流体流动阻力测定

合集下载

流体流动阻力的测定

流体流动阻力的测定

流体流动阻力的测定一、实验目的(1)熟悉测定流体流经直管的阻力损失的实验组织法及测定摩擦系数的工程意义。

(2)观察摩擦系数λ与雷诺数Re 之间的关系,学习双对数坐标纸的用法 (3)掌握流体流经管件时的局部阻力,并求出该管件的局部阻力。

二、实验原理流体在管内流动时,由于流体具有黏性,在流动时必须克服内摩擦力,因此,流体必须做功。

当流体呈湍流流动时,流体内部充满了大小漩涡,流体质点运动速度和方向都发生改变,质点间不断相互碰撞,引起流体质点动量交换,使其产生了湍动阻力,结果也会消耗流体能量,所以流体的黏性和流体的漩涡产生了流体流动的阻力。

流体在管内流动的阻力的计算公式表示为22u d l h fλ=或2212u d l p p p ρλ=-=∆式中:h 为流体通过直管的阻力(J/kg );△p 为流体通过直管的压力降(N/m 2);p 1,p 2为直管上下游界面流动的压力(N/m 2);l 为管道长(m );d 为管道直径(内径)(m );ρ为流体密度(kg/m 3);u 为流体平均流速(m/s );λ为摩擦系数,无因次。

摩擦系数λ是一个受多种因素影响的变量,其规律与流体流动类型密切相关。

当流体在管内作层流流动时,根据力学基本原理,流体流动的推动力(由于压力产生)等于流体内部摩擦力(由于黏度产生),从理论上可以推得λ的计算式为Re64=λ 当流体在管内作湍流流动时,由于流动情况比层流复杂得多,湍流时的λ还不能完全由理论分析建立摩擦系数关系式。

湍流的摩擦系数计算式是在研究分析阻力产生的各种因素的基础上,借助因次分析方法,将诸多因素的影响归并为准数关系,最后得出如下结论⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=d d du k tεϕεμρλRe,2 由此可见,λ为Re 数和管壁相对粗糙度ε/d 的函数,其函数的具体关系通过实验确定。

局部阻力通常有两种表达方式,即当量长度法和阻力系数法。

当量长度法:流体流过某管件时因局部阻力造成的能量损失相当于流体流过与其相同管径的若干米长度的直管阻力损失,用符号l e 来表示,则22u d l l h e f+=∑λ阻力系数法:流体通过某一管件的阻力损失用流体在管路中的动能系数来表示22u h pf ζρ==∆三、实验装置本实验装置如下图,由直管、管件、控制阀、涡轮流量计、供水泵和水箱构成。

流体流动阻力的测定

流体流动阻力的测定

测数据的准确性,每组数据之间稳定时间不得低于5min。 记录数据列表。 5、实验终了,首先关闭阀7,停泵、关闭发生器、仪表、 电源。 五、实验报告编写 (一)实验目的
(二)实验原理
(三)实验装置 (四)实验数据记录表 (五)实验数据处理 (六)思考题
实验数据处理
由所测得的Vs,t1、t2,确定流体密度,计算Q
数据处理结果表 序号 1 2 3 4 5 6 7 8 9

流量
m3/h
光滑管
粗糙管
Re


闸阀阻 力系数
Re
log()
粗糙管
光滑管
log(Re)
全开闸阀阻力系数实验数据处理: 根据流量、管径确定流速,根据该流量下所对应的闸 阀阻力(mH2O)代入下式,确定阻力系数。

2 gH f u2
计算三个流量下的阻力系数,并将其平均得全开闸阀平 均阻力系数。
Q Ki S i t m
确定流体被加热给热热阻占总热阻的比例
所占热阻比例 1 i 100% 1 Ki
确定蒸汽冷凝的给热系数o 1 1 1 o S o K i Si i Si
So d o L
do—换热管外径。 计算每一个流量下的给热系数和总传热系数,将处理 结果列入计算结果表中(表的格式见书)。 注意:在实验报告中仅写出一组实验数据的计算过程, 其他只要在计算结果表中表达出来即可。
再由已知的t1、t2、 Q,Si,并根据测得的加热蒸汽温度 T,确定传热平均温度差 tm,代入传热速率方程即可 确定Ki,与所测到的给热系数i进行比较,分析管内流 体给热热阻占总热阻的比例。若将管壁热阻忽略,也可 求出水蒸气冷凝的给热系数o 。
Q Ki S i t m

流体流动阻力测定实验指导书

流体流动阻力测定实验指导书

化工原理实验辅助讲义化工原理实验指导书姜少华编五邑大学化工与环境基础实验教学中心2006年9月实验一流体流动阻力的测定一、实验目的1.把握测定流体流经直管、管件和阀门时阻力损失的一样实验方式。

2.测定直管摩擦系数λ与雷诺准数Re的关系,验证在一样湍流区内λ与Re的关系曲线。

3.测定流体流经管件、阀门时的局部阻力系数。

4.学会无纸记录仪和涡连番量计的利用方式。

5.识辨组成管路的各类管件、阀门,并了解其作用。

二、大体原理流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失必然的机械能。

流体流经直管时所造成机械能损失称为直管阻力损失。

流体通过管件、阀门时因流体运动方向和速度大小改变所引发的机械能损失称为局部阻力损失。

1.直管阻力摩擦系数λ的测定流体在水平等径直管中稳固流动时,阻力损失为:(1)即,(2)式中:λ —直管阻力摩擦系数,无因次;d —直管内径,m;—流体流经l米直管的压力降,Pa;—单位质量流体流经l米直管的机械能损失,J/kg;ρ —流体密度,kg/m3;l —直管长度,m;u —流体在管内流动的平均流速,m/s。

滞流(层流)时,(3)(4)式中:Re —雷诺准数,无因次;μ —流体粘度,kg/(m·s)。

湍流时λ是雷诺准数Re和相对粗糙度(ε/d)的函数,须由实验确信。

由式(2)可知,欲测定λ,需确信l、d,测定、u、ρ、μ等参数。

l、d为装置参数(装置参数表格中给出),ρ、μ通过测定流体温度,再查有关手册而得,u通过测定流体流量,再由管径计算取得。

例如本装置采纳涡连番量计测流量,V,m3/h。

(5)可用U型管、倒置U型管、测压直管等液柱压差计测定,或采纳差压变送器和二次仪表显示。

(1)当采纳倒置U型管液柱压差计时(6)式中:R-水柱高度,m。

(2)当采纳U型管液柱压差计时(7)式中:R-液柱高度,m;-指示液密度,kg/m3。

流体流动阻力的测定实验

流体流动阻力的测定实验

流体流动阻力的测定实验一、实验内容1.测定流体在特定的材质和ξ/d 的直管中流动时的阻力摩擦系数λ, 并确定λ和Re 之间的关系。

2.测定流体通过阀门时的局部阻力系数。

二、实验目的1. 解测定流体流动阻力摩擦系数的工程定义, 掌握测定流体阻力的实验组织方法。

2.测定流体流经直管的摩擦阻力和流经管件或阀门的局部阻力, 确定直管阻力摩擦系数与雷诺数之间的关系。

3. 熟悉压差计和流量计的使用方法。

4. 认识组成管路系统的各部件、阀门并了解其作用。

三、实验原理流体通过由直管和阀门组成的管路系统时, 由于粘性剪应力和涡流应力的存在, 要损失一定的机械能。

流体流经直管时所造成机械能损失称为直管阻力损失。

流体通过阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。

1.直管阻力 流体流动过程是一个多参数过程, 。

由因次分析法, 从诸多影响流体流动的因素中组合流体流经管件时的阻力损失可用下式表示:⎥⎦⎤⎢⎣⎡ξμρ=ρ∆d ,du ,d l F u P 2 λ=Ψ(Re, ε/d ) 雷诺准数μρdue =R ;22u d l Ph f ⋅⋅=∆=λρ只要找出λ、ξ就可计算出流体在管道内流动时的能量损失。

g P Hg )R(ρρ-=∆易知, 直管摩擦系数λ仅与Re 和 有关。

因此, 只要在实验室规模的装置上, 用水做实验物系, 进行试验, 确定λ与Re 和 的关系, 然后计算画图即可。

2.局部阻力局部阻力可以用当量长度法或局部阻力系数法来表示, 本实验用局部阻力系数法来表示, 即流体通过某一管件或阀门的阻力损失用流体在管路中的动能系数来表示, 用公式表示:一般情况下, 由于管件和阀门的材料及加工精度不完全相同, 每一制造厂及每一批产品的阻力系数是不尽相同的。

四、实验设计由和知, 当实验装置确定后, 只要改变管路中流体流速u及流量V, 测定相应的直管阻力压差ΔP1和局部阻力压差ΔP2, 就能通过计算得到一系列的λ和ξ的值以及相应的Re的值,【原始数据】在实验中, 我们要测的原始数据有流量V, 用来计算直管阻力压差ΔP1和局部阻力压差ΔP2的U型压差计的左右两边水银柱高度, 流体的温度t(据此确定ρ和μ), 还有管路的直径d和直管长度l。

流体流动阻力的测定

流体流动阻力的测定

流体流动阻力的测定一、引言流体力学是物理学的一个分支,主要研究流体的运动规律和性质。

在工程领域中,流体力学是非常重要的一门学科,涉及到许多领域,如航空、船舶、汽车、建筑等。

在这些领域中,流体的运动特性对于设备的设计和性能有着重要影响。

而测定流体流动阻力是了解这些运动特性的基础。

二、实验原理1. 流体阻力公式当一个物体在流体中运动时,会受到来自流体的阻力。

根据牛顿第二定律,物体所受合外力等于其质量乘以加速度。

因此,在水平方向上运动的物体所受合外力为:F = ma其中F为合外力,m为物体质量,a为加速度。

当物体在水平方向上运动时,在没有其他外力作用下,其所受合外力即为来自水对其作用的阻力Ff。

因此:Ff = ma将牛顿第二定律代入上式可得:Ff = 1/2 * ρ * v^2 * S * Cd其中ρ为流体密度,v为物体相对于流体的速度(即物体速度减去流体速度),S为物体所受阻力的面积,Cd为阻力系数。

2. 流体阻力的测定在实验中,我们可以通过测量物体在流体中运动时所受到的阻力来计算出阻力系数Cd。

一般来说,测量流体阻力有两种方法:直接法和间接法。

直接法是指将物体放置在流体中,然后通过测量所需施加的力来计算出流体阻力。

这种方法通常需要使用特殊设备,如浮子式流量计、翼型试验台等。

间接法是指通过测量物体在流体中运动时所需施加的外部力来计算出流体阻力。

这种方法通常需要使用天平或重量计等设备来测量物体的重量,并结合运动学公式来计算物体所受的加速度和速度等参数。

三、实验步骤1. 实验器材准备准备好天平或重量计、滑轮、绳子、小球等实验器材,并将它们固定在实验台上。

2. 实验样本制备制作一个小球样本,并将其质量称重记录下来。

3. 流动介质准备将水注入实验槽中,并将水温调节到室温。

4. 实验数据测量将小球样本用绳子系在滑轮上,并将滑轮固定在实验台上。

然后,拉动小球样本,使其开始运动,并记录下所需施加的力和小球样本的运动时间。

流体流动阻力的测定(化工原理实验报告)

流体流动阻力的测定(化工原理实验报告)

流体流动阻力的测定(化工原理实验报告)流体流动阻力的测定(化工原理实验报告)摘要:本实验研究了流体流动阻力的测定方法,以了解流阻比数据和参数对流体流动特性的影响。

实验中采用了空心管实验装置,在一定的压差试验条件下,通过压力表和熨斗流量计测量压力和流量,计算出流阻比系数。

通过实验,研究了流阻比系数随着实验参数(流量、温度、压力)变化的规律,从而获得一定规律性的微观流动特性数据。

关键词:流阻比;熨斗流量计;实验;流动阻力1 前言流体流动阻力是研究流体流动特性的一项重要参数。

它决定了流体在管道内流动时会受到什么样的阻力,直接影响着流体在设备内的流动性能和传热特性。

因此,准确测量流体流动阻力是研究管道流动的关键问题。

本实验旨在研究空心管装置测量的流阻比数据对流体流动特性的影响,以便获得微观流动特性数据,并用于管道设计、传热学的研究中。

2 实验目的1)研究在空心管实验装置内测量流阻比系数的变化规律:2)利用测量的流阻比系数,得出瞬态流体流动特性曲线,即流量与压力的变化规律; 3)通过实验有规律地分析,获得实验流体的微观流动特性参数。

3 实验装置本实验主要采用空心管实验装置(见图1),由电磁阀控制罐内的液体,带动空心管内的流体循环,保持流量一定,从而实现实验的要求。

该装置由如下几个部分组成:(1)空心管;(2)球阀;(3)高低压罐;(4)汽缸和气缸;(5)液体泵;(6)电磁阀;(7)水箱;(8)熨斗流量计;(9)压力表;(10)温度计。

4 实验方法1)确定实验条件:根据实验任务,确定温度、压力、流量等参数,以及电磁阀的控制时间;2)进行实验:根据实验条件,控制电磁阀的开启和关闭,实现空心管内的液体流动,同时调节实验参数,测量压力及流量;3)根据压力和流量,绘出流量-压力曲线,计算出对应的流阻比系数;4)根据实验数据,进行实验数据分析,探究实验参数变化时,流阻比系数变化规律,得出流体的微观流动特性参数。

5 实验数据在实验中,调节不同的参数,实现不同的实验条件,测量得到流量和压力的数据,根据测量的实验数据,画出Flow-Pressure曲线,结果如下表1所示:实验条件实测压力(MPa) 实测流量(M3/h)流阻比(MPa/m3/h)条件1 0.39 0.159 0.80条件2 0.51 0.159 1.06条件3 0.62 0.159 1.29条件4 0.68 0.159 1.41条件5 0.80 0.159 1.64表1 实验结果图2 Flow-Pressure曲线图6 结论1)根据上述的实验结果,可以发现,随着压力和流量的增加,流阻比也相应地增大;2)通过分析实验数据,可以获得一定的规律性的微观流动特性数据,即通过把不同的实验参数变量并入方程式中,可以根据需要精确地预测不同条件下,流体流动时的压力和流量变化规律;3)该测试结果可以作为设计管路时流体传热特性和流动特性的参考,更好地掌握管路中流体的流动特性。

流体流动阻力测定

流体流动阻力测定

一、实验目的1、 掌握流体经直管和管阀件时阻力损失的测定方法。

通过实验了解流体流动中能量损失的变化规律。

2、 测定直管摩擦系数λ于雷诺准数Re 的关系。

3、 测定流体流经闸阀等管件时的局部阻力系数ξ。

4、 学会压差计和流量计的适用方法。

5、 观察组成管路的各种管件、阀件,并了解其作用。

二、基本原理流体在管内流动时,由于粘性剪应力和涡流的存在,不可避免得要消耗一定的机械能,这种机械能的消耗包括流体流经直管的沿程阻力和因流体运动方向改变所引起的局部阻力。

1、 沿程阻力流体在水平均匀管道中稳定流动时,阻力损失表现为压力降低。

即影响阻力损失的因素很多,尤其对湍流流体,目前尚不能完全用理论方法求解,必须通过实验研究其规律。

为了减少实验工作量,使实验结果具有普遍意义,必须采用因次分析方法将各变量组合成准数关联式。

根据因次分析,影响阻力损失的因素有, (a)流体性质:密度ρ、粘度μ;(b)管路的几何尺寸:管径d 、管长l 、管壁粗糙度ε; (c)流动条件:流速μ。

可表示为: 则 式中,-d 管径,m ;-∆f P 直管阻力引起的压强降,Pa ;-l 管长,m ;-u 流速,m/s ;-ρ流体的密度,kg/m 3;-μ流体的粘度,N·s/m 2。

λ—称为摩擦系数。

层流时,λ=64/Re ;湍流时λ是雷诺准数Re 和相对粗糙度的ρρpp p h f ∆=-=21),,,,,(ερμu l d f p =∆22u d l ph f λρ=∆=函数,须由实验确定 2、局部阻力局部阻力通常有两种表示方法,即当量长度法和阻力系数法。

(a)当量长度法流体流过某管件或阀门时,因局部阻力造成的损失,相当于流体流过与其具有相当管径长度的直管阻力损失,这个直管长度称为当量长度,用符号Σ le 表示。

则流体在管路中流动时的总阻力损失 为(b)阻力系数法流体通过某一管件或阀门时的阻力损失用流体在管路中的动能系数来表示,这种计算局部阻力的方法,称为阻力系数法。

流体流动阻力的测定

流体流动阻力的测定

流体流动阻⼒的测定⼀、实验⽬的1、掌握层流流体经直路和管件时阻⼒损失的测定⽅法。

通过实验了解流体流动中能量损失的变化规律。

2、测定直管摩擦系数λ与雷诺准数Re 的关系。

3、测定流体流经闸阀等管件时的局部阻⼒系数ξ。

4、学会压差计和流量计的使⽤⽅法。

5、观察组成管路的各种管件、阀件,并了解其作⽤。

⼆、实验原理1、直管摩擦系数λ与雷诺数Re 的测定:流体在管道内流动时,由于流体的粘性作⽤和涡流的影响会产⽣阻⼒。

流体在直管内流动阻⼒的⼤⼩与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系:h f =ρfP ?=22u d l λ(1-1)λ=22u P l d fρ (1-2) Re =µρu d (1-3)式中:-d 管径,m ;-?f P 直管阻⼒引起的压强降,Pa ;-l 管长,m ;-u 流速,m/s ;-ρ流体的密度,kg/m 3; -µ流体的粘度,N ·s/m 2。

直管摩擦系数λ与雷诺数Re 之间有⼀定的关系,这个关系⼀般⽤曲线来表⽰。

在实验装置中,直管段管长l 和管径d 都已固定。

若⽔温⼀定,则⽔的密度ρ和粘度µ也是定值。

所以本实验实质上是测定直管段流体阻⼒引起的压强降△P f 与流速u (流量V)之间的关系。

根据实验数据和式(1-2)可计算出不同流速下的直管摩擦系数λ,⽤式(1-3)计算对应的Re ,从⽽整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。

2、局部阻⼒系数ζ的测定22'u P h ff ζρ=?=' (1-4)2'2uP f ?????? ?=ρζ (1-5) 式中:-ζ局部阻⼒系数,⽆因次;-?'f P 局部阻⼒引起的压强降,Pa ;-'f h 局部阻⼒引起的能量损失,J/kg 。

图1-1 局部阻⼒测量取压⼝布置图局部阻⼒引起的压强降'f P ? 可⽤下⾯的⽅法测量:在⼀条各处直径相等的直管段上,安装待测局部阻⼒的阀门,在其上、下游开两对测压⼝a-a'和b-b',见图1-1,使ab =bc ;a'b'=b'c'则:△P f ,a b =△P f ,bc ;△P f ,a 'b '= △P f ,b 'c '在a-a'之间列⽅程式: P a -P a '=2△P f ,a b +2△P f ,a 'b '+△P 'f (1-6) 在b-b'之间列⽅程式: P b -P b '=△P f,bc +△P f ,b 'c '+△P 'f=△P f ,a b +△P f ,a 'b '+△P 'f (1-7) 联⽴式(1-6)和(1-7),则:'f P ?=2(P b -P b ')-(P a -P a ')为了实验⽅便,称(P b -P b ')为近点压差,称(P a -P a ')为远点压差。

流体流动阻力的测定

流体流动阻力的测定

流体流动阻力的测定一、实验流程实验装置流程如图1所示,装置图如图2所示。

压差的测量采用压差传感器或U 型压差计,流量的测量采用涡轮流量计。

直管两测压点之间的距离为3m ,光滑管内径为28 mm ,粗糙管内径为26.6 mm ,局部阻力管段内径为32mm 。

图1流体流动阻力测定实验流程图图2流体流动阻力测定实验装置图二、实验内容(1)测定流体在不同材质和d 的直管中流动时的阻力摩擦系数λ,在双对数坐标纸绘出λ和R e 之间的关系;(2)测定流体通过阀门或90º弯头时的局部阻力系数。

三、实验步骤1. 关闭控制阀,打开光滑管管路上2 个压差变送器的平衡阀,打开光滑管引压阀、光滑管切换阀、弯头引压阀,关闭其它所有阀,打开引水阀,灌泵,放气,然后关闭。

2. 启动泵,系统排气。

(1)总管排气:先将控制阀开至最大然后再关闭,重复三次,目的为了使总管中的大部分气体被排走,然后打开总管排气阀,开至最大后再关闭,重复三遍。

(2)引压管排气:依次对4个放气阀进行排气,将阀门开、关重复三次。

(3)压差计排气:关闭2个平衡阀,重复上述(2)步骤。

3. 将控制阀开至最大,读取流量显示仪读数Q max,然后关至压差显示值约为0.2Kpa~0.3Kpa时,再读取流量显示仪读数Q min,在Q min和Q max二个读数之间布15个点,读取数据。

4.关闭光滑管切换阀。

打开粗糙管管路上2 个压差变送器的平衡阀,打开粗糙管引压阀、粗糙管切换阀、阀门引压阀。

5.粗糙管系统排气步骤同2的(2)、(3)。

6.粗糙管系统流动阻力的测定同光滑管,重复步骤3。

7.实验结束后,关闭控制阀。

离心泵特性曲线的测定一、实验流程实验流程如图3所示,装置图如图4所示,离心泵进、出口管内径分别为40mm、32mm。

图3 离心泵特性曲线测定实验流程图图4 离心泵特性曲线测定装置图二、实验内容用作图法处理实验数据,绘制离心泵特性曲线。

三、实验步骤1. 打开压差传感器平衡阀,关闭离心泵调节阀,打开引水阀,反复开、关放气阀,气体被排尽后,关闭放气阀和引水阀。

流体流动阻力的测定 实验报告

流体流动阻力的测定 实验报告

实验一 流体流动阻力的测定摘要: 通过实验测定流体在光滑管、粗糙管、层流管中流动时, 借助于伯努利方程计算摩擦阻力系数和雷诺数之间的关系, 并与理论值相比较。

同时以实验手段计算突然扩大处的局部阻力, 并对以上数据加以分析, 得出结论。

一、目的及任务1.掌握测定流体流动阻力的实验的一般实验方法。

2.测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。

3.测定层流管的摩擦阻力。

4.验证湍流区内摩擦阻力系数λ与雷诺数Re 和相对粗糙度的函数。

5.将所得的光滑管的λ-Re 方程与Blasius 方程相比较。

二、基本原理1.直管摩擦阻力 不可压缩流体(如水), 在圆形直管中做稳定流动时, 由于黏性和涡流的作用产生摩擦阻力;流体在突然扩大、弯头等管件时, 由于流体运动速度和方向的突然变化, 产生局部阻力。

影响流体阻力的因素较多, 在工程上采用量纲分析方法简化实验, 得到在一定条件下具有普遍意义的结果, 其方法如下。

流体流动阻力与流体的性质, 流体流经处几何尺寸以及流动状态有光, 可表示为 p=f (d, l, u, , , ) 引入下列无量纲数群雷诺数Re=μρdu相对粗糙度d ε 管子的长径比dl从而得到),,du (p 2d ld u εμρρψ=∆令 = (Re, )2)(Re,2u d d l pερΦ=∆ 可得摩擦阻力系数与压头损失之间的关系, 这种关系可用实验方法直接测定。

22u d l ph f ⨯=∆=λρ式中 ——直管阻力, J/Kg ; l ——被测管长, m ; d ——被测管内径, m ; u ——平均流速, m/s ; λ——摩擦阻力系数。

当流体在一管径为d 的圆形管中流动时, 选取两个截面, 用U 形压差计测出这两个截面间的静压强差, 即为流体流过两截面间的流动阻力。

根据伯努利方程找出静压强差和摩擦阻力系数的关系式, 即可求出摩擦阻力系数。

改变流速可测出不同Re 下的摩擦阻力系数, 这样就可得出某一相对粗糙度下管子的 -Re 关系。

流体流动阻力的测定

流体流动阻力的测定

粗糙管 平均水温 t 水=28.1℃ 序号 1 2 3 4 5 6 电机功率(kW) 0.75 0.75 0.77 0.77 0.78 0.79 查表:ρ=996.204kg/m 管径 d=0.023m 流量(m /h) 0.49 0.79 1.07 1.35 1.63 1.95
3 3
层流管 μ=0.8360× 10 Pa· s 左 2420 2300 2150 1970 1750 1480 右 2560 2630 2700 2790 2890 3030 水温(℃) 28.3 28.4 28.1 27.8 27.9 27.9
涡轮流量计
LWGY-25AOD3T/K
水箱 高位槽
0.60m× 0.40m× 0.60m Φ0.11m×0.25m
不锈钢 不锈钢
2-8
流体流动阻力的测定
仪表序号 PI01 NI02 装置控制 点 PI03 FI04 TI05 ΔPI06 a1 、a2 ;b1 、b2 ;c 1 、 c 2 ;d1 、d2 ;e1 、e2 ; f1 、f2
名称 层流管 局部阻力 光滑管 粗糙管 突扩管 泵出口管 型号 Φ6×1.5 Φ27×3.0 Φ27×3.0 Φ27×3.0 Φ27×3.0→Φ 48×3.0 DN25 材质/参数 不锈钢管 球阀、截止阀 不锈钢管 镀锌钢管 不锈钢管 不锈钢管 Q=110L/min, 装置参数 水泵 磁力驱动泵 32CQ-15 H=15m,驱动功: 1.1kW, 电压: 380V, 转速=2900r/min 孔板流量计 C0 =0.73,d0 =0.021m 公称压力:0.3MPa, 上海自仪九仪表 精确度:0.5 级 有限公司 1.5 1.5 测量段长度/m 1
-3
平均水温 t 水=27.6℃ 序号 1 2 3 4 5 6 7 时间(s) 30 30 30 30 30 30 30

流体流动阻力的测定

流体流动阻力的测定

g
g
其中:ρ 0——压差计中指示液密度,kg/m3。本实验中用水银作指示液,被测流体为 水。
Δ R——U 型管中水银位差,m。 g——重力加速度,g=9.81m/s2。
2、沿程阻力 流体在水平均匀管道中稳定流动时,由截面 1 到截面 2,阻力损失表现在压强的降低; 影响阻力损失的因素十分复杂,目前尚不能完全用理论方法求解,必须通过实验研究
10、实验装置恢复原状,打开压差计上的平衡阀,并清理实验现场。
五、数据记录及数据处理
数据记录如表 1-1 所示,数据处理如表 1-2 所示。
表 1-1 直管阻力及局部阻力记录表
t=

涡轮流量计系数 N=
转/(L/s)
序号
1 2 3 4 5 6 7 8 平衡
水温/℃
涡轮转数
直管阻力 左读数/cm
局部阻力 左读数/cm
二、基本原理
流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地会引起压强损耗。
这种损耗包括流体经过直管的沿程阻力以及因流体运动方向改变或因管子大小形状改变所
引起的局部阻力。
1、流动阻力 流动阻力包括沿程阻力和局部阻力二部分,常采用 U 管压差计测量,其依据:
hf= p1 p2 (0 )gR [ m]
可以用直管阻力的公式来计算局部阻力损失,而且在管路计算时,可将管路中的直管长度
与管件,阀门的当量长度合并在一起计算,如管路中直管长度为 l ,各种局部阻力的当量
长度之和为∑Le,则流体在管道中流动时的总阻力损失∑hf 为:
∑hf = λ l le u2 。 d 2g

(2)阻力系数法
六、实验报告
按正规要求的格式书写实验报告,书写本实验报告时,还注意以下事项: 1、根据实验结果,在双对数坐标纸上描绘λ =f(Re)的曲线或在直角坐标纸上描绘 lg

流体力学综合实验流动阻力测定

流体力学综合实验流动阻力测定

• c)平衡水位。关闭阀(4)、(5)、(3),然后打 开(1)和(2)两个阀门,让水进入玻璃管至平 衡水位(此时系统中旳出水阀门一直是关闭 旳,管路中旳水在零流量时,U形管内水位 是平衡旳。)压差计即处于待用状态
• d)调整管路总出口阀,则被测对象在不同流 量下相应旳差压,就反应为倒U型管压差计 旳左右水柱之差。
• 2.局部阻力系数 旳测定
• 局部阻力损失一般有两种表达措施,即当 量长度法和阻力系数法。
• (1)当量长度法
• 流体流过某管件或阀门时造成旳机械能损
失看作与某一长度为le 旳同直径旳管道所产
生旳机械能损失相当,此折合旳管道长度
称为当量长度,用符号 le 表达。
• 这么,就能够用直管阻力旳公式来计算局 部阻力损失,而且在管路计算时可将管路 中旳直管长度与管件、阀门旳当量长度合 并在一起计算,则流体在管路中流动时旳 总机械能损失 为:
• 2.根据光滑管试验成果,对照柏拉修斯方程, 计算其误差。
• 3.根据局部阻力试验成果,求出闸阀全开时 旳平均ξ值。
• 4.对试验成果进行分析讨论。
• 七、思索题
1.在对装置做排气工作时,是否一定要关闭 流程尾部旳出口阀?为何?
2.怎样检测管路中旳空气已经被排除洁净? 3.以水做介质所测得旳λ~Re关系能否合用 于其他流体?怎样应用? 4.在不同设备上(涉及不同管径),不同水温 下测定旳λ~Re数据能否关联在同一条曲线上? 5.假如测压口、孔边沿有毛刺或安装不垂直, 对静压旳测量有何影响?
u —流体在小截面管中旳平均 流速,m部阻力损失。
• 根据连接管件或阀门两端管径中小管旳直 径d,指示液密度 0 ,流体温度t0(查流体物
性ρ、μ),及试验时测定旳流量V、液柱压

流体流动阻力的测定流体流动

流体流动阻力的测定流体流动

ξ2 平均 值
m3/s
m/s
Pa
1
2 3
16
流 体 流动 实 验---- 附表
第 表1-1
序 号 0 1
套实验装置
实验日期
直管流动阻力测定原始数据记录表
( 左侧 直管)压差计示值(mm) 右侧 净值 流体 温度 ℃
流量数字积算 仪读数 m3/h
2
3 …
13
流 体 流动 实 验---- 附表
表1-2
序 号
0 1
局部阻力管件阻力系数测定原始数据记录表
第5~8套
直管阻力 DN25镀锌管 d内=27mm,l =4.0 m; DN20镀锌管 d内=21mm,l=4.0m。 局部阻力 DN25截止阀 DN (40-25) 变径管件(缩小)。
8
流体流动实验
五、操作步骤
(1) 熟悉实验装置流程及所使用的仪表。 (2) 开启总阀向系统送水。 (3) 排气。 ① 管路排气。 ② 测压导管排气。 ③ U形管压差计排气。 (4) 开启调节阀,关闭U形管压差计上的平衡阀。
阀门局部阻力系数 测定压差计示值 (mm)( DN ) 左侧 右侧 左侧 变径管件局部阻力系数 流体 测定压差计示值(mm) 温度 ( DN - ) 右侧 净值 净值 ℃
流量数字 积算仪读 数
m3/h
2 3
14
流 体 流动 实 验---- 附表
表1-3
(
序 号 1 流量 m3/s 流速 m/s
直管流动阻力测定数据整理表
10
流体流动实验
六、实验报告内容和要求
(1) (2) (3) (4) (5) 整理测试数据,计算实验结果。 计算过程举例。 在双对数坐标纸上标绘实测的λ-Re曲线。 计算局部阻力系数 ξ,并求其平均值。 对实验现象和实验结果分析讨论。

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告一、实验目的1、掌握测定流体流经直管和管件时阻力损失的实验方法。

2、测定直管摩擦系数λ与雷诺数 Re 的关系,验证在一般湍流区内λ与 Re 的关系曲线。

3、测定流体流经管件的局部阻力系数ζ。

4、学会压差计和流量计的使用方法。

二、实验原理1、直管阻力损失流体在水平等径直管中稳定流动时,阻力损失表现为压力降。

根据柏努利方程,直管阻力损失可以表示为:$\Delta P_f =\lambda \frac{l}{d} \frac{\rho u^2}{2}$其中,$\Delta P_f$ 为直管阻力损失,$\lambda$ 为直管摩擦系数,$l$ 为直管长度,$d$ 为直管内径,$\rho$ 为流体密度,$u$ 为流体流速。

雷诺数$Re =\frac{du\rho}{\mu}$,其中$\mu$ 为流体粘度。

对于湍流,摩擦系数$\lambda$ 与雷诺数$Re$ 及相对粗糙度$\frac{\varepsilon}{d}$有关。

2、局部阻力损失局部阻力损失通常用局部阻力系数$\zeta$ 来表示,其计算式为:$\Delta P_j =\zeta \frac{\rho u^2}{2}$其中,$\DeltaP_j$ 为局部阻力损失。

三、实验装置本实验装置主要由离心泵、水箱、直管、管件(弯管、阀门等)、压差计、流量计等组成。

1、离心泵:用于提供流体流动的动力。

2、水箱:储存实验所用的流体。

3、直管:有不同管径和长度的直管,用于测量直管阻力损失。

4、管件:包括各种类型的弯管、阀门等,用于测量局部阻力损失。

5、压差计:用于测量流体流经直管和管件前后的压力差。

6、流量计:用于测量流体的流量。

四、实验步骤1、实验前准备熟悉实验装置,了解各仪器仪表的使用方法。

检查水箱中水位是否足够,离心泵是否正常运转。

打开压差计上的平衡阀,排除其中的气泡。

2、直管阻力损失的测定关闭实验管线上的阀门,启动离心泵,调节流量至某一值。

流体流动阻力的测定实验

流体流动阻力的测定实验
所以(1)和(2)两式分别可简化为
hf
p1 p2
Hf
p1 p2
g
J ·kg –1 (3)
m水柱
(4)
试验基本原理
当流体在圆形直管内流动时,流体因磨擦阻力所
造成旳能量损失(压头损失),有如下一般关系式:
hf
p1
p2
p
l
d
u2
2
J ·kg –1
(5)

Hf
p1 p2
g
l
d
u2 2g
m液柱
试验环节
3、试验布点 因为Re在充分湍流区,λ~Re旳关系是直线,所以大流量时 少布点,而Re在比较小时,λ~Re旳关系是曲线,所以小 流量时多布点。先将控制阀开至最大,读取流量显示仪读, 然后关至水银压差计差值约0.10时,在读取流量显示仪读 数,在和二个读数之间布12~14个点。水温取第一组和最 终一组读数旳平均值。
(6)
或写成
p
p1
p2
l d
u2
2
2p
u2
d l
试验基本原理
p p1 p2 (示-)gR (示-)g(R1 R2 ) Pa
u qV A
qV
F C
103 m3
s
Re du
2、局部阻力系数ζ旳测定:
试验基本原理
当流体流过管路系统时,因遇多种管件、阀门和测量仪
表等而产生局部阻力,所造成旳能量损失(压头损失),
化工原理试验
—— 流体流动阻力旳测定试验
试验目旳
1、学习直管摩擦阻力△P、局部阻力△P局、直管摩擦系数λ、 局部阻力系数ζ旳测量措施;
2、掌握直管摩擦系数λ与雷诺数Re之间旳关系旳测定措施及 其变化规律;

流体流动阻力的测定

流体流动阻力的测定

流体流动阻力的测定引言流体流动阻力的测定是流体力学领域中的重要研究内容。

了解流体在流动过程中的阻碍情况对于各种应用和工程设计都具有重要意义。

本文将从流体流动阻力的原理、测定方法以及实验过程等多个方面进行探讨。

流体流动阻力的原理流体流动阻力是流体在流动过程中受到的阻碍力。

其大小取决于流体的性质、流动速度以及物体形状等因素。

根据伯努利定律,流体在流动过程中会产生压力变化。

而由牛顿第二定律可知,物体所受到的阻力与速度成正比。

因此,可以通过测量压力变化和流速来确定流动阻力的大小。

流体流动阻力的测定方法测定方法一:压力差法压力差法是一种常见的测定流体流动阻力的方法。

它通过测量流体流过物体前后的压力差来确定阻力的大小。

具体步骤如下: 1. 设置合适的试验装置,包括流体源、测压装置和物体样品。

2. 测量流体流过物体前后的压力差,可以使用压力传感器或者水银柱测压法。

3. 根据压力差和流体速度计算出流体流动阻力。

测定方法二:阻力系数法阻力系数法是另一种常用的测定流体流动阻力的方法。

它通过测量物体在流体中所受到的阻力,结合流体的性质和运动状态,计算出阻力系数。

具体步骤如下: 1. 设置合适的实验装置,包括流体源、测力装置和物体样品。

2. 测量物体在流体中所受到的阻力,可以使用力传感器或者天平等装置。

3. 根据阻力大小、流体密度、物体形状等参数计算出阻力系数。

流体流动阻力的实验过程实验准备1.准备好实验所需的仪器和设备,包括流体源、压力传感器、流速计、物体样品等。

2.根据实验需要调整流体源的流量和压力。

3.确保实验环境稳定,以减小外界因素对实验结果的影响。

实验步骤1.将流体导入实验装置,确保流体稳定流过物体样品。

2.实时监测流体的压力和流速,并记录相应数据。

3.若使用压力差法,需分别测量流体流过物体前后的压力值。

4.若使用阻力系数法,需测量物体在流体中所受到的阻力。

实验数据处理1.根据测得的数据计算流体流动阻力的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六 流体流动阻力测定
一、实验目的
1.掌握流体流经直管和管阀件时阻力损失的测定方法,通过实验了解流体流动中能量损失的变化规律。

2.、测定水流过一段粗糙直管、光滑直管的沿程摩擦阻力损失Δp f ,确定摩擦阻力系数λ和雷诺准数Re 之间的关系。

将所得的λ~Re 方程与公认经验关系比较。

3.测定流体流经闸阀等管件时的局部阻力系数ξ。

4.学会压差计和流量计的使用方法,了解差压变送器、功率传感器的工作原理。

熟悉测定流体流经直管和管件时的阻力损失的实验组织方法及测定摩擦系数的工程意义。

5.观察组成管路的各种管件、阀件,了解其作用。

二、基本原理
流体在管内流动时,由于粘性剪应力和涡流的存在,不可避免地要消耗一定的机械能,这种机械能的消耗包括流体流经直管的沿程阻力和因流体运动方向改变所引起的局部阻力。

1.沿程阻力
流体在水平均匀管道中稳定流动时,阻力损失表现为压力降低。


ρρ
p
p p h f ∆=
-=
2
1
影响阻力损失的因素很多,尤其对湍流流体,目前尚不能完全用理论方法求解,必须通过实验研究其规律。

为了减少实验工作量,使实验结果具有普遍意义,必须采用因次分析方法将各变量综合成准数关联式。

根据因次分析,影响阻力损失的因素有, (1)流体性质:密度ρ,粘度μ;
(2)管路的几何尺寸:管径d ,管长l ,管壁粗糙度ε; (3)流动条件:流速μ。

可表示为:
),,,,,(ερμu l d f p =∆
组合成如下的无因次式:
)
,,(2
d d l du u p ε
μρρΦ=∆ 2
),(2
u d l d du p
∙∙=∆εμρϕρ 令
)
(
d du ε
μρ
ϕλ∙=

22
u d l p
h f λ
ρ=∆=
式中,
P ∆——压降 Pa
h f ——直管阻力损失 J/kg , ρ——流体密度kg/m 3
λ——直管摩擦系数,无因次 l ——直管长度 m
d ——直管内径 m
u ——流体流速,由实验测定 m/s
λ——称为直管摩擦系数。

滞流(层流)时,λ=64/Re ;湍流时λ是雷诺准数Re 和相对粗糙度的函数,须由实验确定. 2.局部阻力
局部阻力通常有两种表示方法,即当量长度法和阻力系数法。

当量长度法
流体流过某管件或阀门时,因局部阻力造成的损失,相当于流体流过与其具有相当管径长度的直管阻力损失,这个直管长度称为当量长度,用符号le 表示。

这样,就可以用直管阻力的公式来计算局部阻力损失,而且在管路计算时.可将管路中的直骨长度与管件、阀门的当量长度合并在一起计算,如管路中直管长度为乙各种局部阻力的当量长度之和为
∑le ,则流体在管路中流动时的总阻力损失∑f
h

2
2
u d
le l h
f
∑∑+=λ
阻力系数法
流体通过某一管件或阀门时的阻力损失用流体在管路小的动能系数来表示,这种计算局 部阻力的方法,称为阻力系数法。


式中,ξ——局部阻力系数,无因次;
u ——在小截面管中流体的平均流速,m /s 。

由于管件两侧距测压孔问的直管长度很短.引起的摩擦阻力与局部阻力相比,可以忽略不计。

因此h f 之值可应用柏努利方程由压差计读数求取。

三、实验装置与流程
1.实验装置
图1-1 实验装置流程图
实验装置如图1-1所示。

主要部分由离心泵,不同管径、材质的管子,各种阀门或管件,转子流量计等组成。

从上向下第一根为不锈钢光滑管,第二根为镀锌铁管,分别用于光滑管和粗糙管湍流流体流动阻力的测定。

第三根为不锈钢管,其上装有待测管件(闸阀),用于局
22
u h f ξ
='
部阻力的测定。

流体温度有热电阻,流体流量由涡轮流量计测量,压差有压差变送器测量。

本实验的介质为水,由离心泵供给,经实验装置后的水通过管道流入储水箱内循环使用。

2.装置结构尺寸
装置结构尺寸如表1-1所示。

表1-1 装置参数
图1-2:控制柜面板
1、空气开关
2、
3、4电源指示灯5、流量控制仪6、6路巡检仪(单位m3/h):第一通道测量离心泵进口压力(单位:kpa),第二通道测量离心泵出口压力(单位:kpa),第三通道测量离心泵转速(单位:r/min)第四通道测量流体阻力压差(单位:pa)第五通道测量流
体温度(单位:摄氏度),第六通道没用,7、功率表(单位:KW)8、仪表电源指示灯、9、仪表电源开关,10、变频器电源指示灯,11、变频器电源开关,12、离心泵电源指示灯、13、离心泵直接或变频器运行转换开关,14、离心泵启动按钮,15、离心泵停止按钮。

四、实验步骤及注意事项
1.灌泵
储水箱中出水到适当位置(大概三分之二处)关闭阀1、阀2、阀3、阀4、阀5、打开离心泵出口排气阀和进口灌水阀,用水杯从灌水阀灌水,气体从排汽阀排出,直到排水阀有水排出并且没有气泡灌水完毕,关闭排气阀和灌水阀。

2.启动水泵
打开控制柜上1空气开关,打开9仪表电源开关,仪表指示灯10亮,仪表上电,显示被测数据。

把转换开关转到直接位置,指示灯12亮,按一下离心泵启动按钮,离心泵运转,启动按钮指示灯亮,水泵启动完毕。

3.光滑管排气
先打开光滑管与差压变送器相连的阀门,粗糙管和局部阻力与差压变送器相连的阀门关闭,打开阀3和阀2,排出光滑管中的气体,关上阀2,打开差压变送器的两个排汽阀,排出管道中的气体,直到没有气泡排出为止,关闭差压变送器上的两个排汽阀,光滑管排气完毕。

4.光滑管实验
打开流体阻力监控软件数据班级、姓名、学号等信息,进入流体阻力实验,点击光滑管,调节阀2,每隔1m3/h采集一组实验数据(等数据稳定之后再采集),从2m3/h开始到最大流量,但注意最大流量时压差不能超过10kpa,如果超过调节阀门2,使压差不超过10kpa。

光滑管数据采集完毕后,先关闭阀2和阀3,再关闭光滑管与差压变送器相连的两个阀门。

5.粗糙管实验
粗糙管排气与光滑管排气类似,先打开粗糙管与差压变送器相连的两个阀门,再打开阀4和阀2,排出粗糙管中的气体,关闭阀2,打开差压变送器的两个排汽阀,排出管道中的气体,直到没有气泡排出为止,关闭差压变送器上的两个排汽阀,粗糙管排气完毕。

点击粗粗管,调节阀2,,每隔1m3/h采集一组实验数据(等数据稳定之后再采集),从2m3/h开始到最大流量,但注意最大流量时压差不能超过10kpa,如果超过调节阀门2,使压差不超过
10kpa。

粗糙管数据采集完毕后,先关闭阀2和阀4,再关闭光滑管与差压变送器相连的两个阀门。

6.局部阻力实验
局部阻力排气与光滑管排气类似,先打开局部阻力与差压变送器相连的两个阀门,再打开阀5和阀2,排出粗糙管中的气体,关闭阀2,打开差压变送器的两个排汽阀,排出管道中的气体,直到没有气泡排出为止,关闭差压变送器上的两个排汽阀,局部阻力排气完毕。

点击局部阻力,调节阀2,,每隔1m3/h采集一组实验数据(等数据稳定之后再采集),从2m3/h开始到最大流量,但注意最大流量时压差不能超过10kpa,如果超过调节阀门2,使压差不超过10kpa。

局部阻力数据采集完毕后,先关闭阀2和阀5,再关闭光滑管与差压变送器相连的两个阀门。

流体阻力实验完毕。

7、数据处理
实验数据记录
实验数据采集完毕,打开数据处理软件,打开实验数据,执行相应的软件功能,就可算出流体雷诺系数与摩擦因数的关系,执行绘图功能,就可绘出雷诺系数与摩擦因数的曲线关系,执行打印功能就可打印实验数据和实验处理结果。

五、实验报告
1.根据粗糙管实验结果,在双对数坐标纸上标绘出λ~Re曲线,对照化工原理教材上有关图形,即可估出该管的相对粗糙度和绝对粗糙度。

2.根据光滑管实验结果,对照柏拉修斯方程,计算其误差。

3.根据局部阻力实验结果,求出闸阀全开时的平均ξ值。

4.对实验结果进行分析讨论。

注:流体阻力控制仪表(AI-519)参数
P=30 I=3 D=1
六、思考题
1.在对装置做排气工作时,是否一定要关闭流程尾部的流量调节阀?为什么?
2.如何检验测试系统内的空气已经被排除干净?
3.以水做介质所测得的λ~Re关系能否适用于其它流体?如何应用?
4.在不同设备上(包括不同管径),不同水温下测定的λ~Re数据能否关联在同一条曲线上?
5.如果测压口、孔边缘有毛刺或安装不垂直,对静压的测量有何影响?
6.在直管阻力测量中,压差计显示的压差是否随着流量的增加而成线性增加?分别就层流和湍流进行讨论。

相关文档
最新文档