易错汇总2015-2016年福建省厦门市高一上学期期末数学试卷和答案
厦门市高一(上)期末数学试卷
福建省厦门市高一(上)期末数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U={1,2,3,4,5},集合A={3,4},B={1,2},则(∁U A)∩B等于()A.{1,2}B.[1,3}C.{1,2,5}D.{1,2,3}2.(5分)下列函数中,是奇函数且在(0,+∞)上单调递减的是()A.y=x﹣1B.y=()x C.y=x3 D.3.(5分)用系统抽样方法从编号为1,2,3,…,700的学生中抽样50人,若第2段中编号为20的学生被抽中,则第5段中被抽中的学生编号为()A.48 B.62 C.76 D.904.(5分)如图所示为某城市去年风向频率图,图中A点表示该城市去年有的天数吹北风,点表示该城B市去年有10%的天数吹东南风,下面叙述不正确的是()A.去年吹西北风和吹东风的频率接近B.去年几乎不吹西风C.去年吹东风的天数超过100天D.去年吹西南风的频率为15%左右5.(5分)已知函数f(x)=|lnx﹣|,若a≠b,f(a)=f(b),则ab等于()A.1 B.e﹣1C.e D.e26.(5分)保险柜的密码由0,1,2,3,4,5,6,7,8,9中的四个数字组成,假设一个人记不清自己的保险柜密码,只记得密码全部由奇数组成且按照递增顺序排列,则最多输入2次就能开锁的频率是()A.B.C.D.7.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为98,63,则输出的a为()A.0 B.7 C.14 D.288.(5分)已知函数y=a x(a>0且a≠1)是减函数,则下列函数图象正确的是()A.B.C.D.9.(5分)已知f(x)=ln(1﹣)+1,则f(﹣7)+f(﹣5 )+f(﹣3)+f(﹣1)+f(3 )+f (5)+f(7 )+f(9)=()A.0 B.4 C.8 D.1610.(5分)矩形ABCD中,AB=2,AD=1,在矩形ABCD的边CD上随机取一点E,记“△AEB的最大边是AB”为事件M,则P(M)等于()A.2﹣B.﹣1 C.D.11.(5分)元代数学家朱世杰所著《四元玉鉴》一书,是中国古代数学的重要著作之一,共分卷首、上卷、中卷、下卷四卷,下卷中《果垛叠藏》第一问是:“今有三角垛果子一所,值钱一贯三百二十文,只云从上一个值钱二文,次下层层每个累贯一文,问底子每面几何?”据此,绘制如图所示程序框图,求得底面每边的果子数n为()A.7 B.8 C.9 D.1012.(5分)已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=|x﹣1|,若方程f(x)=有4个不相等的实根,则实数a的取值范围是()A.(﹣,1)B.(,1)C.(,1)D.(﹣1,)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)某学习小组6名同学的英语口试成绩如茎叶图所示,则这些成绩的中位数为.14.(5分)空气质量指数(AirQualityIndex,简称AQI)是定量描述空气质量状况的指数.AQI 数值越小,说明空气质量越好.某地区1月份平均AQI(y)与年份(x)具有线性相关关系.下列最近3年的数据:根据数据求得y关于x的线性回归方程为=﹣14x+a,则可预测2017年1月份该地区的平均AQI为.15.(5分)已知f(x)=x3+(a﹣1)x2是奇函数,则不等式f(ax)>f(a﹣x)的解集是.16.(5分)已知函数f(x)=,若存在实数k使得函数f(x)的值域为[0,2],则实数a的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知集合A={x|x<﹣2或x>0},B={x|()x≥3}(Ⅰ)求A∪B(Ⅱ)若集合C={x|a<x≤a+1},且A∩C=C,求a的取值范围.18.(12分)已知函数f(x)=,(x>0且a≠1)的图象经过点(﹣2,3).(Ⅰ)求a的值,并在给出的直角坐标系中画出y=f(x)的图象;(Ⅱ)若f(x)在区间(m,m+1)上是单调函数,求m的取值范围.19.(12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可参加抽奖,抽奖有两种方案可供选择.方案一:从装有4个红球和2个白球的不透明箱中,随机摸出2个球,若摸出的2个球都是红球则中奖,否则不中奖;方案二:掷2颗骰子,如果出现的点数至少有一个为4则中奖,否则不中奖.(注:骰子(或球)的大小、形状、质地均相同)(Ⅰ)有顾客认为,在方案一种,箱子中的红球个数比白球个数多,所以中奖的概率大于.你认为正确吗?请说明理由;(Ⅱ)如果是你参加抽奖,你会选择哪种方案?请说明理由.20.(12分)下面给出了2010年亚洲一些国家的国民平均寿命(单位:岁)21.(12分)某生物研究者于元旦在湖中放入一些凤眼莲,这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲覆盖面积为24m2,三月底测得覆盖面积为36m2,凤眼莲覆盖面积y(单位:m2)与月份x(单位:月)的关系有两个函数模型y=ka x(k>0,a>1)与y=px+q (p>0)可供选择.(Ⅰ)试判断哪个函数模型更合适,并求出该模型的解析式;(Ⅱ)求凤眼莲覆盖面积是元旦放入面积10倍以上的最小月份.(参考数据:lg2≈0.3010,lg3≈0.4771)22.(12分)已知函数f(x)=x2+ax(a>0)在[﹣1,2]上的最大值为8,函数g(x)是h(x)=e x的反函数.(1)求函数g(f(x))的单调区间;(2)求证:函数y=f(x)h(x)﹣(x>0)恰有一个零点x0,且g(x0)<x02h(x0)﹣1(参考数据:e=2.71828…,ln2≈0.693).参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U={1,2,3,4,5},集合A={3,4},B={1,2},则(∁U A)∩B等于()A.{1,2}B.[1,3}C.{1,2,5}D.{1,2,3}【解答】解:全集U={1,2,3,4,5},集合A={3,4},B={1,2},则∁U A={1,2,5},∴(∁U A)∩B={1,2}.故选:A.2.(5分)下列函数中,是奇函数且在(0,+∞)上单调递减的是()A.y=x﹣1B.y=()x C.y=x3 D.【解答】解:根据题意,依次分析选项:对于A、y=x﹣1=,是奇函数,且其在(0,+∞)上单调递减,符合题意;对于B、y=()x是指数函数,不是奇函数,不符合题意;对于C、y=x3是幂函数,是奇函数但其在(0,+∞)上单调递增,不符合题意;对于D、y=是对数函数,不是奇函数,不符合题意;故选:A.3.(5分)用系统抽样方法从编号为1,2,3,…,700的学生中抽样50人,若第2段中编号为20的学生被抽中,则第5段中被抽中的学生编号为()A.48 B.62 C.76 D.90【解答】解:因为是从700名学生中抽出50名学生,组距是14,∵第2段中编号为20的学生被抽中,∴第5组抽取的为20+3×14=62号,故选B.4.(5分)如图所示为某城市去年风向频率图,图中A点表示该城市去年有的天数吹北风,点表示该城B市去年有10%的天数吹东南风,下面叙述不正确的是()A.去年吹西北风和吹东风的频率接近B.去年几乎不吹西风C.去年吹东风的天数超过100天D.去年吹西南风的频率为15%左右【解答】解:根据风向频率图,可知去年吹西南风的频率为5%左右,故选D.5.(5分)已知函数f(x)=|lnx﹣|,若a≠b,f(a)=f(b),则ab等于()A.1 B.e﹣1C.e D.e2【解答】解:∵函数f(x)=|lnx﹣|,a≠b,f(a)=f(b),∴|lna﹣|=|lnb﹣|,∴lna﹣=lnb﹣或lna﹣=,即lna=lnb或ln(ab)=1,解得a=b(舍)或ab=e.∴ab=e.故选:C.6.(5分)保险柜的密码由0,1,2,3,4,5,6,7,8,9中的四个数字组成,假设一个人记不清自己的保险柜密码,只记得密码全部由奇数组成且按照递增顺序排列,则最多输入2次就能开锁的频率是()A.B.C.D.【解答】解:满足条件的数分别是1,3,5,7,9,共1,3,5,7;1,3,5,9;1,3,7,9;1,5,7,9;3,5,7,9 共5种密码,最多输入2次就能开锁的频率是p=,故选:C.7.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为98,63,则输出的a为()A.0 B.7 C.14 D.28【解答】解:由程序框图可知:a=98>63=b,∴a←35=98﹣63,b←28=63﹣35,∴a←7=35﹣28,b←21←28﹣7,a←14=21﹣7,b←7=21﹣14,a←7=14﹣7,则a=b=7,因此输出的a为7.故选:B.8.(5分)已知函数y=a x(a>0且a≠1)是减函数,则下列函数图象正确的是()A.B.C.D.【解答】解:函数y=a x(a>0且a≠1)是减函数,是指数函数,a∈(0,1),函数y=x a的图象为:所以A不正确;y=x﹣a,第一象限的图象为:第三象限也可能有图象.所以B不正确;y=log a x,是减函数,所以选项C不正确;y=log a(﹣x),定义域是x<0,是增函数,所以D正确.故选:D.9.(5分)已知f(x)=ln(1﹣)+1,则f(﹣7)+f(﹣5 )+f(﹣3)+f(﹣1)+f(3 )+f (5)+f(7 )+f(9)=()A.0 B.4 C.8 D.16【解答】解:∵f(x)=ln(1﹣)+1,则f(﹣7)=ln9﹣ln7+1,f(﹣5 )=ln7﹣ln5+1,f(﹣3)=ln5﹣ln3+1,f(﹣1)=ln3+1,f(3 )=﹣ln3+1,f(5)=ln3﹣ln5+1,f(7 )=ln5﹣ln7+1,f(9)=ln7﹣ln9+1,则f(﹣7)+f(﹣5 )+f(﹣3)+f(﹣1)+f(3 )+f(5)+f(7 )+f(9)=8,故选:C.10.(5分)矩形ABCD中,AB=2,AD=1,在矩形ABCD的边CD上随机取一点E,记“△AEB的最大边是AB”为事件M,则P(M)等于()A.2﹣B.﹣1 C.D.【解答】解:分别以A、B为圆心,AB为半径作弧,交C、D于P1,P2,当E在线段P1P2间运动时,能使得△ABE的最大边为AB,∵在矩形中ABCD中,AB=2,AD=1,∴AP1=BP2=2,∴CP1=DP2=2﹣,∴P1P2=2﹣2(2﹣)=2﹣2,∴△ABE的最大边是AB的概率:p==﹣1故选:B.11.(5分)元代数学家朱世杰所著《四元玉鉴》一书,是中国古代数学的重要著作之一,共分卷首、上卷、中卷、下卷四卷,下卷中《果垛叠藏》第一问是:“今有三角垛果子一所,值钱一贯三百二十文,只云从上一个值钱二文,次下层层每个累贯一文,问底子每面几何?”据此,绘制如图所示程序框图,求得底面每边的果子数n为()A.7 B.8 C.9 D.10【解答】解:由S0=2,S n+1=S n+×(n+2),∴S9=2+++>1320,故选:C.12.(5分)已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=|x﹣1|,若方程f(x)=有4个不相等的实根,则实数a的取值范围是()A.(﹣,1)B.(,1)C.(,1)D.(﹣1,)【解答】解:设x<0,则﹣x>0,∵当x≥0时,f(x)=|x﹣1|,∴f(﹣x)=|﹣x﹣1|=|x+1|,∵f(x)是定义在R上的偶函数,∴f(x)=f(﹣x)=|x+1|,则f(x)=,即,由f(x)=得,f2(x)=x+a,画出函数y=x+a与y=f2(x)的图象,如图所示:由图知,当直线y=x+a过点A时有三个交点,且A(1,1),此时a=1,当直线y=x+a相切与点P时有三个交点,由图知,y=f2(x)=(x+1)2=x2+2x+1,则y′=2x+2,令y′=2x+2=1得x=,则y=,此时切点P(,),代入y=x+a得a=,∵方程f(x)=有4个不相等的实根,∴函数y=x+a与y=f2(x)的图象有四个不同的交点,由图可得,实数a的取值范围是(,1),故选B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)某学习小组6名同学的英语口试成绩如茎叶图所示,则这些成绩的中位数为85.【解答】解:由茎叶图得:学习小组6名同学的英语口试成绩从小到大为:76,81,84,86,87,90,∴这些成绩的中位数为:.故答案为:85.14.(5分)空气质量指数(AirQualityIndex,简称AQI)是定量描述空气质量状况的指数.AQI 数值越小,说明空气质量越好.某地区1月份平均AQI(y)与年份(x)具有线性相关关系.下列最近3年的数据:根据数据求得y关于x的线性回归方程为=﹣14x+a,则可预测2017年1月份该地区的平均AQI为36.【解答】解:=2015,=64,故64=﹣14×2015+a,解得:a=14×2015+64,故2017年1月份该地区的平均AQI为:y=﹣14×2017+14×2015+64=36,故答案为:36.15.(5分)已知f(x)=x3+(a﹣1)x2是奇函数,则不等式f(ax)>f(a﹣x)的解集是{x|x>} .【解答】解:若f(x)=x3+(a﹣1)x2是奇函数,则a﹣1=0,即a=1,此时f(x)=x3,在R递增,则不等式f(ax)>f(a﹣x),即x>1﹣x,解得:x>,故不等式的解集是:{x|x>},故答案为:{x|x>}.16.(5分)已知函数f(x)=,若存在实数k使得函数f(x)的值域为[0,2],则实数a的取值范围是[1,2] .【解答】解:当﹣1≤x≤k时,函数f(x)=log2(1﹣x)+1为减函数,且在区间左端点处有f(﹣1)=2,令f(x)=0,解得x=,令f(x)=x|x﹣1|=2,解得x=2,∵f(x)的值域为[0,2],∴k≤,当k≤x≤a时,f(x)=x|x﹣1|=,∴f(x)在[k,],[1,a]上单调递增,在[,1]上单调递减,从而当x=1时,函数有最小值,即为f(1)=0函数在右端点的函数值为f(2)=2,∵f(x)的值域为[0,2],∴1≤a≤2故答案为:[1,2]三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知集合A={x|x<﹣2或x>0},B={x|()x≥3}(Ⅰ)求A∪B(Ⅱ)若集合C={x|a<x≤a+1},且A∩C=C,求a的取值范围.【解答】解:(Ⅰ)∵,且函数在R上为减函数,∴x≤﹣1.∴A∪B={x|x<﹣2或x>0}∪{x|x≤﹣1}={x|x≤﹣1或x>0};(Ⅱ)∵A∩C=C,∴C⊆A,∴a+1<﹣2或a≥0,解得a<﹣3或a≥0.18.(12分)已知函数f(x)=,(x>0且a≠1)的图象经过点(﹣2,3).(Ⅰ)求a的值,并在给出的直角坐标系中画出y=f(x)的图象;(Ⅱ)若f(x)在区间(m,m+1)上是单调函数,求m的取值范围.【解答】本题满分(12分).解:(Ⅰ)∵函数的图象经过点(﹣2,3),∴a﹣2﹣1=3,解得,∴其图象如图所示:(Ⅱ)由(Ⅰ)可知函数的单调递增区间是(0,2),单调递减区间是(﹣∞,0),(2,+∞),∴m+1≤0或m≥2或,∴m的取值范围为m≤﹣1或0≤m≤1或m≥2.19.(12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可参加抽奖,抽奖有两种方案可供选择.方案一:从装有4个红球和2个白球的不透明箱中,随机摸出2个球,若摸出的2个球都是红球则中奖,否则不中奖;方案二:掷2颗骰子,如果出现的点数至少有一个为4则中奖,否则不中奖.(注:骰子(或球)的大小、形状、质地均相同)(Ⅰ)有顾客认为,在方案一种,箱子中的红球个数比白球个数多,所以中奖的概率大于.你认为正确吗?请说明理由;(Ⅱ)如果是你参加抽奖,你会选择哪种方案?请说明理由.【解答】解:(Ⅰ)将4个红球分别记为a1,a2,a3,a4,2个白球分别记为b1,b2,则从箱中随机摸出2个球有以下结果:{a1,a2},{a1,a3},{a1,a4},{a1,b1},{a1,b2},{a2,a3},{a2,a4},{a2,b1},{a2,b2},{a3,a4},{a3,b1},{a3,b2},{a4,b1},{a4,b2},{b1,b2},总共15种,其中2个都是红球的有{a1,a2},{a1,a3},{a1,a4},{a2,a3},{a2,a4},{a3,a4}共6 种,所以方案一中奖的概率为,所以顾客的想法是错误的.(Ⅱ)抛掷2颗骰子,所有基本事件共有36种,其中出现的点数至少有一个4的基本事件有(1,4),(2,4),(3,4),(4,4),(5,4),(6,4),(4,1),(4,2),(4,3),(4,5),(4,6)共11种,所以方案二中奖的概率为,所以应该选择方案一.20.(12分)下面给出了2010年亚洲一些国家的国民平均寿命(单位:岁)【解答】解:(Ⅰ)根据题意,计算[63.0,67.0)的频数是6,频率是=0.15;[67.0,71.0)的频数是11,频率是=0.275,补齐频率分布表如下; 计算a==0.05625,b==0.04375;(Ⅱ)由频率分布直方图可知,以上所有国家的国民平均寿命的平均数约为=61×0.05+65×0.15+69×0.275+73×0.225+77×0.175+81×0.125=71.8;根据统计思想,估计亚洲人民的平均寿命大约为71.8岁.21.(12分)某生物研究者于元旦在湖中放入一些凤眼莲,这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲覆盖面积为24m2,三月底测得覆盖面积为36m2,凤眼莲覆盖面积y(单位:m2)与月份x(单位:月)的关系有两个函数模型y=ka x(k>0,a>1)与y=px+q (p>0)可供选择.(Ⅰ)试判断哪个函数模型更合适,并求出该模型的解析式;(Ⅱ)求凤眼莲覆盖面积是元旦放入面积10倍以上的最小月份.(参考数据:lg2≈0.3010,lg3≈0.4771)【解答】本小题满分(12分).解:(Ⅰ)两个函数y=ka x(k>0,a>1),在(0,+∞)上都是增函数,随着x的增加,函数y=ka x(k>0,a>1)的值增加的越来越快,而函数的值增加的越来越慢.由于凤眼莲在湖中的蔓延速度越来越快,所以函数模型y=ka x(k>0,a>1)适合要求.由题意可知,x=2时,y=24;x=3时,y=36,所以解得所以该函数模型的解析式是(x∈N*).(Ⅱ)x=0时,,所以元旦放入凤眼莲面积是,由得,所以,因为,所以x≥6,所以凤眼莲覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份是6月份.22.(12分)已知函数f(x)=x2+ax(a>0)在[﹣1,2]上的最大值为8,函数g(x)是h(x)=e x的反函数.(1)求函数g(f(x))的单调区间;(2)求证:函数y=f(x)h(x)﹣(x>0)恰有一个零点x0,且g(x0)<x02h(x0)﹣1(参考数据:e=2.71828…,ln2≈0.693).【解答】解:(1)函数g(x)是h(x)=e x的反函数,可得g(x)=lnx;函数f(x)=x2+ax(a>0)在[﹣1,2]上的最大值为8,只能是f(﹣1)=8或f(2)=8,即有1﹣a=8或4+2a=8,解得a=2(﹣7舍去),函数g(f(x))=ln(x2+2x),由x2+2x>0,可得x>0或x<﹣2.由复合函数的单调性,可得函数g(f(x))的单调增区间为(0,+∞);单调减区间为(﹣∞,﹣2);(2)证明:由(1)得:f(x)=x2+2x,即φ(x)=f(x)h(x)﹣,(x>0),设0<x1<x2,则x1﹣x2<0,x1x2>0,∴<0,∵f(x)在(0,+∞)递增且f(x)>0,∴f(x2)>f(x1)>0,∵>>0,∴f(x1)<f(x2),∴φ(x1)﹣φ(x2)=f(x1)﹣f(x2)+<0,即φ(x1)<φ(x2),∴φ(x)在(0,+∞)递增;∵φ()=﹣2>﹣2=0,φ()=﹣e<﹣e<0,即φ()φ()<0,∴函数y=f(x)h(x)﹣(x>0)恰有1个零点x0,且x0∈(,),∴(+2x0)﹣=0,即=,∴h(x0)﹣g(x0)=﹣lnx0=﹣lnx0,∵y=﹣lnx在(0,)上是减函数,∴﹣lnx0>﹣ln=+ln2>+0.6=1,即g(x0)<h(x0)﹣1,综上,函数y=f(x)h(x)﹣(x>0)恰有一个零点x0,且g(x0)<x02h(x0)﹣1.。
厦门市2014-2015学年第一学期高一质量检测-数学试题参考答案以及评分标准
厦门市2014-2015学年第一学期高一质量检测数学试题参考答案以及评分标准题号 1 2 3 4 5 6 7 8 9 10 答案ADBCBDDCCB10.解: (1)2f -=28=+--⇔c b a ----①设m c b a m f =++⇔=38)3(----②① +②得:m c b +=+222,又Z c b ∈,,所以m 一定是偶数. 二、填空题11. 36 (题目引导有误,答案46也对) 12.19 13.5614.23π 15.0 16.(2,0)-16.解:如图,根据xy 2=与x y 2log =关于y x =对称,而2+-=x y 与y x =垂直所以,两交点的中点为y x =与2y x =--的交点(-1,-1), 即12-=+qp 所以,函数()()()f x x p x q =++的对称轴为12=+-=qp x 所以2(22)(0)f x x f ++<⇔<++⇔)2()22(2f x x f …⇔02<<-x . 三、解答题17.解:(Ⅰ)}2|{≥=x x B -----------------------------------------------------------------2分{|23}A B x x =≤< ---------------------------------------------------4分()U C A B 3}x 2|{≥<=或x x ---------------------------------------------------6分(Ⅱ)}|{a x x C >= ---------------------------------------------------8分∵B C C =,∴C B ⊆ ---------------------------------------------------10分所以2<a ---------------------------------------------------12分18.解:记甲选动车、汽车、飞机来厦门分别为事件,,A B C .则事件,,A B C 是互斥的.---------------------------------------------------1分(Ⅰ)()()()0.6P A B P A P B +=+= ---------------------------------------------------3分又()0.3P B =∴()0.3P A = ---------------------------------------------------5分 ∴不乘动车来的概率1()0.7P P A =-= ---------------------------------------------------7分 (Ⅱ)又()()()1P A P B P C ++= ---------------------------------------------------9分∴()0.4P C = ---------------------------------------------------11分 所以()(),()()P C P A P C P B >>所以他乘飞机来的可能性最大 ---------------------------------------------------12分19.解:(Ⅰ)分数在[50,60)的频率为0.008100.08⨯=,由茎叶图知:分数在[50,60)之间的频数为4,所以全班人数为4500.08=(人),--2分 则分数落在[80,90)的学生共有50(414204)8-+++=(人), ----------------------3分 所以分数落在[80,90)的频率为80.1650= 答:分数落在[80,90)的频率为0.16. ---------------------------------------------------4分 (Ⅱ)分数在[50,70) 的试卷共有18份,其中[)50,60 的有4份, ------------------6分现需抽取容量为9的样本,根据分层抽样原理,在[)50,60中应抽取的份数为49218⨯= 答:在[)50,60中,应抽取2份; --------------------------------------------------8分 (Ⅲ)分数分布在[]90,100的学生一共有4人,现从中抽取2人,可能的分数的组合为{}{}{}{}{}{}95,96,95,97,95,99,96,97,96,99,97,99故基本事件总数为6n = -------------------------------------------------10分 设事件A 表示“成绩99分的同学被选中”,则事件A 包含的基本事件为{}{}{}95,99,96,99,97,99 ,3A n =-------------------------------------------------11分根据古典概型概率公式有:31()62A n P A n ===. 答:成绩为99分的同学被选中的概率为12-------------------------------------------------12分20.(Ⅰ)证明:连结1EDM 是1DD 的中点,114DD AA ==12BE MD ∴==又1//BE MD ---------------------------------------------2分∴四边形1D MBE 是平行四边形 --------------------------------------------3分1//BM ED ∴-----------------------------4分 又1ED ⊂平面11A EFD ,BM ⊄平面11A EFD ----------------------------------------5分∴BM ∥平面11A EFD -------------6分(Ⅱ)解:依题意,得此多面体11ABEA DCFD -是一个四棱柱, 底面1ABEA 是梯形 ---------------------9分底面积1(24)6182S =+⋅=高4h AD ==118472ABEA V Sh ==⋅=四棱柱 -----------12分21.解:(Ⅰ)依题意,得25(1415%)10⨯-⨯=此人得到的卖车款是10万元 --------------------------------------4分(Ⅱ)421.25,(01)17.5,(12)13.75,(23)10,(34)210(),(410,)3x x x y x x x x N -⎧⎪<≤⎪<≤⎪⎪=<≤⎨⎪<≤⎪⎪⋅<≤∈⎪⎩-------------------------------------9分(Ⅲ)依题意,得4210()43x -⋅≥2344log ()10x ∴-≤ 234lg 4120.31log ()210lg 2lg 30.30.5-⋅-=≈=--6x ∴≤ -------------------------------------12分2014+6=2020因为,超过n 年不到1n +年的按1n +年计算所以,最迟应该在2020年元旦前(或2019年)卖车 --------------------------------14分D 1MA 1EDFC BA22.解:(Ⅰ)函数2()1x nf x x +=+为定义在R 上的奇函数,(0)0f n ∴==--------------2分2(),1x f x x ∴=+22(),11x xf x x x --==-++满足()()0,f x f x +-=故当且仅当0.n =时2()1xf x x =+为奇函数 -------------------------------------3分(Ⅱ)依题意,即满足对任意]1,0[1∈x ,“21()()g x f x >在]1,0[2∈x 上有解”即满足2max 1()()g x f x >在]1,0[1∈x 上恒成立 即满足2max 1max()()g x f x >-------------------------------------5分对于函数2()1xf x x =+, 不妨设1201x x ≤<≤1212211222221212(1)()()()11(1)(1)x x x x x x f x f x x x x x ---=-=++++ ∵1201x x ≤<,210x x ->, ∴12()()0f x f x -<,∴2()1xf x x =+在[0,1]x ∈上单调递增,1max 1()(1)2f x f == ------------------------------------7分对于二次函数2()22g x x x λλ=--,对称轴为x λ= ⑴当12λ≥时,2max ()(0)2g x g λ==- 令122λ->得14λ<-,与12λ≥不合,舍去; ⑵当12λ<时,2max ()(1)14g x g λ==- 令1142λ->得18λ<.综上所述,符合要求的λ范围是18λ<------------------------------------9分(Ⅲ)方程12|()|log ||f x x = 只有1个实数解。
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。
1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。
$\{1\}$ B。
$\{3,5\}$ C。
$\{1,3,4,5\}$ D。
$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。
$22$ B。
$10$ C。
$8$ D。
$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。
$-\frac{3}{4}$ B。
$-\frac{4}{3}$ C。
$\frac{3}{4}$ D。
$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{3}$ C。
2015-2016学年高一上学期期末考试数学试题(解析版)
高一上学期期末考试数学试题一、选择题1.如果集合=A {}0242=+-x mx x 中只有一个元素,则实数m 的值为( )A .0 错误!未找到引用源。
B .1 错误!未找到引用源。
C .错误!未找到引用源。
2D .0或2 【答案】D【解析】试题分析:集合A 只有一个元素,即方程2420mx x -+=只有一个根.0m =时, 方程变形为420x -+=,必有一个根;0m ≠时,要使方程2420mx x -+=只有一个根,则16420m ∆=-⨯⨯=,解得2m =.综上可得0m =或2m =.故D 正确. 【考点】1集合的元素;2方程的根.【易错点睛】本题重点考查方程根的个数问题,属容易题.但在做题时极容易将方程2420mx x -+=误看做一元二次方程,只注意到使其判别式等于0时此方程只有一个根,而忽视二次项系数m 是否为0.当0m =时此方程为一次方程,一次方程必有一个根.注意当二次项系数含参数时一定要讨论其是否为0,否则极易出错.2.已知全集{}4,3,2,1,0,1-=M ,且{}4321,,,=B A ,{}32,=A ,则=)(A C B U ( )A .{}41, B .{}1 C .{}4 D .φ 【答案】A【解析】试题分析:由题意分析可得1,4必在集合B 内,2,3可能在集合B 内.由已知可得{}1,0,1,4U C A =-,所以(){}1,4U B C A = .故A 正确. 【考点】集合的运算.3.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学不在同一个兴趣小组的概率为( )A .31B .21C .32D .43【答案】C【解析】试题分析:甲乙同学各自在一个小组时共有6种可能,甲乙同学在同一组时共有3种可能,则这两位同学不在同一个兴趣小组的概率为62633P ==+.故C 正确.试卷第2页,总14页【考点】古典概型概率.4.已知函数1)2)(2+++=mx x m x f (为偶函数,则)(x f 在区间()∞+,1上是( )A .先增后减B .先减后增C .减函数D .增函数 【答案】D【解析】试题分析:因为函数()f x 为偶函数,所以()200022m m m m +≠⎧⎪⇒=⎨-=⎪+⎩.所以()221f x x =+.所以函数()221f x x =+的图像是开口向上以y 轴为对称轴的抛物线,所以函数()f x 在()1,+∞上单调递增.故D 正确.【考点】1偶函数的性质;2二次函数的单调性.【方法点睛】本题主要考查偶函数的性质和二次函数单调性问题,难度一般.偶函数的图像关于y 轴轴对称,在本题中由此可求得m 的值.二次函数的单调性由开口方向和对称轴同时决定.5.若以下程序框图的输出结果为120,则判断框中应填写的判断条件为( )A .?5<iB .?5>iC .?6>iD .?5≥i 【答案】B【解析】试题分析:根据框图的循环结构依次可得: 122,213T i =⨯==+=;236,314T i =⨯==+=;6424,415T i =⨯==+=;246120,516T i =⨯==+=,此时应跳出循环输出120T =.所以判断框中应填入5?i >.故B 正确. 【考点】程序框图.【易错点晴】本题主要考查的是程序框图,属于容易题.解题时一定要抓住重要条件输出“120T =”,否则很容易出现错误.在给出程序框图有输出结果而需要填判断框时只要按照程序框图规定的运算方法逐次计算,直到达到输出条件,此时即可得出判断框中所填内容.6.已知函数⎩⎨⎧<+≥-=4)),2((4,1)(x x f f x x x f ,则=)3(f ( )A .5B .4C .3D .2 【答案】C【解析】试题分析:()()()()()35514413f f f f f ==-==-=.故C 正确. 【考点】分段函数求值.7.若a 是从区间[]2,0中任取的一个实数, b 是从区间[]3,0中任取的一个实数,则概率是( )A .32B .65C .31D .61【答案】A【解析】试题分析:试验的全部结果构成的区域(如图)为边长分别为2和3的矩形,面积为236⨯=.其中满足a b <的结果构成的区域为图中阴影部分,其面积为162242-⨯⨯=.则所求概率为4263P ==.故A 正确. 【考点】几何概型.【思路点睛】本题主要考查几何概型概率,难度一般.几何概型的概率为长度比或面积比或体积比.所以应先根据已知条件作出满足初始条件的点所构成的可行域,再在其中标注出其中满足b a <的点构成的可行域.分别计算出其面积.即可求得所求概率.8.甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图所示,1x ,2x 分别表示甲、乙两名运动员这项测试成绩的平均数,21S ,22S 分别表示甲、乙两名运动员这项测试成绩的方差,则有( )试卷第4页,总14页A .1x >2x ,21S <22S B .1x =2x ,21S >22S C .1x =2x ,21S =22S D .1x =2x ,21S <22S【答案】B【解析】试题分析:181315151722156x +++++==;291415151621156x +++++==;()()()()()()222222211538151315151515151715221563S ⎡⎤=-+-+-+-+-+-=⎣⎦,()()()()()()222222221379151415151515151615211563S ⎡⎤=-+-+-+-+-+-=⎣⎦.故B 正确.【考点】平均数,方差.9.函数54ln )(2++-=x x x x f 的零点个数为( ) A .0 B .1 C .2 D .3 【答案】C【解析】试题分析:函数()2ln 45f x x x x =-++的零点个数等价于函数ln y x =图像与函数245y x x =--图像的交点个数问题.由数形结合可知函数ln y x =图像与函数245y x x =--图像有2个交点.所以函数()f x 有2个零点.故C 正确.【考点】1函数零点;2转化思想.10.向顶角为0120的等腰三角形ABC (其中BC AC =)内任意投一点M ,则AM 小于AC 的概率为( ) A .33π B .93πC .21D .3π【答案】B【解析】试题分析:令1AC BC ==,则111sin1202ABC S ∆=⨯⨯⨯= .满足AC AM <的点M 所在区域的面积为230136012ππ⨯⨯=.所以所求概率为9Pπ==.【考点】几何概型.【思路点睛】本题主要考查几何概型概率,难度一般.因为几何概率的值为比值所以边长的取值对结果没有影响,为计算方便不妨令等腰三角形两腰长为1,从而可得此三角形的面积.AM小于AC时点M所在区域为以A为圆心以AC为半径的圆且在三角形内部的扇形部分,可得此扇形面积.扇形面积与三角形面积的比值即为所求.11.如果奇函数)0)((≠=xxfy在()0,∞-∈x时,1)(+=xxf,那么使0)2(<-xf成立的x的取值范围是()A.()()∞+∞-31,B.()1,-∞-()1,0C.()()3,00,∞-D.()1,∞-()32,【答案】D【解析】试题分析:因为()y f x=为奇函数,所以()()f x f x-=-,即()()f x f x=--.x>时0x-<,()()()11f x f x x x=--=--+=-.()()()1,01,0x xf xx x+<⎧⎪∴=⎨->⎪⎩.()2020210xf xx-<⎧∴-<⇔⎨-+<⎩或20210xx->⎧⎨--<⎩1x⇒<或23x<<.故D正确.【考点】1奇函数;2不等式.12.若函数)2(log)(2xxxfa-=)且1,0(≠>aa在区间⎪⎭⎫⎝⎛1,21内恒有0)(>xf,则函数)(xf的单调递增区间是()A.()0,∞- B.⎪⎭⎫⎝⎛∞-41, C.⎪⎭⎫⎝⎛+∞,21D.⎪⎭⎫⎝⎛∞+,41【答案】A【解析】试题分析:2200x x x->⇒<或12x>.函数()f x的定义域为试卷第6页,总14页()1,0,2⎛⎫-∞+∞ ⎪⎝⎭.要使区间⎪⎭⎫⎝⎛1,21内恒有0)(>x f ,只需()min 0f x >当1a >时,此时存在33log log 1048a a f ⎛⎫=<= ⎪⎝⎭.故舍.当01a <<时,又函数22y x x =-在区间1,12⎛⎫⎪⎝⎭上单调递增,所以函数()f x 在1,12⎛⎫⎪⎝⎭上单调递减. 此时()()1log 10a f x f >==恒成立,符合题意. 综上可得01a <<.因为函数22y x x =-在(),0-∞上单调递减;在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,又01a <<所以函数)(x f 的单调递增区间(),0-∞.故A 正确. 【考点】对数函数单调性;二次函数单调性;复合函数单调性.二、填空题13.若六进制数)6(510k (k 为正整数)化为十进制数为239,则=k . 【答案】3 【解析】试题分析:()321061051606656216652216239k k k k =⨯+⨯+⨯+⨯=++=+=, 解得3k =.【考点】进位制.14.幂函数1222)33)(+-+-=m mx m m x f (在区间()+∞,0上是增函数,则=m .【答案】2【解析】试题分析:由题意可知2331m m -+=,即2320m m -+=,解得1m =或2m =.当1m =时,()0f x x =,在区间()0,+∞上为常数1,不具有单调性,故舍; 当2m =时,()f x x =,在区间()0,+∞上单调递增,符合题意. 综上可得2m =.【考点】1幂函数的概念;2函数的单调性.【思路点睛】本题主要考查幂函数的概念和函数的单调性,难度一般.根据幂函数的定义: a y x =叫做幂函数,可知2331m m -+=,从而可得m 的值.将其分别代入()f x 验证是否满足()f x 在区间()0,+∞上单调递增.15.函数)(x g 是函数)2(log )(-=x x f a )1,0(≠>a a 且的反函数,则函数)(x g 的图象过定点 . 【答案】()3,0【解析】试题分析:()3log 10a f == ,∴函数()()log 2a f x x =-的图像过定点()3,0.所以函数()g x 的图像过定点()0,3.【考点】互为反函数的性质.【思路点睛】本题重点考查对数函数过定点和互为反函数的性质问题,属容易题.根据对数公式log 10a =可求得()f x 所过的定点.因为互为反函数的两个函数图像关于y 轴对称,所以函数()f x 图像过的定点()00,x y 关于y 轴的对称点()00,y x 即为函数()g x 的图像过的定点.16.0x 是x 的方程x a a x log =)10(≠>a a ,且的解,则0,1,x a 这三个数的大小关系是 . 【答案】10<<x a【解析】试题分析:当1a >时,由数形结合可知函数x y a =的图像与函数log a y x =的图像无交点,所以此时方程log x a a x =无解,不合题意故舍; 当01a <<时,由数形结合可知函数x y a =的图像与函数log a y x =的图像只有一个交点,即此时方程log x a a x =只有一个解0x .由数形结合分析可知00001,0log 1x x a x a <<<=<,又01a <<,0000log 1log 1log log 1x a a a a x a x a ∴<<⇔<<⇒>>. 综上可得10<<x a .【考点】1指数函数,对数函数图像;2对数不等式;3数形结合思想.三、解答题17.一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时试卷第8页,总14页生产有缺点零件的多少,随机器的运转的速度而变化,具有线性相关关系,下表为抽样试验的结果:(1)如果y 对x 有线性相关关系,求回归方程;(2)若实际生产中,允许每小时生产的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?参考公式:x b y aˆˆ-=,∑∑==---=ni ini i ix xy y x xb 121)())((ˆ∑∑==--=ni ini ii x n xyx n yx 1221【答案】(1)52107ˆ-=x y;(2)机器的运转速度应控制在7614转/秒内. 【解析】试题分析:(1)根据已给公式求,x y ,再求ˆb,ˆa 从而可求得回归方程.(2)根据题意解不等式ˆ10y≤即可求得所求. 试题解析:解:(1)设所求回归方程为a x b yˆˆˆ+=,则由上表可得 12=x ,8=y ,107ˆ=b, 52107128ˆˆ-=⨯-=-=x b y a ∴回归方程为52107ˆ-=x y .(2)由y ≤10得1052107ˆ≤-=x y,解得7614≤x , 所以机器的运转速度应控制在7614转/秒内.【考点】线性回归方程.18.(1)计算20325.0)43()2(2)27102(2)1615(--÷+⨯-⨯-π(2)计算3log 28log 318log 3log 4913662742log --+⋅-【答案】(1)0;(2)3. 【解析】试题分析:(1)根据指数的性质及运算法则即可求得其值; (2)根据对数的性质及运算法则即可求得其值.试题解析:解:(1)20325.0)43()2(2)27102(2)1615(--÷+⨯-⨯-π232)34(2)2764(21681÷-⨯-=- 22)43(2)43(249⨯-⨯-=0=(2)3log 28log 318log 3log 4913662742log --+⋅-3log 2log 23664log 3++-=6log 246+-=12+=3=【考点】1指数的性质及运算法则;2对数的性质及运算法则.19.已知集合A 是函数][))(2(log )(a x a x x g a ---=)1,0(≠>a a 且的定义域,集合B 和集合C 分别是函数x x f 39)(-=的定义域和值域。
新课标版2015-2016学年高一上学期期末考试 数学 Word版含答案[ 高考]
2015-2016学年度上学期(期末)考试高一数学试题【新课标】考试时间:120分钟 总分:150分第Ⅰ卷(选择题 满分60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A ={1,2},B ={x |ax -2=0},若B ⊆A ,则a 的值不可能...是( ) A .0 B .1 C .2 D .3 2.sin45°cos15°+cos225°sin15°的值为( )A .-32B .-12 C.12 D.323.点P (sin2014°,tan2014°)位于( )A .第一象限B .第二象限C .第三象限D .第四象限 4.已知0<a <1,log a m <log a n <0,则( )A .1<n <mB .1<m <nC .m <n <1D .n <m <1 5.下列函数图象与x 轴均有公共点,其中能用二分法求零点的是( )6.已知映射B A f →:,其中法则()():,,2,,35f x y z x y y z z →+-+.若(){}8,1,4=B ,则集合A 可以为( )A .(){}1,2,1B .(){}1,2,1或(){}2,0,1-C .(){}2,0,1-D .(){}1,2,1或(){}2,0,1-或()(){}1,0,2,1,2,1-7.若向量a =(1,1),b =(-1,1),c =(4,2),则c =( )A .3a -bB .3a +bC .-a +3bD .a +3b8.若sin2θ=1,则tan θ+cos θsin θ的值是( )A .2B .-2C .±2 D.129.向量a =(1,2),b =(1,1),且a 与a +λb 的夹角为锐角,则实数λ满足( )A .λ<-53B .λ>-53C .λ>-53且λ≠0D .λ<-53且λ≠-510.函数()sin y x x x R =+∈的图像向左平移()0m m >个单位长度后,所得到的图像关于y轴对称,则m 的最小值是( )A .12πB .6πC .3πD .56π11.设a ,b ,c 是单位向量,且a ·b =0,则(a -c )·(b -c )的最小值为( )A .-2 B.2-2 C .-1 D .1- 212.已知函数f (x )=-x 2+2e x -x -e2x+m (x >0),若f (x )=0有两个相异实根,则实数m 的取值范围是 ( )A .(-e 2+2e ,0)B .(-e 2+2e ,+∞)C .(0,e 2-2e)D .(-∞,-e 2+2e)第Ⅱ卷 (非选择题 满分90分)二、填空题(本大题共4小题,每小题5分,共20分)13.函数y =3sin(ωx +π6)(ω≠0)的最小正周期是π,则ω=________。
2015-2016学年度第一学期期末考试高一数学试题及参考答案
2015-2016学年度第一学期期末考试高一数学试题一、选择题(该大题共12小题,每小题5分,共计60分) 1.下列图形中,表示⊆M N 的是 ( ▲ )2.120cos ︒= ( ▲ ) A.12-B.12C.32-D.223.下列命题正确的是 ( ▲ )A .向量AB 与BA 是两平行向量;B .若,a b 都是单位向量,则a b =;C .若AB =DC ,则A B CD 、、、四点构成平行四边形; D .两向量相等的充要条件是它们的始点、终点相同. 4.45154515cos cos sin sin ︒︒-︒︒= ( ▲ )A.22 B.32C.12D.12-5.如图,在ABC ∆中,D 是AC 的中点,向量AB a =,AC b =,那么向量BD 可表示为 ( ▲ ) A.b a 1122- B.a b 12-C.b a 12-D.a b 12-6.函数2212()()=+-+f x x a x 在区间(],4-∞上是递减的,则实数a 的取值范 ( ▲ ) A.3≤-a B.3≥-a C.5≤a D.5≥a 7.已知指数函数()xf x a =和函数2()g x ax =+,下列图象正确的是 ( ▲ )A. B. C. D.8.已知平面向量,a b ,8a =||,4||=b ,且,a b 的夹角是150︒,则a 在b 方向上的射影是 ( ▲ )A.4-B.43-C.4D.439.要得到函数2sin 2=y x 的图像,只需将2sin(2)6π=-y x 的图像 ( ▲ )A.向右平移6π个单位 B.向右平移12π个单位 C.向左平移6π个单位D.向左平移12π个单位10.若平面向量(3,4)b =与向量(4,3)a =,则向量,a b 夹角余弦值为 ( ▲ )A.1225 B. 1225- C. 2425- D.2425 11.设()338x f x x =+-,用二分法求方程(),338012xx x +-=∈在内近似解的过程中得()()(),.,.,101501250f f f <><则方程的根落在区间 ( ▲ )A .(,.)1125B .(.,.)12515C .(.,)152D .不能确定12.若函数tan ,0(2)lg(),0x x f x x x ≥⎧+=⎨-<⎩,则(2)(98)4f f π+⋅-= ( ▲ )A.12B.12- C.2 D.2-二、填空题(共4小题,每小题5分,共计20分) 13.函数212()log ()=-f x x 的定义域是 ▲ .14.有一半径为4的扇形,其圆心角是3π弧度,则该扇形的面积是 ▲ . 15.已知平面向量(4,3)a =-和单位向量b ,且b a ⊥,那么向量b 为 ▲ . 16.关于函数sin (()42)3f x x =+π,(R)x ∈有下列命题: ①()y f x =是以2π为最小正周期的周期函数;②()y f x =可改写为cos (6)42y x =-π; ③()y f x =的图象关于(0)6-,π对称; ④()y f x =的图象关于直线6x =-π对称; 其中正确的序号为 ▲ .M N D.N M C. M N B. MN A. o 2 1 y x2 1 oy x2 1 oyx2 1 oy xD C AB 第5小题三、解答题(共6小题,共计70分) 17.化简或求值:(1)log lg lg 223212732548--⨯++ (2)已知3sin ,054x x =<<π,求cos 2cos()4xx +π. 18.已知全集U R =,集合{}A x x =<<17,集合{}B x a x a 125=+<<+,若满足A B B =,求 (1)集合U C A ;(2)实数a 的取值范围.19.若平面向量(1,2)a =,(3,2)b =-, k 为何值时: (1)()(3)ka b a b +⊥-;(2)//()(3)ka b a b +-?20.设函数()2sin(2)(0)f x x =+<<ϕϕπ,()y f x =图象的一个对称中心是(,0)3π.(1)求ϕ;(2)在给定的平面直角坐标系中作出该函数在(0,)2x ∈π的图象;(3)求函数()1()f x x R ≥∈的解集21.已知函数2()3sin 22cos f x x x =+.(1)求函数()f x 的最小正周期和单调递增区间;(2)将()f x 的图象向右平移12π个单位长度,再将周期扩大一倍,得到函数()g x 的图象,求()g x 的解析式.22.已知定义域为R 的函数2()21x x af x -+=+是奇函数(1)求a 值;(2)判断并证明该函数在定义域R 上的单调性;(3)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围.2015-2016学年度第一学期期末考试高一数学试题参考答案一、选择题(该大题共12小题,每小题5分,共计60分)CAACC ADBDD BC二、填空题(共4小题,每小题5分,共计20分) 13. 2{|>x x ,且3}≠x 或者填(2,3)(3,)+∞ .14.83π. 15.34(,)55和 34(,)55--.16. ② ③ .三、解答题(共6小题,共计70分) 17.(本小题满分8分) 解:(1)原式=()lg lg 2193549-⨯-++=()lg 1931009-⨯-+=()19329-⨯-+=1113(2)3sin ,054x x π=<<2cos 1sin xx ∴=-=45227cos 2cos sin cos sin 72552222cos()cos sin 42222x x x x x x x x π-+∴====+-18.(本小题满分10分)解;(1)(,][,)U C A =-∞+∞17(2)A B B =B A ∴⊆(i )当B φ=时,由a a 251+≤+得a 4≤-(ii )当B φ≠时,由a a a a 11257125+≥⎧⎪+≤⎨⎪+<+⎩解得a 01≤≤a ∴的取值范围是(,][,]401-∞-.19.(本小题满分12分) 解:(1)a b (1,2),(3,2)==- ka b k k (3,22)∴+=-+ a b 3(10,4)-=-()(3)ka b a b +⊥-(k 3)10(2k 2)(4)0∴-⨯++⨯-=解得 k 19=(2)由(1)及//()(3)ka b a b +-得(k 3)(4)(2k 2)100-⨯--+⨯=解得 1k 3=-20.(本小题满分14分) 解: (1)(,)π03是函数()y f x = 的图像的对称中心sin()πϕ∴⨯+=2203()k k Z πϕπ∴+=∈23()k k Z πϕπ∴=-∈23(,)πϕπϕ∈∴=03()sin()f x x π∴=+223(2)列表:(3)()f x ≥1即sin()x π+≥2213sin()x π+≥1232解得,k x k k Z πππππ+≤+≤+∈5222636亦即,k x k k Z ππππ-+≤≤+∈124所以,()f x ≥1的解集是[,],k k k Z ππππ-++∈12421.(本小题满分12分)解:(1)依题意,得f x x x =++()3sin 2cos 21x x =++312(sin 2cos 2)122x π=++2sin(2)16将()y f x =的图像向右平移12π个单位长度,得到函数f x x x ππ=-++=+1()2sin[2()]12sin 21126的图像,该函数的周期为π,若将其周期变为π2,则得g x x =+()2sin 1 (2)函数f x ()的最小正周期为T π=,(3)当,k x k k Z πππππ-≤+≤-∈222262时,函数单调递增,解得,k x k k Zππππ-≤≤+∈36∴函数的单调递增区间为 [,],k k k Z ππππ-+∈36. 22.(本小题满分14分) 解:(1)由题设,需(),,()xxa f a f x +-==∴=∴=+112001212经验证,()f x 为奇函数,a ∴=1xπ12π3 π712 π56πx π+23 π3π2 ππ32π2π73 ()f x32-23(2)减函数.证明:任意,,,x x R x x x x ∈<∴->1212210由(1)得()()()()()x x x x x x x x f x f x --⨯--=-=++++2112212121121222212121212 ,x x x x x x <∴<<∴-<121212022220,()()x x ++>2112120()()f x f x ∴-<210所以,该函数在定义域R 上是减函数(3)由22(2)(2)0f t t f t k -+-<得f t t f t k -<--22(2)(2)()f x 是奇函数∴f t t f k t -<-22(2)(2),由(2),()f x 是减函数. ∴原问题转化为t t k t ->-2222,即t t k -->2320对任意t R ∈恒成立.∴k ∆=+<4120,解得k <-13即为所求.。
福建省厦门市高一上学期数学期末考试试卷
福建省厦门市高一上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共12分)1. (1分) (2016高一下·平罗期末) 如图所示,观察四个几何体,其中判断正确的是()A . ①是棱台B . ②是圆台C . ③是棱锥D . ④不是棱柱2. (1分) (2018高一上·吉林期末) 如图所示,直观图四边形是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是()A .B .C .D .3. (1分)如图是一正方体被过棱的中点和顶点的两个截面截去两个角后所得的几何体,则该几何体的正视图为()A .B .C .D .4. (1分) (2015高一上·银川期末) 圆柱的轴截面是正方形,且轴截面面积是S,则它的侧面积是()A .B . πSC . 2ΠsD . 4πS5. (1分) (2016高一下·广州期中) 空间中,可以确定一个平面的条件是()A . 三个点B . 四个点C . 三角形D . 四边形6. (1分)设是两条不同的直线,是两个不同的平面,有下列四个命题:① 若则;② 若则;③ 若则;④ 若则其中正确命题的序号是()A . ①③B . ①②C . ③④D . ②③7. (1分) (2018高二上·南山月考) 直线的倾斜角等于()A . 0B .C .D .8. (1分) (2015高一下·南阳开学考) 若直线(3a+2)x+(1﹣4a)y+8=0和直线(5a﹣2)x+(a+4)y﹣7=0相互垂直,则a值为()B . 1C . 0或1D . 0或﹣19. (1分)一个正方体的体积是8,则这个正方体的内切球的表面积是()A . 8πB . 6πC . 4πD . π10. (1分)在极坐标系中,直线的方程为,则点到直线的距离为()A .B .C .D .11. (1分)圆x2+y2=1上的点到直线3x+4y﹣25=0的距离的最小值是()A . 6B . 4C . 5D . 112. (1分) (2019高二上·慈溪期中) 已知点M(-2,1,3)关于坐标平面xOz的对称点为A,点A关于y轴的对称点为B,则|AB|=()B .C .D . 5二、填空题 (共4题;共4分)13. (1分)如图,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥DQ,则a 的值等于________14. (1分) (2016高二下·上海期中) 在图中,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有________.(填上所有正确答案的序号)15. (1分) (2019高一下·哈尔滨月考) 直线l过点(1,4),且在两坐标轴上的截距的乘积是18,则直线l 的方程为________.16. (1分)直线的倾斜角是________.三、解答题 (共6题;共10分)17. (2分) (2018高一上·兰州期末) 已知四棱锥P-ABCD的体积为,其三视图如图所示,其中正视图为等腰三角形,侧视图为直角三角形,俯视图是直角梯形.(1)求正视图的面积;(2)求四棱锥P-ABCD的侧面积.18. (2分)如图所示,△ABC是正三角形,AE和CD都垂直于平面ABC,且AE=AB=2DC,F是BE的中点.求证:(1)DF∥平面ABC;(2)AF⊥BD.19. (2分) (2018高二上·遵义月考) 如图,已知三棱锥的侧棱两两垂直,且,,是的中点.(1)求异面直线与所成角的余弦值;(2)求直线AE和平面OBC的所成角.20. (1分) (2016高二上·上海期中) 已知△ABC的三个顶点A(m,n)、B(2,1)、C(﹣2,3);(1)求BC边所在直线的方程;(2) BC边上中线AD的方程为2x﹣3y+6=0,且S△ABC=7,求点A的坐标.21. (1分)已知圆C的圆心在直线l:x﹣2y﹣1=0上,并且经过A (2,1)、B(1,2)两点,求圆C的标准方程.22. (2分) (2016高一上·周口期末) 已知圆M过两点A(1,﹣1),B(﹣1,1),且圆心M在直线x+y﹣2=0上.(1)求圆M的方程.(2)设P是直线3x+4y+8=0上的动点,PC、PD是圆M的两条切线,C、D为切点,求四边形PCMD面积的最小值.参考答案一、单选题 (共12题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共10分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、22-1、22-2、。
2015-2016学年福建省师大附中高一上学期期末考试数学试题(解析版)附答案
2015-2016学年福建省师大附中高一上学期期末考试数学试题(附答案)一、选择题1.已知直线方程34)y x --,则这条直线的倾斜角是( ) A .150︒B .120︒C .60︒D .30︒【答案】C【解析】试题分析:由题意得,直线的斜率为k =tan α=60α= ,故选C .【考点】直线的倾斜角.2.在空间直角坐标系中,点(1,3,6)P 关于x 轴对称的点的坐标是( ) A .(1,3,6)- B .(1,3,6)-- C .(1,3,6)-- D .(1,3,6)-- 【答案】D【解析】试题分析:由题意得,根据空间直角坐标系,可得点(1,3,6)P 关于x 轴对称的点的坐标是(1,3,6)--,故选D .【考点】空间直角坐标系.3.已知α,β是平面,m ,n 是直线.下列命题中不.正确的是( ) A .若m ∥n ,m ⊥α,则n ⊥α B .若m ∥α,α∩β= n ,则m ∥n C .若m ⊥α,m ⊥β,则α∥β D .若m ⊥α,m β,则α⊥β 【答案】B【解析】试题分析:由题意得,A 中,若//,m n m α⊥,则有直线与平面垂直的判定定理得n α⊥,所以是正确的;B 中,若//,m n ααβ= ,则m 与n 平行或异面,所以是不正确的;C 中,若,m m αβ⊥⊥,则由平面与平面平行的判定定理得//αβ,所以是正确的;D 中,,m m αβ⊥⊂,则由平面与平面垂直的判定定理得αβ⊥,所以是正确的. 【考点】空间中线面位置的判定.4.已知12:20,:(1)210,l mx y l m x my +-=+-+=若12l l ⊥ 则m =( )ÌA .m=0B .m=1C .m=0或m=1D .m=0或m=1- 【答案】C【解析】试题分析:由12l l ⊥,得(1)1(2)0m m m ⨯++⨯-=,解得0m =或1m =,故选C .【考点】两直线垂直的应用.5.正方体''''ABCD A B C D -中,AB 的中点为M ,'DD 的中点为N ,异面直线M B '与CN 所成的角是( )A .0 B . 90 C . 45 D .60【答案】B 【解析】试题分析:取A A '的中点为E ,连接BE ,则直线B M '与CN 所成角就是直线B M'与BE 所成的角,由题意得得B M BE '⊥,所以异面直线M B '与CN 所成的角是90,故选B .【考点】异面直线所成的角.6.若长方体的一个顶点上三条棱长分别是1、1、2,且它的八个顶点都在同一球面上,则这个球的体积是( )A .6π BC .3πD .12π【答案】B【解析】试题分析:由题意得,此问题是球内接长方体,所以可得长方体的对角线长等于球的直径,即2R =所以R =,所以求得体积为334433V R ππ==⨯=.【考点】球的组合及球的体积的计算.7.圆(x ﹣1)2+(y ﹣2)2=1关于直线20x y --=对称的圆的方程为( ) A .22(4)(1)1x y -++= B .22(4)(1)1x y +++= C .(x+2)2+(y+4)2=1 D .22(2)(1)1x y -++= 【答案】A【解析】试题分析:由题意得,圆心坐标为()1,2,设圆心()1,2关于直线20x y --=的对称点为(,)P x y ,则2111122022y x x y -⎧⨯=-⎪⎪-⎨++⎪--=⎪⎩,解得4,1x y ==-,所以对称圆方程为22(4)(1)1x y -++=.【考点】点关于直线的对称点;圆的标准方程.8.已知实数,x y满足22(5)(12)25,x y ++-= )A .5B .8C .13D .18 【答案】B【解析】试题分析:=(,)P x y 到原点的距离,所以的最小值表示圆()()2251225x y ++-=上一点到原点距离的最小值,又圆心()5,12-到原点的距离为13=的最小值为138R -=,故选B .【考点】圆的标准方程及圆的最值.9.如图,在长方体中,,,则与平面所成角的正弦值为( )A .B .C .D . 【答案】D【解析】试题分析:连接11AC 交11B D 于点O ,连接BO ,因为长方体中,,所以1C O ⊥平面11BDD B ,所以1C BO ∠为1BC 与平面11BDD B 所成角,因为11112C O A C ==,1BC ,所以111sin C O C BO BC ∠===,故选D .1111D C B A ABCD -2==BC AB 11=AA 1BC D D BB 11635525155101111D C B A ABCD -2==BC AB1A 1A【考点】直线与平面所成角的求解.10.已知点()()4,0,0,2B A -,点P 在圆()()5=4+3-:22-y x C ,则使090=∠APB 的点P 的个数为( )A .0B .1C .2D .3 【答案】B【解析】试题分析:设(,)P x y ,要使90APB ∠=,只需P 到AB 中点(1,2)-的距离为12AB ==,而圆上的所有点到AB 中点距离范围为,即,所以使090=∠APB 的点P 的个数只有一个,就是AB 中点与圆心连线与圆的交点.【考点】点与圆的位置关系.11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为6480π+,则r =( )A .1B . 2C . 4D . 8 【答案】 C【解析】试题分析:由几何体的三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体的一个半球和一个半圆柱,所以其表面积为22222111422254222S r r r r r r r r πππππ=⨯+++⨯+=+,又因为该几何体的表面积为1620π+,即22546480r r ππ+=+,解得4r =.【考点】几何体的三视图;体积的计算. 【方法点晴】本题主要考查了空间几何体的三视图的应用和几何体的体积的计算与应用,属于中档试题,同时着重考查了学生的空间想象能力和运算能力,求解三视图问题时,要牢记三是的规则“长对正,高平齐、宽相等”,得到原结合体的形状,再根据几何体的体积公式求解几何体的体积,本题的解答中通过给定的三视图可得该几何体为一个半球和半个圆锥拼接的几何体,通过计算半球的体积和半个圆柱的体积,从而得到给几何体的体积. 12.已知点(,)M a b ,(0)ab ≠是圆222:O x y r +=内一点,直线m 是以点M 为中点的弦所在直线,直线n 的方程是2ax by r +=,那么( )A .//m n 且n 与圆O 相离B .//m n 且n 与圆O 相交C .m 与n 重合且n 与圆O 相离D .m n ⊥且n 与圆O 相交 【答案】A【解析】试题分析:直线m 是以点M 为中点的弦所在直线,所以m PO ⊥,所以m 的斜率为ab -,所以//n m ,圆心到直线n,因为M 在圆内,所以2ax by r +<,r >,所以直线n 与圆相离,故选A .【考点】直线与圆的位置关系.【方法点晴】本题主要考查了直线与圆的位置关系及应用,属于中档试题,对于直线和圆的位置关系分为相交、相离、相切三种情形,常利用圆心到直线的距离与半径的大小关系来判断,本题解答中利用直线m 是以点M 为中点的弦所在直线可求得其斜率,进而根据直线n 的方程可判断出两直线平行,表示出点到直线n 的距离,根据点M 在园内判断出,a b 和r 的关系,进而判断长圆心到直线n 的距离大于半径,判断长二者的关系是相离.二、填空题13.不论k 为何值,直线(21)(2)(4)0k x k y k ----+=恒过的一个定点是__________. 【答案】(2,3)【解析】试题分析:由题意得,直线(21)(2)(4)k x k y k ----+=,可化为(21)(24)0k x y x y ---+-=,解方程组240210x y x y +-=⎧⎨--=⎩,解得2,3x y ==,所以直线恒经过点(2,3). 【考点】直线方程.14.在正方体1111ABCD A BC D -中,二面角1C BD C --的正切值为 .【解析】试题分析:设正方体111A B C D A B C D -的棱长为a ,则111,BD DC BC CD BC CC a ======,取BD 的中点O ,连接1,OC OC ,则1COC ∠就是二面角1C B DC --的平面角,因为12CO BD ==,所以1t a n 2C O C ∠.【考点】二面角的求解.15.点P (4,-2)与圆224x y +=上任一点连线的中点的轨迹方程是 . 【答案】22(2)(1)1x y -++=【解析】试题分析:设圆上任意一点为11(,)A x y ,AP 中点为(),x y ,则114222x x y y +⎧=⎪⎪⎨-⎪=⎪⎩,所以112422x x y y =-⎧⎨=+⎩,代入224x y +=得22(24)(22)4x y -++=,化简22(2)(1)1x y -++=,所以轨迹方程为22(2)(1)1x y -++=.【考点】轨迹方程的求解.【方法点晴】本题主要考查了与圆有关的轨迹方程的求解,属于基础题,着重考查了代入法求解轨迹方程,其中确定坐标之间的关系是解答此类问题的关键.本题解答中通过设圆上任意一点为11(,)A x y ,表示AP 中点为(),x y ,确定出A 与AP 中点坐标之间的关系112422x x y y =-⎧⎨=+⎩,再代入圆的方程,化简即可得到动点的轨迹方程. 16.若直线x y k +=与曲线y =k 的取值范围是 .【答案】11k k -≤<=或【解析】试题分析:曲线y =(1,0)A -时,直线y x k =-+与半圆只有一个交点,此时1k =-;当直线过点(1,0),(0,1)B C 时,直线y x k =-+与半圆有两个交点,此时1k =;当直线y x k =-+与半圆相切时,只有一个公共点,k =11k -≤<或k =x y k +=与曲线y =个公共点.【考点】直线与圆的方程的应用.17.已知三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心,则与底面所成角的正弦值等于 .【答案】【解析】试题分析:由题意得,不妨设棱长为2,如图,在底面内的射影为的中心,故DA =由勾股定理得13A D ==,过1B 作1B E ⊥平面ABC ,则1B AE ∠为1AB 与底面ABC所成角,且1B E =,作1A S AB ⊥于中点S,所以111ABC A B C -1A ABC ABC △1ABABC 31A ABC ABC △1AS =,所以1AB ==,所以与底面所成角的正弦值为1sin 3B AE ∠==.【考点】直线与平面所成的角.18.若直线被两平行线12:0:0l x y l x y +=+=与所截得的线段的长为的倾斜角可以是①;②;③;④105︒;⑤120︒;⑥165︒其中正确答案的序号是 .(写出所有正确答案的序号) 【答案】④或⑥【解析】试题分析:由题意得,两直线12,l l之间的距离为d ===线被两平行线1:0l x y +=与2:0l x y +=所截得的线段的长为m 与直线0x y +=的夹角为45,所以直线的倾斜角可以是105︒或165︒.【考点】两平行线之间的距离;直线的夹角. 【方法点晴】本题主要考查了两条平行线之间的距离公式的应用及两直线的位置关系的应用,属于中档试题,解答的关键是根据两平行线之间的距离和被截得的线段的长,确定两条直线的位置关系(夹角的大小),本题的解答中,根据平行线之间的距离和被截得的线段长为确定直线m 与两平行线的夹角为45,从而得到直线m 的倾斜角.三、解答题19.如图,已知平行四边形ABCD 的三个顶点的坐标为(14)A ,-,(21)B ,--,(23)C ,.1ABABC m m 15 45 60 m m(1)求平行四边形ABCD 的顶点D 的坐标; (2)在∆ACD 中,求CD 边上的高线所在直线方程; (3)求ACD ∆的面积.【答案】(1)(3,8);(2)5190x y +-=;(3)8.【解析】试题分析:(1)设AC 的中点为M ,则由M 为AC 的中点求得17(,)22M ,设点D 坐标为(,)x y ,由已知得M 为线段BD 中点,求D 的坐标;(2)求得直线CD 的斜率CD k ,可得CD 边上的高线所在的直线的斜率为15-,从而在ACD ∆中,求得CD 边上的高线所在直线的方程;(3)求得CD ,用两点式求得直线CD 的方程,利用点到直线的距离公式,求得点A 到直线CD 的距离,可得ACD ∆的面积. 试题解析:(1)),点坐标为(则边中点为设2721,M M AC 设点D 坐标为(x ,y ),由已知得M 为线段BD 中点,有[⎪⎪⎩⎪⎪⎨⎧=+-=+-27212122y x 解得⎩⎨⎧==83y x 所以D (3,8)(2)所以CD 边上的高线所在直线的斜率为15-故CD 边上的高线所在直线的方程为14(1)5y x -=-+,即为5190x y +-= (3)(2,3),(3,8)C D由C ,D 两点得直线CD 的方程为:570x y --=【考点】待定系数法求直线方程;点到直线的距离公式. 20.如图,在四棱锥中,底面是边长为的正方形,侧面底面,且,设、分别为、的中点.(1)求证://平面; (2)求证:面平面; (3)求二面角的正切值.【答案】(1)证明见解析;(2)证明见解析;(3. 【解析】试题分析:(1)利用线面平行的判定定理:连接AC ,直线证明//EF PA ,利用中位线定理即可得证;(2)利用面面垂直的判定定理:只需证明PA ⊥面PDC ,进而转化为证明,PA PD PA DC⊥⊥,可证PAD ∆为等腰直角三角形,可得PA AD ⊥;由面PAD ⊥面ABCD 的性质及正方形ABCD 的性质可证CD ⊥面PAD ,得CD PA ⊥;(3)设PD 的中点为M ,连接,EM MF ,则EM P D ⊥,由此可知PD ⊥平面EFM ,则EM F ∠是二面角的平面角,通过解Rt FEM ∆可得所求二面角的正切值. 试题解析:(1)证明:为平行四边形,连结,为中点, 为中点∴在中,//,且平面,平面 ∴(2)证明:面面 ,平面面 又为正方形,且平面平面,∴,又是等腰直角三角形, 又,且、面面 又面,面面(3)解:设的中点为,连结,,则, 由(2)知面面 , 是二面角的平面角P ABCD -ABCD a PAD ⊥ABCD PA PD AD ==E F PC BD EF PAD PAB ⊥PDC B PD C --B PD C --ABCD AC BD F = F AC E PC CPA ∆EF PA PA ⊆PAD EF ⊄PAD PAD EF 平面// PAD ⊥ABCD PAD ABCD AD = ABCD ∴CD AD ⊥CD ⊂ABCD CD ⊥PAD CD PA ⊥2PA PD AD ==∴PAD ∆∴PA PD ⊥CD PD D = CD PD ⊆ABCD ∴PA ⊥PDC PA ⊆PAB ∴PAB ⊥PDC PD M EM MF EM PD ⊥EF ⊥PDC ∴EF PD ⊥∴PD ⊥EFM ∴PD MF ⊥∴EMF ∠B PD C --B在中,【考点】直线与平面平行的判定;平面与平面垂直的判定;二面角的求解.21.一艘船在航行过程中发现前方的河道上有一座圆拱桥.在正常水位时,拱圈最高点距水面8m ,拱圈内水面宽32m ,船只在水面以上部分高6.5m ,船顶部宽8m ,故通行无阻,如下图所示.(1)建立适当平面直角坐标系,求正常水位时圆弧所在的圆的方程;(2)近日水位暴涨了2m ,船已经不能通过桥洞了.船员必须加重船载,降低船身在水面以上的高度,试问:船身至少降低多少米才能通过桥洞?(精确到0.1m 2.45≈)【答案】(1)400;(2)0.9.【解析】试题分析:(1)建立平面直角坐标系,确定,,A B D 三点的坐标,根据CD CB =,求解圆心坐标,从而得到圆的方程;(2)代入4x =,可得7.6y ≈米,可判断桥拱宽为8m 的地方距离正常水位时水面的宽度,通过比较可判断船是否通过.试题分析:(1)解:在正常水位时,设水面与桥横截面的交线为x 轴,过拱圈最高点且与水面垂直的直线为y 轴,建立平面直角坐标系,如图所示,则A ,B ,D 三点的坐标分别为(-16,0),(16,0),(0,8).又圆心C 在y 轴上,故可设C (0,b ).因为|CD|=|CB|,所以8b -12b =-.所以圆拱所在圆的方程为: 2222(12)(812)20x y ++=+==400(2)当x=4时,求得y ≈7.6,即桥拱宽为8m 的地方距正常水位时的水面约7.60m ,距涨水后的水面约5.6m ,因为船高6.5m ,顶宽8m ,所以船身至少降低6.5-5.6=0.9(m )以上,船才能顺利通过桥洞.【考点】圆的方程及其应用.22.如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠= .Rt FEM ∆124EF PA a ==1122EM CD a ==4tan 12a EF EMF EM a ∠===(1)证明:1AB AC ⊥; (2)若2AB CB ==,1AC =111ABC A B C -的体积.【答案】(1)证明见解析;(2)3.【解析】试题分析:(1)由题目给出的边的关系,可取AB 的中点O ,连接1,OC OA ,通过证明AB ⊥平面1OAC ,即可证明1AB AC ⊥;(2)在三角形1OAC 中,由勾股定理得到1OA OC ⊥,再根据1OA AB ⊥,得到1OA 为三棱柱111ABC A B C -的高,利用已知给出的边的长度,直接利用棱柱体积公式求解体积.试题解析:(1)取AB 的中点O ,连接OC 、1OA 、1A B ,因为CA=CB ,所以OC AB ⊥,由于AB=AA 1,∠BA A 1=600,故,AA B ∆为等边三角形,所以OA 1⊥AB .因为OC ⋂OA 1=O ,所以AB ⊥平面OA 1C .又A 1C ⊆平面OA 1C ,故AB ⊥A 1C .(2)由题设知12ABC AA B ∆∆与都是边长为的等边三角形, 12AA B 都是边长为的等边三角形,所以22111111,OC OA AC OA OC OA OC OA AB ===+⊥⊥ 又=A C ,故又111111111,--= 3.ABC ABC OC AB O OA ABC OA ABC A B C ABC S A B C V S OA =⊥∆=⨯= 因为所以平面,为棱柱的高,又的面积ABC 的体积【考点】直线与平面垂直的判定与性质;棱柱、棱锥、棱台的体积.【方法点晴】本题主要考查了直线与平面垂直的判定与性质和几何体的体积的计算,属于中档试题,着重考查了空间想象能力、运算能力和推理论证能力,解答此类问题的关键是把线线垂直的证明转化为线与面垂直,利用线面垂直的性质证明1AB AC ⊥;第2问中,利用线面垂直,确定几何体的高是解答三棱锥的体积的是求解几何体体积的一个难点.23.在平面直角坐标系xOy 中,已知圆221:16C x y +=和圆222:(7)(4)4C x y -+-=.(1)求过点(4,6)的圆1C 的切线方程;(2)设P 为坐标平面上的点,且满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它们分别与圆1C 和圆2C 相交,且直线1l 被圆1C 截得的弦长是直线2l 被圆2C 截得的弦长的2倍.试求所有满足条件的点P 的坐标.【答案】(1)512520x y -+=或4x =;(2)1(4,6)P 或2362(,)55P . 【解析】试题分析:(1)设出切线方程()64y k x -=-,利用圆心到切线的距离等于圆的半径,求解k 的值,从而确定切线的方程;(2)设出直线1l 的方程,确定2l 的方程,利用截得的弦长之间的关系转为圆心到两条直线的距离的关系,利用点到直线的距离求解列出方程,根据方程无穷多个解,确定,a b 的值,从而得到点的坐标.试题解析:(1)若切线的斜率存在,可设切线的方程为()64y k x -=-,则圆心1C 到切线的距离4d ==,解得512k =所以切线的方程为:512520x y -+=;若切线的斜率不存在,则切线方程为4x =,符合题意.综上所述,过P 点的圆1C 的切线方程为512520x y -+=或4x =.(2)设点(,)P a b 满足条件, 不妨设直线1l 的方程为:()(0)y b k x a k -=-≠,即0(0)kx y b ak k -+-=≠,则直线2l 的方程为:1()y b x a k-=--,即0x k y b k a +--=.因为圆1C 的半径是圆2C 的半径的2倍,及直线1l 被圆1C 截得的弦长是直线2l 被圆2C 截得的弦长的2倍,所以圆1C 的圆心到直线1l 的距离是圆2C 的圆心到直线2l 的距离的2倍,2=整理得 214(28)ak b a b k -=-+-从而214(28)ak b a b k -=-+-或214(28)b ak a b k -=-+-,即(28)214a b k a b -+=+-或(28)214a b k a b +-=-++,因为k 的取值有无穷多个,所以2802140a b a b -+=⎧⎨+-=⎩或2802140a b a b +-=⎧⎨-++=⎩,解得46a b =⎧⎨=⎩或36525a b ⎧=⎪⎪⎨⎪=⎪⎩,这样点P 只可能是点1(4,6)P 或点2362(,)55P . 经检验点1P 和点2P 满足题目条件.【考点】直线与圆的位置关系;点到直线的距离公式和方程问题的综合应用.【方法点晴】本题主要考查了直线与圆的位置关系求解圆的切线方程及利用点到直线的距离公式和方程解问题的综合应用,属于难度较大的试题,并着重考查了转化的思想方法和计算能力.本题的解答中设出直线1l 的方程,根据垂直关系,确定2l 的方程,利用截得的弦长之间的关系转为圆心到两条直线的距离的关系,利用点到直线的距离求解列出方程,根据方程无穷多个解,是解答一个难点,平时应重视圆的转化思想在求解圆的方程中的应用.。
2015-2016学年(福建省)高一上学期期末考试数学试题(解析版)8
高一上学期期末考试数学试题一、选择题1.若,,,则实数()A. B. C. D. 2或【答案】D【解析】由于两个向量平行,故.点睛:本题主要考查两个向量的位置关系.两个向量,两个向量平行时,有;若两个向量垂直,则有.本题中将题目所给的两个向量的坐标代入,即可求得的值.2.下列图形中可以是某个函数的图象的是()A. B.C. D.【答案】D【解析】对于函数来说,一个只有唯一一个和其对应,故错误,选.3.函数(且)的图象经过的定点是()A. B. C. D.【答案】B【解析】当时,函数值恒为,故定点为.4.函数的图象的一条对称轴方程是()A. B. C. D.【答案】D【解析】正弦函数对称轴为,令,求得对称轴为.5.若,则一定存在一个实数,使得当时,都有()A. B.C. D.【答案】A【解析】当时,的图像在的上方,故,排除选项.当时,,而是幂函数,增长速度比对数函数要快,故当时,.故选选项.6.若,,则()A. B. C. D.【答案】C【解析】由于两个向量垂直,根据向量加法的几何性质可知,平行四边形为矩形,对角线相等,即.7.若集合,集合,则()A. B. C. D.【答案】A【解析】依题意,故.8.若,,则在方向上的投影是()A. B. C. D.【答案】C【解析】依题意有投影为.9.若一扇形的周长为4,面积为1,则该扇形的圆心角的弧度数是()A. B. C. D.【答案】B【解析】依题意,解得,所以弧度数为.10.若函数在上的最大值与最小值之和为,则实数的值是( )A.B.C.D.【答案】A【解析】依题意函数在上单调,故,解得.11.( )A. B. C. D.【答案】C【解析】由于,即.点睛:本题主要考查两角和的正切公式的变形,考查了化归与转化的数学思想方法.首先注意到题目所给的两个角度的特殊关系,即.而题目涉及到正切的公式,我们就联想到两角和的正切公式,变形为.12.已知向量与的夹角为,,,若与的夹角为锐角,则实数的取值范围是( )A. B.C.D. 【答案】D 【解析】根据夹角为锐角,有,即,也即,即,解得.点睛:本题主要考查平面向量的数量积运算与夹角公式,考查了锐角对应三角函数的取值范围,考查了两个向量的位置关系.题目一开始给定两个向量的模和夹角,那么它们的数量积可以通过公式求解出来.由于后面给定两个向量的夹角为锐角,则转化为数量积大于零,且不等于,就说明两个向量不能共线,由此得到.二、填空题13.,,,则与的夹角是__________.【答案】【解析】,所以夹角为.14.若函数是偶函数,则__________.【答案】【解析】由于函数为偶函数,故需要符合诱导公式中的奇变偶不变,故,由于,所以.15.若,则__________.【答案】【解析】,化简得.所以.16.若定义在上的函数满足,是奇函数,现给出下列4个论断:①是周期为4的周期函数;②的图象关于点对称;③是偶函数;④的图象经过点.其中正确论断的序号是__________(请填上所有正确论断的序号).【答案】①②③【解析】由可知函数周期为.由是奇函数关于原点对称,可知关于对称,即.,所以函数为偶函数,无法判断其值.综上,正确的序号是①②③.点睛:本题主要考查函数的奇偶性与周期性,考查函数平移变换等知识.在阅读题目的时候,采用逐句转化的方法,即读到“”时,将其转化为函数的周期为,这个要记住小结论,即若,,则函数为周期函数,且周期为.向左平移个单位后得到,这是函数变换的知识.三、解答题17.已知函数.(Ⅰ)求函数的定义域与零点;(Ⅱ)判断函数的奇偶性.【答案】(I)定义域为,零点为;(II)奇函数.【解析】试题分析:(I)定义域为.令,即.(II)利用奇偶性的定义,判断,所以函数为奇函数.试题解析:解:(Ⅰ)∵∴,∴的定义域为.由,得,∴,解得,∴的零点为.(Ⅱ)∵对任意的实数,都有,∴是奇函数.18.已知函数.(Ⅰ)求函数的最小正周期和递增区间;(Ⅱ)求函数的图象的对称中心的坐标.【答案】(I)最小正周期,单调递增区间是,;(II)对称中心的坐标是,.【解析】试题分析:(I)利用降次公式和二倍角公式,化简,由此得到最小正周期.令,解出的范围即是函数的增区间.(II)令,解出的值即是对称中心的横坐标,由此得到对称中心的坐标.试题解析:解:.(Ⅰ)函数的最小正周期.由,,得,.∴函数的单调递增区间是,.(Ⅱ)由,,得,,∴函数的图象的对称中心的坐标是,.19.已知某海滨浴场的海浪高度(单位:米)是时间(单位:小时,)的函数,记作.如表是某日各时的浪高数据:(时)(米)(Ⅰ)在如图的网格中描出所给的点;(Ⅱ)观察图,从,,中选择一个合适的函数模型,并求出该拟合模型的解析式;(Ⅲ)依据规定,当海浪高度高于1.25米时才对冲浪爱好者开放,请依据(Ⅱ)的结论判断一天内的8:00到20:00之间有多长时间可供冲浪爱好者进行活动.【答案】(I)详见解析;(II),(III)小时.【解析】试题分析:(I)根据题目所给数据进行描点.(II)根据图象,应该选择,利用可求得的值,利用周期可求得的值,最后代入图像上一个最高点或最低点,求得的值.(III)由(II)令,解这个三角不等式可求得的取值范围.试题解析:解:(Ⅰ)(Ⅱ)根据图,应选择.不妨设,,由图可知,,,.∴,又当时,,∴,∴,∴,.∴,∴所求的解析式为.(Ⅲ)由,即,得,即,.又,∴.答:一天内的8:00到20:00之间有4个小时可供冲浪爱好者进行活动.20.已知,,,求的值.【答案】.【解析】试题分析:由于,故可以用诱导公式,将已知的表达式转化为.利用平方差公式,可将化简为.利用对数的运算公式,可将化简为.由此求得的值.试题解析:解:∵...∴.21.已知,,,.(Ⅰ)求的值;(Ⅱ)求的值.【答案】(I);(II).【解析】试题分析:(I)依题意有,利用正切的二倍角公式可求得.(II)利用,求出,由此求得,利用求得,所以.试题解析:解:(Ⅰ)∵,,∴,即.∵,∴,∴,∴,∴.(Ⅱ)∵,∴,又∵,∴,∴,.又,∴.点睛:本题主要考查向量模的概念,考查正切函数的二倍角公式,考查三角恒等变形.第一步是利用向量的模的概念,求得,然后利用正切的二倍角公式求得的值.第二问主要通过划归与转化的思想方法,将进行转化,利用其正切值求得相应的弧度数.22.已知函数的值域为,函数,的值域为.(Ⅰ)求集合和集合;(Ⅱ)若对任意的实数,都存在,使得,求实数的取值范围.【答案】(I)详见解析;(II).【解析】试题分析:(I)利用两角和与差的正弦、余弦公式,辅助角公式,化简.所以.对分成三类,利用配方法,分类讨论的取值.(II)由于,,根据题意,有.由(I)的讨论,列出不等式组,由此求得的取值范围.试题解析:解:(Ⅰ).∴..(1)若,则,;(2)若,则.∵,∴,当时,,①若,则,∴;②若,则,(i )若,即,则;(ii )若,即,则.综上,若,则;若,则;若,则;若,则.(Ⅱ)∵,∴的值域为,∴的值域.∴对任意的实数,都存在,使得,即,或或或第 11 页共 12 页或或或或或或或.∴所求的取值范围为.点睛:本题主要考查两角和与差的正弦、余弦公式,辅助角公式.考查恒成立问题的处理方法,考查三角函数的值域等知识,还考查了分类讨论的数学思想方法.第一问主要利用三角函数公式进行三角恒等变形,化为一个角且次数为一次的三角函数,由此求得值域.第二问需要对分类讨论,情况比较多,分类要做到不重不漏.第 12 页共 12 页。
福建省厦门市高一上学期人教A版数学期末测试试卷(附答案)
A. 48
B. 62
C. 76
D. 90
4. 如图所示为某城市去年风向频率图,图中 A 点表示该城市去年有 20% 的天数吹北 风,点 B 表示该城市去年有 10% 的天数吹东南风,下面叙述不正确的是 ( ) A. 去年吹西北风和吹东风的频率接近 B. 去年几乎不吹西风 C. 去年吹东北风的天数超过 100 天 D. 去年吹西南风的频率为 15% 左右
3
)
4
10. 已知函数 f (x) = x − t sin x (0 < t ⩽ 1),若 f (log2 m) > −f (−1),则实数 m 的取值范围是 ( )
A. (0, 2)
B. (0, 1)
C. (2, +∞)
D. (1, +∞)
=%DE(#,+(&$ !
11. 某学习小组 6 名同学的英语口试成绩如茎叶图所示,则这些成绩的中位数为
17. 某商场举行有奖促销活动,顾客购买一定金额的商品后即可参加抽奖,抽奖有两种方案可供选择. 方案一:从装有 4 个红球和 2 个白球的不透明箱中,随机摸出 2 个球,若摸出的 2 个球都是红球则中奖,否 则不中奖; 方案二:掷 2 颗骰子,如果出现的点数至少有一个为 4 则中奖,否则不中奖.(注:骰子(或球)的大小、形 状、质地均相同) (1) 有顾客认为,在方案一种,箱子中的红球个数比白球个数多,所以中奖的概率大于 1 .你认为正确吗? 2 请说明理由;
人教版高一上学期期末考试试卷
!"
#$#!!!!!!!
%%&'(#,+(&$ !- , + ( . / 0 1 2 & 3 4&56%3789(:;<0!
福建省厦门市高一上学期期末数学试卷
福建省厦门市高一上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2015高三下·武邑期中) 已知M,N是两个集合,定义集合N*M={x|x=y﹣z,y∈N,z∈M},若M={0,1,2},N={﹣2,﹣3},则N*M=()A . {2,3,4,5}B . {0,﹣1,﹣2,﹣3}C . {1,2,3,4}D . {﹣2,﹣3,﹣4,﹣5}2. (2分)设、都是非零向量,下列四个条件中,一定能使成立的是()A . =-B .C . =2D .3. (2分)设偶函数f(x)的定义域为R,当时f(x)是增函数,则的大小关系是..()A .B .C .D .4. (2分) (2019高三上·新疆月考) 将函数的图象向左平移个单位后,得到函数的图象关于点对称,则等于()A .B .C .D .5. (2分) (2018高三上·双鸭山月考) 函数其中()的图象如图所示,为了得到的图象,则只需将的图象()A . 向右平移个长度单位B . 向右平移个长度单位C . 向左平移个长度单位D . 向左平衡个长度单位6. (2分) (2018高二上·凌源期末) 若,,则等于()A .B .C .D .7. (2分)已知函数,若实数a,b,c互不相等,且,则abc 的取值范围是()A . (1,10)B . (5,6)C . (20,24)D . (10,12)8. (2分) (2016高一上·荆州期中) 函数f(x)=[x]的函数值表示不超过x的最大整数,例如[﹣3.5]=﹣4,[2.1]=2,则f(x)﹣x=0的解有()A . 1B . 2C . 3D . 无数个二、填空题 (共6题;共6分)9. (1分) (2019高一上·大庆期中) 函数是上的单调递减函数,则实数的取值范围是________ .10. (1分) (2016高二下·大庆期末) 已知函数f(x)=logax在定义域内单调递增,则函数g(x)=loga (3﹣2x﹣x2)的单调递增区间为________.11. (1分)(2017·郎溪模拟) 已知非零向量满足且,则向量的夹角为________.12. (1分) (2016高三上·泰州期中) 定义在R上的函数f(x)满足f(x)+f(x+5)=16,当x∈(﹣1,9)时,f(x)=x2﹣2x ,则函数f(x)在[0,2016]上的零点个数是________.13. (1分)已知函数f(x)=|log2x|在区间[m﹣2,2m]内有定义且不是单调函数,则m的取值范围为________.14. (1分)求函数y= tan(5x+ )的对称中心________.三、解答题: (共5题;共40分)15. (5分)(2017·榆林模拟) 如图,在△ABC中,已知点D,E分别在边AB,BC上,且AB=3AD,BC=2BE.(Ⅰ)用向量,表示.(Ⅱ)设AB=6,AC=4,A=60°,求线段DE的长.16. (10分)计算题(1)已知角α终边上一点P(﹣4,3),求的值.(2)若sinx= ,cosx= ,x∈(,π),求tanx.17. (5分) (2017高三上·甘肃开学考) 已知在△A BC中,∠A,∠B,∠C所对的边分别为a,b,c,若且sinC=cosA(Ⅰ)求角A、B、C的大小;(Ⅱ)函数f(x)=sin(2x+A)+cos(2x﹣),求函数f(x)单调递增区间,指出它相邻两对称轴间的距离.18. (5分) (2017高三上·九江开学考) 已知 =(2,﹣), =(sin2( +x),cos2x).令f(x)= • ﹣1,x∈R,函数g(x)=f(x+φ),φ∈(0,)的图象关于(﹣,0)对称.(Ⅰ)求f(x)的解析式,并求φ的值;(Ⅱ)在△ABC中sinC+cosC=1﹣,求g(B)的取值范围.19. (15分) (2019高一上·阜阳月考) 已知函数对任意实数x、y恒有,当x>0时,f(x)<0,且 .(1)判断的奇偶性;(2)求在区间[-3,3]上的最大值;(3)若对所有的恒成立,求实数的取值范围.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题: (共5题;共40分)15-1、16-1、16-2、17-1、18-1、19-1、19-2、19-3、。
福建省厦门市高一上学期数学期末考试试卷
福建省厦门市高一上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·枣庄模拟) 已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁UB=()A . {2,5}B . {3,6}C . {2,5,6}D . {2,3,5,6,8}2. (2分) (2018高三上·信阳期中) 等于()A . ﹣2B . ﹣1C . 1D . 23. (2分) (2016高一上·历城期中) 下列各组函数中,表示同一函数的是()A .B .C .D .4. (2分) (2017高一上·鞍山期末) 已知扇形的半径为3,圆心角为,则扇形的弧长为()A . 3πB . 2πC . 360D . 5405. (2分)如果方程的两根是,则的值是()A .B .C . 35D .6. (2分)的值是()A .B .C .D .7. (2分) (2020高二下·宁波期中) 给出下列命题:①“ ”是“方程”有实根”的充要条件;②若“ ”为真,则“ ”为真;③若函数值域为,则;④命题“若,则”为真命题.其中正确的是()A . ① ③B . ① ④C . ② ④D . ③ ④8. (2分) (2016高一上·遵义期中) 直线y=2与曲线y=x2﹣|x|+a有四个交点,则a的取值范围是()A .B .C .D .9. (2分) (2020高一下·番禺期中) 在中,已知为的面积),若,则的取值范围是()A .B .C .D .10. (2分)已知函数有两个零点x1 , x2 ,则有A . x1x2<1B . x1x2<x1+x2C . x1x2=x1+x2D . x1x2>x1+x2二、填空题 (共7题;共7分)11. (1分) (2018高三上·北京期中) 已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有点,且,则 ________.12. (1分) (2018高二下·泰州月考) 函数,若对任意,,如果, 则的值为________.13. (1分) (2017·来宾模拟) 设向量 =(cosα,﹣)的模为,则cos2α=________14. (1分)如图,在第一象限内,矩形ABCD的三个顶点A,B,C分别在函数的图象上,且矩形的边分别平行两坐标轴,若A点的纵坐标是2,则D点的坐标是________ .15. (1分)sin2840°+cos540°+tan225°﹣cos(﹣330°)+sin(﹣210°)的值是________.16. (1分) (2019高三上·郑州期中) 已知函数f(x)=2sin(ωx+φ)(ω>0,φ∈[0,π])的部分图象如图所示,其中f(0)=1,|MN|=,则f(x)在(0,3)上的单调递减区间为________.17. (1分)(2020·攀枝花模拟) 已知定义在上的函数满足,且在单调递增,对任意的,恒有,则使不等式成立的取值范围是________.三、解答题 (共5题;共55分)18. (10分) (2019高一上·罗庄期中) 函数,且,.(1)求的定义域,判断奇偶性;(2)若,求使得成立的x的集合.19. (10分) (2019高一上·哈尔滨期末) 已知函数 .(1)把的图象上每一点的纵坐标变为原来的倍,再将横坐标向右平移个单位,可得图象,求,的值;(2)若对任意实数和任意,恒有,求实数的取值范围.20. (10分)已知函数f(x)为定义在R上的奇函数,当x>0时,f(x)=3•2x﹣2﹣x .(1)求函数f(x)在R上的解析式;(2)若f(mx2+1)+f(3x﹣2x2)≥0对x∈R恒成立,求实数m的取值范围.21. (15分) (2019高三上·上海期中) 设函数、满足关系,其中是常数.(1)设,,求的解析式;(2)是否存在函数及常数()使得恒成立?若存在,请你设计出函数及常数;不存在,请说明理由;(3)已知时,总有成立,设函数()且,对任意,试比较与的大小.22. (10分)(2017·长沙模拟) 已知函数f(x)= .(1)证明:f(x)+|f(x)﹣2|≥2;(2)当x≠﹣1时,求y= 的最小值.参考答案一、选择题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共7题;共7分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:三、解答题 (共5题;共55分)答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、考点:解析:。
福建师大附中2015-2016学年高一上学期期末考试数学试题
福建师大附中2015-2016学年高一上学期期末考试数学试题试卷说明:福建师大附中2015-2016学年高(上)期末数学试卷一、选择题:(每小题5分,共60分,在每小题给出的四个选项中,只有一项符合要求)1.(5分)下列条件中,能使α∥β的条件是()A.平面α内有无数条直线平行于平面βB.平面α与平面β同平行于一条直线C.平面α内有两条直线平行于平面βD.平面α内有两条相交直线平行于平面β考点:平面与平面之间的位置关系..专题:规律型.分析:直接利用平面与平面平行的判定定理以及平面与平面平行的定义,判断选项即可.解答:解:对于A,如果直线都是平行线,平面α不平行于平面β,所以A不正确;对于B,平面α与平面β同平行于一条直线,这条直线平行与两个平面的交线,两个平面也不平行,B不正确;对于C,平面α内有两条直线平行于平面β,不满足直线与平面平行的判定定理,所以C不正确;对于D,平面α内有两条相交直线平行于平面β,这是两个平面平行的判定定理,所以正确.故选D.点评:本题考查平面与平面平行的判定定理与定义的应用,基本知识的考查.2.(5分)直线x+y+1=0的倾斜角与在 y 轴上的截距分别是()A.135°,1B.45°,?1C.45°,1D.135°,?1考点:直线的截距式方程;直线的倾斜角..专题:计算题.分析:先求出直线的斜率,再求直线的倾斜角;在直线方程中,令x=0,能得到它在 y 轴上的截距.解答:解:∵直线x+y+1=0的斜率为?1,所以它的倾斜角为135°,在x+y+1=0中,由x=0,得y=?1,∴x+y+1=0在 y 轴上的截距为?1.故选D.点评:本题考查直线的倾斜角的求法和求直线的截距,解题时要注意公式的合理运用.3.(5分)三个平面把空间分成7部分时,它们的交线有()A.1条B.2条C.3条D.1条或2条考点:平面的基本性质及推论..分析:画出把空间分成7部分时的三个平面,如图产,可知它们的交线情况,从而解决问题.解答:解:根据题意,三个平面把空间分成7部分,此时三个平面两两相交,且有三条平行的交线.故选C.点评:本题主要考查了平面的基本性质及推论、确定平面的条件及空间想象的能力,属于基础题.4.(5分)已知直线l1:ax?y+a=0,l2:(2a?3)x+ay?a=0互相平行,则a的值是()A.1B.?3C.1或?3D.0考点:直线的一般式方程与直线的平行关系..专题:计算题;直线与圆.分析:利用两条直线平行,斜率相等,建立等式即可求a的值.解答:解:因为直线l1:ax?y+a=0,的斜率存在,斜率为a,要使两条直线平行,必有l2:(2a?3)x+ay?a=0的斜率为a,即=a,解得 a=?3或a=1,当a=1时,已知直线l1:ax?y+a=0,l2:(2a?3)x+ay?a=0,两直线重合,当a=?3时,已知直线l1:?3x+y?3=0与直线l2:?3x?y=1,两直线平行,则实数a的值为?3.故选B.点评:本题考查两条直线平行的判定,是基础题.本题先用斜率相等求出参数的值,再代入验证,是解本题的常用方法5.(5分)(2009?浙江)设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若l⊥α,α⊥β,则l?βB.若l∥α,α∥β,则l?βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β考点:空间中直线与平面之间的位置关系..分析:本题考查的知识点是直线与平面之间的位置关系,逐一分析四个答案中的结论,发现A,B,D中由条件均可能得到l∥β,即A,B,D三个答案均错误,只有C满足平面平行的性质,分析后不难得出答案.解答:解:若l ⊥α,α⊥β,则l?β或l∥β,故A错误;若l∥α,α∥β,则l?β或l∥β,故B错误;若l⊥α,α∥β,由平面平行的性质,我们可得l⊥β,故C正确;若l∥α,α⊥β,则l⊥β或l∥β,故D错误;故选C点评:判断或证明线面平行的常用方法有:①利用线面平行的定义(无公共点);②利用线面平行的判定定理(a?α,b?α,a∥b?a ∥α);③利用面面平行的性质定理(α∥β,a?α?a∥β);④利用面面平行的性质(α∥β,a?α,a?,a∥α??a∥β).线线垂直可由线面垂直的性质推得,直线和平面垂直,这条直线就垂直于平面内所有直线,这是寻找线线垂直的重要依据.垂直问题的证明,其一般规律是“由已知想性质,由求证想判定”,也就是说,根据已知条件去思考有关的性质定理;根据要求证的结论去思考有关的判定定理,往往需要将分析与综合的思路结合起来.6.(5分)已知点M(a,b)在直线3x+4y=15上,则的最小值为()A.2B.3C.D.5考点:基本不等式..专题:计算题.分析:由题意可得,3a+4b=15,而a2+b2==,根据二次函数的性质可求解答:解:由题意可得,3a+4b=15∵a2+b2==根据二次函数的性质可得,当b=时有最小值9则的最小值为3故选B点评:本题主要考查了最值的求解,解题的关键是根据已知关系把所求的式子转化为二次函数的最值求解7.(5分)一梯形的直观图是一个如图所示的等腰梯形,且梯形OA′B′C′的面积为,则原梯形的面积为()A.2B.C.2D.4考点:平面图形的直观图..专题:计算题;作图题.分析:根据斜二测画法的规则将图形还原,平面图是一个直角梯形,面积易求.解答:解:如图,有斜二测画法原理知,平面中的图形与直观图中的图形上下底边的长度是一样的,不一样的是两个梯形的高,其高的关系是这样的:平面图中的高OA是直观图中OA'长度的2倍,如直观图,OA'的长度是直观图中梯形的高的倍,由此平面图中梯形的高OA的长度是直观图中梯形高的2×=2倍,故其面积是梯形OA′B′C′的面积2倍,梯形OA′B′C′的面积为,所以原梯形的面积是4.故应选D.点评:本题考查斜二测画法作图规则,属于规则逆用的题型.8.(5分)若P(2,?1)为圆(x?1)2+y2=25的弦AB的中点,则直线AB的方程是()A.x?y?3=0B.2x+y?3=0C.x+y?1=0D.2x?y?5=0考点:直线和圆的方程的应用;直线与圆相交的性质..专题:计算题.分析:由圆心为O(1,0),由点P为弦的中点,则该点与圆心的连线垂直于直线AB求解其斜率,再由点斜式求得其方程.解答:解:已知圆心为O(1,0)根据题意:Kop=kABkOP=?1kAB=1∴直线AB的方程是x?y?3=0故选A点评:本题主要考查直线与圆的位置关系及其方程的应用,主要涉及了弦的中点与圆心的连线与弦所在的直线垂直.9.(5分)长方体的三个相邻面的面积分别是2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为()A.B.56πC.14πD.16π考点:球的体积和表面积..专题:计算题.分析:根据题意可得长方体的三条棱长,再结合题意与有关知识可得外接球的直径就是长方体的对角线,求出长方体的对角线,即可得到球的直径,进而根据球的表面积公式求出球的表面积.解答:解:因为长方体相邻的三个面的面积分别是2,3,6,∴长方体的一个顶点上的三条棱长分别是3,2,1,又因为长方体的8个顶点都在同一个球面上,所以长方体的对角线就是圆的直径,因为长方体的体对角线的长是:球的半径是:这个球的表面积:4 =14π故选C.点评:解决此类问题的关键是熟练掌握常用几何体的结构特征,以及球的内接多面体的有关知识,球的表面积公式,而解决此题的关键是知道球的直径与长方体的体对角线,考查计算能力,空间想象能力,此题属于基础题.10.(5分)(2009?宁夏)已知圆C1:(x+1)2+(y?1)2=1,圆C2与圆C1关于直线x?y?1=0对称,则圆C2的方程为()A.(x+2)2+(y?2)2=1B.(x?2)2+(y+2)2=1C.(x+2)2+(y+2)2=1D.(x?2)2+(y?2)2=1考点:关于点、直线对称的圆的方程..专题:计算题.分析:求出圆C1:(x+1)2+(y?1)2=1的圆心坐标,关于直线x?y?1=0对称的圆心坐标求出,即可得到圆C2的方程.解答:解:圆C1:(x+1)2+(y?1)2=1的圆心坐标(?1,1),关于直线x?y?1=0对称的圆心坐标为(2,?2)所求的圆C2的方程为:(x?2)2+(y+2)2=1故选B点评:本题是基础题,考查点关于直线对称的圆的方程的求法,考查计算能力,注意对称点的坐标的求法是本题的关键.11.(5分)M(x0,y0)为圆x2+y2=a2(a>0)内异于圆心的一点,则直线x0x+y0y=a2与该圆的位置关系为()A.相切B.相交C.相离D.相切或相交考点:直线与圆的位置关系..专题:计算题.分析:由圆的方程找出圆心坐标与半径,因为M为圆内一点,所以M到圆心的距离小于圆的半径,利用两点间的距离公式表示出一个不等式,然后利用点到直线的距离公式表示出圆心到已知直线的距离d,根据求出的不等式即可得到d大于半径r,得到直线与圆的位置关系是相离.解答:解:由圆的方程得到圆心坐标为(0,0),半径r=a,由M为圆内一点得到:<a,则圆心到已知直线的距离d=>=a=r,所以直线与圆的位置关系为:相离.故选C点评:此题考查小时掌握点与圆的位置关系及直线与圆的位置关系的判断方法,灵活运用两点间的距离公式及点到直线的距离公式化简求值,是一道综合题.12.(5分)如图,正方体ABCD?A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=,则下列结论中错误的是()A.AC⊥BEB.EF ∥平面ABCD C.三棱锥A?BEF的体积为定值D.△AEF的面积与△BEF的面积相等考点:棱柱的结构特征..专题:计算题.分析:A.AC⊥BE,可由线面垂直证两线垂直;B.EF∥平面ABCD,可由线面平行的定义证线面平行;C.三棱锥A?BEF 的体积为定值,可证明棱锥的高与底面积都是定值得出体积为定值;D.由图形可以看出,B到线段EF的距离与A到EF 的距离不相等,故△AEF的面积与△BEF的面积相等不正确.福建师大附中2015-2016学年高一上学期期末考试数学试题。
福建省师大附中2015-2016学年高一数学上学期期末考试试题
福建师大附中2015-2016学年第一学期模块考试卷高一数学必修2(满分:150分,时间:120分钟) 说明:请将答案填写在答卷纸上,考试结束后只交答案卷.一、选择题:(每小题5分,共60分,在每小题给出的四个选项中,只有一项符合要求) 1. 已知直线方程33(4)y x ,则这条直线的倾斜角是( )A. 150︒B. 120︒C. 60︒D.30︒2. 在空间直角坐标系中,点(1,3,6)P 关于x 轴对称的点的坐标是( ) A. (1,3,6)- B. (1,3,6)-- C. (1,3,6)-- D. (1,3,6)-- 3.已知α,β是平面,m ,n 是直线.下列命题中不.正确的是( ) A .若m ∥n ,m ⊥α,则n ⊥α B .若m ∥α,α∩β= n ,则m ∥n C .若m ⊥α,m ⊥β,则α∥βD .若m ⊥α,mβ,则α⊥β4.已知12:20,:(1)210,l mx y l m x my +-=+-+=若12l l ⊥ 则m =( ) A .m=0 B .m=1 C .m=0或m=1 D .m=0或m=1-5. 正方体''''ABCD A B C D 中,AB 的中点为M ,'DD 的中点为N , 异面直线M B '与CN 所成的角是( ) A .0 B .90C . 45D .601、1、2,且它的八个顶点都在同一球面上,则这个球的体积是( ) A .6π B .6π C .3π D .12π 7.圆(x ﹣1)2+(y ﹣2)2=1关于直线20x y --=对称的圆的方程为( ) A .22(4)(1)1x y -++= B .22(4)(1)1x y +++= C .(x+2)2+(y+4)2=1 D .22(2)(1)1x y -++=8.已知实数,x y 满足2222(5)(12)25,x y x y ++-=+那么的最小值为( ) A .5B . 8C . 13D .189.如图,在长方体1111D C B A ABCD -中,2==BC AB ,11=AA ,则1BC 与平面D D BB 11所成角的正弦值为( )A 1D 1C 1BA .63 B .552C .515D .51010.已知点()()4,0,0,2B A -,点P 在圆()()5=4+3-:22-y x C ,则使090=∠APB 的点 P 的个数为( )A .0B .1C .2D .311.圆柱被一个平面截去一部分后与半球(半径为 r )组成一个几何体,该几何体的三视图 中的正视图和俯视图如图所示,若 该几何体的表面积为64 80,则 r ( )A. 1B. 2C. 4D. 812. 已知点(,)M a b ,(0)ab ≠是圆222:O x y r +=内一点,直线m 是以点M 为中点的弦所在直线,直线n 的方程是2ax by r +=,那么( )A.//m n 且n 与圆O 相离B. //m n 且n 与圆O 相交C.m 与n 重合且n 与圆O 相离D. m n ⊥且n 与圆O 相交二、填空题:(本大题6小题,每小题5分,共30分,把答案填在答卷上)13.不论k 为何值,直线(21)(2)(4)0k x k y k ----+=恒过的一个定点是__________. 14.在正方体1111ABCD A B C D -中,二面角1C BD C --的正切值为 . 15.点P (4,-2)与圆224x y +=上任一点连线的中点的轨迹方程是 . 16.若直线x y k +=与曲线21y x =-,则k 的取值范围是 .17.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于 .18.若直线m 被两平行线12:0:60l x y l x y +=+=与所截得的线段的长为3m 的倾斜角可以是8832①15 ② 45 ③60 ④ 105︒ ⑤120︒ ⑥165︒ 其中正确答案的序号是 .(写出所有正确答案的序号) 三、解答题:(本大题共5题,满分60分) 19.(本小题满分12分)如图,已知平行四边形ABCD 的三个顶点的坐标为(14)A ,-,(21)B ,--,(23)C ,.(1)求平行四边形ABCD 的顶点D 的坐标; (2)在∆ACD 中,求CD 边上的高线所在直线方程; (3)求ACD ∆的面积.20.(本小题满分13分)如图,在四棱锥P ABCD -中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD ,且22PA PD AD ==,设E 、F 分别为PC 、BD 的中点. (1) 求证:EF //平面PAD ; (2) 求证:面PAB ⊥平面PDC ; (3) 求二面角B PD C --的正切值. 21.(本小题满分10分)一艘船在航行过程中发现前方的河道上有一座圆拱桥.在正常水位时,拱圈最高点距水面8m ,拱圈内水面宽32m ,船只在水面以上部分高6.5m ,船顶部宽8m ,故通行无阻,如下图所示. (1) 建立适当平面直角坐标系,求正常水位时圆弧所在的圆的方程;(2)近日水位暴涨了2m ,船已经不能通过桥洞了.船员必须加重船载,降低船身在水 面以上的高度,试问:船身至少降低多少米才能通过桥洞?(精确到0.1m ,6 2.45≈)BACxyOFEDCBPC 1B 1AB C22.(本小题满分12分)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=. (1)证明:1AB AC ⊥; (2)若2AB CB ==,16AC =求三棱柱111ABC A B C -的体积.23.(本小题满分13分)在平面直角坐标系xOy 中,已知圆221:16C x y +=和圆222:(7)(4)4C x y -+-=,(1)求过点(4,6)的圆1C 的切线方程;(2)设P 为坐标平面上的点,且满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它们分别与圆1C 和圆2C 相交,且直线1l 被圆1C 截得的弦长是直线2l 被圆2C 截得的弦长的2倍. 试求所有满足条件的点P 的坐标.福建师大附中2015-2016学年第一学期期末考答卷高一数学一、 选择题:(本题共12小题,每小题5分,共60分) 题号 12345678910 11 12 答案二、填空题:(本题共6小题,每小题5分,满分30分)13. . 14. .15. .16. . 17. . 18. . 三、解答题:(本题共5小题,共60分)19.(本题满分12分)总分得分得分 得分BACxyO19.20.(本题满分13分)得分21.(本题满分10分)得分883222.(本题满分12分)C 1B 1AA 1B C23.(本题满分13分)福建师大附中2015-2016学年第一学期模块考试卷解答高一数学必修2一、选择题:CDBCB,BABDB, CA 二、填空题: 13. (2,3) 14.2 15.22(2)1)1x y -++(=16.112k k -≤<=或 17.2318. ④或⑥ 三、解答题:(本大题共5题,满分60分)19.解:(1)),点坐标为(则边中点为设2721,M M AC ……… 1分设点D 坐标为(x,y ),由已知得M 为线段BD 中点,有⎪⎪⎩⎪⎪⎨⎧=+-=+-27212122y x 解得⎩⎨⎧==83y x所以D (3,8) …………………4分(2)83532CD k -==-直线……………………5分 所以CD 边上的高线所在直线的斜率为15-…………………6分故CD 边上的高线所在直线的方程为14(1)5y x -=-+,即为5190x y +-=………8分 (3)(2,3),(3,8)C D22||(23)(38)26CD ∴=-+-=由C ,D 两点得直线CD 的方程为:570x y --=……………………10分|547|16(,)2626A CD d A CD ---∴==到直线的距离………………11分1116||(,)2682226ABC S CD d A CD ∆∴=⋅=⋅⋅=…………………………12分20.(本小题满分13分) (1)证明:ABCD 为平行四边形 连结ACBD F =,F 为AC 中点,E 为PC 中点∴在CPA ∆中,EF //PA且PA ⊆平面PAD ,EF ⊄平面PAD ∴PAD EF 平面// ………4分M FEDCA(2)证明:面PAD ⊥面ABCD ,平面PAD 面ABCD AD =又ABCD 为正方形∴CD AD ⊥,且CD ⊂平面ABCD∴CD ⊥平面PAD ∴CD PA ⊥又PA PD AD ==∴PAD ∆是等腰直角三角形, ∴PA PD ⊥又CD PD D =,且CD 、PD ⊆面ABCD∴PA ⊥面PDC 又PA ⊆面PAB ∴面PAB ⊥面PDC ………8分(3) 解:设PD 的中点为M ,连结EM ,MF ,则EM PD ⊥,由(2)知EF ⊥面PDC∴EF PD ⊥ ∴PD ⊥面EFM ∴PD MF ⊥,∴EMF ∠是二面角B PD C --的平面角在Rt FEM ∆中,124EF PA == 1122EM CD a ==4tan 122a EF EMF EM a ∠===故所求二面角的正切值为2 ………13分21.(本小题满分10分)21.(1)解:在正常水位时,设水面与桥横截面的交线为x 轴,过拱圈最高点且与水面垂直的直线为y 轴,建立平面直角坐标系,如图所示,则A,B,D 三点的坐标分别为(-16,0),(16,0),(0,8).又圆心C 在y 轴上,故可设C(0, b).因为|CD|=|CB|,所以8b -12b =-.所以圆拱所在圆的方程为: 2222(12)(812)20x y ++=+==400(2)当x=4时,求得y ≈7.6,即桥拱宽为8m 的地方距正常水位时的水面约,距涨水后的水面约,因为船高,顶宽8m ,所以船身至少降低6.5-5.6=0.9(m )以上,船才能顺利通过桥洞.22.(本小题满分12分 (1)取AB 的中点O,连接OC 、1OA 、1A B ,因为CA=CB,所以OC AB ⊥,由于AB=A A 1,∠BA A 1=600,故,AA B ∆为等边三角形,所以OA 1⊥AB. 因为OC ⋂OA 1=O,所以AB ⊥平面OA 11C ⊆平面OA 1C,故AB ⊥A 1C.(2)由题设知 12ABC AA B ∆∆与都是边长为的等边三角形,12AA B 都是边长为的等边三角形,所以221111113,6,OC OA AC OA OC OA OC OA AB===+⊥⊥又,则=A C ,故又 111111111,-3-= 3.ABC ABC OC AB O OA ABC OA ABC A B C ABC S A B C V S OA =⊥∆=⨯=因为所以平面,为棱柱的高,又的面积,故三棱柱ABC 的体积23. (本小题满分13分)解:(1)若切线的斜率存在,可设切线的方程为()64y k x -=-, 则圆心1C 到切线的距离24641k d k -==+,解得512k =所以切线的方程为:512520x y -+=; 若切线的斜率不存在,则切线方程为4x =,符合题意.综上所述,过P 点的圆1C 的切线方程为512520x y -+=或4x =. ……4分(2)设点(,)P a b 满足条件, 不妨设直线1l 的方程为:()(0)y b k x a k -=-≠,即0(0)kx y b ak k -+-=≠,则直线2l 的方程为:1()y b x a k-=--,即0x ky bk a +--=.因为圆1C 的半径是圆2C 的半径的2倍,及直线1l 被圆1C 截得的弦长是直线2l 被圆2C 截得的弦长的2倍,所以圆1C 的C 1B 1AA 1B C圆心到直线1l 的距离是圆2C 的圆心到直线2l 的距离的2倍,即2274211b akk bk a k k -+--=⋅++ ……8分整理得 214(28)ak b a b k -=-+-从而214(28)ak b a b k -=-+-或214(28)b ak a b k -=-+-, 即(28)214a b k a b -+=+-或(28)214a b k a b +-=-++,因为k 的取值有无穷多个,所以2802140a b a b -+=⎧⎨+-=⎩或2802140a b a b +-=⎧⎨-++=⎩, ……11分 解得46a b =⎧⎨=⎩或36525a b ⎧=⎪⎪⎨⎪=⎪⎩,这样点P 只可能是点1(4,6)P 或点2362(,)55P .经检验点1P 和点2P 满足题目条件. ……13分。
福建省厦门市高一数学上学期期末试卷(含解析)
2015-2016学年福建省厦门市高一(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分,每小题给出四个选项,只有一个选项符合题目要求.1.设集合A={﹣2,﹣1,1},B={x∈Z|﹣1≤x≤1},则A∪B=()A.{﹣1,1} B.{0,1} C.{﹣2,﹣1,1} D.{﹣2,﹣1,0,1}2.已知f(x﹣1)=2x,则f(3)=()A.2 B.4 C.6 D.83.在区间[﹣1,3]内任选一个实数,则x恰好在区间[1,3]内的概率是()A.B.C.D.4.某产品的广告费x(万元)与销售额y(万元)的统计数据如表:广告费用x 2 3 5 6销售额y 20 30 40 50由最小二乘法可得回归方程=7x+a,据此预测,当广告费用为7万元时,销售额约为()A.56万元B.58万元C.68万元D.70万元5.运行如图的程序,若输入的数为1,则输出的数是()A.﹣2 B.0 C.1 D.36.已知a=log0.50.9,b=log0.50.8,c=0.5﹣0.9,则()A.b<a<c B.a<b<c C.c<b<a D.c<a<b7.已知函数f(x)=3x,对于定义域内任意的x1,x2(x1≠x2),给出如下结论:①f(x1+x2)=f(x1)•f(x2)②f(x1•x2)=f(x1)+f(x2)③>0④f(﹣x1)+f(﹣x2)=f(x1)+f(x2)其中正确结论的序号是()A.①③ B.①④ C.②③ D.②④8.甲、乙两位运动员6场比赛的茎叶图如图所示,记甲、乙的平均成绩分别为,,下列判断正确的是()A.>,甲比乙成绩稳定B.>,乙比甲成绩稳定C.<,甲比乙成绩稳定D.<,乙比甲成绩稳定9.在标准化的考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有正确的答案(正确答案可能是一个或多个选项),有一道多选题考生不会做,若他随机作答,则他答对的概率是()A.B.C.D.10.函数f(x)=2的图象大致是()A.B.C.D.11.阅读如图所示的程序框图,若输出d=0.1,a=0,b=0.5,则输出的结果是()参考数据:x f(x)=2x﹣3x0.25 0.440.375 0.170.4375 0.040.46875 ﹣0.020.5 ﹣0.08A.0.375 B.0.4375 C.0.46875 D.0.512.已知[t]表示不超过t的最大整数,例如[1.25]=1,[2]=2,若关于x的方程=a在(1,+∞)恰有2个不同的实数解,则实数a的取值范围是()A.[2,+∞)B.(2,+∞)C.(,2] D.[,2]二、填空题:本大题共4小题,每小题5分,共20分.13.一个田径队中有男运动员56人,女运动员42人,用分层抽样方法从全队的运动员中抽取一个容量为28人的样本,其中男运动员应抽取人.14.已知函数f(x)=x2﹣2x+3的定义域为[0,3],则函数f(x)的值域为.15.在不同的进位制之间的转化中,若132(k)=42(10),则k= .16.已知函数f(x)=|log2x|,g(x)=,若对任意x∈[a,+∞),总存在两个x0∈[,4],使得g(x)•f(x0)=1,则实数a的取值范围是.三、解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤. 17.已知R为实数集,集合A={x|log2x≥1},B={x|x﹣a>4}.(Ⅰ)若a=2,求A∩(∁R B);(Ⅱ)若A∪B=B,求实数a的取值范围.18.某校举行一次安全知识教育检查活动,从全校1500名学生中随机抽取50名参加笔试,测试成绩的频率分布表如下:分组(分数段)频数(人数)频率[50,60) a 0.08[60,70) 13 0.26[70,80) 16 0.32[80,90) 10 0.20[90,100) b c合计 50 1.00(Ⅰ)请根据频率分布表写出a,b,c的值,并完成频率分布直方图;(Ⅱ)根据(Ⅰ)得到的频率分布直方图估计全校学生成绩的中位数,选择这种数字特征来描述该校学生对安全知识的掌握程度的缺点是什么?19.已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=x a(a∈R),函数f(x)的图象经过点(4,2).(1)求函数f(x)的解析式;(2)解不等式f(x2)﹣f(﹣x2+x﹣1)>0.20.联合国教科文组织规定:一个国家或地区60岁以上的人口占该国或该地区人口总数的10%以上(含10%),该国家或地区就进入了老龄化社会,结合统计数据发现,某地区人口数在一段时间内可近似表示为P(x)=(万),60岁以上的人口数可近似表示为L(x)=10×[1+k%•(x﹣2010)](万)(x为年份,W,k为常数),根据第六次全国人口普查公报,2010年该地区人口共计105万.(Ⅰ)求W的值,判断未来该地区的人口总数是否有可能突破142万,并说明理由;(Ⅱ)已知该地区2013年恰好进入老龄化社会,请预测2040年该地区60岁以上人口数(精确到1万).参考数据“0.942=0.88,0.943=0.83,139420=0.29,0.9430=0.16.21.某港口船舶停靠的方案是先到先停.(Ⅰ)若甲乙两艘船同时到达港口,双方约定各派一名代表猜拳:从1,2,3,4,5中各随机选一个数,若两数之和为奇数,则甲先停靠;若两数之和为偶数,则乙先停靠,这种对着是否公平?请说明理由.(2)根据已往经验,甲船将于早上7:00~8:00到达,乙船将于早上7:30~8:30到达,请应用随机模拟的方法求甲船先停靠的概率,随机数模拟实验数据参考如下:记X,Y都是0~1之间的均与随机数,用计算机做了100次试验,得到的结果有12次,满足X﹣Y≥0.5,有6次满足X﹣2Y≥0.5.22.设函数f(x)=(Ⅰ)若a=1,在直角坐标系中作出函数f(x)的大致图象;(Ⅱ)若f(x)≥2﹣x对任意x∈[1,2]恒成立,求实数a的取值范围;(Ⅲ)若函数f(x)恰有2个零点,求实数a的取值范围.2015-2016学年福建省厦门市高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,每小题给出四个选项,只有一个选项符合题目要求.1.设集合A={﹣2,﹣1,1},B={x∈Z|﹣1≤x≤1},则A∪B=()A.{﹣1,1} B.{0,1} C.{﹣2,﹣1,1} D.{﹣2,﹣1,0,1}【考点】并集及其运算.【专题】计算题;集合.【分析】列举出B中的元素确定出B,找出A与B的并集即可.【解答】解:∵A={﹣2,﹣1,1},B={x∈Z|﹣1≤x≤1}={﹣1,0,1},∴A∪B={﹣2,﹣1,0,1},故选:D.【点评】此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.2.已知f(x﹣1)=2x,则f(3)=()A.2 B.4 C.6 D.8【考点】函数的值.【专题】计算题;函数思想;同一法;函数的性质及应用.【分析】令x﹣1=3,求出x的值,代入可得答案.【解答】解:∵f(x﹣1)=2x,令x﹣1=3,则x=4,∴f(3)=2×4=8,故选:D【点评】本题考查的知识点是函数的值,难度不大,属于基础题.3.在区间[﹣1,3]内任选一个实数,则x恰好在区间[1,3]内的概率是()A.B.C.D.【考点】几何概型.【专题】计算题;方程思想;综合法;概率与统计.【分析】本题利用几何概型求概率,解得的区间长度,求比值即得.【解答】解:利用几何概型,其测度为线段的长度,区间[﹣1,3]的长度为4,区间[1,3]长度为2,由几何概型公式得x恰好在区间[1,3]内的概率是为=.故选:C.【点评】本题主要考查了几何概型,简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.4.某产品的广告费x(万元)与销售额y(万元)的统计数据如表:广告费用x 2 3 5 6销售额y 20 30 40 50由最小二乘法可得回归方程=7x+a,据此预测,当广告费用为7万元时,销售额约为()A.56万元B.58万元C.68万元D.70万元【考点】线性回归方程.【专题】函数思想;综合法;概率与统计.【分析】求出数据中心(,),代入回归方程求出,再将x=7代入回归方程得出答案.【解答】解: ==4, ==35.∴35=4×7+,解得=7.∴回归方程为=7x+7.∴当x=7时,y=7×7+7=56.故选:A.【点评】本题考查了线性回归方程的特点与数值估计,属于基础题.5.运行如图的程序,若输入的数为1,则输出的数是()A.﹣2 B.0 C.1 D.3【考点】伪代码;程序框图.【专题】计算题;阅读型;分类讨论;算法和程序框图.【分析】模拟执行程序代码,可得程序的功能是计算并输出y=,由x=1满足条件x≥0,执行输出y=2x+1即可得解.【解答】解:模拟执行程序代码,可得程序的功能是计算并输出y=,x=1,满足条件a≥0,执行y=2x+1=3,输出y的值为3.故选:D.【点评】本题考查的知识点是条件结构,其中根据已知分析出程序的功能是解答的关键,属于基础题.6.已知a=log0.50.9,b=log0.50.8,c=0.5﹣0.9,则()A.b<a<c B.a<b<c C.c<b<a D.c<a<b【考点】对数值大小的比较.【专题】计算题;函数思想;分析法;函数的性质及应用.【分析】利用对数函数的单调性比较a,b,再以1为媒介比较b,c得答案.【解答】解:∵log0.50.9<log0.50.8<log0.50.5=1,0.5﹣0.9>0.50=1,∴a<b<c.故选:B.【点评】本题考查对数值的大小比较,考查了对数函数与指数函数的单调性,是基础题.7.已知函数f(x)=3x,对于定义域内任意的x1,x2(x1≠x2),给出如下结论:①f(x1+x2)=f(x1)•f(x2)②f(x1•x2)=f(x1)+f(x2)③>0④f(﹣x1)+f(﹣x2)=f(x1)+f(x2)其中正确结论的序号是()A.①③ B.①④ C.②③ D.②④【考点】指数函数的图象与性质.【专题】数形结合;定义法;函数的性质及应用.【分析】根据指数的运算法则即可①正确,②错误,④错误;根据函数f(x)=3x的单调性可以判断③正确.【解答】解:关于函数f(x)=3x,对于定义域内任意的x1,x2(x1≠x2):①f(x1+x2)==•=f(x1)•f(x2),∴①正确;②f(x1•x2)=≠+=f(x1)+f(x2),∴②错误;③f(x)=3x是定义域上的增函数,f′(x)=k=>0,∴③正确;④f(﹣x1)+f(﹣x2)=+≠+=f(x1)+f(x2),∴④错误;综上,正确结论的序号是①③.故选:A.【点评】本题考查了指数函数的图象与性质的应用问题,解题时应结合指数的运算性质与函数图象分析结论中式子的几何意义,再进行判断,是基础题目.8.甲、乙两位运动员6场比赛的茎叶图如图所示,记甲、乙的平均成绩分别为,,下列判断正确的是()A.>,甲比乙成绩稳定B.>,乙比甲成绩稳定C.<,甲比乙成绩稳定D.<,乙比甲成绩稳定【考点】茎叶图.【专题】对应思想;定义法;概率与统计.【分析】计算甲、乙二人得分的平均数与方差,即可得出正确的结论.【解答】解:6场比赛甲的得分为16、17、18、22、32和33,乙的得分为14、17、24、28、28和33;∴=(16+17+18+22+32+33)=23,=(14+17+24+28+28+33)=24,∴<;又=(49+36+25+1+81+100)=,=(100+49+0+16+16+81)=∴>,乙比甲成绩稳定些.故选:D.【点评】本题利用茎叶图中的数据计算平均数与方差的问题,也考查了计算能力,是基础题目.9.在标准化的考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有正确的答案(正确答案可能是一个或多个选项),有一道多选题考生不会做,若他随机作答,则他答对的概率是()A.B.C.D.【考点】互斥事件的概率加法公式;相互独立事件的概率乘法公式.【专题】计算题;方程思想;综合法;概率与统计.【分析】先求出基本事件总数,由此利用等可能事件概率计算公式能求出结果.【解答】解:由已知基本事件总数n==15,∴他随机作答,则他答对的概率p=.故选:C.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.10.函数f(x)=2的图象大致是()A.B.C.D.【考点】函数的图象.【专题】作图题;函数思想;数形结合法;函数的性质及应用.【分析】根据指数函数和对数的函数的图象和性质即可判断.【解答】解:因为t=log3x的函数为增函数,且函数值的变化越来越慢,即图象的变化越来越趋向于平缓,又因为y=2t为增函数,其图象的变化是函数值的变化越来越慢,故选:B.【点评】本题考查了指数函数和对数的函数的图象和性质,属于基础题.11.阅读如图所示的程序框图,若输出d=0.1,a=0,b=0.5,则输出的结果是()参考数据:x f(x)=2x﹣3x0.25 0.440.375 0.170.4375 0.040.46875 ﹣0.020.5 ﹣0.08A.0.375 B.0.4375 C.0.46875 D.0.5【考点】程序框图.【专题】计算题;图表型;数学模型法;算法和程序框图.【分析】根据题意,按照程序框图的顺序进行执行,当|a﹣b|=0.0625,满足条件|a﹣b|<d,退出循环,输出m的值为0.4375.【解答】解:模拟执行程序,可得:f(x)=2x﹣3x,d=0.1,a=0,b=0.5,m=0.25,不满足条件f(0)f(0.25)<0,a=0.25,|a﹣b|=0.25,不满足条件|a﹣b|<d或f(m)=0,m=0.375,不满足条件f(0. 25)f(0.375)<0,a=0.375,|a﹣b|=0.125,不满足条件|a﹣b|<d或f(m)=0,m=0.4375,不满足条件f(0.375)f(0.4375)<0,a=0.4375,|a﹣b|=0.0625,满足条件|a﹣b|<d,退出循环,输出m的值为0.4375.故选:B.【点评】本题考查了循环结构的程序框图,根据表中函数的值,按照程序框图的顺序进行执行求解即可,考查了用二分法方程近似解的方法步骤,属于基础题.12.已知[t]表示不超过t的最大整数,例如[1.25]=1,[2]=2,若关于x的方程=a在(1,+∞)恰有2个不同的实数解,则实数a的取值范围是()A.[2,+∞)B.(2,+∞)C.(,2] D.[,2]【考点】根的存在性及根的个数判断.【专题】计算题;作图题;数形结合;函数的性质及应用.【分析】化为解y=[x]与y=a(x﹣1)在(1,+∞)上恰有2个不同的交点,从而作图求解即可.【解答】解:∵关于x的方程=a在(1,+∞)恰有2个不同的实数解,∴y=[x]与y=a(x﹣1)在(1,+∞)上恰有2个不同的交点,作函数y=[x]与y=a(x﹣1)在(1,+∞)上的图象如下,,结合图象可知,k l=2,k m=,实数a的取值范围是(,2],故选C.【点评】本题考查了方程的解与函数的图象的关系应用及数形结合的思想应用.二、填空题:本大题共4小题,每小题5分,共20分.13.一个田径队中有男运动员56人,女运动员42人,用分层抽样方法从全队的运动员中抽取一个容量为28人的样本,其中男运动员应抽取16 人.【考点】分层抽样方法.【专题】计算题.【分析】先求出样本容量与总人数的比,在分层抽样中,应该按比例抽取,所以只需让男运动员人数乘以这个比值,即为男运动员应抽取的人数.【解答】解:∵运动员总数有98人,样本容量为28,样本容量占总人数的∴男运动员应抽取56×=16;故答案为16.【点评】本题主要考查了抽样方法中的分层抽样,关键是找到样本容量与总人数的比.14.已知函数f(x)=x2﹣2x+3的定义域为[0,3],则函数f(x)的值域为[2,6] .【考点】函数的值域.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】配方得到f(x)=(x﹣1)2+2,而f(x)的定义域为[0,3],这样便可求出f(x)的最大值和最小值,从而求出f(x)的值域.【解答】解:f(x)=(x﹣1)2+2;∵x∈[0,3];∴x=1时,f(x)取最小值2;x=3时,f(x)取最大值6;∴f(x)的值域为[2,6].故答案为:[2,6].【点评】考查函数定义域、值域的概念,以及配方求二次函数值域的方法.15.在不同的进位制之间的转化中,若132(k)=42(10),则k= 5 .【考点】进位制.【专题】计算题;方程思想;转化思想;算法和程序框图.【分析】由已知中132(k)=42(10),可得:k2+3k+2=42,解得答案.【解答】解:∵132(k)=42(10),∴k2+3k+2=42,解得:k=5,或k=﹣8(舍去),故答案为:5【点评】本题考查的知识点是进位制,难度不大,属于基础题.16.已知函数f(x)=|log2x|,g(x)=,若对任意x∈[a,+∞),总存在两个x0∈[,4],使得g(x)•f(x0)=1,则实数a的取值范围是[2,+∞).【考点】对数函数的图象与性质.【专题】函数思想;综合法;函数的性质及应用.【分析】根据g(x)的值域和g(x)•f(x0)=1得出f(x0)的范围,结合f(x)的图象得出f(x0)的范围解出a.【解答】解:f(x0)==,∵x∈[a,+∞),∴f(x0)≤,作出f(x)在[,4]上的函数图象如图:∵对任意x∈[a,+∞),总存在两个x0∈[,4],使得g(x)•f(x0)=1,∴0<≤1,解得a≥2.故答案为[2,+∞).【点评】本题考查了对数函数的图象与性质,结合函数图象是解题关键.三、解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤. 17.已知R为实数集,集合A={x|log2x≥1},B={x|x﹣a>4}.(Ⅰ)若a=2,求A∩(∁R B);(Ⅱ)若A∪B=B,求实数a的取值范围.【考点】集合的包含关系判断及应用;交、并、补集的混合运算.【专题】计算题;集合思想;综合法;集合.【分析】(Ⅰ)若a=2,求出A,∁R B,即可求A∩(∁R B);(Ⅱ)若A∪B=B,则A⊂B,即可求实数a的取值范围.【解答】解:(Ⅰ)∵log2x≥1,∴x≥2,即A=[2,+∞),∵a=2,∴B={x|x>6},∴∁R B=(﹣∞,6],∴A∩(∁R B)=[2,6];(Ⅱ)∵A∪B=B,∴A⊆B,∵A=[2,+∞),B={x|x>a+4},∴a+4<2,∴a<﹣2.【点评】本题考查集合的交、并、补集的混合运算,考查运算求解能力,注意解题方法的积累,属于基础题.18.某校举行一次安全知识教育检查活动,从全校1500名学生中随机抽取50名参加笔试,测试成绩的频率分布表如下:分组(分数段)频数(人数)频率[50,60) a 0.08[60,70) 13 0.26[70,80) 16 0.32[80,90) 10 0.20[90,100) b c合计 50 1.00(Ⅰ)请根据频率分布表写出a,b,c的值,并完成频率分布直方图;(Ⅱ)根据(Ⅰ)得到的频率分布直方图估计全校学生成绩的中位数,选择这种数字特征来描述该校学生对安全知识的掌握程度的缺点是什么?【考点】众数、中位数、平均数;频率分布直方图.【专题】对应思想;综合法;概率与统计.【分析】(Ⅰ)由题意知分别求出a,b,c的值即可,由频率分布表能作出频率分布直方图.(Ⅱ)根据频率分布直方图,能估计出全校学生成绩的中位数.【解答】解:(Ⅰ)a=50×0.08=4,b=50﹣10﹣16﹣13﹣4=7,c=0.14,如图示:;(Ⅱ)根据(Ⅰ)得到的频率分布直方图估计全校学生成绩的中位数约是80分,选择这种数字特征来描述该校学生对安全知识的掌握程度的缺点是:不准确,很笼统.【点评】本题考查频率分布直方图的作法,考查中位数的估计,是基础题,解题时要认真审题.19.已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=x a(a∈R),函数f(x)的图象经过点(4,2).(1)求函数f(x)的解析式;(2)解不等式f(x2)﹣f(﹣x2+x﹣1)>0.【考点】函数奇偶性的性质;指数函数的图象与性质.【专题】综合题;转化思想;函数的性质及应用;不等式的解法及应用.【分析】(1)根据函数f(x)的图象经过点(4,2).可得a值,结合f(x)是定义在R上的偶函数,可得函数的解析式;(2)不等式f(x2)﹣f(﹣x2+x﹣1)>0可化为:|x2|>|﹣x2+x﹣1|,即x2>x2﹣x+1,解得答案.【解答】解:(1)∵函数f(x)的图象经过点(4,2).∴4a=2,解得:a=,故当x≥0时,f(x)=,当x<0时,﹣x>0,由f(x)是定义在R上的偶函数,可得此时f(x)=f(﹣x)=,综上可得:f(x)=(2)若f(x2)﹣f(﹣x2+x﹣1)>0,则f(x2)>f(﹣x2+x﹣1),则|x2|>|﹣x2+x﹣1|,即x2>x2﹣x+1,解得:x>1【点评】本题考查的知识点是函数奇偶性性质,不等式的解法,函数解析式的求法,难度中档.20.联合国教科文组织规定:一个国家或地区60岁以上的人口占该国或该地区人口总数的10%以上(含10%),该国家或地区就进入了老龄化社会,结合统计数据发现,某地区人口数在一段时间内可近似表示为P(x)=(万),60岁以上的人口数可近似表示为L(x)=10×[1+k%•(x﹣2010)](万)(x为年份,W,k为常数),根据第六次全国人口普查公报,2010年该地区人口共计105万.(Ⅰ)求W的值,判断未来该地区的人口总数是否有可能突破142万,并说明理由;(Ⅱ)已知该地区2013年恰好进入老龄化社会,请预测2040年该地区60岁以上人口数(精确到1万).参考数据“0.942=0.88,0.943=0.83,139420=0.29,0.9430=0.16.【考点】函数模型的选择与应用.【专题】应用题;函数思想;综合法;函数的性质及应用.【分析】(Ⅰ)利用2010年该地区人口共计105万求W的值,利用≥142,即可判断未来该地区的人口总数是否有可能突破142万;(Ⅱ)利用该地区2013年恰好进入老龄化社会,求出k%≈,即可预测2040年该地区60岁以上人口数.【解答】解:(Ⅰ)∵2010年该地区人口共计105万,∴x=2010,P==105,∴W≈142.令≥142,∴0.35×(0.94)x﹣2010≤0无解,∴未来该地区的人口总数不可能突破142万;(Ⅰ)∵该地区2013年恰好进入老龄化社会,∴10×[1+k%•(2013﹣2010)]=10%×,∴k%≈,∴x=2040,L(2040)≈10×[1+•(2040﹣2010)]=20万【点评】本题考查利用数学知识解决实际问题,考查学生的计算能力,正确理解题意是关键.21.某港口船舶停靠的方案是先到先停.(Ⅰ)若甲乙两艘船同时到达港口,双方约定各派一名代表猜拳:从1,2,3,4,5中各随机选一个数,若两数之和为奇数,则甲先停靠;若两数之和为偶数,则乙先停靠,这种对着是否公平?请说明理由.(2)根据已往经验,甲船将于早上7:00~8:00到达,乙船将于早上7:30~8:30到达,请应用随机模拟的方法求甲船先停靠的概率,随机数模拟实验数据参考如下:记X,Y都是0~1之间的均与随机数,用计算机做了100次试验,得到的结果有12次,满足X﹣Y≥0.5,有6次满足X﹣2Y≥0.5.【考点】模拟方法估计概率;几何概型.【专题】应用题;对应思想;转化法;概率与统计.【分析】(Ⅰ)这种规则不公平,求出甲胜的概率P(A)与乙胜的概率P(B),比较得出结论;(2)根据题意,求出应用随机模拟的方法甲船先停靠的概率值是X﹣Y≤0的对应值.【解答】解:(Ⅰ)这种规则是不公平的;设甲胜为事件A,乙胜为事件B,基本事件总数为5×5=25种,则甲胜即两编号和为偶数所包含的基本事件数有13个:(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5)∴甲胜的概率P(A)=,乙胜的概率P(B)=1﹣P(A)=;∴这种游戏规则是不公平;(2)根据题意,应用随机模拟的方法求出甲船先停靠的概率是P(C)=1﹣=0.88.【点评】本题考查了古典概型的概率与模拟方法估计概率的应用问题,求解的关键是掌握两种求概率的方法与定义及规则,是基础题.22.设函数f(x)=(Ⅰ)若a=1,在直角坐标系中作出函数f(x)的大致图象;(Ⅱ)若f(x)≥2﹣x对任意x∈[1,2]恒成立,求实数a的取值范围;(Ⅲ)若函数f(x)恰有2个零点,求实数a的取值范围.【考点】分段函数的应用;函数零点的判定定理.【专题】作图题;数形结合;分类讨论;分类法;函数的性质及应用.【分析】(Ⅰ)若a=1,则f(x)=,进而可得函数的图象;(Ⅱ)若f(x)≥2﹣x对任意x∈[1,2]恒成立,即x2+(1﹣4a)x+(3a2﹣2)≥0对任意x∈[1,2]恒成立,结合二次函数的图象和性质,可得答案;(Ⅲ)若函数f(x)恰有2个零点,则,或解得答案.【解答】解:(Ⅰ)若a=1,则f(x)=,函数f(x)的图象如下图所示:;(Ⅱ)若f(x)≥2﹣x对任意x∈[1,2]恒成立,即x2﹣4ax+3a2≥2﹣x对任意x∈[1,2]恒成立,即x2+(1﹣4a)x+(3a2﹣2)≥0对任意x∈[1,2]恒成立,由y=x2+(1﹣4a)x+(3a2﹣2)的图象是开口朝上,且以直线x=为对称轴的抛物线,故,或,或解得:a≤0,或a≥2,(Ⅲ)解3x﹣a=0得:x=log3a,解x2﹣4ax+3a2=0得:x=a,或x=3a若函数f(x)恰有2个零点,则,或解得:a≥3,或≤a<1.【点评】本题考查的知识点是分段函数的应用,函数恒成立问题,二次函数的图象和性质,函数的零点,难度中档.。
2015-2016学年高一第一学期期末考试数学试题 Word版含答案
2015-2016学年高一第一学期期末考试数学试题 Word版含答案2014-2015学年度高一第一学期期末考试数学试题一、选择题(每小题4分,共40分)1.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩(N-B)=()A.{1,5,7}B.{3,5,7}C.{1,3,9}D.{1,2,3}2.在△ABC中,AN=12NC,P是BN上的一点,若AP=mAB+AC,则实数m的值为()A.1/3B.1/2C.2/3D.3/23.已知f(x)=log2x,x>1x+1,x≤1若f(x)是f(x)的最小值,则a的取值范围为()A.[0,2]B.[1,2]C.[-1,0]D.[-1,2]4.已知函数y=sin(ωx+φ),ω>0,φ<π/2的部分图象如图所示,则()图略A.ω=1,φ=π/6B.ω=2,φ=-π/6C.ω=1,φ=-π/6D.ω=2,φ=π/65.如果函数f(x)上存在两个不同点A、B关于原点对称,则称A、B两点为一对友好点,记作A,B。
规定A,B和B,A是同一对,已知f(x)=cosx,x≥0lgx,x<0则函数f(x)上共存在友好点()A.1对B.3对C.5对D.7对6.已知方程sin2x+cosx+k=0有解,则实数k的取值范围为()A.-1≤k≤5/4B.-5/4≤k≤1C.-1≤k≤1D.-5/4≤k≤-1二、填空题11.已知O为坐标原点,点A(2,0),B(0,2),C(cosα,sinα),且π/2<α<π。
若|OA+OC|=7,则OB与OC的夹角为______。
12.已知角α的顶点在原点,始边与x轴的正半轴重合,终边落在第三象限,与圆心在原点的单位圆交于点P(cosα,-sinα),则tanα=________。
13.已知函数f(x)=loga(2x-a)在区间(0,a/2)上恒有f(x)>1,则实数a的取值范围是________。
2015-2016学年高一第一学期数学期末考试试卷(含答案)
10011高一第一学期期末考试试卷本试卷分第I 卷(选择题)和第n 卷(非选择题)两部分.第I 卷 1至2页.第n 卷3至4页,共150分.考试时间120分钟. 注息事项:1•本试卷分第I 卷(选择题)和第n 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2•问答第I 卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如 需改动•用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效3.回答第n 卷时。
将答案写在答题卡上.写在本试卷上无效•4•考试结束后.将本试卷和答且卡一并交回。
第I 卷一、选择题:本大题共 12小题,每小题5分,在每小题给同的四个选项中,只有一项是符 合题目要求的。
1.已知全集 U=R 集合 A |3 Ex <7届=<x |x 2 — 7x +10 ,则 C R (A C B )=C. ( Y ,3][5,::)2^a 习a '©'a 的分数指数幕表示为()A. e ° =1与 In 1=0 B .1C. log 3 9 = 2与92 =3D. 4. 下列函数f(x)中,满足"对任意的x 1,x^ (一叫0),当x 1 :: x 2时,总有f (xj• f(x 2) ”的是A. -(5,::) B. -::,3 一. [5,::)33A. a 23B. aC.D.都不对log 7 7 = 1 与7— 73.下列指数式与对数式互化不正确的一组是(1001121 xA. f(x) =(x 1) B . f(x)=l n(x-1) C . f (x)D . f (x)二 ex15. 已知函数y = f(x)是奇函数,当x 0时,f(x)=lgx,则f(f( ))的值等于()B.lg2lg2C . lg2D . - lg 26.对于任意的a 0且a=1,函数f x =a x~ 3的图象必经过点()A. 5,2B. 2,5C.7. 设a= log o.7 0.8 , b= log 1.1 0.9 , c= 1.1A. a<b<cB. b<a<cC.8. 下列函数中哪个是幕函数9.函数y屮g(x-1)|的图象是()210.已知函数y - -x -2x 3在区间[a, 2]上的最大值为A —- B. - C. —-2 2 211..函数f (x)二e x-丄的零点所在的区间是()x1 1 3 3A.(0,;)B. (加)C. (1二)D. (;,2)2 2 2 212.在一个倒置的正三棱锥容器内放入一个钢球,钢球恰与棱锥的四个面都接触,过棱锥的一条侧棱和高作截面,正确的截面图形是(4,1 D. 1,4,那么()a<c<b D. c<a<b()C. y = . 2xD. y = - 2x则a等于()D.—-或一-2 2第口卷本卷包括必考题和选考题两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结 合 统 计 数 据 发 现 , 某 地 区 人 口 数 在 一 段 时 间 内 可 近 似 表 示 为 P( x)
=
(万), 60 岁以上的人口数可近似表示为 L(x)=10×
[ 1+k%?( x﹣ 2010) ] (万)(x 为年份, W, k 为常数),根据第六次全国人口普 查公报, 2010 年该地区人口共计 105 万. (Ⅰ)求 W 的值,判断未来该地区的人口总数是否有可能突破 142 万,并说明 理由; (Ⅱ)已知该地区 2013 年恰好进入老龄化社会,请预测 2040 年该地区 60 岁以 上人口数(精确到 1 万). 参考数据 “0.924=0.88,0.943=0.83,139420=0.29,0.9430=0.16. 21.( 12.00 分)某港口船舶停靠的方案是先到先停. (Ⅰ)若甲乙两艘船同时到达港口,双方约定各派一名代表猜拳:从 1,2,3, 4,5 中各随机选一个数,若两数之和为奇数,则甲先停靠;若两数之和为偶数, 则乙先停靠,这种对着是否公平?请说明理由. ( 2)根据已往经验,甲船将于早上 7:00~8:00 到达,乙船将于早上 7:30~ 8:30 到达,请应用随机模拟的方法求甲船先停靠的概率,随机数模拟实验数据 参考如下:记 X,Y 都是 0~1 之间的均与随机数,用计算机做了 100 次试验,得
总存在两个 x0∈ [ ,4] ,使得 g(x)?f(x0)=1,则实数 a 的取值范围是
.
三、解答题:本大题共 6 小题,满分 70 分,解答须写出文字说明、证明过程或
演算步骤 .
17.( 10.00 分)已知 R 为实数集,集合 A={ x| log2x≥1} ,B={ x| x﹣a>4} . (Ⅰ)若 a=2,求 A∩( ?RB); (Ⅱ)若 A∪B=B,求实数 a 的取值范围.
> 0,∴③正确;
④ f(﹣ x1)+f(﹣ x2)= + ≠ 综上,正确结论的序号是①③. 故选: A.
+ =f(x1)+f( x2),∴④错误;
8.( 5.00 分)甲、乙两位运动员 6 场比赛的茎叶图如图所示,记甲、乙的平均成
绩分别为 , ,下列判断正确的是(
)
A. > ,甲比乙成绩稳定 B. > ,乙比甲成绩稳定 C. < ,甲比乙成绩稳定 D. < ,乙比甲成绩稳定 【解答】 解: 6 场比赛甲的得分为 16、 17、18、22、 32 和 33, 乙的得分为 14、 17、24、28、 28 和 33;
4.(5.00 分)某产品的广告费 x(万元)与销售额 y(万元)的统计数据如表:
广告费用
2
3
5
6
第 7 页(共 21 页)
x
销售额 y
20
30
40
50
由最小二乘法可得回归方程 =7x+a,据此预测, 当广告费用为 7 万元时, 销售额
约为( )
A.56 万元 B.58 万元 C.68 万元 D.70 万元
b
c
合计
50
1.00
(Ⅰ)请根据频率分布表写出 a, b, c 的值,并完成频率分布直方图;
(Ⅱ)根据(Ⅰ)得到的频率分布直方图估计全校学生成绩的中位数,选择这种
数字特征来描述该校学生对安全知识的掌握程度的缺点是什么?
第 4 页(共 21 页)
19.( 12.00 分)已知 f(x)是定义在 R 上的偶函数,当 x≥ 0 时, f (x)=xa(a
第 6 页(共 21 页)
2015-2016 学年福建省厦门市高一(上)期末数学试卷
参考答案与试题解析
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分,每小题给出四个选项, 只有一个选项符合题目要求 . 1.( 5.00 分)设集合 A={ ﹣ 2,﹣1,1} ,B={ x∈Z| ﹣ 1≤ x≤ 1} ,则 A∪ B=( ) A.{ ﹣1,1} B.{ 0,1} C.{ ﹣2,﹣ 1, 1} D.{ ﹣2,﹣ 1,0,1} 【解答】 解:∵ A={ ﹣2,﹣ 1,1} , B={ x∈ Z| ﹣1≤x≤1} ={ ﹣1,0,1} , ∴ A∪ B={ ﹣2,﹣ 1,0,1} , 故选: D.
0.25 0.375 0.4375
0.46875 0.5
=2x ﹣3x
0.44
0.17
0.04 ﹣ 0.02 ﹣ 0.08
A.0.375 B.0.4375 C.0.46875 D.0.5 12.(5.00 分)已知 [ t] 表示不超过 t 的最大整数,例如 [ 1.25] =1,[ 2] =2,若关于 x 的方程 =a 在(1,+∞)恰有 2 个不同的实数解,则实数 a 的取值范围是( )
D 四个选项中选出所有正确的答案(正确答案可能是一个或多个选项) ,有一道
多选题考生不会做,若他随机作答,则他答对的概率是(
)
A. B. C. D.
10.( 5.00 分)函数 f( x)=2
的图象大致是(
)
A.
B.
C.
D.
11.( 5.00 分)阅读如图所示的程序框图,若输出 d=0.1,a=0,b=0.5,则输出的 结果是( ) 参考数据:
x
f
(x)
第 2 页(共 21 页)
第 5 页(共 21 页)
到的结果有 12 次,满足 X﹣Y≥0.5,有 6 次满足 X﹣2Y≥ 0.5. 22.( 12.00 分)设函数 f(x)= (Ⅰ)若 a=1,在直角坐标系中作出函数 f( x)的大致图象; (Ⅱ)若 f( x)≥ 2﹣ x 对任意 x∈ [ 1,2] 恒成立,求实数 a 的取值范围; (Ⅲ)若函数 f (x)恰有 2 个零点,求实数 a 的取值范围.
第 9 页(共 21 页)
∴ = ( 16+17+18+22+32+33)=23, = (14+17+24+28+28+33)=24,
∴<; 又 = (49+36+25+1+81+100)= ,
= (100+49+0+16+16+81) = ∴ > ,乙比甲成绩稳定些. 故选: D.
9.(5.00 分)在标准化的考试中既有单选题又有多选题,多选题是从 A,B,C,
2.(5.00 分)已知 f(x﹣ 1) =2x,则 f(3)=( ) A.2 B.4 C.6 D.8 【解答】 解:∵ f(x﹣1)=2x, 令 x﹣1=3,则 x=4, ∴ f(3)=2×4=8, 故选: D.
3.( 5.00 分)在区间 [ ﹣1,3] 内任选一个实数,则 x 恰好在区间 [ 1,3] 内的概率 是( ) A. B. C. D. 【解答】 解:利用几何概型,其测度为线段的长度, 区间 [ ﹣1,3] 的长度为 4,区间 [ 1,3] 长度为 2, 由几何概型公式得 x 恰好在区间 [ 1,3] 内的概率是为 = . 故选: C.
18.( 12.00 分)某校举行一次安全知识教育检查活动,从全校 机抽取 50 名参加笔试,测试成绩的频率分布表如下:
1500 名学生中随
分组(分数段) [ 50, 60)
频数(人数) a
频率 0.08
[ 60, 70)
13
0.26
[ 70, 80)
16
0.32
[ 80, 90)
10
0.20
[ 90,100)
其中正确结论的序号是(
)
A.①③ B.①④ C.②③ D.②④ 【解答】 解:关于函数 f(x)=3x,对于定义域内任意的 x1, x2(x1≠x2):
① f(x1+x2)=
= ? =f(x1)?f(x2),∴①正确;
② f(x1?x2)=
≠ + =f(x1)+f(x2),∴②错误;
③ f(x)=3x 是定义域上的增函数, f ′(x)=k=
第 1 页(共 21 页)
如下结论: ① f(x1+x2)=f( x1)?f(x2) ② f(x1?x2)=f( x1)+f(x2)
③
>0
④ f(﹣ x1)+f(﹣ x2)=f(x1) +f(x2)
其中正确结论的序号是(
)
A.①③ B.①④ C.②③ D.②④
8.( 5.00 分)甲、乙两位运动员 6 场比赛的茎叶图如图所示,记甲、乙的平均成
4.(5.00 分)某产品的广告费 x(万元)与销售额 y(万元)的统计数据如表:
广告费用
2
3
5
6
x
销售额 y
20
30
40
50
由最小二乘法可得回归方程 =7x+a,据此预测, 当广告费用为 7 万元时, 销售额
约为( )
A.56 万元 B.58 万元 C.68 万元 D.70 万元
5.(5.00 分)运行如图的程序,若输入的数为 1,则输出的数是(
)
A.﹣ 2 B.0 C.1 D.3
6.(5.00 分)已知 a=log0.50.9,b=log0.50.8,c=0.5﹣0.9,则(
)
A.b<a<c B.a<b<c C.c<b<a D.c<a<b
7.(5.00 分)已知函数 f (x) =3x,对于定义域内任意的 x1,x2( x1≠x2),给出
,
x=1,满足条件 a≥0,执行 y=2x+1=3,输出 y 的值为 3. 故选: D.
6.(5.00 分)已知 a=log0.50.9,b=log0.50.8,c=0.5﹣0.9,则(
)
A.b<a<c B.a<b<c C.c<b<a D.c<a<b
【解答】 解:∵ log0.50.9<log0.50.8<log0.50.5=1, 0.5﹣0.9>0.50=1,