两角差的余弦公式练习
两角和与差的正弦余弦正切公式练习题(含答案)
两角和与差的正弦余弦正切公式练习题(含答案)两角和差的正弦余弦正切公式练题一、选择题1.给出如下四个命题:①对于任意的实数α和β,等式cos(α+β)=cosαcosβ-sinαsinβ恒成立;②存在实数α,β,使等式cos(α+β)=cosαcosβ+sinαsinβ能成立;③公式tan(α+β)=tanα+tanβ成立的条件是α≠kπ+π(k∈Z)且β≠kπ+π(k∈Z);1-tanαtanβ/2④不存在无穷多个α和β,使sin(α-β)=sinαcosβ-cosαsinβ。
其中假命题是()A。
①②B。
②③C。
③④D。
②③④2.函数y=2sinx(sinx+cosx)的最大值是()A。
1+2B。
2-1C。
2D。
2/33.当x∈[-π/2,π/2]时,函数f(x)=sinx+3cosx的()A。
最大值为1,最小值为-1B。
最大值为1,最小值为-1/2C。
最大值为2,最小值为-2D。
最大值为2,最小值为-14.已知tan(α+β)=7,tanαtanβ=2/3,则cos(α-β)的值()A。
1/2B。
2/2C。
-2D。
±25.已知π/2<β<α<3π/4,cos(α-β)=12/13,sin(α+β)=-3/5,则sin2α=()A。
56/65B。
-56/65C。
6565/56D。
-5/66.sin15°sin30°sin75°的值等于()A。
3/4B。
3/8C。
1/8D。
1/47.函数f(x)=tan(x+π/4)+1+tanx/4,g(x)=1-tanx,h(x)=cot(π/4-x)。
其中为相同函数的是()A。
f(x)与g(x)B。
g(x)与h(x)C。
h(x)与f(x)D。
f(x)与g(x)及h(x)8.α、β、γ都是锐角,tanα=1/2,tanβ=1/5,tanγ=1/8,则α+β+γ等于()A。
π/3B。
π/4C。
π/5D。
三角恒等变形-练习题
三角恒等变形-练习题(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--3-1-1两角差的余弦公式一、选择题1.cos39°cos9°+sin39°sin9°等于( )C .-12D .-32 2.cos555°的值为( ) B .-6+243.已知α∈⎝⎛⎭⎫0,π2,sin α=45,则cos ⎝⎛⎭⎫π4-α等于( )2C .-210D .-254.若sin α·sin β=1,则cos(α-β)的值为( ) A .0 B .1 C .±1 D .-1 5.cos75°+cos15°的值是( )6.化简sin(x +y )sin(x -y )+cos(x +y )cos(x -y )的结果是( )A .sin2xB .cos2yC .-cos2xD .-cos2y7.若sin(π+θ)=-35,θ是第二象限角,sin ⎝⎛⎭⎫π2+φ=-255,φ是第三象限角,则cos(θ-φ)的值是( ) A .-558.cos π12+3sin π12的值为( ) A .- 29.已知sin ⎝⎛⎭⎫π6+α=35,π3<α<5π6,则cos α的值是( )10.已知sin α+sin β=45,cos α+cos β=35,则cos(α-β)的值为( ) D .-12 二、填空题11.cos α=35,cos β=513,sin α=-45,sin β=1213,则cos(α-β)=________.12.cos(61°+2α)cos(31°+2α)+sin(61°+2α)sin(31°+2α)=________.13.已知cos ⎝⎛⎭⎫α-π3=cos α,则tan α=________.14.化简2cos10°-sin20°cos20°=________. 三、解答题 15.求值:(1)sin285°;(2)sin460°sin(-160°)+cos560°cos(-280°). 16.已知sin α=13,α∈⎝⎛⎭⎫0,π2,cos β=27,β是第四象限角,求cos(α-β)的值.17.设cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,其中α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2,求cos α+β2.18.若α,β为锐角,且cos α=45,cos(α+β)=-1665,求cos β的值.3-1-2-1两角和与差的正弦、余弦一、选择题1.下列等式成立的是( )A .cos80°cos20°-sin80°sin20°=12 B .sin13°cos17°-cos13°sin17°=12 C .sin70°cos25°+sin25°sin20°=22 D .sin140°cos20°+sin50°sin20°=32 2.cos 5π12的值等于( )3.在△ABC 中,已知sin(A -B )·cos B +cos(A -B )sin B ≥1,则△ABC 是( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰非直角三角形sin ⎝⎛⎭⎫π4-x +6sin ⎝⎛⎭⎫π4+x 的化简结果是( ) A .22sin ⎝⎛⎭⎫5π12+x B .22sin ⎝⎛⎭⎫x -5π12C .22sin ⎝⎛⎭⎫7π12+xD .22sin ⎝⎛⎭⎫x -7π12 5.设a =sin14°+cos14°,b =sin16°+cos16°,c =62,则a 、b 、c 的大小关系是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <a6.已知cos(α+β)=45,cos(α-β)=-45,则cos αcos β的值为( )A .0 C .0或45 D .0或±457.若α、β均为锐角,sin α=255,sin(α+β)=35,则cos β等于( )或2525 D .-2525 8.若α、β为两个锐角,则( )A .cos(α+β)>cos α+cos βB .cos(α+β)<cos α+cos βC .cos(α+β)>sin α+sin βD .cos(α+β)<sin α+sin β9.若sin α-sin β=1-32,cos α-cos β=-12,则cos(α-β)的值是( )D .110.(2012·重庆)sin47°-sin17°cos30°cos17°( ) A .-32 B .-12 二、填空题11.化简:cos(35°-x )cos(25°+x )-sin(35°-x )sin(25°+x )=________.12.若cos(α+β)cos α+sin(α+β)sin α=-45,且450°<β<540°,则sin(60°-β)=________.13.已知α、β为锐角,且tan α=23,tan β=34,则sin(α+β)=________. 的值是________. 三、解答题15.已知π2<β<α<3π4,cos(α-β)=1213,sin(α+β)=-35,求sin2α的值.16.已知sin α=23,cos β=-14,且α,β为相邻象限的角,求sin(α+β)和sin(α-β)的值. 17.求证:sin?2α+β?sin α-2cos(α+β)=sin βsin α.18.(暂时不做)已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=255.(1)求cos(α-β)的值;(2)若-π2<β<0<α<π2,且sin β=-513,求sin α的值.3-1-2-2两角和与差的正切一、选择题1.若α、β∈(0,π2)且tan α=12,tan β=13,则tan(α-β)( )A .-17 B .1 C .17 D .152.tan(α+β)=25,tan(α-β)=14,则tan2α=( )3.已知α∈(π2,π),sin α=35,则tan(α+π4)的值等于( )A .-7B .7C .-174.在△ABC 中,若0<tan B tan C <1,则△ABC 是( )A .锐角三角形B .钝角三角形C .直角三角形D .形状不能确定5.化简tan10°tan20°+tan20°tan60°+tan60°tan10°的值等于( )A .1B .2C .tan10°D .3tan20°6.已知tan α,tan β是方程x 2+33x +4=0的两根,且-π2<α<π2,-π2<β<π2,则α+β的值为( )B .-2π3 或-2π3 D .-π3或2π37.(2011~2012·长春高一检测)tan(π6-θ)+tan(π6+θ)+3tan(π6-θ)tan(π6+θ)的值是( )C .2 3 的值为( )A .2+ 3 C .2- 39.已知α、β为锐角,cos α=45,tan(α-β)=-13,则tan β的值为( )10.在△ABC 中,若tan B =cos?C -B ?sin A +sin?C -B ?,则这个三角形是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 二、填空题11.若tan α=2,tan(β-α)=3,则tan(β-2α)的值为____.12.化简3-tan18°1+3tan18°=________.13.已知tan ⎝⎛⎭⎫α-β2=12,tan ⎝⎛⎭⎫β-α2=-13,则tan α+β2=________.14.不查表求值:tan15°+tan30°+tan15°tan30°=______. 三、解答题15.(2011~2012·学军高一检测)已知△ABC 中,3tan A tan B -tan A -tan B = 3.求C 的大小.16.已知tan α、tan β是方程x 2-3x -3=0的两根,试求sin 2(α+β)-3sin(α+β)cos(α+β)-3cos 2(α+β)的值.17.首先定义向量的乘法:设向量m =()11,x y ,n =()22,x y ,则m·n =1212x x y y ⋅+⋅已知A ,B ,C 是△ABC 的三内角,向量m =(-1,3),n =(cos A ,sin A ),且m ·n =1.(1)求角A ;(2)若tan ⎝⎛⎭⎫π4+B =-3,求tan C .18.是否存在锐角α、β,使得(1)α+2β=2π3,(2)tan α2·tan β=2-3同时成立若存在,求出锐角α、β的值;若不存在,说明理由.3-1-3二倍角的正弦、余弦、正切公式一、选择题1.12-sin 215°的值是( )2.若sin α=1213,α∈⎝⎛⎭⎫π2,π,则tan2α的值为( )C .-60119D .-1201193.若x =π12,则cos 2x -sin 2x 的值等于( )4.已知sin θ=45,sin θcos θ<0,则sin2θ的值为( )A .-2425B .-1225C .-455.已知sin ⎝⎛⎭⎫π4-x =35,则sin2x 的值为( )6.定义向量的模:设向量a =(),x y ,则a 的模为22x y +.现已知向量a =⎝⎛⎭⎫cos θ,12的模为22,则cos2θ等于( )-32 B .-14C .-127.已知等腰三角形底角的余弦值为23,则顶角的正弦值是( )C .-459D .-2598.若sin ⎝⎛⎭⎫π6-α=13,则cos ⎝⎛⎭⎫2π3+2α的值是( ) A .-79 B .-139.(2009·广东)函数y =2cos 2(x -π4)-1是( )A .最小正周期为π的奇函数B .最小正周期为π2的奇函数C .最小正周期为π的偶函数D .最小正周期为π2的偶函数10.(2011·宁夏、海南)3-sin70°2-cos 210°=( )C .2 二、填空题11.3tan π81-tan 2π8=________. 12.在△ABC 中,cos A =513,则sin2A =________.13.设cos2θ=23,则cos 4θ+sin 4θ的值是________.14.2002年北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形接成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于________. 三、解答题15.已知cos α=-1213,α∈⎝⎛⎭⎫π,3π2,求sin2α,cos2α,tan2α的值.16.已知cos(x -π4)=210,x ∈(π2,3π4).(1)求sin x 的值. (2)求sin(2x +π3)的值.17.已知sin ⎝⎛⎭⎫π4-x =513,0<x <π4,求cos2x cos ⎝⎛⎭⎫π4+x的值. 18.设函数f (x )=2cos x sin(x +π3)-3sin 2x +sin x cos x ,当x ∈[0,π2]时,求f (x )的最大值和最小值.3-2-1三角恒等变换一、选择题1.设-3π<α<-5π2,则化简1-cos?α-π?2的结果是( )A .sin α2B .cos α2C .-cos α2D .-sin α22.已知cos α=-15,π2<α<π,则sin α2等于( )A .-105 C .-155 ·2cos 2αcos2α等于( )A .tan αB .tan2αC .14.已知钝角α满足cos α=-13,则sin α2等于( )5.化简cos2αtan ⎝⎛⎭⎫π4+α=( ) A .sin α B .cos α C .1+sin2α D .1-sin2α6.函数f (x )=cos ⎝⎛⎭⎫2x +π3+12-12cos2x ,则f (x )可化为( )-32sin2x +32sin2x C .1-3sin2x D .-32sin2x 7.函数f (x )=cos 2x +sin x cos x 的最大值是( )A .28.若cos2αsin ⎝⎛⎭⎫α-π4=-22,则cos α+sin α的值为( ) A .-72 B .-12 C .12 D .729.(山东)若θ∈⎣⎡⎦⎤π4,π2,sin2θ=378,则sin θ=( )10.已知-3π2<α<-π,则12+12·12+12cos2α的值为( )A .-sin α2B .cos α2 C .sin α2 D .-cos α2 二、填空题11.已知tan α2=13,则cos α=________. 12.若tan α=2,则tan α2=________.13.若sin ⎝⎛⎭⎫3π2-2x =35,则tan 2x =________.14.若cos2θ=-34,那么sin 4θ+cos 4θ=________. 三、解答题15.若已知tan θ2=2,求cos θ、sin θ的值.16.化简12sin 2x ·⎝ ⎛⎭⎪⎪⎫1tan x 2-tan x 2+32cos2x 为A sin(ωx +φ)的形式.17.已知sin(2α+β)=5sin β.求证:2tan(α+β)=3tan α. 18.已知函数f (x )=sin 2x +2sin x cos x +3cos 2x ,x ∈.(1)求函数f (x )的最大值及此时自变量x 的集合; (2)求函数f (x )的单调递增区间.3-2-2三角恒等式的应用一、选择题1.函数f (x )=-12sin x cos x 的最大值是( )B .-12 D .-142.函数y =cos 2x 2-sin 2x2的最小值等于( )A .-1B .1 D .23.函数y =sin x1+cos x的周期等于( )B .πC .2πD .3π4.函数y =cos 4x -sin 4x +2的最小正周期是( )A .πB .2π5.函数y =12sin2x +sin 2x 的值域是( )6.已知函数f (x )=sin x +a cos x 的图象的一条对称轴是x =5π3,则函数g (x )=a sin x +cos x 的最大值是( )7.化简1+cos80°-1-cos80°等于( )A .-2cos5°B .2cos5°C .-2sin5°D .2sin5°8.函数y =cos 2ωx -sin 2ωx (ω>0)的最小正周期是π,则函数f (x )=2sin(ωx +π4)的一个单调递增区间是( )A .[-π2,π2]B .[5π4,9π4]C .[-π4,3π4]D .[π4,5π4] 9.(2011·重庆) 首先定义向量的乘法:设向量m =()11,x y ,n =()22,x y ,则m·n =1212x x y y ⋅+⋅.设△ABC 的三个内角为A 、B 、C ,向量m =(3sin A ,sin B ),n =(cos B ,3cos A ),若m ·n =1+cos(A +B ),则C 等于( )10.设M ={平面内的点(a ,b )},N ={f (x )|f (x )=a cos2x +b sin2x },给出M 到N 的映射f :(a ,b )→f (x )=a cos2x +b sin2x ,则点(1,3)的象f (x )的最小正周期为( )A .π2B .π4C .πD .2π 二、填空题11.函数y =2sin x +2cos x 的值域是________.12.已知函数f (x )=3sin ωx cos ωx -cos 2ωx (ω>0)的周期为π2,则ω=________.13.函数f (x )=3sin x -cos x 的单调递增区间是______.14.关于函数f (x )=sin2x -cos2x ,有下列命题:①函数y =f (x )的周期为π;②直线x =π4是y =f (x )的图象的一条对称轴;③点⎝⎛⎭⎫π8,0是y =f (x )的图象的一个对称中心; ④将y =f (x )的图象向左平移π4个单位,可得到y =2sin2x 的图象.其中真命题的序号是________. 三、解答题15.已知函数f (x )=23sin x cos x +2cos 2x -1.(1)求f ⎝⎛⎭⎫π6的值及f (x )的最小正周期; (2)当x ∈⎣⎡⎦⎤0,π2时,求f (x )的最大值和最小值. 16.已知函数f (x )=2sin 2ωx +23sin ωx sin ⎝⎛⎭⎫π2-ωx (ω>0)的最小正周期为π.(1)求ω的值;(2)求函数f (x )在区间⎣⎡⎦⎤0,2π3上的值域. 17.已知函数f (x )=3sin2x -2sin 2x .(1)若点P (1,-3)在角α的终边上,求f (α)的值;(2)若x ∈⎣⎡⎦⎤-π6,π3,求f (x )的值域. 18.某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1m ,求割出的长方形桌面的最大面积(如图).。
高中数学必修四同步练习题库:两角和差的正弦、余弦和正切公式(简答题:容易)
两角和差的正弦、余弦和正切公式(简答题:容易)1、.已知,求的值2、已知为锐角,,,求的值.3、中,若,且为锐角,求角.4、求证:-2cos(α+β)=.5、已知在中,为中点,,(Ⅰ)求的值;(Ⅱ)求的值.6、在中,角所对边分别为的面积为6.(Ⅰ)求的值;(Ⅱ)求的值.7、函数的最大值为,它的最小正周期为. (1)求函数的解析式;(2)若,求在区间上的最大值和最小值.8、已知分别是的内角所对的边,.(1)证明:;(2)若,求.9、(2015秋•淮南期末)=()A.1B.2C.3D.410、已知,求的值11、已知函数⑴求的最小正周期及对称中心;⑵若,求的最大值和最小值.12、阅读下面材料:根据两角和与差的正弦公式,有------①------②由①+②得------③令有代入③得.(Ⅰ) 类比上述推理方法,根据两角和与差的余弦公式,证明:;(Ⅱ)若的三个内角满足,试判断的形状. (提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)13、如图,在平面直角坐标系中,以轴为始边,两个锐角,的终边分别与单位圆相交于A,B 两点.(Ⅰ)若,,求的值;(Ⅱ)若角的终边与单位圆交于点,设角的正弦线分别为,试问:以作为三边的长能否构成一个三角形?若能,请加以证明;若不能,请说明理由.14、已知15、已知(Ⅰ)求的值;(Ⅱ)求的值.16、阅读下面材料:根据两角和与差的正弦公式,有------①------②由①+②得------③令有代入③得.(1) 类比上述推理方法,根据两角和与差的余弦公式,证明:;(2)若的三个内角满足,直接利用阅读材料及(1)中的结论试判断的形状.17、已知为锐角,且求.18、(本小题满分12分)已知,写出用表示的关系等式,并证明这个关系等式.19、如图,有三个并排放在一起的正方形,.(1)求的度数;(2)求函数的最大值及取得最大值时候的x值。
20、(本小题12分)已知0<a<p,;(1)求的值;(2)求的值;21、求值: .22、(本题满分14分)在中,分别是所对的边,已知,,三角形的面积为,(1)求C的大小;(2)求的值.23、已知,(1)求的值;(2)求角.24、阅读下面材料:根据两角和与差的正弦公式,有------①------②由①+②得------③令有代入③得.(Ⅰ) 类比上述推理方法,根据两角和与差的余弦公式,证明:;(Ⅱ)若的三个内角满足,试判断的形状.(提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)25、化简(1)(2)26、已知,求下列各式的值:(1)(2)27、已知均为锐角,求的值。
两角和与差的正弦、余弦、正切公式 课件
即 tan(α-β)=________,这就是两角差的正切公式.
练习 5:1t+an4ta5n°4-5°ttaann1155°°=________________.
tan α-tan β 1+tan αtan β
练习:5.
3 3
思考应用
3.两角和与差的正切公式的适用范围及公式的特 征有哪些?
解析:(1) 适用范围:限制条件:α、β、α+β 均不为 kπ+π2(k∈Z);可以是数、字母和代数式.从公式推导过程进 行说理:cos(α+β)≠0,则 α+β≠kπ+π2;同除 cos α、cos β, 得 cos α≠0,cos β≠0,则 α≠kπ+π2,cos β≠kπ+π2.cos x≠0, 保证了 tan x 有意义.
∵cos(α-β)=1134,∴sin(α-β)=3143, 由 β=α-(α-β),得
cos β=cos[α-(α-β)]
=cos αcos(α-β)+sin αsin(α-β)
=17×1134+4 7 3×3143=7×4914=12, ∵0<β<π2,所以 β=π3.
点评: 解答此类问题分三步:第一步,求角的某 一个三角函数值;第二步,确定角所在的范围;第三 步,根据角的范围写出所求的角.特别注意选取角的 某一个三角函数值,是取正弦?还是取余弦?应先缩 小所求角的取值范围,最好把角的范围缩小在某一三 角函数值的一个单调区间内.
sin αcos β+cos αsin β
以-β 代替公式 sin(α+β)=sin αcos β+cos αsin β
中的 β,得到 sin[α+(-β)]=sin αcos(-β)+
cos αsin(-β)=sin αcos β-cos αsin β,
两角和与差的余弦公式精讲精练
两角和与差的余弦公式精讲精练1.两角和的余弦公式:设∠A和∠B为两个角,则它们的和∠C的余弦公式为:cos(∠C) = cos(∠A + ∠B) = cos(∠A)cos(∠B) -sin(∠A)sin(∠B)2.两角差的余弦公式:设∠A和∠B为两个角,则它们的差∠C的余弦公式为:cos(∠C) = cos(∠A - ∠B) = cos(∠A)cos(∠B) +sin(∠A)sin(∠B)首先,我们利用欧拉公式及欧拉恒等式可得:cos(∠A + ∠B) = Re{exp(i(∠A + ∠B))} =Re{exp(i∠A)exp(i∠B)}= Re{(cos∠A + isin∠A)(cos∠B + isin∠B)}= Re{(cos∠Acos∠B - sin∠Asin∠B) + (cos∠Asin∠B + sin∠Acos∠B)i}= cos∠Acos∠B - sin∠Asin∠B将上式中的实部提取出来,即为两角和的余弦公式。
接下来,我们将对两角和的余弦公式进行一些练习题目。
练习1:已知cos(∠A) = 3/5,sin(∠B) = 4/5,且∠A和∠B为第四象限角,求co s(∠A + ∠B)的值。
解:根据已知条件,我们可以得到sin(∠A) = -4/5,cos(∠B) = -3/5带入两角和的余弦公式:cos(∠A + ∠B) = cos(∠A)cos(∠B) - sin(∠A)sin(∠B)=(3/5)(-3/5)-(-4/5)(4/5)=-9/25+16/25=7/25所以cos(∠A + ∠B)的值为7/25练习2:已知cos(∠A) = 2/3,sin(∠B) = 3/5,且∠A和∠B为相邻角,求cos(∠A - ∠B)的值。
解:由于∠A和∠B为相邻角,所以∠A - ∠B = 0,即cos(0) = 1所以cos(∠A - ∠B)的值为1通过练习题目,我们可以更好地理解和运用两角和与差的余弦公式。
高一数学两角和与差的正弦余弦和正切公式试题答案及解析
高一数学两角和与差的正弦余弦和正切公式试题答案及解析1.已知,则()A.B.C.D.【答案】C【解析】根据诱导公式有【考点】本小题主要考查诱导公式的应用.点评:解决此类问题关键是尽量用已知角来表示未知角.2. (2010·河南南阳调研)在△ABC中,3sin A+4cos B=6,4sin B+3cos A=1,则C等于() A.30°B.150°C.30°或150°D.60°或120°【答案】A【解析】两式平方后相加得sin(A+B)=,∴A+B=30°或150°,又∵3sin A=6-4cos B>2,∴sin A>>,∴A>30°,∴A+B=150°,此时C=30°.3. (2010·鞍山一中)已知a=(sinα,1-4cos2α),b=(1,3sinα-2),α∈,若a∥b,则tan=()A.B.-C.D.-【答案】B【解析】∵a∥b,∴1-4cos2α=sinα(3sinα-2),∴5sin2α+2sinα-3=0,∴sinα=或sinα=-1,∵α∈,∴sinα=,∴tanα=,∴tan==-.4.求值:=________.【答案】-4【解析】======-4.5. (2009~2010·浙江嵊泗中学高一期末)已知定义在区间上的函数y=f(x)的图象关于直线x=-对称,当x∈时,函数f(x)=A sin(ωx+φ)(A>0,ω>0,- <φ<)的图象如图所示.(1)求函数y=f(x)在上的表达式;(2)求方程f(x)=的解.【答案】(1)∴f(x)=(2) x=-,-,-,或即为所求【解析】(1)当x∈时,由图象知,A=1,=-=,∴T=2π,∴ω=1.又f(x)=sin(x+φ)过点,则+φ=kπ,k∈Z,∵-<φ<,∴φ=,∴f(x)=sin当-π≤x<-时,-≤-x-≤,∴f=sin=-sin x而函数y=f(x)的图象关于直线x=-对称,则f(x)=f∴f(x)=-sin x,-π≤x<-,∴f(x)=.(2)当-≤x≤时,≤x+≤π,∵f(x)=sin=,∴x+=或,∴x=-或,当-π≤x<-时,∵f(x)=-sin x=,∴sin x=-,x=-或-,∴x=-,-,-,或即为所求.6.设α和β是一个钝角三角形的两个锐角,下列四个不等式中不正确的是() A.tanα·tanβ<1B.sinα+sinβ<C.cosα+cosβ>1D.tan(α+β)<tan【答案】D【解析】取特例,令α=β=可得,tan(α+β)=,tan=,∴tan(α+β)>tan,∴D不正确.7.已知α、β为锐角,cosα=,tan(α-β)=-,则tanβ的值为() A.B.C.D.【答案】B【解析】∵α是锐角,cosα=,故sinα=,tanα=∴tanβ=tan[α-(α-β)]==.8.在△ABC中,若tan B=,则这个三角形是()A.锐角三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形【答案】B【解析】因为△ABC中,A+B+C=π,所以tan B===,即=,∴cos(B+C)=0,∴cos(π-A)=0,∴cos A=0,∵0<A<π,∴A=,∴这个三角形为直角三角形,故选B.9.若cosθ>0,且sin2θ<0,则角θ的终边所在象限是________.【答案】第四象限【解析】∵sin2θ=2sinθcosθ<0,cosθ>0,∴sinθ<0,∴θ是第四象限角.10.如果tan=2010,那么+tan2α=______.【答案】2010【解析】∵tan=2010,∴+tan2α=+====tan=2010.11.化简:.【答案】1【解析】原式====1.12.已知锐角α、β满足cosα=,cos(α+β)=-,则cosβ=()A.B.-C.D.-【答案】A【解析】∵α、β为锐角,cosα=,cos(α+β)=-,∴sinα=,sin(α+β)=. ∴cosβ=cos[(α+β)-α]=cos(α+β)·cosα+sin(α+β)·sinα=-×+×=.13.已知cosθ=,θ∈,则cos=()A.B.C.D.【答案】B【解析】∵cosθ=,θ∈,∴sinθ=,∴cos=cosθ·cos+sinθ·sin=×+×=.14. (08·山东理)已知cos(α-)+sinα=,则sin(α+)的值是() A.-B.C.-D.【答案】C【解析】∵cos(α-)+sinα=cosαcos+sinαsin+sinα=cosα+sinα=,∴cosα+sinα=,∴sin(α+)=-sin=-cos=-sinα-cosα=-.故选C.15. cos+sin的值为()A.-B.C.D.【答案】B【解析】∵cos+sin=2=2=2cos=2cos=.16.化简=________.【答案】【解析】===.17.已知△ABC中,sin C=,cos B=-,求cos A.【答案】【解析】在△ABC中,由cos B=-,可得sin B=,且B为钝角,∴C为锐角,∴cos(A+B)=cos(π-C)=-cos C=-=-.sin(A+B)=sin(π-C)=sin C=,∴cos A=cos[(A+B)-B]=-×+×=.[点评]本题易错点为忽视角范围的讨论,错误得出cos(A+B)=而致误.18.若α、β均为锐角,sinα=,sin(α+β)=,则cosβ等于()A.B.C.或D.-【答案】B【解析】∵α与β均为锐角,且sinα=>sin(α+β)=,∴α+β为钝角,又由sin(α+β)=得,cos(α+β)=-,由sinα=得,cosα=,∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=-×+×=,故选B.19.已知<β<α<,cos(α-β)=,sin(α+β)=-,求sin2α的值.【答案】-.【解析】∵<β<α<,∴π<α+β<,0<α-β<.∴sin(α-β)===.∴cos(α+β)=-=-=-.则sin2α=sin[(α+β)+(α-β)]=sin(α+β)cos(α-β)+cos(α+β)sin(α-β)=×+×=-.20.在△ABC中,若sin A=,cos B=,求cos C.【答案】【解析】∵0<cos B=<,且0<B<π.∴<B<,且sin B=.又∵0<sin A<<,且0<A<π,∴0<A<或π<A<π.若π<A<π,则有π<A+B<π,与已知条件矛盾,∴0<A<,且cos A=.∴cos C=cos[π-(A+B)]=-cos(A+B)=sin A sin B-cos A cos B=×-×=.[点评]本题易忽视对角范围的讨论,直接由sin A=得出cos A=±,导致错误结论cos C=或.。
两角和与差及二倍角公式经典例题及答案
:两角和与差及其二倍角公式知识点及典例知识要点:1、两角和与差的正弦、余弦、正切公式C(α-β):cos(α-β)= ; C(α+β):cos(α+β)= ; S(α+β):sin(α+β)= ; S(α-β):sin(α-β)= ; T(α+β):tan(α+β)= ; T(α-β):tan(α-β)= ; 2、二倍角的正弦、余弦、正切公式2S α:sin2α= ; 2T α:tan2α= ;2C α:cos2α= = = ;3、在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等。
如T(α±β)可变形为:tan α±tan β=___________________; tan αtan β= = . 考点自测:1、已知tan α=4,tan β=3,则tan(α+β)=( )711A 、 711B 、-713C 、 713D 、-2、已知cos ⎝⎛⎭⎫α-π6+ sin α=453,则 sin ⎝⎛⎭⎫α+7π6的值是( ) A .-235 B.235 C .-45 D.453、在△ABC 中,若cos A =45,cos B =513,则cos C 的值是( )A.1665B.5665C.1665或5665 D .-1665 4、若cos2θ+cos θ=0,则sin2θ+sin θ的值等于( )A .0B .±3C .0或 3D .0或±35、三角式2cos55°-3sin5°cos5°值为( )A.32B. 3 C .2 D .1 题型训练题型1 给角求值一般所给出的角都是非特殊角,利用角的关系(与特殊角的联系)化为特殊角 例1求[2sin50sin10(1)]︒︒︒+.变式1:化简求值:2cos10sin 20.cos 20︒︒︒- 题型2给值求值三角函数的给值求值问题解决的关键在于把“所求角”用“已知角”表示.如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=--- 例2 设cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,其中α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2,求cos(α+β).变式2:π3π33π50π,cos(),sin(),4445413βααβ<<<<-=+=已知求sin(α+β)的值.题型3给值求角已知三角函数值求角,一般可分以下三个步骤:(1)确定角所在的范围;(2)求角的某一个三角函数值(要求该三角函数应在角的范围内严格单调);(3)求出角。
周练(七) 两角和与差的正弦、余弦和正切公式
周练(七) 两角和与差的正弦、余弦和正切公式(时间:80分钟 满分:100分)一、选择题(每小题5分,共40分)1.sin 20°cos 10°+sin 10°sin 70°的值是( ). A.14 B.32 C.12D.34解析 sin 20°cos 10°+sin 10°sin 70°=sin 20°cos 10°+sin 10°cos 20°=sin(10°+20°)=sin 30°=12,故选C. 答案 C2.在△ABC 中,2cos B sin A =sin C ,则△ABC 的形状一定是( ). A .等腰三角形 B.直角三角形 C .等腰直角三角形D.等边三角形解析 在△ABC 中,C =π-(A +B ), ∴2cos B sin A =sin[π-(A +B )] =sin(A +B )=sin A cos B +cos A sinB.∴-sin A cos B +cos A sin B =0.即sin(B -A )=0. ∴A =B ,故选A . 答案 A3.化简cos(α+β)cos α+sin(α+β)sin α=( ). A .sin(2α+β) B.sin β C .cos(2α+β)D.cos β解析 原式=cos [](α+β)-α=cos β,故选D. 答案 D4.若α∈⎝ ⎛⎭⎪⎫5π4,3π2,则1-sin 2α等于( ).A .cos α-sin αB.|cos α|-|sin α|C .-cos α-sin α D.-cos α+sin α解析 原式=sin 2α-2sin αcos α+cos 2α=(sin α-cos α)2=|sin α-cos α|,∵α∈⎝ ⎛⎭⎪⎫5π4,3π2,∴cos α>sin α,∴原式=cos α-sin α. 答案 A5.若α+β=34π,则(1-tan α)(1-tan β)的值为( ). A.12 B.1 C.32D.2解析 (1-tan α)(1-tan β)=1+tan αtan β-(tan α+tan β)① ∵tan α+tan β=tan(α+β)(1-tan αtan β) =tan 34π(1-tan αtan β)=tan αtan β-1, ∴①式=2,故选D. 答案 D6.已知锐角α满足cos 2α=cos ⎝ ⎛⎭⎪⎫π4-α,则sin 2α等于( ).A.12 B.-12 C.22D.-22解析 ∵α∈⎝ ⎛⎭⎪⎫0,π2,∴2α∈(0,π),π4-α∈⎝ ⎛⎭⎪⎫-π4,π4.又cos 2α=cos ⎝ ⎛⎭⎪⎫π4-α,∴2α=π4-α或2α+π4-α=0,∴α=π12或α=-π4(舍去).∴sin 2α=12,故选A. 答案 A7.已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+76π的值是( ).A .-235 B.235 C .-45D.45解析 cos ⎝ ⎛⎭⎪⎫α-π6+sin α=cos αcos π6+sin αsin π6+sin α =32cos α+32sin α =3⎝ ⎛⎭⎪⎫12cos α+32sin α=3⎝ ⎛⎭⎪⎫sin π6cos α+cos π6sin α=3sin ⎝ ⎛⎭⎪⎫π6+α=453,∴sin ⎝ ⎛⎭⎪⎫π6+α=45,∴sin ⎝ ⎛⎭⎪⎫α+76π=sin ⎝ ⎛⎭⎪⎫α+π6+π=-sin ⎝ ⎛⎭⎪⎫α+π6=-45.答案 C8.设sin x +sin y =22,则cos x +cos y 的取值范围是( ). A.⎣⎢⎡⎦⎥⎤0,142 B.⎣⎢⎡⎦⎥⎤-142,0 C.⎣⎢⎡⎦⎥⎤-142,142 D.⎣⎢⎡⎦⎥⎤-12,72 解析 设cos x +cos y =t , 则由sin x +sin y =22,得 t 2+⎝ ⎛⎭⎪⎫222=(cos x +cos y )2+(sin x +sin y )2 =2+2cos(x -y ),∴t 2=32+2cos(x -y ).又∵-1≤cos(x -y )≤1,∴-12≤t 2≤72, ∴0≤t 2≤72,∴-142≤t ≤142. 答案 C二、填空题(每小题5分,共20分)9.已知cos ⎝ ⎛⎭⎪⎫α+π3=sin ⎝ ⎛⎭⎪⎫α-π3,则tan α=________.解析 ∵cos ⎝ ⎛⎭⎪⎫α+π3=sin ⎝ ⎛⎭⎪⎫α-π3, ∴cos αcos π3-sin αsin π3=sin αcos π3-cos αsin π3, ∴tan α=1. 答案 110.化简:2sin 2α1+cos 2α·cos 2αcos 2α=________.解析 原式=2sin 2α2cos 2α·cos 2αcos 2α=tan 2α.答案 tan 2α11.已知sin θ=15,θ∈⎝ ⎛⎭⎪⎫π2,π,则cos ⎝ ⎛⎭⎪⎫θ-π3的值为________.解析 ∵sin θ=15,θ∈⎝ ⎛⎭⎪⎫π2,π,∴cos θ=-1-sin 2θ=-1-125=-265,∴cos ⎝ ⎛⎭⎪⎫θ-π3=cos θcos π3+sin θsin π3=-265×12+15×32=3-2610.答案3-261012.(2012·浏阳高一检测)若cos 2αsin ⎝ ⎛⎭⎪⎫α-π4=-22,则sin α+cos α的值为________. 解析 cos 2αsin ⎝ ⎛⎭⎪⎫α-π4=cos 2α-sin 2α22(sin α-cos α)=-2·(cos α+sin α)=-22,所以sin α+cos α=12. 答案 12三、解答题(每小题10分,共40分)13.已知sin(α+β)=23,sin(α-β)=15,求tan αtan β的值. 解 ∵sin(α+β)=sin αcos β+cos αsin β=23, sin(α-β)=sin αcos β-cos αsin β=15, ∴sin αcos β=1330,cos αsin β=730, ∴tan αtan β=sin αcos βcos αsin β=137.14.(2012·天津高一检测)已知cos 2α=13,π<2α<2π,求1+sin α-2cos 2α23sin α+cos α的值.解 原式=sin α-cos α3sin α+cos α,又∵cos 2α=13,∴2cos 2α-1=13, ∴cos 2α=23,∴3π2<2α<2π,∴3π4<α<π, ∴⎩⎪⎨⎪⎧cos α=-63,sin α=33,∴ 原式=5+427.15.已知cos ⎝ ⎛⎭⎪⎫x -π4=210,x ∈⎝ ⎛⎭⎪⎫π2,3π4. (1)求sin x 的值; (2)求sin ⎝ ⎛⎭⎪⎫2x +π3的值.解 (1)因为x ∈⎝ ⎛⎭⎪⎫π2,3π4,所以x -π4∈⎝ ⎛⎭⎪⎫π4,π2,于是sin ⎝ ⎛⎭⎪⎫x -π4=1-cos 2⎝ ⎛⎭⎪⎫x -π4=7210,则sin x =sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -π4+π4=sin ⎝ ⎛⎭⎪⎫x -π4cos π4+cos ⎝ ⎛⎭⎪⎫x -π4sin π4=7210×22+210×22=45.(2)因为x ∈⎝ ⎛⎭⎪⎫π2,3π4,所以cos x =-1-sin 2x =-1-⎝ ⎛⎭⎪⎫452=-35,sin 2x =2sin x cos x =-2425,cos 2x =2cos 2x -1=-725,所以sin ⎝ ⎛⎭⎪⎫2x +π3=sin 2x cos π3+cos 2x sin π3=-24+7350.16.设函数f (x )=a ·b ,其中向量a =(m ,cos 2x ),b =(1+sin 2x,1),x ∈R ,且y=f (x )的图象经过点⎝ ⎛⎭⎪⎫π4,2.(1)求实数m 的值;(2)求函数f (x )的最小值及此时x 值的集合. 解 (1)f (x )=a ·b =m (1+sin 2x )+cos 2x , 由于f (x )图象经过点⎝ ⎛⎭⎪⎫π4,2,∴f ⎝ ⎛⎭⎪⎫π4=2,即m ⎝ ⎛⎭⎪⎫1+sin π2+cos π2=2,∴m =1. (2)由(1)得f (x )=1+sin 2x +cos 2x =1+2sin ⎝ ⎛⎭⎪⎫2x +π4.故当sin ⎝ ⎛⎭⎪⎫2x +π4=-1时,f (x )取得最小值,f (x )min =1-2,此时2x +π4=32π+2k π,k ∈Z ,∴x =k π+58π,k ∈Z .即⎩⎨⎧⎭⎬⎫x |x =k π+58π,k ∈Z .。
最新两角和与差的正弦余弦正切公式练习题(含答案)
两角和差的正弦余弦正切公式练习题一、选择题1.给出如下四个命题①对于任意的实数α和β,等式βαβαβαsin sin cos cos )cos(-=+恒成立; ②存在实数α,β,使等式βαβαβαsin sin cos cos )cos(+=+能成立; ③公式=+)tan(βαβαβαtan tan 1tan ⋅-+an 成立的条件是)(2Z k k ∈+≠ππα且)(2Z k k ∈+≠ππβ;④不存在无穷多个α和β,使βαβαβαsin cos cos sin )sin(-=-; 其中假命题是( )A .①②B .②③C .③④D .②③④ 2.函数)cos (sin sin 2x x x y +=的最大值是( )A .21+B .12-C .2D . 2 3.当]2,2[ππ-∈x 时,函数x x x f cos 3sin )(+=的( ) A .最大值为1,最小值为-1 B .最大值为1,最小值为21-C .最大值为2,最小值为-2D .最大值为2,最小值为-1 4.已知)cos(,32tan tan ,7)tan(βαβαβα-=⋅=+则的值 ( )A .21 B .22 C .22-D .22±5.已知=-=+=-<<<αβαβαπαβπ2sin ,53)sin(,1312)cos(,432则 ( )A .6556B .-6556C .5665D .-56656. 75sin 30sin 15sin ⋅⋅的值等于( )A .43 B .83 C .81D .41 7.函数)4cot()(,tan 1tan 1)(),4tan()(x x h x x x g x x f -=-+=+=ππ其中为相同函数的是 ( )A .)()(x g x f 与B .)()(x h x g 与C .)()(x f x h 与D .)()()(x h x g x f 及与8.α、β、γ都是锐角,γβαγβα++===则,81tan ,51tan ,21tan 等于 ( )A .3π B .4π C .π65D .π459.设0)4tan(tan 2=++-q px x 是方程和θπθ的两个根,则p 、q 之间的关系是( )A .p+q+1=0B .p -q+1=0C .p+q -1=0D .p -q -1=0 10.已知)tan(),sin(4sin ,cos βαβααβ++==则a 的值是( )A .412--a aB .-412--a aC .214a a --±D .412--±a a11.在△ABC 中,90C >,则B A tan tan ⋅与1的关系为( )A .1tan tan >+B A B .1tan tan <⋅B AC .1tan tan =⋅B AD .不能确定12. 50sin 10sin 70cos 20sin +的值是( )A .41B .23C .21D .43二、填空题(每小题4分,共16分,将答案填在横线上)13.已知m =-⋅+)sin()sin(αββα,则βα22cos cos -的值为 . 14.在△ABC 中,33tan tan tan =++C B A ,C A B tan tan tan 2⋅= 则∠B=.15.若),24cos()24sin(θθ-=+ 则)60tan( +θ= . 16.若y x y x cos cos ,22sin sin +=+则的取值范围是 . 三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.化简求值:)34sin(x -π)36cos()33cos(x x +--⋅ππ)34sin(x +⋅π.18.已知 0βαβαcos ,cos ,90且 <<<是方程02150sin 50sin 222=-+- x x 的两根,求)2tan(αβ-的值.19.求证:yx xy x y x 22sin cos 2sin )tan()tan(-=-++.20.已知α,β∈(0,π)且71tan ,21)tan(-==-ββα,求βα-2的值.21.证明:xx xx x 2cos cos sin 22tan 23tan +=-.22.已知△ABC 的三个内角满足:A+C=2B ,B C A cos 2cos 1cos 1-=+求2cos CA -的值.两角和差的正弦余弦正切公式练习题参考答案一、1.C 2.A 3.D 4.D 5.B 6.C 7.C 8.B 9.B 10.D 11.B 12.A二、13.m 14.3π15.32-- 16.]214,214[-三、17.原式=)34cos()33sin()33cos()34sin(x x x x -----ππππ=462-.18.)4550sin(2)2150(sin 4)50sin 2(50sin 222 ±=---±=x ,12sin 95cos5,sin 5cos85,x x ∴====3275tan )2tan(+==- αβ.19.证:yx y x y x y x y x y x y x y x 2222sin sin cos cos )]()sin[()cos()sin()cos()sin(⋅-⋅-++=--+++=左=-=+-=yx xy x x x x 222222sin cos 2sin sin )sin (cos cos 2sin 右. 20.13tan ,tan(2)1,2.34ααβαβπ=-=-=-21.左==+=⋅=⋅-x x x x x x x x x x x x 2cos cos sin 22cos23cos sin 2cos 23cos 2sin23cos 2cos 23sin右.22.由题设B=60°,A+C=120°,设2CA -=α知A=60°+α, C=60°-α,22cos ,2243cos cos cos 1cos 12=-=-=+ααα即CA故222cos =-C A .。
3.1 第1课时 两角差的余弦公式 学案(人教A版必修4)
3.1 第1课时 两角差的余弦公式【课前准备】1.课时目标(1)了解两角差的余弦公式的推导过程,通过公式的推导了解角与角之间的内在联系;(2)正确理解与掌握两角差的余弦公式,并会进行化简、求值等应用.2.基础预探两角差的余弦公式:cos (α-β)=________________.【知识训练】1.下面等式中成立的是( )A .cos (α-β)=cos αcos β-sin αsin βB .cos (α-β)=cos αsin β-cos αsin βC .cos (α-β)=cos αcos β+sin αsin βD .cos (α-β)=cos αsin β+cos αsin β2.cos110ºcos20º+sin110ºsin20º的值为( )A .0B .-21C .21 D .1 3.化简cos (2x+y )cos (x+y )+sin (2x+y )sin (x+y )的值为( )A .cos (3x+2y )B .cosxC .sin (3x+2y )D .sinx4.化简:cos80°cos20°+sin80°sin20°=________.5.cos (-50º)cos20º-sin (-20º)sin50º的值为________.6.已知cos α=-54(2π<α<π),求cos (6π-α)的值. 【学习引领】两角差的余弦公式对任意的角都成立,是前面学习的诱导公式的一般化.在利用两角差的余弦公式时,运用两角差的三角函数求解问题一般分三步:第一步求某一个三角函数值;第二步确定角所在的范围;第三步得结论求得所求角的值.【典例导析】题型一:公式的直接应用例1.计算:cos80ºcos35º+sin80ºsin35º=( )A .1B .21C .22D .23 思路导析:直接利用两角差的余弦公式加以化简、计算.解析:cos80ºcos35º+sin80ºsin35º=cos (80º-35º)=cos45º=22,故选择答案:C . 点评:利用两角差的余弦公式进行化简或计算时,注意函数名称及其位置关系、运算符号等基本特征,直接结合公式加以应用.变式练习1:计算:cos (54º+α)cos (24º+α)+sin (54º+α)sin (24º+α)=________. 题型二:公式的间接应用例2.计算:cos65ºcos35º+cos25ºcos55º=( )A .1B .21C .22D .23思路导析:先利用诱导公式对cos25º及cos55º进行变换,再利用两角差的余弦公式加以化简、计算.解析:由于cos25º=sin (90º-25º)=sin65º,cos55º= sin (90º-55º)=sin35º, 则cos65ºcos35º+cos25ºcos55º= cos65ºcos35º+sin65ºsin35º=cos (65º-35º)=cos30º=23,故选择答案:D . 点评:利用两角差的余弦公式进行化简或计算时,如何函数名称不满足公式条件,往往可以结合诱导公式加以变换,转化为符号公式条件的等式后再利用相应的公式加以应用.变式练习2:计算:cos78ºsin72º+sin78ºcos72º=________.题型三:公式的综合应用例3.已知α、β、γ∈(0,2π),sin α+sin γ=sin β,cos β+cos γ=cos α,求β-α的值. 思路导析:根据题目条件,消去γ是解题关键,而通过同角三角函数的基本关系式是解决的关键所在,同时结合三角函数的图象与性质等知识.解析:由已知,得sin γ=sin β-sin α,cos γ=cos α-cos β,平方相加得(sin β-sin α)2+(cos α-cos β)2=1,即sin 2β-2sin αsin β+sin 2α+cos 2α-2cos βcos α+cos 2β=1, 亦即2-2(sin αsin β+cos βcos α)=1,∴-2cos (β-α)=-1,∴cos (β-α)=21, ∴β-α=±3π, ∵sin γ=sin β-sin α>0,∴β>α,∴β-α=3π. 点评:本题极易求出β-α=±3π,如不注意隐含条件sin γ>0,则产生增根.因此求值问题要注意分析隐含条件.变式练习3:已知cos α-cos β=21,sin α-sin β=31,则cos (α-β)=________. 【随堂练习】1.计算:cos75ºcos15º+sin75ºsin15º=( )A .1B .21C .22D .23 2.化简cos (x+y )cos (x -y )+sin (x+y )sin (x -y )的值为( )A .cos2xB .cos2yC .sin2xD .sin2y3.计算:cos (38º-x )cos (8º-x )+sin (38º-x )sin (8º-x )=( )A .1B .21C .22D .23 4.计算:cos68ºcos8º+sin68ºcos82º=________.5.化简:cos (α-2β)cos (2α-β)+ sin (α-2β)sin (2α-β)=________.6.若锐角α、β满足cos α=54,cos (α+β)=53,求cos β的值. 【课后作业】1.化简:cos (α-β)cos (β-γ)+sin (α-β)sin (β-γ)=( )A .cos (α-2β+γ)B .cos (α-γ)C .sin (α-2β+γ)D .sin (α-γ)2.︒︒-︒70sin 20sin 10cos 2的值是( ) A .21 B .23 C .3 D .23.已知α、β∈(43π,π),sin (α+β)=-53,sin (β-4π)=1312,则cos (α+4π)=________. 4.已知:α+β∈(2π,π),α-β∈(0,2π),且sin (α-β)=734,cos (α+β)=-1411,则β=________. 5.已知sin α=32,α∈(2π,π),cos β=-43,β∈(π,23π),求cos (α-β)的值. 6.已知cos α=71,cos (α+β)=-1411,α、β∈(0,2π),求β的值.答案:【课前准备】2.基础预探cos αcos β+sin αsin β.【知识训练】1.C ;解析:根据两角差的余弦公式加以判断;2.A ;解析:cos110ºcos20º+sin110ºsin20º=cos (110º-20º)= cos90º=0;3.B ;解析:观察代数式,运用整体思想,逆用两角差的余弦公式加以判断;4.21;解析:cos80°cos20°+sin80°sin20°=cos (80°-20°)=cos60°=21; 5.23;解析:cos (-50º)cos20º-sin (-20º)sin50º=cos50ºcos20º+sin20ºsin50º=cos (50º-20º)= cos30º=23; 6.解析:因为cos α=-54,且2π<α<π,所以sin α=2)54(1--=53,那么cos (6π-α)=cos 6πcos α+sin 6πsin α 413)525-+⋅=10343-.【典例导析】变式练习1:23;解析:cos (54º+α)cos (24º+α)+sin (54º+α)sin (24º+α)= cos[(54º+α)-(24º+α)]= cos30º=23; 变式练习2:21;解析:cos78ºsin72º+sin78ºcos72º= cos78ºcos (90º-72º)+sin78ºsin (90º-72º)= cos78ºcos18º+sin78ºsin18º=cos (78º-18º)=cos60º=21; 变式练习3:7259;解析:由于(cos α-cos β)2=41,(sin α-sin β)2=91,两式相加,得2-2cos (α-β)=3613,∴cos (α-β)=7259; 【随堂练习】1.B ;解析:cos75ºcos15º+sin75ºsin15º=cos (75º-15º)=cos60º=21; 2.B ;解析:观察代数式,运用整体思想,逆用两角差的余弦公式加以判断;3.D ;解析:cos (38º-x )cos (8º-x )+sin (38º-x )sin (8º-x )=cos[(38º-x )-(8º-x )]=cos30º=23; 4.21;解析:cos68ºcos8º+sin68ºcos82º=cos68ºcos8º+sin68ºsin (90º-8º)=cos68ºcos8º+sin68ºsin8º=cos (68º-8º)=cos60º=21; 5.cos (2βα+);解析:cos (α-2β)cos (2α-β)+ sin (α-2β)sin (2α-β)= cos [(α-2β)-(2α-β)]= cos (2βα+);6.解析:由于锐角α满足cos α=54,则sin α=α2cos 1-=2)54(1-=53, 又锐角α、β满足cos (α+β)=53,则sin (α+β)=)(cos 12βα+-=2)53(1-=54, 所以cos β=cos [(α+β)-α]= cos (α+β)cos α+ sin (α+β)sin α=53×54+54×53=2524. 【课后作业】1.A ;解析:观察代数式,运用整体思想,逆用两角差的余弦公式加以判断;2.C ;解析:原式=︒︒-︒-︒70sin 20sin 2030cos 2)(=︒︒-︒⋅︒+︒⋅︒70sin 20sin 20sin 30sin 20cos 30cos 2)(=︒︒20cos 20cos 3=3; 3.-6556;解析:由已知可得α+β∈(23π,2π),β-4π∈(2π,43π),∴cos (α+β)=54,cos (β-4π)=-135,则cos (α+4π)=cos[(α+β)-(β-4π)]=cos (α+β)cos (β-4π)+sin (α+β)sin (β-4π)=-6556; 4.6π;解析:由题可得:cos (α-β)=71,sin (α+β)=1435,则cos2β=cos[(α+β)-(α-β)]=cos (α+β)cos (α-β)+sin (α+β)sin (α-β)=21,又2π<α+β<π,0<α-β<2π,则0<(α+β)-(α-β)=2β<π,有2β=3π,即β=6π; 5.解析:由sin α=32,α∈(2π,π)得cos α=-α2sin 1-=-2)32(1-=-35, 又由cos β=-43,β∈(π,23π)得sin β=-β2cos 1-=-2)43(1--=-47,所以cos (α-β)=cos αcos β+sin αsinβ=(-35)×(-43)+32×(-47). 6.解析:由于α、β∈(0,2π),则α+β∈(0,π), 由cos α=71,cos (α+β)=-1411, 可得sin α=α2cos 1-=734,sin (α+β)=)(cos 12βα+-=1435, 得cos β=cos [(α+β)-α]= cos (α+β)cos α+ sin (α+β)sin α=-1411×71+1435×734=21, 而由β∈(0,2π)可得β=3π.。
一轮优化理数练习:第四章 第四节 两角和与差的正弦、余弦、正切公式
一、填空题1.若sin α=35,α∈(-π2,π2),则cos(α+5π4)=________. 解析:∵α∈(-π2,π2),sin α=35,∴cos α=45, ∴cos(α+5π4)=-22(cos α-sin α)=-210. 答案:-2102.已知1-cos 2αsin αcos α=1,tan(β-α)=-13,则tan(β-2α)=________. 解析:依题意由1-cos 2αsin αcos α=1 得2sin 2 αsin αcos α=1,则tan α=12, 从而tan(β-2α)=tan[(β-α)-α] =tan (β-α)-tan α1+tan (β-α)·tan α=--13-121+(-13)×12=-1. 答案:-13.已知tan(α-π6)=37,tan(π6+β)=25,则tan(α+β)的值为________. 解析:tan(α+β)=tan [(α-π6)+(π6+β)] =tan (α-π6)+tan (π6+β)1-tan (α-π6)·tan (π6+β)=37+251-37×25=1.答案:14.在等式cos(*)(1+3tan 10°)=1的括号中,填写一个锐角,使得等式成立,这个锐角的度数是________.解析:1+3tan 10°=1+3sin 10°cos 10°=cos 10°+3sin 10°cos 10°=2sin (30°+10°)cos 10°=2sin 40°cos 10°,所以填40°.答案:40°5.设a =sin 14°+cos 14°,b =sin 16°+cos 16°,c =62,则a 、b 、c 的大小关系是________.解析:∵a 2=1+2sin 14°cos 14°=1+sin 28°∈(1,32),b 2=1+2sin 16°cos 16°=1+sin 32°∈(32,2),c 2=32,且a >0,b >0,c >0,∴a <c <b . 答案:a <c <b6.已知A 、B 均为钝角,且sin A =55,sin B =1010,则A +B 等于________. 解析:由已知可得cos A =-255,cos B =-31010, ∴cos(A +B )=cos A cos B -sin A sin B =22, 又∵π2<A <π,π2<B <π, ∴π<A +B <2π,∴A +B =7π4. 答案:7π47.若tan(α+β)=25, tan(β-π4)=14,则tan (α+π4)=______. 解析:tan(α+π4)=tan [(α+β)-(β-π4)] =tan (α+β)-tan (β-π4)1+tan (α+β)tan (β-π4)=25-141+25×14=322.答案:3228.已知α,β∈(3π4,π),sin(α+β)=-35,sin(β-π4)=1213,则cos(α+π4)=________.解析:由于α,β∈(3π4,π),所以3π2<α+β<2π,π2<β-π4<3π4,故cos(α+β)=45,cos(β-π4)=-513,cos(α+π4)=cos[(α+β)-(β-π4)]=45×(-513)+(-35)×1213 =-5665. 答案:-56659.非零向量a =(sin θ,2),b =(cos θ,1),若a 与b 共线,则tan(θ-π4)=________. 解析:因为非零向量a ,b 共线,所以a =λb ,即(sin θ,2)=λ(cos θ,1),所以λ=2,sin θ=2cos θ,得tan θ=2,所以tan(θ-π4)=tan θ-11+tan θ=13.答案:13 二、解答题10.已知α为锐角,且tan(π4+α)=2. (1)求tan α的值; (2)求sin 2αcos α-sin αcos 2α的值.解析:(1)tan(π4+α)=1+tan α1-tan α,所以1+tan α1-tan α=2,1+tan α=2-2tan α, 所以tan α=13.(2)sin 2αcos α-sin αcos 2α=2sin αcos 2α-sin αcos 2α=sin α(2cos 2α-1)cos 2α=sin αcos 2αcos 2α=sin α.因为tan α=13,所以cos α=3sin α,又sin 2α+cos 2α=1, 所以sin 2 α=110,又α为锐角,所以sin α=1010,所以sin 2αcos α-sin αcos 2α=1010.11.如图所示,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α,β,它们的终边分别与单位圆交于A 、B 两点,已知A 、B 的横坐标分别为210、255. (1)求tan(α+β)的值; (2)求α+2β的值. 解析:由已知条件得cos α=210,cos β=255. ∵α、β为锐角,∴sin α=1-cos 2α=7210, sin β=1-cos 2β=55,因此tan α=7,tan β=12.(1)tan(α+β)=tan α+tan β1-tan α·tan β=7+121-7×12=-3.(2)∵tan 2β=2tan β1-tan 2β=2×121-(12)2=43, ∴tan(α+2β)=7+431-7×43=-1.∵α,β为锐角,∴0<α+2β<3π2, ∴α+2β=3π4.12.已知向量OA →=(cos α,sin α)(α∈[-π,0]).向量m =(2,1),n =(0,-5),且m ⊥(OA →-n ). (1)求tan α的值;(2)若cos(β-π)=210,且0<β<π,求cos(2α-β).解析:(1)∵OA →=(cos α,sin α), ∴OA →-n =(cos α,sin α+5), ∵m ⊥(OA →-n ),∴m ·(OA →-n )=0, 即2cos α+(sin α+5)=0,① 又sin 2α+cos 2α=1,② 由①②联立方程组解得, cos α=-255,sin α=-55. ∴tan α=sin αcos α=12. (2)∵cos(β-π)=210, 即cos β=-210,0<β<π, ∴sin β=7210,π2<β<π,又∵sin 2α=2sin αcos α=2×(-55)×(-255)=45, cos 2α=2cos 2α-1=2×45-1=35,∴cos(2α-β)=cos 2αcos β+sin 2αsin β =35×(-210)+45×7210=22.。
高一 两角和与差的余弦、正弦、正切公式知识点+例题+练习 含答案
1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β (C (α-β))cos(α+β)=cos αcos β-sin αsin β (C (α+β))sin(α-β)=sin αcos β-cos αsin β (S (α-β))sin(α+β)=sin αcos β+cos αsin β (S (α+β))tan(α-β)=tan α-tan β1+tan αtan β(T (α-β)) tan(α+β)=tan α+tan β1-tan αtan β(T (α+β)) 2.二倍角公式sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;tan 2α=2tan α1-tan 2α. 3.公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan αtan β);(2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝⎛⎭⎫α±π4. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ )(2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )(4)存在实数α,使tan 2α=2tan α.( √ )(5)两角和与差的正弦、余弦公式中的角α,β是任意的.( √ )1.化简cos 40°cos 25°1-sin 40°= . 答案 2解析 原式=cos 40°cos 25°1-cos 50°=cos (90°-50°)cos 25°·2sin 25°=sin 50°22sin 50°= 2. 2.若sin α+cos αsin α-cos α=12,则tan 2α= . 答案 34解析 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α得,tan α+1tan α-1=12,解得tan α=-3, 则tan 2α=2tan α1-tan 2α=34. 3.(2015·重庆改编)若tan α=13,tan(α+β)=12,则tan β= . 答案 17解析 tan β=tan [(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=12-131+12×13=17. 4.(教材改编)sin 347°cos 148°+sin 77°cos 58°= .答案 22 解析 sin 347°cos 148°+sin 77°cos 58°=sin(270°+77°)cos(90°+58°)+sin 77°cos 58°=(-cos 77°)·(-sin 58°)+sin 77°cos 58°=sin 58°cos 77°+cos 58°sin 77°=sin(58°+77°)=sin 135°=22. 5.设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为 . 答案 17250解析 ∵α为锐角,cos(α+π6)=45, ∴α+π6∈⎝⎛⎭⎫π6,2π3,∴sin(α+π6)=35, ∴sin(2α+π3)=2sin(α+π6)cos(α+π6)=2425, ∴cos(2α+π3)=2cos 2(α+π6)-1=725, ∴sin(2α+π12)=sin(2α+π3-π4) =22[sin(2α+π3)-cos(2α+π3)]=17250.题型一 三角函数公式的基本应用例1 (1)已知sin α=35,α∈(π2,π),则cos 2α2sin (α+π4)= . (2)设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是 .答案 (1)-75(2) 3 解析 (1)cos 2α2sin ⎝⎛⎭⎫α+π4=cos 2α-sin 2α2⎝⎛⎭⎫22sin α+22cos α=cos α-sin α,∵sin α=35,α∈⎝⎛⎭⎫π2,π, ∴cos α=-45. ∴原式=-75. (2)∵sin 2α=2sin αcos α=-sin α,∴cos α=-12, 又α∈⎝⎛⎭⎫π2,π,∴sin α=32,tan α=-3, ∴tan 2α=2tan α1-tan 2 α=-231-(-3)2= 3. 思维升华 (1)使用两角和与差的三角函数公式,首先要记住公式的结构特征.(2)使用公式求值,应先求出相关角的函数值,再代入公式求值.(1)若α∈(π2,π),tan(α+π4)=17,则sin α= . (2)已知cos(x -π6)=-33,则cos x +cos(x -π3)的值是 . 答案 (1)35(2)-1 解析 (1)∵tan(α+π4)=tan α+11-tan α=17, ∴tan α=-34=sin αcos α, ∴cos α=-43sin α. 又∵sin 2α+cos 2α=1,∴sin 2α=925. 又∵α∈(π2,π),∴sin α=35. (2)cos x +cos(x -π3)=cos x +12cos x +32sin x =32cos x +32sin x =3(32cos x +12sin x ) =3cos(x -π6)=-1. 题型二 三角函数公式的灵活应用例2 (1)sin(65°-x )cos(x -20°)+cos(65°-x )·cos(110°-x )的值为 . (2)求值:cos 15°+sin 15°cos 15°-sin 15°= . 答案 (1)22(2) 3 解析 (1)原式=sin(65°-x )·cos(x -20°)+cos(65°-x )cos [90°-(x -20°)]=sin(65°-x )cos(x -20°)+cos(65°-x )sin(x -20°)=sin [(65°-x )+(x -20°)]=sin 45°=22. (2)原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力.(1)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tan C =1-2,则角A 的值为 .(2)函数f (x )=2sin 2(π4+x )-3cos 2x 的最大值为 . 答案 (1)π4(2)3 解析 (1)由题意知:sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sin C ,在等式-2cos B ·cos C =sin B ·cos C +cos B ·sin C 两边同除以cos B ·cos C 得tan B +tan C =-2,又tan(B +C )=tan B +tan C 1-tan B tan C=-1=-tan A ,所以A =π4.(2)f (x )=1-cos ⎣⎡⎦⎤2(π4+x )-3cos 2x =sin 2x -3cos 2x +1=2sin ⎝⎛⎭⎫2x -π3+1, 可得f (x )的最大值是3.题型三 角的变换问题例3 (1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β= . (2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是 . 答案 (1)2525 (2)-45解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45. 又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β).因为45>55>-45, 所以cos(α+β)=-45. 于是cos β=cos [(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-45×55+35×255=2525. (2)∵cos(α-π6)+sin α=453, ∴32cos α+32sin α=453, 3(12cos α+32sin α)=453, 3sin(π6+α)=453, ∴sin(π6+α)=45,∴sin(α+7π6)=-sin(π6+α)=-45. 思维升华 (1)解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.①当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等. 若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫π4+α=13,cos ⎝⎛⎭⎫π4-β2=33,则cos ⎝⎛⎭⎫α+β2= . 答案 539解析 cos ⎝⎛⎭⎫α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2 =cos ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4-β2+sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-β2, ∵0<α<π2,∴π4<π4+α<3π4, ∴sin ⎝⎛⎭⎫π4+α=223.又-π2<β<0,则π4<π4-β2<π2, ∴sin ⎝⎛⎭⎫π4-β2=63. 故cos ⎝⎛⎭⎫α+β2=13×33+223×63=539.5.三角函数求值忽视角的范围致误典例 (1)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,则cos(α+β)的值为 .(2)已知在△ABC 中,sin(A +B )=23,cos B =-34,则cos A = . 易错分析 (1)角α2-β,α-β2的范围没有确定准确,导致开方时符号错误. (2)对三角形中角的范围挖掘不够,忽视隐含条件,B 为钝角.解析 (1)∵0<β<π2<α<π, ∴-π4<α2-β<π2,π4<α-β2<π, ∴cos ⎝⎛⎭⎫α2-β=1-sin 2⎝⎛⎭⎫α2-β=53, sin ⎝⎛⎭⎫α-β2= 1-cos 2⎝⎛⎭⎫α-β2=459,∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos 2α+β2-1 =2×49×5729-1=-239729. (2)在△ABC 中,∵cos B =-34, ∴π2<B <π,sin B =1-cos 2B =74. ∵π2<B <A +B <π,sin(A +B )=23, ∴cos(A +B )=-1-sin 2(A +B )=-53, ∴cos A =cos [(A +B )-B ]=cos(A +B )cos B +sin(A +B )sin B=⎝⎛⎭⎫-53×⎝⎛⎭⎫-34+23×74=35+2712. 答案 (1)-239729 (2)35+2712温馨提醒 在解决三角函数式的求值问题时,要注意题目中角的范围的限制,特别是进行开方运算时一定要注意所求三角函数值的符号.另外,对题目隐含条件的挖掘也是容易忽视的问题,解题时要加强对审题深度的要求与训练,以防出错.[方法与技巧]1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2, 配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22, 1+cos α=2cos 2α2,1-cos α=2sin 2α2. 2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.[失误与防范]1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在三角函数求值时,一定不要忽视题中给出的或隐含的角的范围.A 组 专项基础训练(时间:40分钟)1.cos 85°+sin 25°cos 30°cos 25°= . 答案 12解析 原式=sin 5°+32sin 25°cos 25°=sin (30°-25°)+32sin 25°cos 25°=12cos 25°cos 25°=12. 2.若θ∈[π4,π2],sin 2θ=378,则sin θ= . 答案 34解析 由sin 2θ=378和sin 2θ+cos 2θ=1得 (sin θ+cos θ)2=378+1=(3+74)2, 又θ∈[π4,π2],∴sin θ+cos θ=3+74. 同理,sin θ-cos θ=3-74,∴sin θ=34. 3.若tan θ=3,则sin 2θ1+cos 2θ= . 答案3 解析 sin 2θ1+cos 2θ=2sin θcos θ1+2cos 2θ-1=tan θ= 3. 4.已知cos α=-55,tan β=13,π<α<32π,0<β<π2,则α-β的值为 . 答案 54π 解析 因为π<α<32π,cos α=-55,所以sin α=-255,tan α=2,又tan β=13,所以tan(α-β)=2-131+23=1,由π<α<32π,-π2<-β<0得π2<α-β<32π,所以α-β=54π. 5.已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4= . 答案 322解析 因为α+π4+β-π4=α+β, 所以α+π4=(α+β)-⎝⎛⎭⎫β-π4, 所以tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)tan ⎝⎛⎭⎫β-π4=322. 6.sin 250°1+sin 10°= .答案 12解析 sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos (90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12. 7.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α= . 答案 1解析 根据已知条件:cos αcos β-sin αsin β=sin αcos β-cos αsin β,cos β(cos α-sin α)+sin β(cos α-sin α)=0,即(cos β+sin β)(cos α-sin α)=0.又α、β为锐角,则sin β+cos β>0,∴cos α-sin α=0,∴tan α=1.8.若tan θ=12,θ∈(0,π4),则sin(2θ+π4)= . 答案 7210解析 因为sin 2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=45, 又由θ∈(0,π4),得2θ∈(0,π2), 所以cos 2θ=1-sin 22θ=35, 所以sin(2θ+π4) =sin 2θcos π4+cos 2θsin π4=45×22+35×22=7210. 9.已知cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值;(2)求tan α-1tan α的值.解 (1)cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+α·sin ⎝⎛⎭⎫π6+α =12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3, ∴cos ⎝⎛⎭⎫2α+π3=-32, ∴sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32. ∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3. 10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解 (1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-32.(2)因为π2<α<π,π2<β<π, 所以-π<-β<-π2,故-π2<α-β<π2. 又sin(α-β)=-35,得cos(α-β)=45. cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35 =-43+310. B 组 专项能力提升(时间:20分钟)11.已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos (α-π4)= . 答案 -255解析 由tan(α+π4)=tan α+11-tan α=12, 得tan α=-13. 又-π2<α<0, 所以sin α=-1010. 故2sin 2α+sin 2αcos (α-π4)=2sin α(sin α+cos α)22(sin α+cos α)=22sin α =-255. 12.已知α∈⎝⎛⎭⎫0,π2,且sin 2α-sin αcos α-2cos 2α=0,则tan ⎝⎛⎭⎫π3-α= . 答案 8-5311解析 ∵sin 2α-sin αcos α-2cos 2α=0,cos α≠0,∴tan 2α-tan α-2=0.∴tan α=2或tan α=-1,∵α∈⎝⎛⎭⎫0,π2,∴tan α=2, tan ⎝⎛⎭⎫π3-α=tan π3-tan α1+tan π3tan α =3-21+23=(3-2)(23-1)(23-1)(23+1)=8-5312-1=8-5311. 13.已知cos 4α-sin 4α=23,且α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫2α+π3= . 答案 2-156解析 ∵cos 4α-sin 4α=(sin 2α+cos 2α)(cos 2α-sin 2α)=cos 2α=23, 又α∈⎝⎛⎭⎫0,π2, ∴2α∈(0,π),∴sin 2α=1-cos 22α=53, ∴cos ⎝⎛⎭⎫2α+π3=12cos 2α-32sin 2α =12×23-32×53=2-156. 14.设f (x )=1+cos 2x 2sin ⎝⎛⎭⎫π2-x +sin x +a 2sin ⎝⎛⎭⎫x +π4的最大值为2+3,则常数a = . 答案 ±3解析 f (x )=1+2cos 2x -12cos x+sin x +a 2sin ⎝⎛⎭⎫x +π4=cos x +sin x +a 2sin ⎝⎛⎭⎫x +π4 =2sin ⎝⎛⎭⎫x +π4+a 2sin ⎝⎛⎭⎫x +π4 =(2+a 2)sin ⎝⎛⎭⎫x +π4. 依题意有2+a 2=2+3, ∴a =±3.15.已知函数f (x )=1-2sin ⎝⎛⎭⎫x +π8 ·⎣⎡⎦⎤sin ⎝⎛⎭⎫x +π8-cos ⎝⎛⎭⎫x +π8. (1)求函数f (x )的最小正周期;(2)当x ∈⎣⎡⎦⎤-π2,π12,求函数f ⎝⎛⎭⎫x +π8的值域. 解 (1)函数f (x )=1-2sin ⎝⎛⎭⎫x +π8[sin ⎝⎛⎭⎫x +π8-cos ⎝⎛⎭⎫x +π8] =1-2sin 2⎝⎛⎭⎫x +π8+2sin ⎝⎛⎭⎫x +π8cos ⎝⎛⎭⎫x +π8 =cos ⎝⎛⎭⎫2x +π4+sin ⎝⎛⎭⎫2x +π4=2sin ⎝⎛⎭⎫2x +π2 =2cos 2x ,所以f (x )的最小正周期T =2π2=π. (2)由(1)可知f ⎝⎛⎭⎫x +π8=2cos ⎝⎛⎭⎫2x +π4. 由于x ∈⎣⎡⎦⎤-π2,π12, 所以2x +π4∈⎣⎡⎦⎤-3π4,5π12, 所以cos ⎝⎛⎭⎫2x +π4∈⎣⎡⎦⎤-22,1, 则f ⎝⎛⎭⎫x +π8∈[-1,2], 所以f ⎝⎛⎭⎫x +π8的值域为[-1,2].。
(完整版)两角和与差的正弦、余弦、正切经典练习题
两角和与差的正弦、余弦、正切一、两角和与差的余弦βαβαβαsin sin cos cos )cos(-=+βαβαβαsin sin cos cos )cos(+=-1、求值:(1) 15cos (2) 20802080sin sin cos cos +(3) 1013010130sin sin cos cos +(4)cos105°(5)sin75°(6)求cos75°cos105°+sin75°sin105°(7)cos (A +B )cosB +sin (A +B )sinB .(8) 29912991sin sin cos cos -2. (1)求证:cos (2π-α) =sin α.(2)已知sin θ=1715,且θ为第二象限角,求cos (θ-3π)的值. (3)已知sin (30°+α)=,60°<α<150°,求cos α.3. 化简cos (36°+α)cos (α-54°)+sin (36°+α)sin (α-54°).4. 已知32=αsin ,⎪⎭⎫ ⎝⎛∈ππα,2,53-=βcos ,⎪⎭⎫ ⎝⎛∈23ππβ,,求)cos(βα+的值.5.已知1312-=αcos ,⎪⎭⎫ ⎝⎛∈23ππα,,求)cos(4πα+的值。
6. 已知α,β都是锐角,31=αcos ,51-=+)cos(βα,求βcos 的值。
7.在△ABC 中,已知sin A =53,cos B =135,求cos C 的值.二、两角和与差的正弦sin()sin cos cos sin αβαβαβ+=+sin()sin cos cos sin αβαβαβ-=-1利用和差角公式计算下列各式的值(1)sin 72cos 42cos 72sin 42︒︒-︒︒ (2)13cos sin 22x x -(3)3sin cos x x + (4)22cos 2sin 222x x -二、证明: )4cos(2)cos (sin 2)3()4sin(2sin cos )2()6sin(cos 21sin 23)1(ππθθθπααα-=++=++=+x x x3(1)已知3sin 5α=-,α是第四象限角,求sin()4πα-的值。
高考专题练习: 第1课时 两角和与差的正弦、余弦和正切公式
1.两角和与差的正弦、余弦、正切公式 C (α-β):cos(α-β)=cos αcos β+sin αsin β. C (α+β):cos(α+β)=cos αcos β-sin αsin β. S (α+β):sin(α+β)=sin αcos β+cos αsin β. S (α-β):sin(α-β)=sin αcos β-cos αsin β. T (α+β):tan(α+β)=tan α+tan β1-tan αtan β⎝⎛⎭⎪⎫α,β,α+β≠π2+k π,k ∈Z .T (α-β):tan(α-β)=tan α-tan β1+tan αtan β⎝⎛⎭⎪⎫α,β,α-β≠π2+k π,k ∈Z .2.二倍角的正弦、余弦、正切公式 S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎪⎫α≠π4+k π2,且α≠k π+π2,k ∈Z . 常用结论记准4个必备结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2. (2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β). (4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ) ⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=aa 2+b 2.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( ) (2)对任意角α都有1+sin α=⎝ ⎛⎭⎪⎫sin α2+cos α22.( )(3)y =3sin x +4cos x 的最大值是7.( ) (4)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tanαtan β),且对任意角α,β都成立. ( )答案:(1)√ (2)√ (3)× (4)× 二、易错纠偏常见误区| (1)不会逆用公式,找不到思路; (2)不会合理配角出错.1.tan 20°+tan 40°+3tan 20°·tan 40°=________. 解析:因为tan 60°=tan(20°+40°)=tan 20°+tan 40°1-tan 20°tan 40°,所以tan 20°+tan 40°=tan 60°(1-tan 20°tan 40°) =3-3tan 20°tan 40°,所以原式=3-3tan 20°tan 40°+3tan 20°tan 40°= 3. 答案: 32.sin 15°+sin 75°的值是________.解析:sin 15°+sin 75°=sin 15°+cos 15°=2sin(15°+45°)=2sin 60°=62. 答案:62第1课时 两角和与差的正弦、余弦和正切公式三角函数公式的直接应用(师生共研)(1)(2020·高考全国卷Ⅲ)已知sin θ+sin ⎝ ⎛⎭⎪⎫θ+π3=1,则sin ⎝ ⎛⎭⎪⎫θ+π6=( )A .12 B .33 C .23D .22(2)已知cos ⎝ ⎛⎭⎪⎫α+π6-sin α=435,则sin ⎝ ⎛⎭⎪⎫α+11π6=________.【解析】 (1)因为sin θ+sin ⎝ ⎛⎭⎪⎫θ+π3=32sin θ+32cos θ=3sin ⎝ ⎛⎭⎪⎫θ+π6=1, 所以sin ⎝ ⎛⎭⎪⎫θ+π6=33,故选B .(2)由cos ⎝ ⎛⎭⎪⎫α+π6-sin α=32cos α-12sin α-sin α=32cos α-32sin α=3⎝ ⎛⎭⎪⎫12cos α-32sin α=3cos ⎝ ⎛⎭⎪⎫α+π3=3sin ⎝ ⎛⎭⎪⎫π6-α=435,得sin ⎝ ⎛⎭⎪⎫π6-α=45.sin ⎝ ⎛⎭⎪⎫α+11π6=-sin ⎣⎢⎡⎦⎥⎤2π-⎝ ⎛⎭⎪⎫α+11π6=-sin ⎝ ⎛⎭⎪⎫π6-α=-45. 【答案】 (1)B (2)-45利用三角函数公式时应注意的问题(1)首先要注意公式的结构特点和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号相反”.(2)应注意与同角三角函数基本关系、诱导公式的综合应用. (3)应注意配方法、因式分解和整体代换思想的应用.1.(2021·湖北八校第一次联考)若sin ⎝ ⎛⎭⎪⎫π6-θ=35,则sin ⎝ ⎛⎭⎪⎫π6+2θ=( ) A .-2425 B .2425 C .-725D .725解析:选D .方法一:因为sin ⎝ ⎛⎭⎪⎫π6-θ=35,所以sin ⎝ ⎛⎭⎪⎫π6+2θ=sin ⎣⎢⎡⎦⎥⎤π2-2⎝ ⎛⎭⎪⎫π6-θ =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π6-θ=1-2sin 2⎝ ⎛⎭⎪⎫π6-θ=1-2×⎝ ⎛⎭⎪⎫352=725,故选D .方法二:因为sin ⎝ ⎛⎭⎪⎫π6-θ=cos ⎣⎢⎡⎦⎥⎤π2-⎝⎛⎭⎪⎫π6-θ =cos ⎝ ⎛⎭⎪⎫π3+θ=35,所以cos ⎝ ⎛⎭⎪⎫2π3+2θ=2×⎝ ⎛⎭⎪⎫352-1=-725.因为cos ⎝ ⎛⎭⎪⎫π2+π6+2θ=-sin ⎝ ⎛⎭⎪⎫π6+2θ,所以sin ⎝ ⎛⎭⎪⎫π6+2θ=725,故选D . 2.(2021·六校联盟第二次联考)若tan ⎝ ⎛⎭⎪⎫π4-α=-2,则tan 2α=________.解析:由tan ⎝ ⎛⎭⎪⎫π4-α=-2可得tan π4-tan α1+tan π4tan α=-2,即1-tan α1+tan α=-2,化简得tan α=-3,所以tan 2α= 2 tan α1-tan 2 α=2×(-3)1-(-3)2=34. 答案:34三角函数公式的逆用与变形应用(师生共研)(1)在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22 B .22 C .12D .-12(2)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________. 【解析】 (1)由tan A tan B =tan A +tan B +1,可得tan A +tan B1-tan A tan B =-1,即tan(A +B )=-1,又(A +B )∈(0,π),所以A+B=3π4,所以C=π4,cos C=2 2.(2)因为sin α+cos β=1,cos α+sin β=0,所以sin2α+cos2β+2sin αcos β=1①,cos2α+sin2β+2cos αsin β=0②,①②两式相加可得sin2α+cos2α+sin2β+cos2β+2(sin α·cos β+cos αsin β)=1,所以sin(α+β)=-12.【答案】(1)B(2)-1 2(1)三角函数公式活用技巧①逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;②tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,注意公式的正用、逆用和变形使用.(2)三角函数公式逆用和变形使用应注意的问题①公式逆用时一定要注意公式成立的条件和角之间的关系;②注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”以便构造适合公式的形式.1.(1-tan215°)cos215°=()A.1-32B.1C.32D.12解析:选C.(1-tan215°)cos215°=cos215°-sin215°=cos 30°=3 2.2.已知sin 2α=13,则cos 2⎝ ⎛⎭⎪⎫α-π4=( )A .-13 B .13 C .-23D .23解析:选D .cos 2⎝ ⎛⎭⎪⎫α-π4=1+cos ⎝ ⎛⎭⎪⎫2α-π22=12+12sin 2α=12+12×13=23. 3.cos 15°+sin 15°cos 15°-sin 15°=( ) A .33 B . 3 C .-33D .- 3解析:选B .原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.两角和、差及倍角公式的灵活应用(多维探究) 角度一 三角函数公式中变“角”已知α,β∈⎝ ⎛⎭⎪⎫3π4,π,sin(α+β)=-35,sin ⎝ ⎛⎭⎪⎫β-π4=2425,则cos ⎝ ⎛⎭⎪⎫α+π4=________.,【解析】 由题意知,α+β∈⎝ ⎛⎭⎪⎫3π2,2π,sin(α+β)=-35<0,所以cos(α+β)=45,因为β-π4∈⎝ ⎛⎭⎪⎫π2,3π4,所以cos ⎝ ⎛⎭⎪⎫β-π4=-725,cos ⎝ ⎛⎭⎪⎫α+π4=cos ⎣⎢⎡⎦⎥⎤(α+β)-⎝ ⎛⎭⎪⎫β-π4=cos(α+β)cos ⎝ ⎛⎭⎪⎫β-π4+sin(α+β)sin ⎝ ⎛⎭⎪⎫β-π4=-45.【答案】 -45角度二 三角函数公式中变“名”求值:1+cos 20°2sin 20°-sin 10°⎝ ⎛⎭⎪⎫1tan 5°-tan 5°. 【解】 原式=2cos 210°2×2sin 10°cos 10°-sin 10°⎝ ⎛⎭⎪⎫cos 5°sin 5°-sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32.三角函数公式应用的解题思路(1)角的转换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的变换技巧,及半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫π4-α=π2,α2=2×α4等.(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[提醒] 转化思想是实施三角恒等变换的主导思想,恒等变换前需清楚已知式中角的差异、函数名称的差异、运算结构的差异,寻求联系,实现转化.1.若tan(α+2β)=2,tan β=-3,则tan(α+β)=________,tan α=________. 解析:因为tan(α+2β)=2,tan β=-3,所以tan(α+β)=tan(α+2β-β)=tan(α+2β)-tan β1+tan(α+2β)tan β=2-(-3)1+2×(-3)=-1.tan α=tan(α+β-β)=-1-(-3)1+(-1)×(-3)=1 2.答案:-11 22.4sin 20°+tan 20°=________.解:原式=4sin 20°+sin 20°cos 20°=2sin 40°+sin 20°cos 20°=2sin (60°-20°)+sin 20°cos 20°=3cos 20°-sin 20°+sin 20°cos 20°= 3.答案: 3[A级基础练]1.计算-sin 133°cos 197°-cos 47°cos 73°的结果为()A.12B.33C.22D.32解析:选A.-sin 133°cos 197°-cos 47°cos 73°=-sin 47°(-cos 17°)-cos 47°sin 17°=sin(47°-17°)=sin 30°=12.2.(2021·开封市模拟考试)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若sin α=13,则cos(α-β)=()A.-1 B.-7 9C .429D .79解析:选B .因为角α与角β均以Ox 为始边,且它们的终边关于y 轴对称,所以β=π-α+2k π,k ∈Z ,则cos(α-β)=cos(α-π+α-2k π)=cos(2α-π)=cos (π-2α)=-cos 2α,又sin α=13,所以cos 2α=1-2sin 2α=79,所以cos(α-β)=-79,故选B .3.(2020·福州市质量检测)若2cos 2x =1+sin 2x ,则tan x =( ) A .-1 B .13C .-1或13D .-1或13或3解析:选C .方法一:由题设得,2(cos 2x -sin 2x )=1+2sin x cos x ,所以2(cos x +sin x )(cos x -sin x )=(sin x +cos x )2,所以sin x +cos x =0或sin x +cos x =2cos x -2sin x ,所以tan x =-1或tan x =13.方法二:由2cos 2x =1+sin 2x ,得2(cos 2x -sin 2x )=sin 2x +cos 2x +2sin x cos x ,化简得cos 2 x -2sin x cos x -3sin 2x =0,所以(cos x -3sin x )(cos x +sin x )=0,所以cos x =3 sin x 或cos x =-sin x ,所以tan x =13或tan x =-1.方法三:由⎩⎪⎨⎪⎧2cos 2x =1+sin 2x sin 22x +cos 22x =1,得5sin 22x +2sin 2x -3=0,所以sin 2x =35,或sin 2x =-1.当sin 2x =35时, sin 2x =2sin x cos x sin 2x +cos 2x =2tan x tan 2x +1=35,所以3tan 2x-10tan x +3=0,解得tan x =13或tan x =3,但tan x =3时,cos 2x <0,1+sin 2x >0,不合题意舍去,经检验,tan x =13符合题意;当sin 2x =-1时,tan x =-1,经检验,tan x =-1符合题意.综上,tan x =13或tan x =-1.4.已知cos ⎝ ⎛⎭⎪⎫x -π6=14,则cos x +cos ⎝ ⎛⎭⎪⎫x -π3=( )A .34 B .-34 C .14D .±34解析:选A .因为cos ⎝ ⎛⎭⎪⎫x -π6=14,所以cos x +cos ⎝ ⎛⎭⎪⎫x -π3=cos x +12cos x +32sin x=3⎝ ⎛⎭⎪⎫32cos x +12sin x =3cos ⎝ ⎛⎭⎪⎫x -π6=3×14=34.故选A .5.已知sin(α+β)=12,sin(α-β)=13,则log 5⎝ ⎛⎭⎪⎫tan αtan β2=( ) A .2 B .3 C .4D .5解析:选C .因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cos αsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=5,所以log 5⎝ ⎛⎭⎪⎫tan αtan β2=log552=4.故选C .6.(2020·高考浙江卷)已知tan θ=2,则cos 2θ=________,tan ⎝ ⎛⎭⎪⎫θ-π4=________.解析:方法一:因为tan θ=2,所以sin θ=2cos θ,由sin 2θ+cos 2θ=1可知,sin 2θ=45,cos 2θ=15,所以cos 2θ=cos 2θ-sin 2θ=15-45=-35,tan ⎝ ⎛⎭⎪⎫θ-π4=tan θ-11+tan θ=2-11+2=13. 方法二:因为tan θ=2,所以cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=1-41+4=-35,tan ⎝ ⎛⎭⎪⎫θ-π4=tan θ-11+tan θ=2-11+2=13.答案:-35 137.sin 10°sin 50°sin 70°=________.解析:sin 10°sin 50°sin 70°=sin 10°cos 40°cos 20° =sin 10°cos 10°cos 20°cos 40°cos 10°=18sin 80°cos 10°=18. 答案:188.已知sin(α-β)cos α-cos(β-α)sin α=35,β是第三象限角,则sin ⎝ ⎛⎭⎪⎫β+5π4=________.解析:依题意可将已知条件变形为sin[(α-β)-α]=-sin β=35,所以sin β=-35. 又β是第三象限角,因此有cos β=-45,所以sin ⎝ ⎛⎭⎪⎫β+5π4=-sin ⎝ ⎛⎭⎪⎫β+π4=-sin βcos π4-cos βsin π4=7210.答案:72109.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝ ⎛⎭⎪⎫-35,-45.(1)求sin ()α+π的值;(2)若角β满足sin(α+β)=513,求cos β的值.解:(1)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得sin α=-45,所以sin(α+π)=-sin α=45.(2)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得cos α=-35,由sin(α+β)=513,得cos(α+β)=±1213. 由β=(α+β)-α得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.10.已知α,β为锐角,tan α=43,cos(α+β)=-55. (1)求cos 2α的值; (2)求tan(α-β)的值.解:(1)因为tan α=43,tan α=sin αcos α, 所以sin α=43cos α.因为sin 2 α+cos 2 α=1,所以cos 2 α=925, 所以cos 2α=2cos 2α-1=-725.(2)因为α,β为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55, 所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2.因为tan α=43,所以tan 2α=2tan α1-tan 2 α=-247, 所以tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[B 级 综合练]11.若α,β都是锐角,且cos α=55,sin(α-β)=1010, 则cos β=( ) A .22 B .210 C .22或-210D .22或210解析:选A .因为α,β都是锐角,且cos α=55,sin(α-β)=1010,所以sin α=255,cos(α-β)=31010,从而cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=22,故选A .12.已知α为第二象限角,且tan α+tan π12=2tan αtan π12-2,则sin ⎝ ⎛⎭⎪⎫α+5π6=( )A .-1010 B .1010 C .-31010D .31010解析:选C .tan α+tan π12=2tan αtan π12-2⇒tan α+tan π121-tan αtan π12=-2⇒tan ⎝ ⎛⎭⎪⎫α+π12=-2,因为α为第二象限角,所以sin ⎝ ⎛⎭⎪⎫α+π12=255,cos ⎝ ⎛⎭⎪⎫α+π12=-55,则sin ⎝ ⎛⎭⎪⎫α+5π6=-sin ⎝ ⎛⎭⎪⎫α-π6=-sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π12-π4=cos ⎝ ⎛⎭⎪⎫α+π12sin π4-sin ⎝ ⎛⎭⎪⎫α+π12cos π4=-31010.13.已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6=________.解析:由cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435, 所以3sin ⎝ ⎛⎭⎪⎫α+π6=435,即sin ⎝ ⎛⎭⎪⎫α+π6=45,所以sin ⎝ ⎛⎭⎪⎫α+7π6=-sin ⎝ ⎛⎭⎪⎫α+π6=-45.答案:-4514.已知sin α+cos α=355,α∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫β-π4=35,β∈⎝ ⎛⎭⎪⎫π4,π2.(1)求sin 2α和tan 2α的值; (2)求cos(α+2β)的值.解:(1)由题意得(sin α+cos α)2=95, 即1+sin 2α=95,所以sin 2α=45. 又2α∈⎝ ⎛⎭⎪⎫0,π2,所以cos 2α=1-sin 22α=35,所以tan 2α=sin 2αcos 2α=43.(2)因为β∈⎝ ⎛⎭⎪⎫π4,π2,所以β-π4∈⎝ ⎛⎭⎪⎫0,π4,又sin ⎝ ⎛⎭⎪⎫β-π4=35, 所以cos ⎝ ⎛⎭⎪⎫β-π4=45,于是sin 2⎝ ⎛⎭⎪⎫β-π4=2sin ⎝ ⎛⎭⎪⎫β-π4·cos ⎝ ⎛⎭⎪⎫β-π4=2425.又sin 2⎝ ⎛⎭⎪⎫β-π4=-cos 2β,所以cos 2β=-2425,又2β∈⎝ ⎛⎭⎪⎫π2,π,所以sin 2β=725,又cos 2α=1+cos 2α2=45,α∈⎝ ⎛⎭⎪⎫0,π4, 所以cos α=255,sin α=55.所以cos(α+2β)=cos αcos 2β-sin αsin 2β =255×⎝ ⎛⎭⎪⎫-2425-55×725=-11525.[C 级 提升练]15.公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现了黄金分割约为0.618,这一数值也可以表示为m =2sin 18°,若m 2+n =4,则m n 2cos 227°-1=( )A .8B .4C .2D .1解析:选C .因为m =2sin 18°,m 2+n =4,所以n =4-m 2=4-4sin 218°=4cos 218°.所以m n 2cos 227°-1=2sin 18°4cos 218°2cos 227°-1=4sin 18°cos 18°2cos 227°-1=2sin 36°cos 54°=2sin 36°sin 36°=2.故选C .16.设α,β∈[0,π],且满足sin αcos β-cos αsin β=1,则sin(2α-β)+sin(α-2β)的取值范围为________.解析:由sin αcos β-cos αsin β=1,得sin(α-β)=1, 又α,β∈[0,π],所以α-β=π2,所以⎩⎪⎨⎪⎧0≤α≤π,0≤β=α-π2≤π,即π2≤α≤π, 所以sin(2α-β)+sin(α-2β)=sin ⎝ ⎛⎭⎪⎫2α-α+π2+sin(α-2α+π)=cos α+sin α=2sin ⎝ ⎛⎭⎪⎫α+π4.因为π2≤α≤π, 所以3π4≤α+π4≤5π4, 所以-1≤2sin ⎝ ⎛⎭⎪⎫α+π4≤1,即取值范围为[-1,1]. 答案:[-1,1]。
两角差的余弦公式
两角差的余弦公式余弦公式是解决三角形的常见方法之一,它可以用来计算三角形中的一些角的大小,当我们已知三角形的三边长度时,余弦公式可以非常方便地帮助我们解答。
余弦公式的表达式如下:cosC = (a² + b² - c²) / (2ab)其中,a、b、c分别表示三角形的三边的长度,C表示待求的角度。
在这个公式中,我们可以将C换成A或B,来计算其他两个角的大小。
如果我们已知角A和边a的长度,要计算其他两个角的大小,可以使用以下公式:cosB = (a² + c² - b²) / (2ac)cosA = (b² + c² - a²) / (2bc)这些公式中都使用了余弦函数,因为它们可以直接用来计算角度。
当我们已知三边的长度,通过余弦公式,我们可以得到每个角的余弦值,然后再通过反余弦函数(arccos)来计算角度的大小。
余弦公式非常重要,并且在实际问题中有很广泛的应用。
下面我们将通过一个例题来说明如何使用余弦公式。
例题:已知一个三角形的两边分别为a = 6cm,b = 8cm,夹角为C = 45°,求第三边c的长度和另外两个角的大小。
解题思路:1. 根据余弦公式,我们首先可以计算出夹角C的余弦值。
将已知量代入公式,得到cosC = (8² + 6² - c²) / (2 * 8 * 6)。
2.接下来,我们可以通过反余弦函数来计算角C的大小。
使用计算器或数学工具,我们可以得到C≈37.38°。
3. 然后,我们可以通过余弦公式计算第三边c的长度。
将已知量代入公式,得到c = √(8² + 6² - 2 * 8 * 6 * cosC) ≈ 4.22cm。
4.最后,我们可以通过补角定理计算其他两个角的大小。
根据补角定理,角A=90°-C≈52.62°,角B=180°-A-C≈90°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.1两角和与差的余弦公式
一、选择题
1.[2014·哈尔滨高一检测]cos195°的值为( )
A. 6+24
B. -6+24
C. 6-24
D. 2-64
1.B [解析] cos195°=cos(180°+15°)=-cos15°=-cos(45°-30°)=-(cos45°cos30°+sin45°sin30°)=-(22×32+22×12)=-6+24
. 2.cos(α-35°)cos(α+25°)+sin(α-35°)sin(α+25°)等于( )
A.12 B .-12 C.32 D .-32
3.cos70°cos335°+sin110°sin25°的结果是( )
A .1 B.22 C.32 D.12
4.已知cos α=513,α∈(3π2,2π),则cos(α-π4
)的值等于( ) A.5226 B .-2213 C .-7226 D.3213
5.cos ⎝⎛⎭⎫α+π4sin α-cos α的值是( ) A. 2 B. - 2 C. 22 D. -22
6.[2014·天津三校高一模拟]在△ABC 中,若sin A sin B <cos A cos B ,则此三角形的外心位于它的( )
A .内部
B .外部
C .一边上
D .不确定
7.若sin α-sin β=1-32,cos α-cos β=-12
,则cos(α-β)的值为( ) A.12 B.32 C.34
D .1 8.若sin(π+θ)=-35,θ是第二象限角,sin(π2+φ)=-255
,φ是第三象限角,则cos(θ-φ)的值是( )
A .-55 B.55 C.11525
D. 5 9.已知sin α+sin β+sin γ=0,cos α+cos β+cos γ=0,则cos(α-β) 的值为( )
A .-12 B.12
C .-1
D .1
10.化简2cos x -6sin x 等于( )
A .22cos(π6-x )
B .22cos(π3-x )
C .22cos(π6+x )
D .22cos(π3
+x ) 二、填空题
11.cos(-40°)cos20°-sin(-40°)sin(-20°)=________.
12.若sin(π2+α)=-45,α∈(π2,π),则cos(π3
-α)=__________. 13.若a =(cos α,sin β),b =(cos β,sin α),0<β<α<π2,且a ·b =12
,则α-β=__________. 14.cos17°cos77°+cos73°cos13°=________.
15.化简:cos7°-sin15°sin8°cos8°
= =cos(60°-45°)=cos60°cos45°+sin60°sin45°=
2+62. 三、解答题
16.若sin(π2+α)=-45,α∈(π2,π),求cos(π3
-α).
17.已知tan α=-34,π<α<2π,求cos(π4
-α).
18.[2014·福建师大附中期末](1)已知:sin α+cos β=35,cos α-sin β=45
,求sin(α-β)的值; (2)类比(1)的过程与方法,将(1)中已知条件中两个等式的左边进行适当改变,写出改变后的式子,并求cos(α-β)的值.。