物理化学二组分体系相图
物理化学课件二组分相图相图资料
压力-组成图(p-xB图) 温度-组成图(T- xB图) 杠杆规则 二组分真实液态混合物的气-液平衡相图
1
将吉布斯相律应用于二组分系统 ( C = 2 )
f = 2-+2=4-
min=1,fmax=3 最多3个独立变量(T, p, x)
指定温度,则有压力-组成图 ; 指定压力,则有温度-组成图 .
10
• 甲苯(A) - 苯(B)系统在 p = 101.325 Pa下 沸点与两相组成的关系
沸点 t / ℃ 液相组成 xB(L) 气相组成 xB(G)
110.62
0
0
108.75
0.042
0.089
104.87
0.132
0.257
103.00
0.183
0.384
101.52
0.219
0.395
97.76
• 露点: 气相降温至开始 凝结的温度.
• 区分系统点与相点,会 读系统总组成与相组 成.
沸点-组成图
12
苯和甲苯的 压力-组成图 和 温度-组成图 的对比:
• 整体形状基本类似
• 点、线、 面的相对高低位置均颠倒!
13
杠杆规则
p
当系统在 M 点以 L, G 两相平衡时, 对B组分作物料衡算:
t 一定 l (A+B)
若pB* > p > pA*, 则 yB > xB, yA < xA. 可知:
饱和蒸气压不同的两种液体形成理想液态混合物成气-液平 衡时, 两相的组成并不相同, 易挥发组分在气相中的相对 含量大于它在液相中的相对含量.
气-液平衡时蒸气总压p与气相组成yB的关系:
结合式 p = pA* + (pB* - pA* ) xB 和式 yB = pB*xB /p 可得
物理化学第五章2
2、 等压T-x-y图( 沸点组成图 )
T x y
( yA )
p
等温p x
p
T4 T3 T2
T : 纯B物质的沸点 T : 纯A物质的沸点
A
B A
T1
B
x1
x2 xA
x3
x4
p xA yA p
T x y
气相线
A
T
TB
液相线
p
B
TA
xA
A
( yA )
T
B
T
A
T
B
T
A
l
完全互溶双液系
两个纯液体组分可以按任意比例相互混合 成均一液相的体系,称为完全互溶双液系(或 液体混合物)。
理想的完全互溶双液系
若混合溶液中任一组分在全部浓度范围内, 其蒸气压与液相组成的关系都符合Raoult定律, 则这样的双液系称为理想的完全互溶双液系(或 理想的液体混合物)。
B A
A A A B
说明1 液相线是直线,
p pA pB p ( p p ) xA
B B A
B
A
B
p p 气相线不是直线, p pA ( p pA ) yA
p
气相线
液相线
?
说明2
p p
A
B
yB pB p xB yA pA p xA
答案:A
三、杠杆规则
1、物系点与相点? 2、杠杆规则的内容? 3、杠杆规则推导的依据? 4、杠杆规则在相图中的应用?
三、杠杆规则 1、物系点与相点
物系点: 相图中表示体系总状态(总组 成、温度和压力)的点称为物系点。
华东理工大学《物理化学》课件4.1 两组分气液相图
f 22101 (T恒定)
L a LV
x3 x2 x1
y3
y2 y1
bV
xo
A-B二组分液态混合物恒温减压过程的变化
2.理想混合物的恒压相图 液相线(泡点线) 气相线(露点线) 液相面 气相面 气液共存面
C6H5CH3(A)——C6H6(B)
2.理想混合物的恒压相图
液相线(泡点线) 气相线(露点线) 液相面
nV nL
xo xL yV xo
ox yo
m1
m2
L1
L2
m2 L1 m1 L2
(A)甲苯—苯(B)
例 如有200molxB=0.500mol的C6H5CH3(A) —C6H6(B)混合 物,当压力为101.325kPa, 温度为95.3℃时,试计算闪蒸后
气液两相的数量。
解: 总组成点即图4–2的o点,由 图读得yV=0.621,xL=0.400,代入 式(4–1),
液相线:p ~ x,恒 温下蒸气压随液相组 成的变化。对理想溶 液来说是直线。
液相线
C6H5CH3(A)——C6H6(B)
1.理想混合物的恒温相图
pA p(1 yB ) pA* (1 xB )
pB pyB pB* xB
p pA* xA pB* xB
yA
yB
pA* pB* pB* ( pB* pA* ) yB
b
x2
y2 y1
x1
气相面
a
气液共存面
A-B二组分液态混合物恒压升温过程的变化
理想混合物的恒温相图
L+V L
V
恒压相图
C6H5CH3(A)——C6H6(B) C6H5CH3(A)——C6H6(B)
物理化学实验报告二组分简单共熔合金相图绘制
一、实验目的1.掌握步冷曲线法测绘二组分金属的固液平衡相图的原理和方法。
2、了解固液平衡相图的特点,进一步学习和巩固相律等有关知识。
二、主要实验器材和药品1、仪器:KWL-II金属相图(步冷曲线)实验装置、微电脑控制器、不锈钢套管、硬质玻璃样品管、托盘天平、坩埚钳2、试剂:纯锡(AR)、纯铋(AR)、石墨粉、液体石蜡三、实验原理压力对凝聚系统影响很小,因此通常讨论其相平衡时不考虑压力的影响,故根据相律,二组分凝聚系统最多有温度和组成两个独立变量,其相图为温度组成图。
较为简单的组分金属相图主要有三种:一种是液相完全互溶,凝固后固相也能完全瓦溶成固体混合物的系统最典型的为Cu- Ni系统;另一种是液相完全互溶,而固相完全不互溶的系统,最典型的是Bi- Cd 系统;还有一种是液相完全互溶,而固相是部分互溶的系统,如Pb- Sn或Bi- Sn系统。
研究凝聚系统相平衡,绘制其相图常采用溶解度法和热分析法。
溶解度法是指在确定的温度下,直接测定固液两相平衡时溶液的浓度,然后依据测得的温度和溶解度数据绘制成相图。
此法适用于常温F易测定组成的系统,如水盐系统。
热分析法(步冷曲线法)则是观察被研究系统温度变化与相变化的关系,这是绘制金属相图最常用和最基本的实验方法。
它是利用金属及合金在加热和冷却过程中发生相变时,潜热的释出或吸收及热容的突变,来得到金属或合金中相转变温度的方法。
其原理是将系统加热熔融,然后使其缓慢而均匀地冷却,每隔定时间记录一次温度,物系在冷却过程中温度随时间的变化关系曲线称为步冷曲线(又称为冷却曲线)。
根据步冷曲线可以判断体系有无相变的发生。
当体系内没有相变时,步冷曲线是连续变化的;当体系内有相变发生时,步冷曲线上将会出现转折点或水平部分。
这是因为相变时的热效应使温度随时间的变化率发生了变化。
因此,由步冷曲线的斜率变化可以确定体系的相变点温度。
测定不同组分的步冷曲线,找出对应的相变温度,即可绘制相图。
物理化学实验报告讲义二组分金属相图的测定
实验30 二组分金属相图的测定预习要求1.理解热分析法。
2.理解步冷曲线上的转折点及停歇线表示的含义。
3.本实验所测定的Zn-Sn二组分,在液相及固相的相互溶解情况。
4.使用热电偶测量温度时的注意事项。
(参阅附录1.2.3)实验目的1.用热分析法(步冷曲线法)绘制Zn-Sn二组分金属相图。
2.掌握热电偶测量温度的基本原理和自动平衡记录仪的使用方法。
实验原理简单的二组分金属相图主要有三种:①液相完全互溶,凝固后固相也能完全互溶成固溶体的系统,如Cu-Ni,溴苯-氯苯;②液相完全互溶,固相完全不互溶的系统,如Bi-Cd;③液相完全互溶,固相部分互溶的系统,如Pb-Sn。
本实验研究的Zn-Sn系统属于第二种。
在低共熔温度下,Zn在固相Sn中的最大溶解度为w Zn=0.09。
热分析法是绘制金属相图的基本方法之一,即利用金属或合金在加热或冷却过程中发生相变时,相变热的吸收或释放引起热容的突变,来得到金属或合金中相转变温度的方法。
通常的做法是将金属或合金加热至全部熔化,然后让其在一定的环境中自行冷却,每隔一定时间记录一次温度,表示温度与时间关系的曲线,即为步冷曲线(见图3-13)。
当熔融的系统均匀冷却时,如果不发生相图3-13步冷曲线变,则系统温度随时间的变化是均匀的,冷却速度较快(如图中ab线段);若在冷却过程中发生相变,由于在相变过程中伴随着放热,所以系统的冷却速率减慢,步冷曲线上出现转折(如图中b点);当系统继续冷却到某一温度时(如图中c点),系统中有低共熔混合物析出,步冷曲线出现温度的“停顿”;在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线上出现水平线段(如图中cd线段);当系统完全凝固后,温度又开始下降(如图中de线段)。
图3-14 固相完全不互溶的A-B二组分金属相图及其步冷曲线由此可知,对组成一定的二组分低共熔混合物系统,可以根据它的步冷曲线得到有固体析出的温度和低共熔温度。
根据一系列组成不同系统的步冷曲线各转折点、停歇线的温度,即可画出二组分系统的相图(温度-组成图)。
物理化学课件二组分相图相图解读
2
压力-组成图(p~ xB图)
设组分A和B形成理想液态混合物(见图). 气-液平衡时蒸气总压p与液相组成xB的关系: 在温度T下两相平衡时, 由拉乌尔定律
* * xB pA pA xA , pB pB
T一定
g p y A yB pA pB xA xB l
•理想液态混合物的 气 - 液平衡
A和B均满足 pB = p*B xB
t 一定 p
p
l (A+B) M
* B
nGxG + nLxL = (nG + nL) xM 得
L 总 nG n n B B B
L
G
nL xG xM MG 推导 nG xM xL LM
B 既是系统点又是相点
A
xL xM xG nL nM nG
xB
7
• 实际混合物中苯(B)和甲苯(A)双液系的性质接近理想 混合物, 在79.7 ℃下实测 压力-组成 数据如下:
液相组成 xB 0 0.1161 0.2271 0.3383 0.4532 0.5451 0.6344 0.7327 0.8243 0.9189 0.9565 1.000
8
相点
系统点
液相线
• 点, 线, 区的含义 及各状态下自由 度数; • 会读系统总组成 g p 与相组成 ; yA yB pA pB 气相线 xA xB 相点 l
T一定
结线 •理想液态混合物的 气 - 液平衡
蒸气压组成相图 A和B均满足 pB = p*B xB
9
2. 温度-组成图(T~ xB图)
在恒压下表示二组分系统气-液平衡时的温度和
组成的关系. 根据实验数据可以作出T~x图(包括气相线和液 相线). 例如:苯~甲苯的T~x图如下:
6-4相平衡-二组分理想液态混合物气液平衡相图
p* A3
p* As
p* B3
p* Bs
x B3 1.0
y B 3 1.0
3.绘图: T—XB线(紫)T—YB线(红)
§6-3二组分理想液态混合物气液平衡相图
四、温度——组成图(T—X图)分析 1.相图静分析:坐标、区、线、点 坐标:T,XB(YB) 区: 下线下边(浅蓝色区)
P=1、液相、F=2 上线上边(灰色区)
第六章 相平衡
§6-!本章基本要求 §6-1 相平衡系统基本概念 §6-2 单组分相平衡 §6-3二组分理想液态混合物气液平衡相图 §6-4二组分真实液态混合物液态完全互溶系统气液平衡相图 *§6-5 精镏原理 §6-6二组分液态部分互溶及完全不互溶系统气液平衡相图 §6-7二组分无中间化合物的凝聚系统相图 §6-8二组分有中间化合物的凝聚系统相图 *§6-9三组分系统相图简介 §6-$本章小结与学习指导
(上册)
第六章就先讲到这里 下节课再见!
LM G
§6-3二组分理想液态混合物气液平衡相图
二、压力——组成图(p—x图)分析 2.相图动分析: 压力不变往液体A中
加入B气体 组成不变改变压力
§6-3二组分理想液态混合物气液平衡相图
三、杠杆规则(物料衡算)
对二组分2相系统(如左下图气液2相):
中间M点称为系统点
L
M点组成XM,B称为系统组成
§6-3二组分理想液态混合物气液平衡相图
前面课程我们讲述了二组份系统的特征 1.描述二组分系统需要的三个独立变量,可以用三维坐标系表
示二组分系统相平衡 。 2.二组分系统若固定一个变量,就可以用二维坐标系表示相平
衡。 3主要讨论:确定温条件下的压力—组成图,确定压条件下的温
二组分凝聚系统相图.
T
' c
等压
c'
两相
T/K
453
413
373
Tc
c
0.2 0.4 0.6
单相
0.8 1.0
0
水
质量分数 水-烟碱的溶解度图
烟碱
6.4 二组分凝聚系统相图 一、二组分固态完全不互溶系统液固平衡相图
1. 热分析法
基本原理:二组分系统 C=2,指定压力不变,
f * = C +1 -F =3 -F
F = 1
f f 1 ** f f 2
*
相点 表示某个相状态(如相态、组成、温度等)的 点称为相点。 物系点 相图中表示系统总状态的点称为物系点。在T-x 图上,物系点可以沿着与温度坐标平行的垂线上、 下移动;在水盐相图上,随着含水量的变化,物系 点可沿着与组成坐标平行的直线左右移动。
单相区,物系点与相点重合;两相区中,只有 物系点,它对应的两个相的组成由对应的相点表示
B
3. 全部变为固体Bi后
f * C 1 Φ 1
t /s
温度又可以下降 纯Cd步冷曲线与之相同
Cd-Bi二元相图的绘制
w(Cd) 0.2
的步冷曲线
b
T /K
f* 2
C
D
f * 1
1. 加热到b点,Bi-Cd全部熔化 Φ 1 f * 2 1 Φ 2 温度可以下降,组成也可变 2. 冷至C点,固体Bi开始析出 Φ 2 f * 2 1 Φ 1 温度可以下降 3.D点固体Bi、Cd同时析出
Φ 3
f* 0 温度不能改变 f * 1 4.熔液消失,Bi和Cd共存
f 2 1 Φ 0
*
物理化学课件二组分相图相图
* A A
气相线(p~y图) 将气相线与液相线画在同一张图上得:
6
系统点
p
相点
t 一定
l (A+B) M
L
G
• 系统点: 表示系统总状态 p (总组成)的点(例如M点); 结线 • 相点:表示各个相的状态的 点( 只有一个相时,系统点 就是相点) (例如L、G点).
* B
* pA
g (A+B)
• 结线: 两个平衡相点的连 结线。 相点
0.18 l A+B)
气相线
g(A+B)
0.12
0.06 g (A+B) 0.2 0.4 xB 0.6 0.8 1.0 B
p
* A
0.0 A
•H2O(A) - C3H6O (B)系统的压力-组成图
20
具有最大正偏差系统的压力-组成图 液相线和气相线在最高点处相切
1. 0 60 50
t =35 ℃
l L G
* f AB < f AA * f AB < f BB
•若纯组分有缔合作用, 在形成混合物后发生离解, 因分子数 增多而产生正偏差.
•混合时常有吸热及体积增大现象. 关于负偏差: •若两组分分子间的吸引力大于各纯组分分子间吸引力, 形成 混合物后, 分子就较难逸出液面而产生负偏差. * * f AB > f AA f AB > f BB
•若形成混合物后分子发生缔合, 因分子数减少而产生负偏差.
•混合时常有放热及体积缩小现象.
19
②. 压力-组成图
一般正偏差和一般负偏 差系统的压力-组成图 与理想系统的主要 差别是液相线不是直 线. 如: 统. 水和丙酮系
物理化学 第四章 第六节 二组分固-液体系平衡相图2
有些二组分固 - 液平衡体系可能生成化合物, 形成第三个物种,例如:
aA +
bB
=
则体系中物种数增加 1 ,但同时有一独立的化 学反应R=1,按组分数的定义
AaBb
K=S-R-R,=3-1-0=2
因此仍然是二组分体系。这种体系分为形成稳定 化合物和不稳定化合物两种类型。
1.固相完全互溶体系的相图
当体系中的两个组分不仅在液相中 完全互溶,而且在固相中也能完全互溶, 它的T-x图与完全互溶的双液系的T-x图 形状相似。
以体系的相图及步冷曲线为例,根据相律,体 系的自由度不为零。因此,这种体系的步冷曲线 不可能出现水平线段。
液相 L A F B’ M S B 630℃ 温度
1.形成稳定化合物的相图
若生成的化合物熔 化时,固态化合物与熔融液的组成相同的话, T/K 则此化合物称为稳定 673 的化合物,其熔点称
为“相合熔点”。一般 可将此相图看作由二 573 个低共溶相图所组成。 当体系在C点时,实际 上是单组分体系。
473 A CuCl AB
B FeCl3
T/K
A CuCl
部分互溶固溶体的相图
两个组分在液态可无限混溶,而在固态只能部 分互溶,形成类似于部分互溶双液系的帽形区。在 帽形区外,是固溶体单相,在帽形区内,是两种固 溶体两相共存。 属于这种类型的相图形状各异,现介绍 (1)有一低共熔点
部分互溶固溶体的相图
(1) 有一低共熔点者 在相图上有三个单相区: AEB线以上,熔化物(L) AJF以左, 固溶体(1) BCG以右,固溶体 (2) 有三个两相区: AEJ区, L +(1) BEC区, L + (2) FJECG区,(1)+ (2) AE,BE是液相组成线;AJ,BC是固溶体组成线; JEC线为三相共存线,即(1)、(2)和组成为E的熔液三相 共存,E点为(1)、(2)的低共熔点。两个固溶体彼此互 溶的程度从JF和CG线上读出。
物理化学-实验七:二组分固液相图的绘制
实验七 二组分固-液相图的绘制一、实验目的及要求1.掌握用步冷曲线法测绘二组分金属固液平衡相图的原理和方法;2.了解采用热电偶进行测温、控温的原理和装置。
二、实验原理用来表示多相体系的温度、压力与体系中各组分的状态、组成之间关系的平面图形称为相图。
二组分固-液相图是描述体系温度与二组分组成之间关系的图形。
由于固液相变体系属凝聚体系,一般视为不受压力影响,因此在绘制相图时不考虑压力因素。
若二组分体系的两个组分在固相完全不溶,在液相可完全互溶,一般具有简单低共熔点,其相图具有比较简单的形式。
根据相律,对于具有简单低共熔点的二组分体系,其相图可分为三个区域,即液相区、固液共存区和固相区。
绘制相图时,根据不同组成样品的相变温度(即凝固点)绘制出这三个区域的交界线—液相线,即图1(b )中的T 1E 和T 2E ,并找出低共熔点E 所处的温度和液相组成。
步冷曲线法又称热分析法,是绘制相图的基本方法之一。
它是将某种组成的样品加热至全部熔融,再均速冷却,测定冷却过程中样品的温度 – 时间关系,即步冷曲线。
根据步冷曲线上的温度转折点获得该组成的相变点温度。
步冷曲线有三种形式,分别如图1(a )中的a 、b 和c 三条曲线。
a 曲线是纯物质A 的步冷曲线。
在冷却过程中,当体系温度到达A 物质凝固点时,开始析出固体,所释放的熔化热抵消了体系的散热,使步冷曲线上出现一个平台,平台的温度即为A 物质的凝固点。
纯B 步冷曲线e 的形状与此相似。
a b c d e a b c d eA B x B t液相区固液共存区固相区低共熔点T 1T 2TT (a )(b )E图1 步冷曲线b 曲线是由主要为A 物质但含有少量B 物质样品的步冷曲线。
由于含有B 物质,使得凝固点下降,在低于纯A 凝固点的某一温度开始析出固体A ,但由于固体析出后使得B 的浓度升高,凝固点进一步下降,所以曲线产生了一个转折,直到当液态组成为低共熔点组成时,A 、B 共同析出,释放较多熔化热,使得曲线上又出现平台。
物化实验报告-二组分合金相图
实验6 二组分合金相图姓名曹峻华学号班级材03 同组实验者李琦实验日期2011-10-21 提交报告日期带实验的老师柳清1 引言人们常用图形来表示体系的存在状态与组成、温度、压力等因素的关系。
以体系所含物质组成为自变量,温度为应变量所得到的T-x图是常见的一种相图。
二组分相图已得到广泛的研究和应用。
固-液相图多用于冶金、化工等部门。
较为简单的二组分金属相图主要有三种;一种是液相完全互溶,凝固后,固相也能完全互溶成固熔体的系统,最典型的为Cu-Ni系统;另一种是液相完全互溶而固相完全不互溶的系统,最典型的是Bi-Cd系统;还有一种是液相完全互溶,而固相部分也互溶的系统,如Pb-Sn系统。
本实验研究的Bi-Sn系统就是这一种。
在低共熔温度下,Bi在固相Sn中最大溶解度为21%(质量百分数)。
热分析法(步冷曲线法)是绘制凝聚体系相图时常用的方法。
它是利用金属及合金在加热或冷却过程中发生相变时,潜热的释出或吸收及热容的突变,使得温度-时间关系图上出现平台或拐点,从而得到金属或合金的相转变温度。
由热分析法制相图,先做步冷曲线,然后根据步冷曲线作图。
通常的做法是先将金属或合金全部熔化。
然后让其在一定的环境中自行冷却,通过记录仪记录下温度随时间变化的曲线(步冷曲线)。
以合金样品为例,当熔融的体系均匀冷却时(如图2-6-1所示),如果系统不发生相变,则系统温度随时间变化是均匀的,冷却速率较快(如图中ab线段);若冷却过程中发生了相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统冷却速率减慢,步冷曲线上出现转折(如图中b点)。
当熔液继续冷却到某一点时(如图中c点),此时熔液系统以低共熔混合物的固体析出。
在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线出现水平线段(如图中cd线段);当熔液完全凝固后,温度才迅速下降(如图中de线段)。
由此可知,对组成一定的二组分低共熔混合物系统,可根据它的步冷曲线得出有固体析出的温度和低共熔点温度。
物理化学 第四章 第三节 完全互溶双液体系
若将P=P*A+(P*B-P*A) xB 代入PyB=P*BxB 可得
Px yB * PA ( P P ) xB
理想溶液的 p-x-y 图
* B B * * B A
(xA= 1-xB) (yA =1-yB)
据此可以分别求得气相和液相的组成。
如果要全面描述溶液蒸气压与气、液两相 平衡组成的关系,可根据在P-x图上画出液相线, 然后从液相线上取不同的xB值代入上式求出相应 的气相组成yB值,把它们连接起来即构成气相线。 气相线总是在液相线的下面(见图)
四、蒸馏、分馏与精馏
x t
8
y8 x7 x6 x5
y7 y6
y5 x4
x3 x2 x1 y4 y3 y2
x0
y1 y0
B
A
x xB
根据上面讨论,对于完全互溶的二组分液液体系,把气相不断地部分冷凝,或将液相不 断地部分气化,都能在气相中浓集易挥发组 分,在液相中浓集难挥发组分。这样进行一连 串的部分气化和冷凝,可将混合液A、B完全 分离,这就是精馏原理。 工业上和实验室中这种部分气化和冷凝是在 精馏塔和精馏柱中进行的。精馏实际上是简单 蒸馏的多次组合。所以塔板数越多,蒸馏的次 数亦越多,分离的效果亦就越好(见下图所示)。
塔板上气-液两项重新分配
精馏塔中,塔顶得低沸点物, 塔底得高沸点物。
四、蒸馏、分馏与精馏
如果溶液介于A和C之 间,假定为x1,则经 精馏后,从塔顶蒸出 组成 的是具有最低恒沸 x1 x2 B A C 点的恒沸物C,流入 塔釜的是沸点高的纯组分A。如果溶液组成介于C和B之间, 设为x2 ,则经分离后得到的馏出液为C与残液为纯B。
四、蒸馏、分馏与精馏
进料
加 热 棒 精馏塔示意图
物理化学第5章 相平衡二组分
两相 B
303
TB
单相
0 水
0.2
0.4 0.6 0.8 1.0 质量分数 三乙基胺 水-三乙基胺的溶解度图
1、 部分互溶双液系
(3)同时具有最高、最低会溶温度
水 - 烟碱
T
' c
等压
473
c'
两相
T/K
453
413
373
Tc
c
0.2 0.4 0.6
单相
0
0.8
1.0
水
质量分数
烟碱
水-烟碱的溶解度图
水
w酚%
1、 部分互溶双液系
(1) 具有最高会溶温度
相图特点: 帽形线:溶解度曲线; 帽形线之外:单相区
f C 1 1
帽形线之内:两液相平衡共存区, 2
f 2 f 1
帽形线顶端:B 最高会溶温度确定,组成确定。 f = 0
1、 部分互溶双液系
(1) 具有最高会溶温度
C = N - R´ =2-1=1 ( xcs = xcl ) f *= C - +1
= 1-2+1
=0
T 不变,
∵组成随压力变
一定物质为定值。
19
正偏差较大的p - x , T – x 对比
(3)、负偏差较大 p – x 图
(3)、负偏差较大 T – x 图
气线 T
C
液线
TB*
TA*
液线
相图的绘制
Cd-Bi二元相图制
有三个特殊点: A H E 三相点: Bi(s)+熔液+Cd(s) 低共熔点 凝固点最低;两种金属同时按比例析出 低共熔混合物
它不是化合物,由两相组成,仅混合得非常均匀 E点的温度会随外压的改变而改变 低共熔物有致密的特殊结构,两种固体呈片状或 粒状均匀交错在一起,这时系统有较好的强度。
二组分体系气-液平衡相图
通过25℃的无水乙醇,折射率应为 n D =1.3594(文献值),如果25℃实测值为1.3600,则1.3600-
1.3594=0.0006 表 明 标 尺 零 点 有 正 误 差,应 予 校 正,校 正 值 △ = - 0.0006,实 验 中 每 次 测 定 应 加 上
△,此例为减去0.0006。用环己烷(
n
D 25
=1.4326)校正零点也是同样。
3.测定乙醇-环己烷溶液不同组成时的沸点及此时(气液平衡)气、液相的组成。待上述无水 乙醇冷却至近于室温或不烫手时,加1.5ml环己烷至无水乙醇中,测定沸点并测沸腾时气、液组成。 再 依 次 加 入 环 己 烷 2.0、2.0、8.0、10.0、10.0、10.0ml 至 无 水 乙 醇 中,分 别 测 其 沸 点 和 气、液 相 组 成。
file://E:\whsy\whsy05.htm
2008-4-22
二组分体系气-液平衡相图
页码,3/3
五.数据处理
1.根据沸点数据以及从折射率-组成曲线内插得到气液组成;
乙醇-环己烷溶液不同组成的沸点及气、液组成
加入量
T
n液
n气
液相组成
气相组成
20ml乙醇 加1。5环己烷 加2.0环己烷 加2.0环己烷 加8.0环己烷 加10.0环己烷 加10.0环己烷 加10.0环己烷
4.同法测定环己烷-乙醇不同组成的沸点及其相应的气、液组成。在沸点仪先加入25ml环己 烷,测定沸点,然后依次加入无水乙醇0.5、0.5、0.5、1.0、1.0、2.0、5.0ml,分别测定沸点和气、 液组成。
判断沸点的准则:温度计汞柱上升明显变缓;液体发生大量气泡;蒸汽冷凝得到的液体很快充 满支管。此时一手握住台架,一手扶好台架底座,倾斜沸点仪,将支管中冷凝液倒回液体中(此步 骤简称“回流”),,立即读温度计示值,反复回流数次待温度计示值稳定,就是沸点。
物理化学相图知识总结(包含所有相图)
一、 水的相图
水的相图考点:水的冰点与三相平衡点:三相点比冰点高约 0.01K
二组分系统 一、 理想液态混合物
1.定温下的 P-X 图
系统点: 相图上表示系统总状态(总组成)的点; 相点:表示各个相的状态(组成)的点.
1
结线:两个平衡相点的连结线.系统点总是在结线上 2.定压下的 T-X 图
泡点: 液相升温至开始起泡沸腾的温度; 露点: 气相降温至开始凝结的温度. 两点之间为相变温度区间, 与系统总组成有关. 精 馏 原 理:将液态混合物同时经多次部分气化和部分冷凝而使之分离的操作 称为精馏。 同一层隔板上, 自下而上的有较高温度的气相与反方向的较低温度的液相相遇. 通过热交换,气相部分冷凝, 液相则部分气化.
5
4.固态部分互熔系统
5.固态完全互熔系统
晶内偏析: 退火: 淬火: 6.生成稳定化合物的系统
6
注:若化合物数目有 N 种,则其相图就被看作是由(N+1)个简单低共熔点的固 态不互溶系统的相图组合而成。 7.生成不稳定化合物的系统
书写方程式是重点。
7
二、 非理想液态混合物
1. 二组分真实液态混合物的 4 种类型的 P-X 图
关于正偏差: 若两组分分子间的吸引力小于各纯组分分子间吸引力,形成混合物后,分子就容 易逸出液面而产生正偏差. 若纯组分有缔合作用,在形成混合物后发生离解,因分子数增多而产生正偏差.混 合时常有吸热及体积增大现象. 关于负偏差: 若两组分分子间的吸引力大于各纯组分分子间吸引力,形成混合物后,分子就较
4
三、 二组分固-液平衡体系
1.固态完全不互溶系统
2.热分析法
冷却曲线出现平台的原因:释放的凝固热抵消了因冷却而散失的热量 出现最低点:因最初非常微细的晶体难以析出,过冷现象导致 斜率变小的原因:固态 Bi 析出所释放的凝固热部分抵消了降温过程散失的热量 低共熔温度、低共熔混合物 3.溶解度法
物理化学课件二组分体系相图
假定 H vap m的值与温度无关,积分得:
lnp2 vapHm(11)
p1
R T1 T2
这公式可用来计算不同温度下的蒸气压或摩尔蒸发热。
6.2.2 Clapeyron方程
三条两相平衡线的斜率均可由Clausius-Clapeyron 方程或Clapeyron方程求得。
f * * = ( 3 - 1 ) - 1 + 0 = 1 ( X B )
d ) T = 4 5 0 ℃ , P = 1 5 0 P θ , 有 催 化 剂 , 发 生 反 应
投 料 比 : N 2 ∶ H 2 = 1 ∶ 3 R ’ = 1 f * * = ( 3 - 1 - 1 ) - 1 + 0 = 0
注意:
a ) 独 立 的 浓 度 限 制 条 件 ( 初 始 条 件 或 分 解 )
说明:不同物质在同一相中的浓度限制条件 R’=0 C a C O 3 ( s ) → C a O ( s ) + C O 2 ( g )
b ) 独 立 的 化 学 反 应 数 “ R ” 表 示
化 学 平 衡 时 , 平 衡 常 数 限 制 浓 度
d dT PV Sii,,m m
Si,m Vi ,m
Si,m Vi,m
相变摩尔熵 相变摩尔体积
Si,m
Hi,m T
得:
dP H i,m
Clapeyron equation 适用于纯物质两相
dT
TVi , m
平衡
6.2.2 Clapeyron方程
在一定温度和压力下,任何纯物质达到两相平 衡时,蒸气压随温度的变化率可用下式表示:
§ 6.1.1 基本概念
相(phase) 体系内部物理和化学性质完全均
物理化学课件二组分体系相图
指一个体系中相的数目。
相平衡的热力学基础
01
02
03
热力学基本定律
热力学第一定律、热力学 第二定律和热力学第三定 律是相平衡研究的理论基 础。
热力学函数
如内能、熵、焓等,用于 描述体系的热力学状态和 性质。
相平衡条件
根据热力学基本定律,当 两个或多个相在某一温度 和压力下达到平衡时,它 们的热力学函数值相等。
高分子聚合反应
聚合机理
高分子聚合反应通常需要在一定的温 度和压力条件下进行,相图可以提供 反应过程中物质的状态和相变信息, 有助于了解聚合机理和反应动力学。
产物性能
聚合产物的性能与反应条件密切相关 ,利用相图可以预测在不同组成和温 度下聚合产物的性能表现,如熔点、 粘度、结晶度等,有助于优化聚合反 应条件和产物性能。
液态部分互溶气态完全不互溶体系
总结词
该体系中,液态组分部分互溶,气态组分完全不互溶,相图较为复杂。
详细描述
在液态部分互溶气态完全不互溶体系中,液态的两个组分只能部分混合,会形成明显的相界,而气态 的两个组分则完全不互溶。这种体系的相图相对复杂,因为液态的部分互溶性和气态的不互溶性使得 体系在相变时可能发生双向变化,即可能出现固相的析出和气相的生成。
相图绘制方法
实验测定
通过实验测定不同温度和 压力下的物理性质(如密 度、蒸气压等),以绘制 相图。
计算相图
基于热力学模型和方程, 通过计算得出各相的热力 学函数值,从而绘制相图 。
计算机模拟
利用计算机模拟技术,模 拟不同温度和压力下的体 系行为,预测相图。
Part
02
二组分体系相图
液态完全互溶气态完全不互溶体系
混合物分离与提纯