知CP 是ACB ∠的角平分线, ∴1302ACQ QCD ACB ∠=∠=∠=︒,∴1803030128001ACQ DAC AQC ∠−∠=︒−︒−︒=︒∠=︒−. 【变式2】(2023·甘肃兰州·统考中考真题)综合与实践问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9:“平分一个已知角.”即:作一个已知角的平分线,如图2是欧几里得在《几何原本》中给出的角平分线作图法:在OA 和OB 上分别取点C 和D ,使得OC OD =,连接CD ,以CD 为边作等边三角形CDE ,则OE 就是AOB ∠的平分线.请写出OE 平分AOB ∠的依据:____________;类比迁移:(2)小明根据以上信息研究发现:CDE 不一定必须是等边三角形,只需CE DE =即可.他查阅资料:我国古代已经用角尺平分任意角.做法如下:如图3,在AOB ∠的边OA ,OB 上分别取OM ON =,移动角尺,使角尺两边相同刻度分别与点M ,N 重合,则过角尺顶点C 的射线OC 是AOB ∠的平分线,请说明此做法的理由;拓展实践:(3)小明将研究应用于实践.如图4,校园的两条小路AB 和AC ,汇聚形成了一个岔路口A ,现在学校要在两条小路之间安装一盏路灯E ,使得路灯照亮两条小路(两条小路一样亮),并且路灯E 到岔路口A 的距离和休息椅D 到岔路口A 的距离相等.试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规..........在对应的示意图5中作出路灯E 的位置.(保留作图痕迹,不写作法)【详解】解:(1)∵OC OD =,CE DE =,DE DE =,∴()SSS OCE ODE ≌,∴AOE BOE ∠=∠,∴OE 是AOB ∠的角平分线;故答案为:SSS(2)∵OM ON =,CM CN =,OC OC =,∴()SSS OCM OCN ≌,∴AOC BOC ∠=∠,∴OC 是AOB ∠的角平分线;(3)如图,点E 即为所求作的点;. 【变式3】(2023春·重庆九龙坡·七年级校考期末)如图,已知在ABC 中,90BAC ∠=︒,AD BC ⊥于点D .(1)尺规作图:作ABC ∠的平分线交AC 于点E ,交AD 于点F ;(要求:保留作图痕迹,不写作法,不下结论)(2)在(1)的条件下,求证:AFE AEF ∠=∠.AD BC ⊥90ADB ∴∠=︒∴__________90BFD +∠=︒又BFD ∠=__________FBD ∴∠+__________90=︒90BAC ∠=︒ABF ∴∠+__________90=︒BF 平分ABC ∠ABF ∴∠=__________AFE AEF ∴∠=∠.【详解】(1)如图所示,(2)AD BC ⊥90ADB ∴∠=︒∴FBD ∠90BFD +∠=︒又BFD ∠=AEF ∠FBD ∴∠+AEF ∠90=︒90BAC ∠=︒ABF ∴∠+AFE ∠90=︒ BF 平分ABC ∠ABF ∴∠=FBD ∠AFE AEF ∴∠=∠.故答案为:FBD ∠;AEF ∠;AEF ∠;AFE ∠;FBD ∠.【过关检测】一、单选题 1.(2023春·四川泸州·八年级统考期末)如图,70AOB ∠=︒,点C 是AOB ∠内一点,CD OA ⊥于点D ,CE OB ⊥于点E .且CD CE =,则DOC ∠的度数是( )A .30︒B .35︒C .40︒D .45︒【答案】B【分析】根据角平分线的判定定理可得OC 平分AOB ∠,再计算角度.【详解】解:∵CD OA ⊥,CE OB ⊥,CD CE =,∴OC 平分AOB ∠, ∴1352DOC AOB ∠=∠=︒,故选C .【点睛】本题主要考查了角平分线的判定,注意:到角的两边距离相等的点在角平分线上. 2.(陕西省榆林市高新区2022-2023学年七年级下学期期末数学试题)如图,在Rt ABC △中,ABC ∠的平分线BD 交AC 于点D ,过点D 作DE AB ⊥交AB 于点E .若9cm CD =,则点D 到AB 的距离是( )A .9cmB .6cmC .4.5cmD .3cm【答案】A 【分析】根据角平分线的性质,角平分线上的点到角两边的距离相等,即可求解.【详解】∵BD 平分ABC ∠,DE AB ⊥,AC BC ⊥,∴9DC DE ==,∴点D 到AB 的距离是9cm .故选:A .【点睛】本题考查角平分线的性质,解题的关键是掌握角平分线的性质.3.(2023春·河南焦作·七年级校考期末)如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 的长不可能是( )【答案】A【分析】根据余角的性质可得ABD CBD ∠=∠,即BD 平分ABC ∠,作DE BC ⊥于E ,则3AD DE ==,再根据垂线段最短即可得到答案.【详解】解:∵90A ∠=︒,BD CD ⊥,∴90,90ABD ADB CBD C ∠+∠=︒∠+∠=︒,∵ADB C ∠=∠,∴ABD CBD ∠=∠,即BD 平分ABC ∠,作DE BC ⊥于E ,则3AD DE ==,∵P 是BC 边上一动点,则DP DE ≥,即3DP ≥,∴DP 的长不可能是52;故选:A .【点睛】本题考查了直角三角形的性质和角平分线的性质,得出BD 平分ABC ∠是解题的关键.A .12∠=∠且CM DM =B .13∠=∠且CM DM =C .12∠=∠且OD DM =D .23∠∠=且OD DM =【答案】A 【分析】由作图过程可得:,OD OC CM DM ==,再结合DM DM =可得()SSS COM DOM ≌,由全等三角形的性质可得12∠=∠即可解答.【详解】解:由作图过程可得:,OD OC CM DM ==,∵DM DM =,∴()SSS COM DOM ≌.∴12∠=∠.∴A 选项符合题意;不能确定OC CM =,则13∠=∠不一定成立,故B 选项不符合题意;不能确定OD DM =,故C 选项不符合题意,OD CM ∥不一定成立,则23∠∠=不一定成立,故D 选项不符合题意.故选A .【点睛】本题主要考查了角平分线的尺规作图、全等三角形的判定与性质等知识点,理解尺规作图过程是解答本题的关键. ,ABC 的面积为,则ABC 的周长为( A .4B .6C .24D .12【答案】C 【分析】过点E 作EF AB ⊥,垂足为F ,过点E 作EG AC ⊥,垂足为G ,根据角平分线的性质可得1EG EF ED ===,然后根据三角形的面积公式进行计算即可解答.【详解】解:过点E 作EF AB ⊥,垂足为F ,过点E 作EG AC ⊥,垂足为G ,∵BE 平分ABC ∠,ED BC ⊥,EF AB ⊥,∴1EF ED ==,∵CE 平分ACB ∠,ED BC ⊥,EG AC ⊥,∴1ED EG ==,∴ABC 的面积ABE =的面积BEC +△的面积AEC +△的面积()11111122222AB EF BC ED AC EG AB BC AC =⋅+⋅+⋅=⨯⨯++=,∴24AB BC AC ++=,即ABC 的周长为24.故选:C .【点睛】本题考查了角平分线的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.A .3PD =B .3PD <C .3PD ≤ D .3PD ≥【答案】D 【分析】根据角平分线的性质得到3PF =,再根据垂线段最短即可解答.【详解】解:过点P 作PE AB ⊥于点E ,过点P 作PF BC ⊥于点F ,∵点P 在ABC ∠的平分线上,∴PE PF =, ∵3PE =,∴3PF =,∴根据垂线段最短可知:3PD ≥,故选D .【点睛】本题考查了角平分线的性质,垂线段最短,掌握角平分线的性质是解题的关键. 八年级统考期末)如图,在ABC 中, A .83 B .43 【答案】D【分析】由题意可求DC 的长,由角平分线的性质可求解.【详解】解:如图,过点D 作DH AB ⊥,垂足为H ,∵143AC DC AC ==,,∴1DC =,∵BD 平分ABC ∠,90C DH AB =︒∠,⊥,∴1CD DH ==,∴点D 到AB 的距离等于1,故选:D .【点睛】本题考查了角平分线的性质,熟练运用角平分线的性质是本题的关键.8.(2023春·湖南娄底·八年级统考期末)如图,三条公路把A ,B ,C 三个村庄连成一个三角形区域,现决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在( )A .三角形三个内角的角平分线的交点B .三角形三条边的垂直平分线的交点C .三角形三条高的交点D .三角形三条中线的交点【答案】A 【分析】根据角平分线上的点到角的两边的距离相等解答即可.【详解】解:根据角平分线的性质,集贸市场应建在三个角的角平分线的交点处.故选:A .【点睛】本题主要考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.9.(2023春·陕西榆林·八年级统考期末)如图,OD 平分AOB ∠,DE AO ⊥于点E ,5DE =,F 是射线OB 上的任意一点,则DF 的长度不可能是( )【答案】A 【分析】过D点作DH OB ⊥于H ,根据角平分线的性质得5DH DE ==,再利用垂线段最短得到5DF ≥,然后对各个选项进行判断即可,【详解】过D点作DH OB ⊥于H ,OD 平分AOB ∠,DE OA ⊥,DH OB ⊥,5DH DE ∴==,DF DH ≥,5DF ∴≥,故选A【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等,也考查了垂线段最短,掌握角平分线的性质是解题的关键. 10.(2023春·河南开封·七年级统考期末)如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,DE AB ⊥于E ,则下列结论:①DE CD =;②AD 平分CDE ∠;③BAC BDE ∠=∠;④BE AC AB +=,其中正确的是( )A .1个B .2个C .3个D .4个【答案】D 【分析】①根据角平分线的性质得出结论:DE CD =;②证明ACD AED △≌△,得AD 平分CDE ∠;③由四边形的内角和为360︒得180CDE BAC ∠+∠=︒,再由平角的定义可得结论是正确的;④由ACD AED ∆≅∆得AC AE =,再由AB AE BE =+,得出结论是正确的.【详解】解:①90C ∠=︒,AD 平分BAC ∠,DE AB ⊥,DE CD ∴=;所以此选项结论正确;②DE CD =,AD AD =,90ACD AED ∠=∠=︒,ACD AED ∴≌,ADC ADE ∴∠=∠,AD ∴平分CDE ∠,所以此选项结论正确;③90ACD AED ∠=∠=︒,3609090180CDE BAC ∴∠+∠=︒−︒−︒=︒,180BDE CDE ∠+∠=︒,BAC BDE ∴∠=∠,所以此选项结论正确;④ACD AED ≌,AC AE ∴=,AB AE BE =+,BE AC AB ∴+=,所以此选项结论正确;本题正确的结论有4个,故选D .【点睛】本题考查了全等三角形性质和判定,同时运用角平分线的性质得出两条垂线段相等;本题难度不大,关键是根据HL 证明两直角三角形全等,根据等量代换得出线段的和,并结合四边形的内角和与平角的定义得出角的关系.二、填空题 七年级统考期末)如图,在ABC 中,ABC 的内部相交于点 【答案】5【分析】先根据尺规作图描述得出AD 为BAC ∠的角平分线,再根据角平分线的性质得到点D 到AB 的距离5DE =,进而求出三角形的面积.【详解】由作法得AD 平分BAC ∠,如图所示,过点D 作DE AB ⊥于E ,∵90ACB ∠=︒,根据角平分线的性质,得43DC DE ==,ABD ∴的面积114102233AB DE AB =⋅⋅=⨯⨯=. ∴5AB =,故答案为:5.【点睛】本题考查角平分线的性质,解决本题的关键是熟知角平分线的性质并灵活应用.【答案】2【分析】根据尺规作图可得BF 平分ABC ∠,再利用角平分线的性质定理可得出2DF CF ==,最后根据垂线段最短即可得出FH 的最小值是2.【详解】解:如图,过点F 作FD AB ⊥于D .由作图可知,BF 平分ABC ∠,∵FC BC ⊥,FD AB ⊥,∴2DF CF ==.根据垂线段最短可知,FH 的最小值为DF 的长,即为2.故答案为:2.【点睛】本题主要考查角平分线的性质,垂线段最短,解题的关键在于能够准确判断出BF 是ABC ∠的角平分线.13.(2023春·重庆沙坪坝·七年级重庆八中校考期末)如图,Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,E 为线段AC 上一点,连接DE ,且B CED ∠=∠.若16AB =,6CE =,则AE 的长为________.【答案】4【分析】过点D 作DF AB ⊥于点F ,由角平分线的性质得出DC DF =,证明DCE DFB ≌,得出BF CE =,求出AF ,由HL 证明Rt Rt ADC ADF ≌,得出AC AF =,即可求出结果.【详解】解:过点D 作DF AB ⊥于点F ,如图所示:∵90C ∠=︒,AD 平分BAC ∠交BC 于点D ,,∴DC DF =,在DCE △和DFB △中,90=BFD DCE B CEDDC DF ∠=∠=︒⎧⎪∠=∠⎨⎪⎩,∴()AAS DCE DFB ≌,∴6BF CE ==,∴10AF AB BF =−=,在Rt ADC 与Rt ADF 中,==DC DF AD AD ⎧⎨⎩,∴Rt Rt ADC ADF ≌,∴10AC AF ==,∴1064AE AC CE =−=−=.故答案为:4.【点睛】此题考查全等三角形的判定和性质和角平分线的性质,解题的关键是作出辅助线,构造全等三角形,根据HL 证明直角三角形的全等解答.【答案】30【分析】由作图可知OC 是AOB ∠的角平分线,根据角平分线的定义即可得到答案.【详解】解:由题意可知,OC 是AOB ∠的角平分线,∴11603022AOC AOB ∠=∠=⨯︒=︒.故答案为:30【点睛】此题考查角平分线的作图、角平分线相关计算,熟练掌握角平分线的作图是解题的关键.,则POD 的面积是【答案】6【分析】过点P 作PF OB ⊥交OB 于点F ,由作图可知OP 是AOB ∠的平分线,根据角平分线的性质得3PF PC ==,即可求得POD 的面积.【详解】解:如图,过点P 作PF OB ⊥交OB 于点F ,由作图可知,OP 是AOB ∠的平分线,∵PC OA ⊥,PF OB ⊥,∴3PF PC ==,∴POD 的面积为:162OD PF ⋅=,故答案为:6.【点睛】本题考查了尺规作角平分线以及角平分线的性质定理:角平分线上的点到角两边的距离相等.16.(2023春·山东泰安·七年级统考期末)如图,在锐角ABC 中,60BAC ∠=︒,BE 、CD 为ABC 的角平分线.且BE 、CD 交于点F ,连接AF .有下列四个结论:①120BFC ∠=︒;②BD CE =;③BC BD CE =+;④FBD FEC FBC S S S +=△△△.其中结论正确的序号是__________ .【答案】①③④【分析】根据角平分线的定义和三角形内角和定理求出BFC ∠;在BC 上取BM BD =,证明()SAS DBF MBF ≌△△,再证明()ASA MCF ECF ≌△△;过点F 作FG AB ⊥于点G ,FH AC ⊥于点H ,FK BC ⊥于点K ,根据角平分线的性质和三角形面积公式分别对各个结论进行判断即可.【详解】解:∵ABC 的两条角平分线BE 和CD 交于点F ,60BAC ∠=︒,∴FBC FCB∠+∠()12ABC ACB =∠+∠()11802BAC ︒=−∠()1180602=⨯︒−︒60=︒, ∴()180********BFC FBC FCB ∠=︒−∠+∠=︒−︒=︒,故结论①正确; ∴18060BFD BFC CFE Ð=°-Ð=°=Ð,在BC 上取BM BD =,∵BE 平分ABC ∠,∴DBF MBF Ð=Ð,在DBF 和MBF V 中,BD BM DBF MBFBF BF =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS DBF MBF ≌△△, ∴60BFD BFM ∠=∠=︒,∴1206060CFM BFC BFM ∠=∠−∠=︒−︒=︒,∴60CFM CFE ∠=∠=︒,∵CD 平分ACB ∠,∴MCF ECF ∠=∠,在MCF △和ECF △中,CFM CFE CF CFMCF ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA MCF ECF ≌△△, ∴CM CE =,∴BC BM CM BD CE =+=+,故结论③正确;∵没有条件得出点M 是BC 的中点,∴不能得出BD 与CE 一定相等,故结论②错误;过点F 作FG AB ⊥于点G ,FH AC ⊥于点H ,FK BC ⊥于点K ,∵BE 、CD 为ABC 的角平分线,∴FG FK =,FK FH =,∴FG FK FE ==, ∵12FBD S BD FG =⋅△,12FEC S EC FH =⋅△,12FBC S BC FK =⋅△,∴FBD FEC S S +△△1122BD FG EC FH =⋅+⋅ 1122BM FK MC FK =⋅+⋅ ()12BM MC FK =+⋅ 12BC FK =⋅FBC S =△,∴FBD FEC FBC S S S +=△△△,故结论④正确,∴结论正确的序号是①③④.故答案为:①③④.【点睛】本题考查角平分线的性质,全等三角形的判定与性质,三角形内角和定理,三角形的面积,作出辅助线构造全等三角形是解题的关键.三、解答题 17.(2023春·重庆江北·七年级统考期末)完成下面的解答过程,并填上适当的理由.已知:如图,DE BC ∥,BD 平分ABC ∠,EF 平分AED ∠.解: ∵DE BC ∥(已知)∴ABC AED ∠=∠( ① ).∵BD 平分ABC ∠,EF 平分∠∴112ABC ∠=∠,122AED ∠=∠【答案】两直线平行,同位角相等 2∠ 等量代换 同位角相等,两直线平行【分析】先分析角的位置关系,根据平行线的性质及判定定理,即可写出答案.【详解】证明:∵DE BC ∥(已知),∴ABC AED ∠=∠.∵BD 平分ABC ∠,EF 平分AED ∠,∴112ABC ∠=∠,122AED ∠=∠.∴12∠=∠(等量代换).∴EF BD ∥(同位角相等,两直线平行).故答案为:两直线平行,同位角相等 ; 2∠ ;等量代换 同位角相等,两直线平行.【点睛】本题主要考查平行线的性质(两直线平行,同位角相等),及平行线的判定方法(同位角相等,两直线平行).牢记平行线的性质和判定方法是解题的关键.18.(2023春·山东泰安·七年级统考期末)如图,在AOB 和COD △中,OA OB =,OC OD =,OA OC <,36AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM .求证:(1)36AMB ∠=︒;(2)MO 平分AMD ∠.【答案】(1)证明见解析 (2)证明见解析【分析】(1)证明()SAS AOC BOD ≌△△,由三角形全等的性质得出OAC OBD ∠=∠,由三角形的外角性质得:AMB OBD OAC AOB ∠+∠=∠+∠,可得出AMB ∠的度数;(2)作OG AC ⊥于G ,OH BD ⊥于H ,利用全等三角形对应边上的高相等,得出OG OH =,由角平分线的判定方法即可得证.【详解】(1)证明:∵36AOB COD ∠=∠=︒,∴AOB BOC COD BOC ∠+∠=∠+∠,即AOC BOD ∠=∠,在AOC 和BOD 中,OA OB AOC BODOC OD =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS AOC BOD ≌△△, ∴OAC OBD ∠=∠,∵AEB ∠是AOE △和BME 的外角∴AEB AMB OBD AOB OAC ∠=∠+∠=∠+∠,∴36AMB AOB ∠=∠=︒;(2)如图所示,作OG AC ⊥于G ,OH BD ⊥于H ,∴OG 是AOC 中AC 边上的高,OH 是BOD 中BD 边上的高,由(1)知:AOC BOD ≌,∴OG OH =,∴点O 在AMD ∠的平分线上,即MO 平分AMD ∠.【点睛】本题考查全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识.证明三角形全等是解题的关键. 七年级统考期末)如图,在ABC 中, (2)18【分析】(1)根据BD 平分ABC ∠,CD 平分ACB ∠得12DBC ABC ∠=∠,12DCB ACB ∠=∠,根据40ABC ∠=︒,70ACB ∠=︒得140202DBC ∠=⨯︒=︒,170352DCB ∠=⨯︒=︒,根据三角形内角和定理即可得;(2)过点D 作DF BC ⊥于点F ,根据BD 平分ABC ∠,DE AB ⊥,DF BC ⊥得DE DF =,根据4DE =得4DF =,即可得.【详解】(1)解:∵BD 平分ABC ∠,CD 平分ACB ∠,∴12DBC ABC ∠=∠,12DCB ACB ∠=∠,∵40ABC ∠=︒,70ACB ∠=︒,∴140202DBC ∠=⨯︒=︒,170352DCB ∠=⨯︒=︒,∴在BCD △中,1802035125BDC ∠=︒−︒−︒=︒;(2)解:过点D 作DF BC ⊥于点F ,∵BD 平分ABC ∠,DE AB ⊥,DF BC ⊥,∴DE DF =,∵4DE =,∴4DF =,∵9BC =, ∴11S 941822BCD BC DF =⨯⨯=⨯⨯=△.【点睛】本题考查了角平分线,三角形内角和定理,三角形的面积,解题的关键是理解题意,掌握这些知识点. 八年级假期作业)如图,在ABC 中, 【答案】6cm CD =,34B ∠=︒【分析】根据角平分线的性质可得CD DE =,28BAD CAD ∠=∠=︒,再根据直角三角形的两个锐角互余即可求出B ∠的度数.【详解】解:∵ABC 中,90C ∠=︒,AD 平分BAC ∠,DE AB ⊥,∴6cm CD DE ==,28BAD CAD ∠=∠=︒,∴256BAC CAD ∠=∠=︒,∴9034B CAD ∠=︒−∠=︒.【点睛】本题考查了角平分线的性质定理和直角三角形的两个锐角互余,属于基础题型,熟练掌握角平分线的点到一个角的两边距离相等是解题关键.21.(2023春·广西南宁·七年级南宁十四中校考期末)如图,已知ABC .(1)尺规作图:作BAC ∠的角平分线交BC 于点G (不写作法,保留作图痕迹);(2)如果6AB =,10AC =,ABG 的面积为18,求ACG 的面积.【答案】(1)见解析(2)30【分析】(1)根据角平分线的尺规作图方法作图即可;(2)如图所示,过点G 作GE AB GF AC ⊥⊥,垂足分别为E 、F ,证明AEF AFG △≌△,得到EG FG =,根据面积法求出6EG FG ==,再根据三角形面积公式求解即可.【详解】(1)解:如图所示:(2)解:如图所示,过点G 作GE AB GF AC ⊥⊥,垂足分别为E 、F ,∴90AEG AFG ∠=∠=︒,∵AG 是BAC ∠的角平分线,∴EAG FAG ∠=∠,又∵AG AG =,∴()AAS AEF AFG △≌△,∴EG FG =;∵6AB =,ABG 的面积为18,∴1182AB EG ⋅=,即16182EG ⨯=,∴6EG =,∴6EG FG ==,∴111063022ACG S AC FG =⋅=⨯⨯=△.【点睛】本题主要考查了全等三角形的性质与判定,三角形面积,角平分线的尺规作图,角平分线的定义等等,灵活运用所学知识是解题的关键. 22.(2023春·山西太原·七年级统考期末)如图,在ABC 中,AD 是它的角平分线,DE AB ⊥于点,E DF AC ⊥于点F ,且BE CF =.线段BD 与CD 相等吗?说明理由.【答案】BD CD =,见解析【分析】根据角平分线的性质得出DE DF =,根据垂直定义得出90DEB DFC ∠=∠=︒,根据SAS 证明DFC △D E B ≌△,得出BD CD =即可.【详解】解:BD CD =;理由如下:∵AD 是BAC ∠的角平分线,DE AB ⊥,DF AC ⊥,∴DE DF =,∵DE AB ⊥,DF AC ⊥,∴90DEB DFC ∠=∠=︒,又∵BE CF =,∴DFC △DE B ≌△, ∴BD CD =.【点睛】本题主要考查了角平分线的性质,垂线定义理解,三角形全等的判定和性质,解题的关键是熟练掌握三角形全等的判定方法,证明DFC △DE B ≌△. 23.(重庆市大渡口区2022-2023学年七年级下学期期末数学试题)如图,AD BC ∥,180B BCD ∠+∠=︒.(1)用直尺和圆规完成以下基本作图:过点A 作BAD ∠的角平分线,交CD 于点F ,与BC 的延长线交于点E ;(不写做法,保留作图痕迹)(2)求证:CFE FEC ∠=∠.证明:∵AD BC ∥(已知),∴DAF FEC ∠=∠(①__________). ∵AE 平分BAD ∠,∴②__________(角平分线的定义). ∴BAE FEC ∠=∠(③__________). ∵180B BCD ∠+∠=︒(已知), ∴④__________(⑤__________). ∴BAE CFE ∠=∠(两直线平行,同位角相等). ∴CFE FEC ∠=∠(等量代换). 【答案】(1)见解析(2)见解析【分析】(1)利用基本作图作BAD ∠的平分线即可;(2)先根据平行线的性质得到DAF FEC ∠=∠,再利用角平分线的定义得到BAE DAF ∠=∠,则BAE FEC ∠=∠,接着证明AB CD ∥得到BAE CFE ∠=∠,然后利用等量代换得到CFE FEC ∠=∠.【详解】(1)解:如图,BE 为所作;(2)证明:AD BC ∥(已知), DAF FEC ∴∠=∠(两直线平行,内错角相等).AE 平分BAD ∠,BAE DAF ∴∠=∠(角平分线的定义),BAE FEC ∴∠=∠(等量代换).180B BCD ∠+∠=︒(已知),AB CD ∴∥(同旁内角互补,两直线平行).BAE CFE ∴∠=∠(两直线平行,同位角相等).CFE FEC ∴∠=∠(等量代换).【点睛】本题考查了作图−基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了角平分线的性质和平行线的判定与性质. 七年级校考阶段练习)如图,ABC 中, 若BCG 的面积为,则ABC 的面积为【答案】(1)120︒(2)3(3)6【分析】(1)根据作图方法可得BG 是ABC ∠的角平分线,则1302ABG ABC ==︒∠∠,再由三角形外角的性质可得120BGC A ABG =+=︒∠∠;(2)如图所示,过点G 作GD BC ⊥于D ,先求出3AG AC CG =−=,再证明ABG DBG △≌△,得到3DG AG ==,根据垂线段最短可知线段H G 的最小值为3;(3)证明BDG CDG △≌△,得到122BDG CDG BCG S S S ===△△△,进而求出2BDG ABG S S ==△△,则6ABC ABG CBG S S S =+=△△△.【详解】(1)解:由作图方法可知BG 是ABC ∠的角平分线, ∴1302ABG ABC ==︒∠∠,∵90A ∠=︒,∴120BGC A ABG =+=︒∠∠,故答案为:120︒;(2)解:如图所示,过点G 作GD BC ⊥于D ,∴90BAG BDG ==︒∠∠,∵96AC CG ==,,∴3AG AC CG =−=,∵BG 是ABC ∠的角平分线,∴ABG DBG ∠=∠,又∵BG BG =,∴()AAS ABG DBG △≌△,∴3DG AG ==,∵H 是边BC 上一动点,∴当点H 与点D 重合时,HG 最小,∴线段HG 的最小值为3, 故答案为:3;(3)解:∵BG 是ABC ∠的角平分线,∴30ABG DBG ==︒∠∠,∵9030C ABC ∠=︒−∠=︒,∴GBD C ∠=∠,又∵90DG DG BDG CDG ===︒,∠∠,∴()AAS BDG CDG △≌△, ∴122BDG CDG BCG S S S ===△△△,∵ABG DBG △≌△,∴2BDG ABG S S ==△△,∴6ABC ABG CBG S S S =+=△△△,故答案为:6.【点睛】本题主要考查了全等三角形的性质与判定,三角形内角和定理,三角形外角的性质,角平分线的定义,角平分线的尺规作图等等,正确作出辅助线构造全等三角形是解题的关键. 七年级统考期末)ABC 中, (2)如图2,若ABC 是锐角三角形.过点FED ∠,EDB ∠与ABC ∠ (3)若ABC 是钝角三角形,其中FED ∠,EDB ∠与ABC ∠之间的数量关系.【答案】(1)45 (2)12BDE FED ABC ∠=∠+∠,证明见解析 (3)12ABC BDE DEF ∠=∠+∠【分析】(1)首先证明AED ABC ∠=∠得到DE BC ∥,得到EDB DBC ∠=∠,再根据角平分线的定义得到1452DBC ABC ∠=∠=︒,即可证明;(2)延长ED 、BC 交于G ,利用平行线的性质得FED G ∠=∠,再利用三角形外角的性质可得结论;(3)由(2)同理解决问题.【详解】(1)解:DE AB ∵⊥,90AED ∴∠=︒.90ABC ∠=︒,AED ABC ∴∠=∠.DE BC ∴∥.EDB DBC ∴∠=∠.BD Q 平分ABC ∠,1452DBC ABC ∴∠=∠=︒.45EDB ∴∠=︒.(2)如图,12BDE FED ABC ∠=∠+∠,理由如下:延长ED 、BC 交于G ,EF BC ∥,FED G ∴∠=∠,BD Q 平分ABC ∠,。

【初中数学】初中数学知识点:角平分线的性质

【初中数学】初中数学知识点:角平分线的性质

【初中数学】初中数学知识点:角平分线的性质角平分线:
三角形角的平分线与角的另一侧相交。

连接角的顶点和与对边的交点的线段称为三角
形的角平分线(也称为三角形的内角平分线)。

根据定义,三角形的角平分线是线段。


为三角形有三个内角,所以它有三个角平分线。

三角形的角平分线的交点必须在三角形内。

角平方线定理:
① 在角平分线上的任何一点上,到角两边的距离相等。

最短距离垂直于两侧。

②角平分线能得到相同的两个角,都等于该角的一半。

③ 三角形三个角的平分线相交于一点,从该点到三条边的距离相等。

④三角形的三个角的角平分线相交于一点,这个点称为内心,即以此点为圆心可以在
三角形内部画一个内切圆。

逆定理:
在角的内部,到角两边的距离相等的点在角平分线上。

角平分线法:
在角aob中,画角平分线
方法一:
1.以点o为圆心,以任意长为半径画弧,两弧交角aob两边于点m,n。

2.以m点和N点为圆心,以大于1/2Mn的长度为半径绘制一条圆弧,两条圆弧在P点
相交。

3.作射线op。

射线OP是角AOB的角平分线。

当然,角平分线的作法有很多种。

下面再提供一种尺规作图的方法供参考。

方法二:
1.在两边oa、ob上分别截取om、oa和on、ob,且使得om=on,oa=ob;
2.连接an和BM,它们在p点相交;
3.作射线op。

射线OP是角AOB的角平分线。

相似三角形的角平分线定理与角平分点

相似三角形的角平分线定理与角平分点

相似三角形的角平分线定理与角平分点角平分线定理是相似三角形的重要性质之一,它给出了角平分线的性质和作用。

角平分线是指将一个角分为两个相等的角的直线。

在这篇文章中,我们将探讨角平分线定理和角平分点的相关内容。

一、角平分线定理角平分线定理是指:如果一条直线将一个角分为两个相等的角,那么这条直线将这个角的对边也分为两个相等的线段。

具体来说,设在△ABC中,BD是∠ABC的角平分线,那么有下列结论成立:1. ∠ABD = ∠CBD2. ∠ADB = ∠CDB3. AB/AC = BD/DC其中,结论1和结论2是角平分线的定义,结论3则是角平分线的性质。

结论3可以用来解决一些关于相似三角形的问题,下面将进一步说明。

二、角平分点角平分点指的是角平分线与对边相交的点。

在上述定理中,D就是角平分点。

角平分点在相似三角形的构造和证明中起着重要的作用。

要证明构造一个相似三角形,我们可以利用角平分线定理中的角平分点。

具体来说,我们可以通过以下步骤构造相似三角形:1. 画出一个给定的角。

2. 在一个角的两边分别取一点,这两点到角的顶点分别连线,形成两个角。

3. 在这两个角的内角处分别作角平分线,找出两个角平分点。

4. 连接两个角平分点和角的顶点,得到一个相似三角形。

这样,我们就利用了角平分点和角平分线定理来构造了一个相似三角形。

三、角平分线定理的应用角平分线定理在解决关于相似三角形的问题时起到了重要的作用。

下面以几个例子来说明。

1. 证明两个三角形相似:设在△ABC和△DEF中,∠A = ∠D,∠B = ∠E,且AB/DE = AC/DF。

证明△ABC与△DEF相似。

解法:根据角平分线定理,由AB/AC = DE/DF可得BD/DC =EF/DF。

因为∠B = ∠E,所以∠BDE = ∠BDF,再结合∠ADB =∠EDF,根据AA相似性质可得△BDE与△BDF相似。

根据相似三角形的性质,可得△ABC与△DEF相似。

2. 求相似三角形的比例:已知△ABC与△PQR相似,且AB/QR = 2/3,BC/PR = 1/2。

初中数学角平分线的性质知识点

初中数学角平分线的性质知识点

初中数学角平分线的性质知识点
初中数学中,角平分线是一个重要的概念。

下面我们来探讨一下角平分线的性质。

一、角平分线的定义
角平分线是指把一个角平分为两个相等的角的线段。

二、角平分线的性质
1.角平分线与角的两边相交于角的顶点,并把角分为两个相等的角。

2.角平分线所在的平面上,与角的两边的延长线交于一点,这个点称为角的外心。

3.角平分线上的每一个点到角的两边的距离相等。

4.角平分线上的每一个点到角的外心的距离相等。

5.对于同一个角,高度相等的两条角平分线相交于角的外心。

6.角平分线将一个角分为两个相等的角,但是并不一定把一个平面分为两个相等的部分。

三、角平分线的性质应用
1.根据角平分线的定义和性质,可以帮助我们判断一个线段是否为角的平分线。

2.通过利用角平分线的性质,可以求解一些几何问题。

比如,已知一个角的两边和这个角的外心,可以求出这个角的平分线。

3.利用角平分线的性质,可以证明一些角的关系。

比如,可以利用角平分线的性质来证明角平分线是角的垂直平分线。

四、角平分线的相关定理
1.角平分线定理:如果一条直线与一个角的两边相交且把这个角平分为两个相等的角,则这条直线是这个角的平分线。

2.角平分线的外角性质:角平分线所在直径上的角是180度的外角。

五、角平分线的证明方法
1.角平分线的证明方法一般采用反证法或者直接证明。

比如,先假设直线不是角的平分线,然后利用假设得出矛盾,从而得到直线是角的平分线。

2.对于一些特殊的角,可以直接利用三角形的辅助线去证明角平分线的存在性和性质。

角平分线的性质(知识梳理与考点分类讲解)(人教版)(教师版) 2024-2025学年八年级数学上册

角平分线的性质(知识梳理与考点分类讲解)(人教版)(教师版) 2024-2025学年八年级数学上册

专题12.9角平分线的性质(知识梳理与考点分类讲解)第一部分【知识点归纳】【知识点一】角的平分线的性质(1)性质:角的平分线上的点到角两边的距离相等.(2)符号语言:OC平分∠ADB,又 PE⊥AD,PF⊥BD,垂足为E、F,∴PE=PF【知识点二】角的平分线的判定(1)判定:角的内部到角两边距离相等的点在角的平分线上.(2)符号语言:PE⊥AD,PF⊥BD,垂足为E、F,又 PE=PF∴OC平分∠ADB,【知识点三】角的平分线的尺规作图(1)以O 为圆心,适当长为半径画弧,交OA 于D,交OB 于E.(2)分别以D、E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 内部交于点C.(3)画射线OC.射线OC 即为所求.第二部分【题型展示与方法点拨】【题型1】利用角平分线性质定理进行求值与证明【例1】(23-24七年级下·山东菏泽·阶段练习)如图,在ABC 中,90ACB ∠=︒,CD AB ⊥于点D ,BE 平分ABC ∠交AC 于点E ,交CD 于点F ,过点E 作EG CD ∥,交AB 于点G ,连接CG .(1)求证:90A AEG ∠+∠=︒;(2)求证:EC EG =;【分析】本题考查了角平分线的性质,平行线的性质,垂直的定义,解题的关键是灵活运用所学知识解决问题.(1)证明90EGA ∠=︒,即可证明结论成立;(2)利用角平分线性质定理即可证明结论成立.(1)证明:∵CD AB ⊥,∴90CDA ∠=︒EG CD ∥,∴90EGA CDA ∠=∠=︒∵180A AEG EGA ∠+∠+∠=︒1801809090A AEG EGA ∴∠+∠=︒-∠=︒-︒=︒(2)证明:∵90ACB ∠=︒,∴EC BC⊥BE 平分ABC ∠,EG AB ⊥,EC EG∴=【变式1】(23-24七年级下·广东佛山·阶段练习)如图,OC 平分AOB ∠,点P 是射线OC 上一点,PM OB ⊥交于点M ,点N 是射线OA 上的一个动点,连接PN .若6PM =,则PN 的长度不可能是()A .18B .7.2C .6D .4.5【答案】D 【分析】本题考查角平分线的性质、垂线段最短,根据角平分线的性质作出图形转化线段是解决问题的关键.过点P 作PD OA ⊥,如图所示,由角平分线的性质可得6PD PM ==,根据点与直线上各点的距离中垂线段最短可得6PN PD ≥=,从而得到答案.解:过点P 作PD OA ⊥,如图所示:OC 平分AOB ∠,点P 是射线OC 上一点,PM OB ⊥于点M ,6PM =,∴由角平分线性质可得6PD PM ==,点N 射线OA 上的一个动点,连接PN ,∴由点与直线上各点的距离中垂线段最短可得6PN PD ≥=,∴综合四个选项可知,PN 的长度不可能是4.5,故选:D .【变式2】(23-24七年级下·四川巴中·期末)如图,在ABC 中,ABC ∠,ACB ∠的平分线交于点O ,点O 到BC 边的距离为3,且ABC 的周长为20,则ABC 的面积为.【答案】30【分析】本题考查角平分线的性质、三角形的面积公式,熟练掌握角平分线的性质是解答的关键.过O 作OM AB ⊥于M ,ON AC ⊥于N ,连接OA ,利用角平分线的性质求得3OM ON OD ===,然后利用ABC AOB AOC BOC S S S S =++ 求解即可.解:过O 作OM AB ⊥于M ,ON AC ⊥于N ,连接OA ,∵点O 到BC 边的距离为3,∴3OD =,∵ABC 的周长为20,∴20AB AC BC ++=∵ABC ∠,ACB ∠的平分线交于点O ,OM AB ⊥,ON AC ⊥,∴3OM ON OD ===,∴ABC AOB AOC BOCS S S S =++ 111222AB OM AC ON BC OD =⋅+⋅+⋅()12AB AC BC OD =++⋅12032=⨯⨯30=,故答案为:30.【题型2】利用角平分线判定定理进行求值与证明【例2】如图,DE AB ⊥于E DF AC ⊥,于F ,若BD CD BE CF ==、,(1)求证:AD 平分BAC ∠;(2)已知204,==AC BE ,求AB 的长.【答案】(1)见详解(2)12【分析】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有,,,SAS ASA AAS SSS ,全等三角形的对应边相等,对应角相等.(1)求出90E DFC ∠=∠=︒,根据全等三角形的判定定理得出Rt BED Rt CFD ≌,推出DE DF =,根据角平分线性质得出即可;(2)根据全等三角形的性质得出,==AE AF BE CF ,即可求出答案.(1)证明:∵,DE AB DF AC ⊥⊥,∴90E DFC ∠=∠=︒,∴在Rt BED 和Rt CFD 中,BD CD BE CF =⎧⎨=⎩,∴()Rt BED Rt CFD HL ≌,∴DE DF =,∵,DE AB DF AC ⊥⊥,∴AD 平分BAC ∠;(2)解:∵90,,∠=∠=︒==AED AFD AD AD DE DF ,∴()Rt ADE Rt ADF HL ≌,∴AE AF =,∵20,4===AC CF BE ,∴20416AE AF ==-=,∴16412AB AE BE =-=-=.【变式1】如图,在ABC 中,70BAC ∠=︒,4AB =,2AC =,若2ABD ACD S S = ,则CAD ∠的度数为()A .45︒B .40︒C .35︒D .30︒【答案】C 【分析】作DE AB ⊥于点E ,作DF AC ⊥于点F ,根据2ABD ACD S S = 可证DE DF =,从而可知AD 是BAC∠的平分线,进而可求出CAD ∠的度数.解:如图,作DE AB ⊥于点E ,作DF AC ⊥于点F ,∵2ABD ACD S S = ,∴11222AB DE AC DF ⋅=⨯⋅.∵4AB =,2AC =,∴44DE DF=∴DE DF =,∴AD 是BAC ∠的平分线.∴11703522CAD BAC ∠=∠=⨯︒=︒.故选C .【变式2】6.(23-24八年级上·山东聊城·阶段练习)如图,在ABC 中,48ABC ∠=︒,三角形的外角DAC ∠和ACF ∠的平分线交于点E ,则EBF ∠=.【答案】24︒【分析】本题考查了角平分线的性质和角平分线的定义,解题的关键是能正确作出辅助线,证明BE 平分ABC ∠;过点E 作EM AB EN BC EO AC ⊥⊥⊥、、,根据角平分线的性质可得EM EO EN EO ==,,则有EM EN =,再根据EM AB EN BC ⊥⊥、,即可得出BE 平分ABC ∠即可解答.解:过点E 作EM AB EN BC EO AC ⊥⊥⊥、、,如图所示:三角形的外角DAC ∠和ACF ∠的平分线交于点E ,EM EO EN EO ∴==,,EM EN ∴=,EM AB EN BC ⊥⊥、,∴BE 平分ABC ∠,11482422EBF ABC ∴∠==⨯︒=︒,故答案为:24︒.【题型3】综合运用角平分线性质定理与判定定理进行证明与求值【例3】如图,ABC 和EBD △中,90ABC DBE AB CB BE BD ∠=∠=︒==,,,连接AE CD AE ,,与CD 交于点M ,AE 与BC 交于点N .(1)求证:AE CD =;(2)求证:AE CD ⊥;(3)连接BM ,有以下两个结论:①BM 平分CBE ∠;②MB 平分AMD ∠,其中正确的一个是(请写序号),并给出证明过程.【答案】(1)见详解(2)见详解(3)②【分析】本题考查全等三角形的判定和性质、等腰直角三角形的性质、角平分线的判定与性质定理等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线解决问题.(1)欲证明AE CD =,只要证明ABE CBD ≌;(2)由ABE CBD ≌,推出BAE BCD ∠=∠,由180NMC BCD CNM ∠=︒-∠-∠,18090ABC BAE ANB CNM ANB ABC ∠=︒-∠-∠∠=∠∠=︒,又,,可得90NMC ∠=︒;(3)结论:②;作BK AE ⊥于K BJ CD ⊥,于J .利用角平分线的判定定理证明即可.(1)证明:∵ABC DBE ∠=∠,∴ABC CBE DBE CBE ∠+∠=∠+∠,即ABE CBD ∠=∠,在ABE 和CBD △中,AB CB ABE CBD BE BD =⎧⎪∠=∠⎨⎪=⎩,∴SAS ABE CBD ≌(),∴AE CD =.(2)证明:∵ABE CBD ≌,∴BAE BCD ∠=∠,∵180180NMC BCD CNM ABC BAE ANB ∠=︒-∠-∠∠=︒-∠-∠,,又CNM ANB ∠=∠,90ABC ∠=︒ ,∴90NMC ∠=︒,∴AE CD ⊥.(3)解:结论:②理由:作BK AE ⊥于K BJ CD ⊥,于J.∵ABE CBD ≌,∴ABE CDB AE CD S S == ,,∴1122AE BK CD BJ ⨯⨯=⨯•,∴BK BJ =,∵作BK AE ⊥于K ,BJ CD ⊥于J ,∴BM AMD ∠平分.不妨设①成立,则CBM EBM ≌,则AB BD =,显然不可能,故①错误.故答案为:②.【变式1】(23-24八年级上·浙江杭州·阶段练习)如图,90B C ∠=∠=︒,M 是BC 的中点,DM 平分ADC ∠,且100ADC ∠=︒,则MAB ∠的度数是()A .50︒B .40︒C .45︒D .55︒【答案】B 【分析】本题考查了角平分线的性质和判定,解题的关键是掌握角平分线上的点到两边距离相等.作MN AD ⊥于N ,根据角平分线的性质得出MN MC =,进而得出1402MAB DAB ∠=∠=︒.解:作MN AD ⊥于N ,∵90B C ∠∠==︒,∴AB CD ∥,∴18080DAB ADC ∠∠=︒-=︒,∵DM 平分ADC ∠,MN AD ⊥,MC CD ⊥,∴MN MC =,∵M 是BC 的中点,∴MC MB =,∴MN MB =,又MN AD ⊥,MB AB ⊥,∴1402MAB DAB ∠=∠=︒,故选:B .【变式2】(23-24八年级上·重庆永川·期末)如图,在ABC 中,68BAC ∠=︒,72ACB ∠=︒,ACB ∠的平分线与BAC ∠的外角平分线交于点D ,连接BD ,则BDC ∠的大小等于.【答案】34︒/34度【分析】本题考查了角平分线的判定与性质,三角形外角的性质等知识,先根据角平分线的判定与性质得出BD 平分ABH ∠,然后利用三角形外角的性质12BDC DBH DCB BAC ∠=∠-∠=∠,即可求解.解:过点D 作DH BC ⊥于H ,DE AC ⊥于E ,DF AB ⊥于F ,∵ACB ∠的平分线与BAC ∠的外角平分线交于点D ,∴DE DF DH ==,12BCD ACB ∠=∠,∴BD 平分ABH ∠,∴12DBH ABH ∠=∠,∵68BAC ∠=︒,∴BDC DBH DCB ∠=∠-∠1122ABH ACB =∠-∠()12ABH ACB =∠-∠12BAC =∠1682=⨯︒34=︒,故答案为:34︒.【题型4】通过作图(作角平分线)进行求值或证明【例4】(23-24八年级上·广东珠海·期中)请回答下列问题:(1)如图1,已知ABC ,利用直尺和圆规,作BAC ∠的平分线AD 交BC 于点D (保留作图痕迹,不要求写作法);(2)如图2所示,AD 是ABC 的角平分线E F 、分别是AB AC 、上的点,且180EDF BAC ∠+∠=︒,求证:DE DF =.【分析】(1)根据角平分线的基本作图方法作图即可;(2)过点D 作DH AB ⊥于点H ,作DQ AC ⊥于点Q ,证明()AAS EHD FQD ≌,得出DE DF =,即可得出答案.(1)解:如图,作BAC ∠的平分线AD 交BC 于点D ;(2)证明:如图,过点D 作DH AB ⊥于点H ,作DQ AC ⊥于点Q ,则90EHD FQD ∠=∠=︒,AD 平分BAC ∠,DH DQ ∴=,180EDF BAC ∠+∠=︒Q ,180AED AFD ∴∠+∠=︒,180DFQ AFD ∠+∠=︒ ,DEH DFQ ∴∠=∠,在EHD △和FQD △中DEH DFQ EHD FQD DH DQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS EHD FQD ∴ ≌,DE DF ∴=.【点拨】本题主要考查了角平分线的基本作图,角平分线的性质,三角形全等的判定和性质,补角的性质,解题的关键作图辅助线,熟练掌握三角形全等的判定方法.【变式1】(2024·湖南湘西·模拟预测)如图,在ABC 中,90C ∠=︒,以A 为圆心,任意长为半径画弧,分别交AC AB 、于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E .已知4CE =,7AB =,ABE 的面积为()A .6B .11C .14D .28【答案】C 【分析】此题考查了角平分线的性质定理,根据角平分线的性质得到点E 到AC 和AB 的距离相等,点E 到AB 的距离等于EC 的长度,利用三角形面积公式即可得到答案.解:由基本作图得到AE 平分BAC ∠,∴点E 到AC 和AB 的距离相等,∴点E 到AB 的距离等于EC 的长度,即点E 到AB 的距离为4,∴174142ABE S =⨯⨯= .故选:C .【变式2】(2024·湖南·中考真题)如图,在锐角三角形ABC 中,AD 是边BC 上的高,在BA ,BC 上分别截取线段BE ,BF ,使BE BF =;分别以点E ,F 为圆心,大于12EF 的长为半径画弧,在ABC ∠内,两弧交于点P ,作射线BP ,交AD 于点M ,过点M 作MN AB ⊥于点N .若2MN =,4AD MD =,则AM =.【答案】6【分析】本题考查了尺规作图,角平分线的性质等知识,根据作图可知BP 平分ABC ∠,根据角平分线的性质可知2DM MN ==,结合4AD MD =求出AD ,AM .解:作图可知BP 平分ABC ∠,∵AD 是边BC 上的高,MN AB ⊥,2MN =,∴2MD MN ==,∵4AD MD =,∴8AD =,∴6AM AD MD =-=,故答案为:6.第三部分【中考链接与拓展延伸】1、直通中考【例1】1.(2024·天津·中考真题)如图,Rt ABC △中,90,40C B ∠=︒∠=︒,以点A 为圆心,适当长为半径画弧,交AB 于点E ,交AC 于点F ;再分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧(所在圆的半径相等)在BAC ∠的内部相交于点P ;画射线AP ,与BC 相交于点D ,则ADC ∠的大小为()A .60B .65C .70D .75【答案】B 【分析】本题主要考查基本作图,直角三角形两锐角互余以及三角形外角的性质,由直角三角形两锐角互余可求出50BAC ∠=︒,由作图得25BAD ∠=︒,由三角形的外角的性质可得65ADC ∠=︒,故可得答案解:∵90,40C B ∠=︒∠=︒,∴90904050BAC B ∠=︒-∠=︒-︒=︒,由作图知,AP 平分BAC ∠,∴11502522BAD BAC ∠=∠==︒⨯︒,又,ADC B BAD ∠=∠+∠∴402565,ADC ∠=︒+︒=︒故选:B【例2】.(2021·黑龙江大庆·中考真题)已知,如图1,若AD 是ABC 中BAC ∠的内角平分线,通过证明可得=AB BD AC CD,同理,若AE 是ABC 中BAC ∠的外角平分线,通过探究也有类似的性质.请你根据上述信息,求解如下问题:如图2,在ABC 中,2,3,BD CD AD ==是ABC 的内角平分线,则ABC 的BC 边上的中线长l 的取值范围是【答案】12522l <<【分析】根据题意得到2=3AB AC ,设AB =2k ,AC =3k ,在△ABC 中,由三边关系可求出k 的范围,反向延长中线AE 至F ,使得AE EF =,连接CF ,最后根据三角形三边关系解题.解:如图,反向延长中线AE 至F ,使得AE EF =,连接CF ,2,3,BD CD AD == 是ABC 的内角平分线,2==3AB BD AC CD ∴可设AB =2k ,AC =3k ,在△ABC 中,BC =5,∴5k >5,k <5,∴1<k <5,BE EC AEB CEF AE EF =⎧⎪∠=∠⎨⎪=⎩()ABE FCE SAS ∴≅ AB CF∴=由三角形三边关系可知,AC CF AF AC CF-<<+5k AF k∴<<522k k AE ∴<<∴12522l <<故答案为:12522l <<.【点拨】本题考查角平分线的性质、中线的性质、全等三角形的判定与性质、三角形三边关系等知识,是重要考点,难度一般,掌握相关知识是解题关键.2、拓展延伸【例1】(23-24七年级下·重庆沙坪坝·阶段练习)如图1,在ABC 中,BD 为AC 边上的高,BF 是ABD ∠的角平分线,点E 为AF 上一点,连接AE ,45AEF ∠=︒.(1)求证:AE 平分BAF∠(2)如图2,连接CE 交BD 于点G ,若BAE 与CAE 的面积相等,求证:BG CF=【分析】本题主要考查了全等三角形的证明以及性质运用,角平分线的判定以及基本性质,熟练掌握全等三角形的几种判定方法以及角平分线的判定是解答该题的关键.(1)根据BF 是ABD ∠的角平分线和,BD 为AC 边上的高,可得114522BAD ABD ∠=︒-∠,由45AEF ∠=︒得145452BAE ABE ABD ∠=︒-∠=︒-∠,即可证明12BAE BAD ∠=∠;(2)过点E 作EM AB ⊥于点M ,EN AC ⊥于点N ,由角平分线性质可以得EM EN =,由BAE 与CAE 的面积相等可得AB AC =,证明(SAS)ABE ACE △≌△,得出135AEB CEB ∠=∠=︒,BE EC =,即可得出36090BEG CEF AEB AEC ∠=∠=︒-∠-∠=︒,再根据垂直模型证明ASA BEG CEF ≌(),即可得出结论.(1)证明:∵BD 为AC 边上的高,即90ADB ∠=︒,∴90ABD BAD ∠+∠=︒,∴1()452ABD BAD ∠+∠=︒,∴114522BAD ABD ∠=︒-∵45AEF ABF BAE ∠=∠+∠=︒,∴45BAE ABF ∠=︒-∠,∵12ABF ABD ∠=∠,∴1452BAE ABD ∠=︒-∠,∴12BAE BAF ∠=∠,即:AE 平分BAF ∠.(2)过点E 作EM AB ⊥于点M ,EN AC ⊥于点N ,AE 平分BAC ∠,且EM AB ⊥,EN AC ⊥,EM EN ∴=.ABE ACE S S △△=,AB AC ∴=,AE 平分BAC ∠,BAE CAE ∴∠=∠,在ABE 和ACE △中,AB BC BAE CAE AE AE =⎧⎪∠=∠⎨⎪=⎩(SAS)ABE ACE ∴ ≌,AEB CEB ∴∠=∠,BE EC =,45AEF ∠=︒ ,135AEB AEC ∴∠=∠=︒,36090BEG CEF AEB AEC ∴∠=∠=︒-∠-∠=︒,BD 为AC 边上的高,90ADB ∴∠=︒,FBD BFC BFC FCE ∴∠+∠=∠+∠,EBG ECF ∴∠=∠.在BEG 和CEF △中,BEG CEF BE CE EBG ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩ASA BEG CEF ∴ ≌().BG CF ∴=.【例2】(23-24八年级上·江西宜春·期末)课本再现:思考如图12.3-3,任意作一个角AOB ∠,作出AOB ∠的平分线OC .在OC 上任取一点P ,过点P 画出OA ,OB 的垂线,分别记垂足为D 、E ,测量PD 、PE 并作比较,你得到什么结论?在OC 上再取几个点试一试.通过以上测量,你发现了角的平分线的什么性质?【实验猜想】针对以上问题,同学们进行了小组实验探究,并猜想:角的平分线上的点到角的两边的距离相等.【推理证明】为了证明该定理,小明同学根据书上的图形(如图12.3-3)写出了“已知”和“求证”,请你利...用全等的知识完成证明过程.............(1)已知:点P 是AOB ∠的平分线OC 上一点,过点P 作PD OA ⊥于点D ,PE OB ⊥于点E .求证:PD PE =.【知识应用】(2)如图2,BAC ∠的平分线与ABC 的外角BCD ∠的平分线相交于点O ,过点O 作OD AC⊥于点D ,OE AB ⊥于点E ,连接OB .①证明:OB 平分CBE ∠;②若70CAB ∠=︒,则COB ∠=________.【答案】(1)证明见解析(2)①证明见解析;②55︒【分析】(1)根据条件证明OPD OPE ≌V V ,从而PD PE =.(2)①过点O 作OF CB ⊥于点F ,由(1)的结论易证OD OF OE ==,根据“到角的两边距离相等的点在这个角的平分线上”得到OB 平分CBE ∠;②根据三角形的内角和180COB BCO CBO ∠=︒-∠-∠,再利用角平分线的定义和“三角形的一个外角等于不相邻的两个内角的和”,推导出1902COB BAC ∠=︒-∠,从而求解.(1)证明:OC 平分AOB ∠,AOC BOC ∴∠=∠,PD OA ⊥ ,PE OB ⊥,90ODP OEP ∴∠=∠=︒,在OPD △和OPE 中,AOC BOC ODP OPE OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,OPD OPE ∴V V ≌,PD PE ∴=;(2)①证明:过点O 作OF CB ⊥于点F,AO 是ABC ∠的平分线,OD AC ⊥,OE AB ⊥,OD OE ∴=,CO 是BCD ∠的平分线,OD AC ⊥,OF BC ⊥,OD OF ∴=,OF OE ∴=,OF BC ⊥ ,OE AB ⊥,BO ∴平分CBE ∠,②OB Q 平分CBE ∠,OC 平分BCD ∠,12CBO CBE ∴∠=∠,12BCO BCD ∠=∠,()111180180180222COB CBO BCO CBE BCD CBE BCD ∴∠=︒-∠-∠=︒-∠-∠=︒-∠+∠()()11118018018090222CAB ACB CAB ABC CAB CAB =︒-∠+∠+∠+∠=︒-︒+∠=︒-∠19070552=︒-⨯︒=︒.故答案为:55︒.【点拨】本题考查了全等三角形的判定与性质、角平分线的定义、角平分线的性质和判定以及三角形的内角和定理、三角形外角的性质等,熟练掌握相关知识是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角平分线的性质
一、本节学习指导
角平分线的性质有助于我们解决三角形全等相关题型。

其实不仅仅是角平分线,还有三角形的中位线、高、中心都是解决三角形题目有效的途径。

本节有配套免费学习视频。

二、知识要点
1、角平分线的定义:从一个角的顶点出发把一个角分成两个相等的角的射线叫做角的平分线。

如下图:OC平分∠AOB
∵OC平分∠AOB
∴∠AOC=∠BOC
2、角的平分线的性质:角平分线上的点到角的两边的距离相等。

【重点】
如第一个图:
∵OC平分∠AOB(或∠1=∠2),PE⊥OA,PD⊥OB
∴PD=PE,此时我们知道△OPE≌△OPD(直角三角形斜边是OP即公共边,直角边斜边)
3、角的平分线的判定:角的内部到角的两边距离相等的点在角的平分线上。

如第一个图:
∵PE⊥OA,PD⊥OB,PD=PE
∴OC平分∠AOB(或∠1=∠2)
4、线段的中点的定义:把一条线段分成两条相等的线段的点叫做线段的中点。

如下图:
∵C是AB的中点
∴AC=BC
5、垂直的定义:两条直线相交所成的四个角中有一个是直角,这两条直线互相垂直。

如图:【重点】
∵AB⊥CD
∴∠AOC=∠AOD=∠BOC =∠BOD=90°
或∵∠AOC=90°
∴AB⊥CD
注意:要判断两条直线垂直,只要知道这两条相交直线所形成的四个角中的
一个角是直角就可以了。

反过来,两条直线互相垂直,它们的四个交角都是直角。

6、全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。

∵△ABC≌△A'B'C'
∴AB=A'B',BC=B'C',AC=A'C'; ∠A=∠A', ∠B=∠B', ∠C=∠C'
三、经验之谈:
本节的重点是第2点,角平分线的性质,这条性质在以后的几何题型中用的非常多,本章的三角形全等也不例外,如果我们碰到题目中出现角平分线,我们要会利用它的性质。

告诉大家一个秘密:在几何题型中,99%的题目给出的条件都是要用到的,除非此题属于难题范围,故意给些误导性条件。

相关文档
最新文档