八年级希望杯模拟试题一答案

合集下载

初二希望杯试题及答案

初二希望杯试题及答案

初二希望杯试题及答案一、选择题(每题2分,共20分)1. 地球的自转周期是多久?A. 24小时B. 48小时C. 72小时D. 96小时答案:A2. 下列哪种元素的化学符号是“Fe”?A. 铜B. 铁C. 锌D. 铅答案:B3. 以下哪个国家位于亚洲?A. 巴西B. 阿根廷C. 印度D. 澳大利亚答案:C4. 光年是哪种单位?A. 长度B. 质量C. 时间D. 温度答案:A5. 牛顿第一定律描述的是哪种现象?A. 物体的惯性B. 物体的加速度C. 物体的重力D. 物体的浮力答案:A6. 以下哪种植物属于被子植物?A. 蕨类B. 苔藓C. 藻类D. 裸子植物答案:A7. 人体最大的器官是什么?A. 心脏B. 肝脏C. 皮肤D. 肺答案:C8. 以下哪种动物属于哺乳动物?A. 鸟B. 鱼C. 蜥蜴D. 鸭嘴兽答案:D9. 世界上最深的海沟是?A. 马里亚纳海沟B. 亚丁湾C. 红海D. 地中海答案:A10. 以下哪种疾病是由病毒引起的?A. 疟疾B. 破伤风C. 流感D. 肺炎答案:C二、填空题(每题2分,共20分)1. 地球的赤道周长大约是________千米。

答案:400752. 细胞的基本结构包括细胞膜、细胞质和________。

答案:细胞核3. 人体正常体温大约是________摄氏度。

答案:374. 光的三原色是红、绿、________。

答案:蓝5. 世界上最大的淡水湖是________。

答案:苏必利尔湖6. 植物通过________进行光合作用。

答案:叶绿体7. 人体最长的骨头是________。

答案:股骨8. 世界上最大的沙漠是________。

答案:撒哈拉沙漠9. 世界上最深的湖泊是________。

答案:贝加尔湖10. 世界上最大的珊瑚礁是________。

答案:大堡礁三、简答题(每题10分,共40分)1. 请简述光合作用的过程。

答案:光合作用是植物、藻类和某些细菌利用光能将二氧化碳和水转化为有机物(如葡萄糖)和氧气的过程。

希望杯竞赛初二试题及答案

希望杯竞赛初二试题及答案

希望杯竞赛初二试题及答案一、选择题(每题2分,共20分)1. 已知x+y=5,x-y=1,求2x+3y的值。

A. 12B. 11C. 10D. 92. 一个数的平方等于该数本身,这个数可能是:A. 1B. -1C. 1或-1D. 03. 如果一个三角形的两边长分别是5和12,第三边长x满足三角形的三边关系,那么x的取值范围是:A. 7 < x < 17B. 2 < x < 14C. 5 < x < 13D. 12 < x < 154. 一个圆的半径为3,求圆的面积。

A. 28.26B. 9C. 18D. 365. 若a^2 + b^2 = 13,且a + b = 5,求ab的值。

A. 6B. 2C. 12D. 无法确定6. 一个等差数列的前三项分别为2,5,8,求第10项的值。

A. 27B. 29C. 21D. 227. 一个长方体的长、宽、高分别是2,3,4,求其体积。

A. 24B. 12C. 36D. 488. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 09. 一个直角三角形的两条直角边分别是3和4,求斜边的长度。

A. 5B. 6C. 7D. 810. 若a、b、c是三角形的三边,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 等边三角形B. 直角三角形C. 等腰三角形D. 无法确定二、填空题(每题2分,共20分)11. 一个数的相反数是-8,这个数是________。

12. 一个数的立方等于-27,这个数是________。

13. 一个数的平方根是4,这个数是________。

14. 一个数的倒数是2,这个数是________。

15. 一个圆的直径是10,这个圆的周长是________。

16. 若a、b互为倒数,则ab=________。

17. 一个数的平方是25,这个数是________。

18. 一个数的绝对值是3,这个数可能是________。

数学初二希望杯试题及答案

数学初二希望杯试题及答案

数学初二希望杯试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333…D. √22. 如果一个三角形的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,这个三角形是什么类型的三角形?A. 等边三角形B. 直角三角形C. 等腰三角形D. 钝角三角形3. 一个数的平方根是4,这个数是多少?A. 16B. 8C. -16D. 44. 以下哪个表达式的结果不是正数?A. -1 + 2B. √4C. -√4D. (-2)^25. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π6. 一个数的倒数是1/3,这个数是多少?A. 3B. 1/3C. 1/9D. 97. 如果一个角的余角是30°,那么这个角是多少度?A. 60°B. 45°C. 30°D. 15°8. 一个正方体的棱长是3,那么它的体积是多少?A. 27B. 9C. 3D. 19. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 010. 以下哪个是二次根式?A. √3B. √(-1)C. √(2x)D. √(2x+1)二、填空题(每题2分,共20分)11. 一个数的立方根是2,这个数是______。

12. 如果一个数的相反数是-5,那么这个数是______。

13. 一个数的绝对值是10,这个数可能是______或______。

14. 如果一个角的补角是120°,那么这个角是______。

15. 一个数的平方是25,这个数是______或______。

16. 一个直角三角形的两条直角边分别是3和4,斜边的长度是______。

17. 一个数的平方根是±3,这个数是______。

18. 一个数的倒数是1/4,这个数是______。

19. 一个圆的直径是10,那么它的半径是______。

初二组希望杯试题及答案

初二组希望杯试题及答案

初二组希望杯试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 圆的周长是直径的π倍B. 圆的周长是半径的2π倍C. 圆的周长是直径的2倍D. 圆的周长是半径的π倍答案:B2. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. 3或-3D. 以上都不对答案:C3. 以下哪个方程的解是x=2?A. x+2=4B. x-2=0C. 2x=4D. x^2=4答案:C4. 一个三角形的两边长分别为3和4,第三边长x满足的条件是?A. 1<x<7B. 1<x<7且x≠3.5C. 7<x<11D. 以上都不对答案:B5. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 以上都不对答案:C6. 以下哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A7. 一个数的相反数是-3,这个数是?A. 3C. 0D. 以上都不对答案:A8. 以下哪个选项是正确的?A. 2x+3=7的解是x=2B. 3x-5=10的解是x=5C. 4x+6=18的解是x=3D. 以上都不对答案:C9. 一个等腰三角形的底边长为5,两腰长为6,那么这个三角形的周长是?A. 17B. 18D. 20答案:A10. 以下哪个选项是正确的?A. 一个数的立方根是它本身B. 一个数的平方根是它本身C. 一个数的立方根和平方根是同一个数D. 以上都不对答案:A二、填空题(每题4分,共40分)11. 一个圆的半径是3,那么它的面积是________。

答案:9π12. 一个数的平方是16,那么这个数是________。

答案:±413. 一个三角形的两边长分别为4和5,第三边长x满足的条件是________。

答案:1<x<914. 一个数的绝对值是4,这个数可能是________。

答案:4或-415. 一个等腰三角形的底边长为6,两腰长为8,那么这个三角形的周长是________。

初二第22届希望杯”一试试题+解析

初二第22届希望杯”一试试题+解析

第二十二届“希望杯”全国数学邀请赛初二 第1试一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将正确答案前的英语字母写在1、将a 千克含盐10%的盐水配制成含盐15%的盐水,需加盐水x 千克,则由此可列出方程为( ) A 、%)151)(x a (%)101(a -+=- B 、%15)x a (%10a ⨯+=⨯ C 、%15a x %10a ⨯=+⨯ D 、%)151(x %)101(a -=-2、一辆汽车从A 地匀速驶往B 地,如果汽车行驶的速度增加a%,则所用的时间减少b%,则a ,b 的关系是( ) A 、%a 1a 100b +=B 、%a 1100b +=C 、a 1a b +=D 、a100a100b +=3、当1x ≥时,不等式|2x |m 1x |1x |--≥-++恒成立,那么实数m 的最大值是( ) A 、1 B 、2 C 、3 D 、44、在平面直角坐标系中,横、纵坐标都是整数的点称为整点,已知k 为整数,若函数1x 2y -=与k kx y +=的图象的交点是整点,则k 的值有( )A 、2个B 、3个C 、4个D 、5个5、The sum of all such integers x that satisfy inequality 6|1x 2|2≤-≤ is ( ) A 、8 B 、5 C 、2 D 、0(英汉词典:sum 和;integer 整数;satisfy 满足;inequality 不等式)6、若三角形的三条边的长分别为a ,b ,c ,且0b c b c a b a 3222=-+-,则这个三角形一定是( ) A 、等腰三角形 B 、直角三角形 C 、等三角形 D 、等腰直角三角形7、As shown in figure 1,point C is on the segment BG and quadrilateral ABCD is a square. AG intersects BD and CD at points E and F, respectively. If AE=5 and EF=3, then FG=( ) A 、316 B 、38C 、4D 、5 (英汉词典:square 正方形;intersect …at … 与…相交于…) 8、1215-能分解成n 个质因数的乘积,n 的值是( ) A 、6 B 、5 C 、4 D 、3 9、若关于x ,y 的方程组⎩⎨⎧=+-=++0a y 2bx 01ay x 没有实数解,则( )A 、2ab -=B 、2ab -=且1a ≠C 、2ab -≠D 、2ab -=且2a ≠10、如图2,∠AOB=45°,OP 平分∠AOB ,PC ⊥OB 于点C , 若PC=2,则OC 的长是( )A 、7B 、6C 、222+D 、32+二、A 组填空题(每小题4分,共40分) 11、化简:5252549+=++;12、若关于x ,y 的方程组⎩⎨⎧=--=+2y 3x 21k y 2x 3的解使2y 7x 4>+,则k 的取值范围是3k >;figure 1A O BP C 2 图213、如图3,平行于BC 的线段MN 把等边△ABC 分成一个 三角形和一个四边形,已知△AMN 和四边形MBCN 的周长相 等,则BC 与MN 的长度之比是 4:3 ;14、小华测得自家冰箱的压缩机运转很有规律,每运转5分钟, 停机15分钟,再运转5分钟,再停机15分钟,……,又知8月份 这台冰箱的耗电量是24.18度 (1度=1千瓦时),则这台冰箱的压缩 机运转时的功率是 130 瓦;15、已知自然数a ,b ,c ,满足c 12b 4a 442c b a 222++<+++和02a a 2>--,则代数式c1b 1a 1++的值是 1; 16、已知A 、B 是反比例函数x2y =的图象上的两点,A 、B 的横坐标分别是3,5.设O 为原点,则△AOB 的面积是1516;17、设完全平方数A 是11个连续整数的平方和,则A 的最小值是 121 ;18、将100个连续的偶数从小到大排成一行,其中第38个数与第63个数的和为218,则首尾两个数的和是 218 ; 19、A 、B 两地相距15km ,甲、乙两人同时从A 出发去B 。

2021年第二十六届希望杯初二第1试(含参考答案)

2021年第二十六届希望杯初二第1试(含参考答案)

2021年第二十六届希望杯初二第1试(含参考答案)第二十六届“希望杯”全国数学邀请赛初二第1试试题2021年3月15日上午8:30至10:00 一、选择题(每小题4分,共40分)1.若a+b=10,ab=24,则a2+b2的值是()(A) 48 (B)76 (C)58 (D)522.若一次函数y=x+5的图像经过点P(a,b)和Q(c,d),则ad+bc-ac-bd的值是() (A) 9 (B)16 (C)25 (D)-253.已知为的平方根,则满足此关系的x的值得个数是()(A) 4 (B)3 (C)2 (D)14.Suppose a is an integer ,solutions to the equation ax+5=4x+1 are positive integers. Then the number of a is( )(A) 2 (B)3 (C)4 (D)55.在菱形ABCD中,若∠DAB=60°,AC=12,则菱形对角线交点到各边的距离之和是() (A) 3 ( B)4 (C)(D)126.如图1所示,点M,N,P,Q分别是边长为1的正方形ABCD各边的中点,则阴影部分的面积是() (A) (B) (C) (D) 7.如图2所示,字母A到G分别代表1到7中的一个自然数,若A+G+D,B+G+E,C+G+F分别被3除,都余1,则G是() (A) 1或4 (B) 1或7 (C ) 4或7 (D) 1或4或7 8.下列说法:①平行四边形包含矩形、菱形和正方形②平行四边形是中心对称图形③平行四边形的任一条角平分线可把平行四边形分成两个全等的三角形④平行四边形两条对角线把平行四边形分成四个面积相等的三角形其中正确说法的序号是( )(A) ①②④ (B) ①③④ (C ) ①②③ (D) ①②③④ 9.有一列数:10,2,5,2,1,2,x,(x是正整数),若将这列数的平均数、中位数及众数依照大小次序排列,恰好中间的数是左、右两个数的平均数,则x可能取得值得和是() (A) 3 (B)9 (C)17(D)2010.对于自然数m,如果m能够整除13232223(m-1),那么称m为“公除数”,则4到20(包括4和20)的自然数中,“公除数”的个数是()(A) 9 (B) 10 (C ) 11 (D) 12二、 A组填空题(每小题4分,共40分) 11.若,,则,则a+b=_____________112.已知a,b都是有理数,且13.已知a+b+c=1.14.已知m,n是实数,且当x>2021时,15.设a,b,c都是正整数,且1 16.若关于x,y的方程组与方程组的解相同,则a+b=___________17.As shown in the Fig.3,B and C are points on AD in △AED.AB=CD,EB=EC=10,BC=12. The perimeter of △AED is twice the perimeter of △EBC. Then.( S△AED represents the area of △AED, S△EBC represents the area of △EBC) .(英汉小词典;perimeter 周长,area 面积) 18.若19.如图4所示,四边形ABCD中,对角线AC平分∠BAD, 且AB=21,AD=9,BC=DC=10,则AC=_______ 20.已知三、B组填空题(每小题8分,共40分)21.若xy>0,则点(x,y)在直角坐标系中位于第_____象限或第_____象限 22.已知,则x+y的值等于______或_________23.如图5所示,C在线段AB上,在AB的同侧作等边△ACM和△BCN, 连接AN,BM.若∠MBN=38°,则∠AMB=_____度,∠ANC=_______度 24.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第5行从左向右第5个数位________,第n(n≥3,且n是整数)行从左向右第5个数是_____(用含n的代数式表示)225.长为的三条线段可以构成三角形,则自然数n=_____或________.答案详细解析2021年3月15日上午8:30至10:00 三、选择题(每小题4分,共40分)1.若a+b=10,ab=24,则a2+b2的值是()(A) 48 (B)76 (C)58 (D)523解析:因为(a+b)2=a2+b2+2ab,代入得 102=a2+b2+48,a2+b2=100-48=52这是完全平方公式(a+b)2=a2+b2+2ab 公式得变式应用,把a+b ,a2+b2,ab 看做一个整体,知道其中2个求第三个式子都可以,只要把其中2个值代入即可求得,这是数学的整体思想。

第25届希望杯初二一试试题解答

第25届希望杯初二一试试题解答
第25届“希望杯”全国数学邀请赛初二第1试试题解答
一选择题
1化简 (n是自然数)
答案为:
解答:化简得 关键讨论 的值是正1还是负1
即 是偶数还是奇数, 为连续2个整数的乘积,必为偶数;或者分奇数和偶数2种情况分类讨论也可以。
2、分式 的值为0,则b的值为()
答案为b=1
由 =0,b=1或-1,但b=-1时, ,分式无意义,舍去。
3、已知 y是不大于x的最大整数,则 的值是()
答案:
解答: ,即 ,y=2
=
4.反比例函数 的图像上有三个点(x1,y1),(x2,y2),(x2,y2),其中x1<x2<0<x3,则y1,y2,y3的大小关系是(y2<y1<0<y3)
解答:特殊值法,根据x1<x2<0<x3,分别取-2<-1<0<1代入即可。
所以
可得,b=3,或b=4,故解析式为y=-x+3或y=-2x+4
24、如图,正方形OCBA的顶点B和正方形AFED的顶点E都在函数 (x>0)的图像上,则点E到X轴的距离是_______,到y轴的距离是________.
答案:
解答:如图
点E(1+x,x),(1+x)x=1,由求根公式得。
25.如图,Rt⊿ABC中,∠C=900,CB=3,AC=4,且CB在直线l上,将⊿ABC绕点B顺时针旋转到位置(1),可得到点P1,此时CP1=_____,将位置(1)⊿ABC绕点P1顺时针旋转到位置(2)可得到P2,将位置(2)⊿ABC绕点P2顺时针旋转到位置(3)可得到P3,…,按此规律继续旋转,直到点P2014为止,则CP2014=________。

第十九届初中希望杯()初二第1试试题及答案

第十九届初中希望杯()初二第1试试题及答案

第十九届“希望杯”全国数学邀请赛初二 第1试一、选择题(每小题4分,满分40分)1.下列说法中正确的是( )A 、1的平方根和1的立方根相同B 、0的平方根和0的立方根相同C 、4的平方根是2±D 、8的立方根是2±2.若单项式x x b a 52-和x b a -3223的次数相同,则x 的整数值等于( )A 、1B 、-1C 、1±D 、1±以外的数3.若b a ,和b a +都是有理数,则( )A 、b a ,都是有理数B 、b a ,都是无理数C 、b a ,都是有理数或都是无理数D 、b a ,中有理数和无理数各一个4.使不等式12>+x 成立的x 的值为( )A 、比-1大的数B 、比-3小的数C 、大于-1或小于-3的数D 、-2以外的数5.设e d c b a ,,,,只能从-3,-2,-1中取值,又22222,e d c b a y e d c b a x +-+-=+-+-=,则( )A 、x 的最大值比y 的最大值小B 、x 的最小值比y 的最小值小C 、x 的最大值比y 的最小值小D 、x 的最小值比y 的最大值大6.In the figure1, ABCD is a diamond, points E and F lie on its sides AB and BC respectively, suchthat CFBF BE AE =, and DEF ∆ is a regular triangle. Then BAD ∠ is equal to ( )A 、400B 、600C 、800D 、1000((英汉小词典:diamond 菱形;regular triangle 正三角形)7.已知ABC ∆的三边长分别为c b a ,,,且ac b c b c a b a -++=+,则ABC ∆一定是( )A 、等边三角形B 、腰长为a 的等腰三角形C 、底边长为a 的等腰三角形D 、等腰直角三角形8.初二(1)班有48名同学,其中有男同学n 名,将他们编成1号、2号、…,n 号。

第14届“希望杯”全国数学邀请赛试卷(初二1)试题和详解

第14届“希望杯”全国数学邀请赛试卷(初二1)试题和详解

6,midline for hypotenuse(斜边)is 1,then
AC•BC= _________ . 17、如图,两点 A、B 在直线 MN 外的同侧,A 到 MN 的距离 AC=8,B 到 MN 的距离 BD=5, CD=4,P 在直线 MN 上运动,则|PA﹣PB|的最大值等于 _________ .
18、如图,等腰梯形 ABCD 中,AB∥CD,∠DAB=60°,AC 平分∠DAB,且 AC=2 ABCD 的周长等于 _________ .
3边形 ABCDEF、 PQRSTU, 其中点 P 位于正六边形 ABCDEF 的中心, 如果它们的面积均为 1,则阴影部分的面积是 _________ .
1 2

A、90° B、100° C、110° D、120° 10、2002 年 9 月 28 日,“希望杯”组委会第二次赴俄考查团启程,途经哈巴罗夫斯克和莫斯 科,两地航程约 9000 千米,往返飞行所用的时间并不相同,这是因为在北半球的高纬度地 区,有一股终年方向恒定的西风,人们称它为“高空西风带”.已知往返飞行的时间相差 1.5 小时,飞机在无风天气的平均时速为每小时 1000 千米,那么西风速度最接近( ) A、60 千米/小时 B、70 千米/小时 C、80 千米/小时 D、90 千米/小时 二、填空题(共 15 小题,满分 100 分) 11、设 0<x<1<y<2,则
������﹣������ ≥ 0 ������﹣������ ≥ 0

1 ������﹣1 1 ������﹣������ + ������﹣������ + ������﹣ ������ =0+0+ ������ =1﹣������.
故选 A. 点评:本题主要考查了二次根式的意义和性质.

希望杯第8届八年级第1试及答案

希望杯第8届八年级第1试及答案

希望杯第八届(1997年)初中二年级第一试试题一、选择题:1.下列四个从左到右的变形中,是因式分解的是[]A.(x+1)(x-1)=x2-1. B.(a-b)(m-n)=(b-a)(n-m)C.ab-a-b+1=(a-1)(b-1).2.关于x的方程(5-2a)x=-2的根是负数,那么a所能取的最大整数是[]A.3 B.2. C.1 D.03.直角三角形的两个锐角的外角平分线所夹的锐角的大小是[]A.30°B.45°. C.60°. D.15°或75°4.P是线段AB上的一点,AB=1,以AP和BP为边分别作两个正方形,当这两个正方形的面积的差的绝对值为时,AP的长是[ ]A.;B.;C.;D..5.若a使分式没有意义,那么a的值应是[ ]A.0;B.;C.;D..6.已知四个代数式:①m+n;②m-n;③2m+n;④2m-n.当用2m2n乘以上述四个式中的两个时,便得到多项式4m4n-2m3n2-2m2n3,那么这两个式子的编号是[]A.①与② B.①与③. C.②与③D.③与④7.△ABC中,AB=5,AC=3,则BC边上的中线AD的长l的取值范围是[]A.1<l<4 B.3<l<5. C.2<l<3 D.0<l<58.A、B、C为平面上的三点,AB=2,BC=3,AC=5,则[]A.可以画一个圆,使A、B、C都在圆周上B.可以画一个圆,使A、B在圆周上,C在圆内C.可以画一个圆,使A、C在圆周上,B在圆外D.可以画一个圆,使A、C在圆周上,B在圆内9.已知:m、n是整数,3m+2=5n+3,且3m+2>30,5n+3<40,则mn的值是[]A.70 B.72. C.77 D.8410.甲、乙两种茶叶,以x∶y(重量比)相混合制成一种混合茶,甲种茶叶的价格每公斤50元,乙种茶叶的价格每公斤40元,现在甲种茶叶的价格上调了10%,乙种茶叶的价格下调了10%,但混合茶的价格不变,则x∶y等于[]A.1∶1 B.5∶4. C.4∶5 D.5∶6二、A组填空题:11.已知x0,化简所得的结果是____________.12.五个连续奇数的平均数是1997,那么其中最大数的平方减去最小数的平方等于___.13.现有8根木棍,它们的长分别是1,2,3,4,5,6,7,8,若从8根木棍中抽取3根拼三角形,要求三角形的最长边为8,另两边之差大于2(以上单位:厘米).那么可以拼成的不同的三角形的种数为______.14.如图1,△ABC中,∠C=90°,∠BAC的平分线交BC于D,且CD=15,AC=30,则AB 的长为______.15.已知,那么的值是________.16.已知:a=-2000,b=1997,c=-1995,那么a2+b2+c2+ab+bc-ac的值是______.17.如图2,△ABC中,∠1=∠2,∠EDC=∠BAC,AE=AF,∠B=60°,则图中的线段AF、BF、AE、EC、AD、BD、DC、DF中与DE的长相等的线段有______条.18.如图3,∠A=60°,线段BP、BE把∠ABC三等分,线段CP、CE把∠ACB三等分,则∠BPE的大小是______.19. 已知,那么的值是______.20.某仓库贮存水果a吨,为保证每天供应市场20吨,则需每天从外地调入b吨水果,现实际调入量每天多了2吨,而市场每天供应量不变,那么比原来多供应的天数是______(用a、b表示).三、B组填空题21.若|a|-|b|=1,且3|a|=4|b|,则在数轴上表示a、b两数对应的点的距离是______或______.22.△ABC的周长为19,且满足a=b-1,c=b+2,则a、b、c的长分别为a=______,b =______,c=______.23.x,y为实数,且,则x=________,y=_____.24.如图4,△ABC中,AD平分∠BAC,EG⊥AD,分别交AB、AD、AC、BC的延长线于E、H、F、G,已知下列四个式子:其中有两个式子是正确的,它们是______和______.25.已知abc0,且,则的值是_______或_________.答案·提示一、选择题提示:1.根据因式分解的概念,选(C).2.由题意,方程的根为负,即∴ a所能取的最大整数是2,选(B).3.两个外角分别等于其不相邻的锐角与直角之和,因此两个外角之和等于270°.所以选(B).4.两正方形的面积差=AP2-(1-AP)2=2AP-16.对多项式做因式分解:原式=2m2n(2m2-mn-n2)=2m2n(2m+n)(m-n),故选(C).7.如图5,延长AD到E,使DE=AD,连接EC,△DEC与△ABD全等,∴ EC=AB=5.在△AEC中,AC+EC>AE,也就是3+5>2l,即l<4.AC+AE>EC,即3+2l>5,∴ l>1.因此有1<l<4.故选(A).8.由题意,A、B、C三点依次在同一直线上.排除(A),且(B)、(C)均不可能成立,选(D).如果选(A),只能n=7,m=10,与题中等式相驳.如果选(B),72=8×9或6×12,与题中不等式相驳.如果选(C),77=11×7,也与题中等式相驳,只有选(D)正确.10.由题意有50x+40y=50(1+10%)x+40(1-10%)y二、A组填空题提示:12:由题意可知这五个奇数是:1993,1995,1997,1999和2001.20012-19932=(2001+1993)(2001-1993)=3994×8=31952.13:三角形其他两边可以是:7和4、7和3、7和2、6和3,可拼成四种不同的三角形.因为,7+4=11>8且满足7-4=3>2;7+3=10>8且满足7-3=4>2;7+2=9>8且满足7-2=5>2;6+3=9>8且满足6-3=3>2.14.如图6,作DE⊥AB,则△ABC≌△DBE,在直角△DBE中,BD2=DE2+BE2即(2y-15)2=y2+152化简得到 y(y-20)=0,∴ y=20.AB=AE+BE=30+20=50.16.(a+b)2+(b+c)2+(a-c)2=a2+2ab+b2+b2+2bc+c2+a2-2ac+c2=2(a2+b2+c2+ab+bc-ac)将a、b、c的值代入(a+b)2+(b+c)2+(a-c)2=(-3)2+(2)2+(-5)2=38.∴原式=19.17.连接FE交AD于O,△AFE为等腰三角形.∵∠1=∠2,∴AO⊥EF,且FO=OE,得到DF=DE.∵∠EDC=∠BAC,∴△ABC≌△EDC,∵∠ABC=60°,∴∠DEC=60°,∠AED=120°,则∠AFD=120°,∴△FBD为等边三角形.∴BF=BD=DF=DE.因此,与DE的长相等的线段有3条.(请注意:当∠BAC=60°时,除了AD外的其他7条线段均与DE的长度相等.)17解:连接FE交AD于O,△AFE为等腰三角形.∵∠1=∠2,∴AO⊥EF,且FO=OE,得到DF=DE.∵∠EDC=∠BAC,∴△ABC∽△EDC,∵∠ABC=60°,∴∠DEC=60°,∠AED=120°,则∠AFD=120°,∴△FBD为等边三角形.∴BF=BD=DF=DE.因此,与DE的长相等的线段有3条.(请注意:当∠BAC=60°时,除了AD外的其他7条线段均与DE的长度相等)故答案为:3.18.在△BPC中,∵BE平分∠CBP,CE平分∠BCP,∴PE是∠BPC的平分线.∵∠A=60°,∴∠ABC+∠ACB=120°.b(a2+b2)+a(a2+b2)+2(a+b)ab=0,a2b+b3+a3+ab2+2a2b+2ab2=0.20.设原来供应x天,现在供应y天.三、B组填空题提示:21.如图7,由题意|a|=1+|b|,∴3|a|=3+3|b|=4|b|,∴|b|=3,b=±3.|a|=1+|b|=4,∴a=±4.22.将a=b-1,c=b+2代入a+b+c=19,得b=6,则a=5,c=8.当b+c=-a,+b=-c,a+c=-b时,当b=c,a=b,a=c即a=b=c时,。

希望杯试题及答案初二

希望杯试题及答案初二

希望杯试题及答案初二一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2的平方等于3B. 3的平方等于9C. 4的平方等于16D. 5的平方等于25答案:B2. 一个长方形的长是10厘米,宽是5厘米,那么它的周长是多少厘米?A. 30B. 40C. 50D. 60答案:B3. 一个数加上它的相反数等于多少?A. 0B. 1C. 2D. -1答案:A4. 下列哪个选项是二次方程?A. x + 2 = 0B. x^2 + 2x + 1 = 0C. 2x - 3 = 0D. x^3 - 4x^2 + 4x = 0答案:B5. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 3D. 以上都是答案:D6. 下列哪个选项是正确的不等式?A. 2x > 3B. 2x < 3C. 2x = 3D. 2x ≤ 3答案:A7. 一个圆的半径是3厘米,那么它的面积是多少平方厘米?A. 9πB. 18πC. 27πD. 36π答案:C8. 下列哪个选项是正确的分数?A. 3/2B. 2/3C. 1/2D. 4/5答案:D9. 一个等腰三角形的两个底角都是45度,那么它的顶角是多少度?A. 90B. 45C. 135D. 180答案:A10. 下列哪个选项是正确的函数关系?A. y = 2x + 3B. y = x^2 + 2x + 1C. y = x/2D. y = x^3 - 2x^2 + 3x答案:A二、填空题(每题4分,共20分)1. 一个数的平方根是4,那么这个数是______。

答案:162. 一个数的立方根是2,那么这个数是______。

答案:83. 一个数的倒数是1/2,那么这个数是______。

答案:24. 一个数的绝对值是6,那么这个数可以是______。

答案:6或-65. 一个等腰三角形的顶角是120度,那么它的底角是______。

答案:30度三、解答题(每题10分,共50分)1. 解方程:3x - 5 = 10答案:x = 52. 计算:(2x^2 - 3x + 1) - (x^2 + 2x - 3)答案:x^2 - 5x + 43. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。

希望杯数学八年级竞赛真题及答案(1-23届)

希望杯数学八年级竞赛真题及答案(1-23届)

1、第一届希望杯初二第1试试题2、第一届希望杯初二第2试试题3、第二届希望杯初二第1试试题4、第二届希望杯初二第2试试题5、第三届希望杯初二第1试试题6、第三届希望杯初二第2试试题7、第四届希望杯初二第1试试题8、第四届希望杯初二第2试试题9、第五届希望杯初二第1试试题10、第五届希望杯初二第2试试题11、第六届希望杯初二第1试试题12、第六届希望杯初二第2试试题13、第七届希望杯初二第1试试题14、第七届希望杯初二第2试试题15、第八届希望杯初二第1试试题16、第八届希望杯初二第2试试题17、第九届希望杯初二第1试试题18、第九届希望杯初二第2试试题19、第十届希望杯初二第1试试题20、第十届希望杯初二第2试试题21、第十一届希望杯初二第1试试题22、第十一届希望杯初二第2试试题23、第十二届希望杯初二第1试试题24、第十二届希望杯初二第2试试题25、第十三届希望杯初二第1试试题26、第十三届希望杯初二第2试试题27、第十四届希望杯初二第1试试题28、第十四届希望杯初二第2试试题28、第十五届希望杯初二第1试试题30、第十五届希望杯初二第2试试题31、第十六届希望杯初二第1试试题32、第十六届希望杯初二第2试试题33、第十七届希望杯初二第1试试题34、第十七届希望杯初二第2试试题35、第十八届希望杯初二第1试试题36、第十八届希望杯初二第2试试题37、第十九届希望杯初二第1试试题38、第十九届希望杯初二第2试试题39、第二十届希望杯初二第1试试题40、第二十届希望杯初二第2试试题41、第二十一届希望杯初二第1试试题42、第二十一届希望杯初二第2试试题43、第二十二届希望杯初二第1试试题44、第二十二届希望杯初二第2试试题45、第二十三届希望杯初二第1试试题46、第二十三届希望杯初二第2试试题希望杯第一届(1990年)初中二年级第一试试题一、选择题:(每题1分,共10分)1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°.B .75°.C .55°.D .65°2.2的平方的平方根是 ( )A .2.B .2. C .±2. D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( ) A .0B .a 0.C .a 1D .a 0-a 14. ΔABC,若AB=π27则下列式子成立的是( )A .∠A >∠C >∠B;B .∠C >∠B >∠A;C .∠B >∠A >∠C;D .∠C >∠A >∠B 5.平面上有4条直线,它们的交点最多有( ) A .4个B .5个.C .6个.D .76.725-的立方根是[ ] (A )12-. (B )21-.(C ))12(-±. (D )12+.7.把二次根式a a 1-⋅化为最简二次根式是[ ](A) a . (B)a -. (C) a --. (D) a -8.如图1在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( ) A .2组B .3组.C .4组D .5组。

第十七届“希望杯”全国数学邀请赛初二一试及参考答案

第十七届“希望杯”全国数学邀请赛初二一试及参考答案

第十七届“希望杯”全国数学邀请赛初二 第1试2006年3月19日 上午:30至10:00学校______________班__________学号__________姓名__________辅导教师________成绩__________ 一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在下面的表格内.1.实数m =20053-2005,下列各数中不能整除m 的是( ) (A )2006 (B )2005 (C )2004 (D )2003 2.a ,b ,c ,d 是互不相等的正整数,且abcd =441,那么a +b +c +d 的值是( ) (A )30 (B )32 (C )34 (D )36 3.三角形三边的长都是正整数,其中最长边的长为10,这样的三角形有( ) (A )55种(B )45种(C )40种(D )30种4.已知m ,n 是实数,且满足m 2+2n 2+m -34n +3617=0,则-mn 2的平方根是( ) (A )62 (B )±62(C )61 (D )±61 5.某校初一、初二年级的学生人数相同,初三年级的学生人数是初二年级学生人数的54.已知初一年级的男生人数与初二年级的女生人数相同,初三年级男生人数占三个年级男生人数的41,那么三个年级女生人数占三个年级学生人数的( )(A )199 (B )1910(C )2111 (D )106.如图1,点E 、F 、G 、H 、M 、N 分别在△ABC 的BC 、AC 、AB 边上,且NH ∥MG ∥BC ,ME ∥NF ∥AC ,GF ∥EH ∥AB .有黑、白两只蚂蚁,它们同时同速从F 点出发,黑蚁沿路线F →N →H →E →M →G →F 爬行,白蚁沿路线F →B →A →C →F 爬行,那么( ) (A )黑蚁先回到F 点 (B )白蚁先回到F 点(C )两只蚂蚁同时回到F 点 (D )哪只蚂蚁先回到F 点视各点的位置而定 7.一个凸多边形截去一个角后形成的多边形的内角和是2520°,则原多边形的边数是( ) (A )14(B )15(C )15或16(D )15或16或178.Let a be integral part of 2 and b be its decimal part .Let c be the integral part of π and d be thedecimal part..if ad -bc =m ,the ( ) (A )-2<m <-1 (B )-1<m <0 (C )0<m <1 (D )1<m <2(英汉词典:integral part 整数部分;decimal part 小数部分)9.对a ,b ,定义运算“*”如下:a *b =⎩⎨⎧∙≥时<,当时,,当b a ab b a b a 22已知3*m =36,则实数m 等于( )(A )23(B )4(C )±23(D )4或±2310.将连续自然数1,2,3,…,n (n ≥3)的排列顺序打乱,重新排列成a 1,a 2,a 3,…,a n .若(a 1-1)(a 2-2)(a 3-3)…(a n -n )恰为奇数,则( ) (A )一定是偶数(B )一定是奇数(C )可能是奇数,也可能是偶数(D )一定是2m -1(m 是奇数)图1二、A 组填空题(每小题4分,共40分)11.已知a 、b 都是实数,且a =43+x ,b =312+x ,b <37<2a ,那么实数x 的取值范围是_________. 12.计算12008200720062005+⨯⨯⨯-20062的结果是__________.13.已知x =22+1,则分式15119232----x x x x 的值等于__________.14.一个矩形各边的长都是正整数,而且它的面积的数量等于其周长的量数的2倍,这样的矩形有__________个.15.Suppose that in Fig.2,the length of side of square ABCD is 1,E and F are mid-points of CD and AD respectively ,GE and CF intersect at a point P .Then the length of line segment CP is __________.(英汉词典:figure (缩写Fig.)图;length 长度;square 正方形;mid -point 中点;intersect 相交;line segment 线段) 16.要使代数式2113|--||+-|x x 有意义,实数x 的取值范围是____________.17.图3的梯形ABCD 中,F 是CD 的中点,AF ⊥AB ,E 是BC 边上的一点,且AE =BE .若AB =m (m 为常数),则EF 的长为__________. 18.A ,n 都是自然数,且A =n 2+15n +26是一个完全平方数,则n 等于__________.19.一个长方体的长、宽、高均为整数,且体积恰好为2006cm 3,现将它的表面积涂上红色后,再切割成边长为1cm 的小正方体,如果三面为红色的小正方体有178个,那么恰好有两面为红色的小正方体有________个. 20.一条信息可以通过如图4所示的网络按箭头所指方向由上往下传送,例如到达点C 2的信息可经过B 1或B 2送达,共有两条途径传送,则信息由A 点传送到E 1、E 2、E 3、E 4、E 5的不同途径共有________条.三、B 组填空题(每小题8分,共40分.每小题两个空,每空4分.)21.某学校有小学六个年级,每个年级8个班;初中三个年级,每个年级8个班;高中三个年级,每个年级12个班.现要从中抽取27个班做调查研究,使得各种类型的班级抽取的比例相同,那么小学每个年级抽取________个班,初中每个年级抽取________个班. 22.矩形ABCD 中,AB =2,AB ≠BC ,其面积为S ,则沿其对称轴折叠后所得的新矩形的对角线长为__________或__________.23.已知m ,n ,l 都是两位正整数,且它们不全相等,它们的最小公倍数是385,则m +n +l 的最大值是__________,最小值是__________.24.某工程的施工费用不得超过190万元.该工程若由甲公司承担,需用20天,每天付费10万元;若由乙公司承担,需用30天,每天付费6万元.为缩短工期,决定由甲公司先工作m 天,余下的工作由乙公司完成,那么m =________,完工共需要__________天. 25.将2006写成n (n ≥3)个连续自然数的和,请你写出两个表达式:(1)__________________________________;(2)__________________________________.ABCD E FP图2ABCDEFm图31B A 2B 1C 2C3C 1D 2D 3D 4D 1E 2E 3E 4E 5E 图4第十七届“希望杯”全国数学邀请赛答案²评分标准初二第1试1.答案(1)选择题(2)A组填空题(3)B组填空题2.评分标准(1)第1~10题:答对得4分;答错或不答,得0分.(2)第11~20题:答对得4分;答错或不答,得0分.(2)第21~25题:答对得8分,每个空4分;答错或不答,得0分.。

第21届希望杯初二第1试试题及答案

第21届希望杯初二第1试试题及答案

第二十一届“希望杯”全国数学邀请赛初二 第1试一、选择题(每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将正确答案前的英文字母写在下面的表格内.1.下列图案都是由字母m 组合而成的,其中不是中心对称图形的是( )A .B .C .D .【解析】 B .B 中5个”m ”分布在正五边形上,不是中心对称图形.2.若230a a ≥≥,则( )A 3a aB 3a aC .1a ≥D .01a <<【解析】 B .∵23a a ≥≥0,∴01a ≤≤3a a320102009xx --x 的取值范围是()A .2010x ≤B .2010x ,≤且2009x ≠±C .2010x ≤且2009x ≠D .2010x ,≤且2009x ≠-【解析】 B .2010020090x x -⎧⎪⎨-≠⎪⎩≥,解得2010x ,≤且2009x ≠±. 4.正整数a b c ,,是等腰三角形三边的长,并且24a bc b ca +++=,则这样的三角形有( )A .1个B .2个C .3个D .4个【解析】 C .()()124a bc b ca a b c +++=++=∵a b c +>,,,a b c 均为正整数,∴1a b c ++≥ 又12c +≥,∴1c +只能取2,3,4.若12c +=,即1c =,则12a b +=,于是6a b ==; 若13c +=,即2c =,则8a b +=,于是4a b ==; 若14c +=,即3c =,则6a b +=,于是3a b ==. 综上,这样的三角形有3个.5.顺次连接一个凸四边形各边的中点,得到一个菱形,则这个四边形一定是()A .任意的四边形B .两条对角线等长的四边形C .矩形D .平行四边形【解析】 B .顺次连接一个凸四边形各边的中点得到的四边形,每组对边都等于对应对角线长的一半. 因此若得到的四边形为菱形,则这个四边形一定是两条对角线等长的四边形.6.设p =a b c d ,,,是正实数,并且1a b c d +++=,则 ()A .5p >B .5p <C .4p <D .5p =【解析】 A .1a >=+,于是()()()()1111p a b c d >+++++++5=.7.Given a b c ,, satisfy c b a << and 0ac <,then which one is not sure to be correct in the following inequalities ?() A .b c a a>B .0b ac->C .22b ac c>D .0a cac-< 【解析】 C .∵a c >且0ac <,∴0a >,0c <∵b c >,0a >,∴b c a a >;∵b a <,0c <,∴0b ac ->; ∵a c >,0ac <,∴0a cac-<;因此只有C 不一定成立.8.某公司的员工分别住在A B C 、、三个小区,A 区住员工30人,B 区住员工15人,C 区住员工10人,三个小区在一条直线上,位置如图1所示,若公司的班车只设一个停靠点,为使所有员工步行到停靠点的路程总和最短,那么停靠点的位置应在( ) A .A 区 B .B 区C .C 区D .A B C 、、区以外的一个位置【解析】 A .以A 区为原点,从A 区往方向为正方向建立数轴,设停靠点的坐标为x ,那么所有员工步行到停靠点的路程总和为301510010300x x x +-+-,由绝对值函数的性质易知在0x =处,该函数值最小.9.ABC △的内角A 和B 都是锐角,CD 是高,若2AD AC DB BC ⎛⎫= ⎪⎝⎭,则ABC △是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等腰三角形或直角三角形【解析】 D .∵22AC AD BC BD =,∴cos cos ADAC A AC BD BC B BC==,又由正弦定理sin sin AC BBC A=, ∴cos sin cos sin A B B A=,于是sin2sin2A B =,∴A B =或90A B +=︒. 10.某人沿正在向下运动的自动扶梯从楼上走到楼下,用了24秒;若他站在自动扶梯上不动,从楼上到楼下要用56秒.若扶梯停止运动,他从楼上走到楼下要用( ) A .32秒B .38秒C .42秒D .48秒【解析】 C .设若扶梯停止运动,他从楼上走到楼下要用x 秒,则1112456x=+,解得42x =(秒).图1二、A 组填空题(每小题4分,共40分.)11.四个多项式:①22a b -+;②22x y --;③22249x y z -;④4221625m n p -,其中不能用平方差公式分解的是_______________.(填写序号)【解析】 ②.①()()22a b b a b a -+=+-;③()()2224977x y z xy z xy z -=+-; ④()()4222216254545m n p m np m np -=+-.12.若111111a b c b c d===---,,,则a 与d 的大小关系是a _______d .(填“>”、“=”或“<”) 【解析】 =.1111111111111111111da d d d d d cd dd======--+----+----- 13.分式方程222510111x x x x ++=--+的解是x =______________.【解析】 2-.222510111x x x x ++=--+ ()()225110x x x +++-=22640x x ++= 2320x x ++=1x =-(舍去)或2x =-14.甲、乙两人从A 点同时同向出发沿400米的环形跑道跑步,过一段时间后,甲在跑道上离A 点200米处,而乙在离A 点不到100米处正向A 点跑去,若甲、乙两人的速度比是4:3,则此时乙至少跑了____________米.【解析】 750.假设甲的速度是4m ,乙的速度是3m ,题中所述情况是在开始跑步后t 时刻且此时甲、乙已经跑了1k 、2k 个整圈,则14400200m t k ⋅=⋅+,23400m t k x ⋅=⋅+(其中300400x <<) 于是1240020040043k k x ++=,即()121234002004003004001504x k k k k =+-=-+ ∵300400x <<,∴123685k k <-<,因此12684k k -=.于是当12k =,21k =时,2k 最小,此时乙跑了400350750+=(米).15.已知等腰三角形三边的长分别是421156x x x -+-,,,则它的周长是_____________.【解析】 12.3.421x x -=+时,1x =,此时三角形的三边长分别为2,2,9,矛盾;42156x x -=-时,1710x =,此时三角形的三边长分别为242724,,5105,周长为1231412.310x -==; 1156x x +=-时,2x =,此时三角形的三边长分别为6,3,3,矛盾.16.若29453737a b =-=-,,则336a ab b -+=______________. 【解析】 8-.∵294523737a b +=--=-,∴2b a =-- 于是()()33336622a ab b a a a a -+=---+--()3321262a a a a =++-+()32326126128a a a a a a =++-+++8=-17.直线59544y x =-与x 轴、y 轴的交点分别为A B 、,则线段AB 上(包括端点A B 、)横坐标和纵坐标都是整数的点有_____________个.【解析】 5.59544y x =-即5495x y -=,于是y 必然整除5; 另一方面()19,0A 、950,4B ⎛⎫-⎪⎝⎭,∴954y -≤≤0, 于是y 的可能取值为20,15,10,5,0----对应的点均在线段AB 上.18.已知关于x 的不等式()2132343a x a x --->-的解是1x >-,则a =_______________.【解析】 0.原不等式⇔231124433a x a x -⎛⎫--> ⎪⎝⎭232114343a x a -⎛⎫⎛⎫⇔->- ⎪ ⎪⎝⎭⎝⎭()24131a x a ⇔+>-∴231141410a a a ⎧-=-⎪+⎨⎪+>⎩,解得43a =-(舍去)或0a =.19.当a 分别取2,1,0,1,2,3,,97--这100个数时,关于x 的分式方程212(1)1232a a x x x x +-=---+有解的概率是_______________.【解析】 4950.2112(1)1232a x x x x +-=---+()()()2221213232x a x a x x x x -+-+⇔=-+-+()2134320a x a x x ⎧+=+⎪⇔⎨-+≠⎪⎩ ∴当()1134a a +⋅=+和()1234a a +⋅=+以及()134a x a +=+无解时原方程无解, 即2a =-和1a =-时原方程无解. 因此方程有解的概率为4950.20.十位数2010888abc 能被11整除,则三位数abc 最大是______________.【解析】 990.()()218800811b a c k ++++-++++=,∴b a c --能整除11∴而9abc bc ≤,此时9b c --能整除11,∴三位数abc 最大是990.(注:能被11整数的自然数的特点是:奇数位上的数字和与偶数位上的数字和的差是11的整数倍) 三、B 组填空题(每小题8分,共40分)21.一个矩形的长与宽是两个不相等的整数,它的周长与面积的数值相等,那么这个矩形的长与宽分别是______________和______________.【解析】 6,3.设长和宽分别为x 、y ,则()2x y xy +=,即()()224x y --= 因为x y ≠,∴24x -=,21y -=,于是长和宽分别为2和1.22.用[]x 表示不大于x 的最大整数,如[][]414253=-=-.,..则方程[]6370x x -+=的解是______________或______________.【解析】 196x =-;83x =-. ∵[]673x x +=,而[]1x x x -<≤,∴()31673x x x -<+≤,解得10733x <-≤-.因此13677x -<+-≤,∴67x +的可能取值为12-和9-,解得196x =-和83x =-. 经验证,这两个解均为原方程的解.23.As in figure 2,in a quadrilateral ABCD ,we have its diagonal AC bisects DAB ∠,and21910AB AD BC DC ====,,,then the distance from point C to line AB is______________,and the length of AC is________________. (英汉词典:quadrilateral 四边形:bisect 平分)Fig 22191010D C BAEDCBA【解析】 8;17.如图,过D 作AC 的垂线,交AB 于E ,连结CE ,则AD AE =,CD CE = 于是CEB △中,10CE CD BC ===,12BE AB AE =-=, 因此容易算得等腰三角形△CEB 底边上的高为8.∴22218912642252892AC ⎛⎫=++⋅=+= ⎪⎝⎭,17AC =.24.如图3,Rt ABC △位于第一象限内,A 点的坐标为(1,1),两条直角边AB AC 、分别平行于x轴、y 轴,43AB AC ==,,若反比例函数(0)ky k x=≠的图象与Rt ABC △有交点,则k 的最大值是____________,最小值是______________.【解析】 36148;1.当反比例函数的图象过A 点时k 最小,为1; 当反比例函数的图象与BC 相切时k 最大,此时∵()5,1B ,()1,4C ,直线BC 的方程为31944y x =-+∴方程2319044x x k -+-=的判别式3613016k -=,解得36148k =. 25.设011n A A A -,,,依次是面积为整数的正n 边形的n 个顶点,考虑由连续的若干个顶点连成的凸多边形,如四边形3446A A A A 、七边形2101234n n A A A A A A A --等,如果所有这样的凸多边形的面积之和是231,那么n 的最大值是_________________,此时正n 边形的面积是_____________.【解析】 23;1.设正n 边形的面积为n S ,则∵正n 边形的对角线共有()112n n -条,∴所有满足条件的凸边形共有()1n n -个,它们的面积之和为()112n n n S -⋅∴()146223711n n n S -==⋅⋅⋅ ∴711n n S =⎧⎨=⎩或231nn S =⎧⎨=⎩,于是n 的最大值是23,此时正n 边形的面积是1.第二十一届“希望杯”全国数学邀请赛答案第二 第1试1.答案 (1)选择题(2)A 组填空题(3)B 组填空题。

第20届希望杯初二第1试试题及答案

第20届希望杯初二第1试试题及答案

初二年级 第1试一、选择题(以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后面的圆括号内.)1.在一次视力检查中,初二(1)班的50人中只有8人的视力达标,用扇形图表示视力检查结果,则表示视力达标的扇形的圆心角是( )A .64.8︒B .57.6︒C .48︒D .16︒2.如图1,点B 在反比例函数k y x=的图像上,从点B 分别作x 轴、y轴的垂线,垂足分别是A ,C .若ABC △的面积是4,则反比例函数的解析式是( ) A .8y x =-B .8y x =C .4yx=-D .4yx=3.如果22a ab b ++=,且b 是有理数,那么( )A .a 是整数B .a 是有理数C .a 是无理数D .a 可能是有理数,也可能是无理数4.复印纸的型号有01234A A A A A ,,,,等,它们有如下的关系:将上一个型号(例如3A )的复印纸在长的方向对折后就得到两张下一个型号(得到4A )的复印纸,且各种型号的复印纸的长与宽的比相等,那么这些型号的复印纸的长与宽的比约为( )A .1.414:1B .2:1C .1:0.618D .1.732:15.The number of integer solutions for the system of inequalities 2321x a x -⎧⎨->-⎩,≥0about x is图1yxO CBAjust 6,then the range of value for real number ais ( )A . 2.52a -<-≤B . 2.52a --≤≤C .54a -<-≤D .54a --≤≤(英汉词典:integer solution 整数解,system of inequalities 不等式组,the range of value取值范围)6.若分式232x x --的值是负数,则x 的取值范围是( ) A .223x <<B .23x >或2x <- C .22x -<<且23x ≠D .223x <<或2x <-7.在100到1000的整数中(含100和1000),既不是完全平方数,也不是完全立方数的数有 ()A .890个B .884个C .874个D .864个8.如图2,在正方形ABC D中,E 是D C 的中点,点F 在BC 上,E AF D A E ∠=∠,则下列结论中正确的( )A .EAF FAB∠=∠B .13FC BC=C .AF AE FC =+D .AFBC FC=+9.计算:()()233211471147++-,结果等于() A .58B .387C .247D .32710.已知在代数式2a bx cx ++中,a b c ,,都是整数,当3x =时,该式的值是2008;当7x =时,该式的值是2009,这样的代数式有( ) A .0个B .1个C .10个D .无穷多个二、A 组填空题11.某地区有20000户居民,从中随机抽取200户,调查是否已安装电话,结果如右表所示,则该地区已安装电话的户数大约是________________.图2F E DCBA12.若2145212x x +-=-,则2645x x -+的值等于______________.13.不等式12x x->的最大整数解是_______________.14.已知m 是整数,以4521m m +-,,20m -这三个数作为同一个三角形三边的长,则这样的三角形有__________________个. 15.当x 依次取1,2,3,…,2009,11112342009 ,,,,时,代数式221xx+的值的和等于___________. 16.由一次函数22y x y x =+=-+,和x 轴围成的三角形与圆心在点(11),、半径为1的圆构成的图形覆盖的面积等于_____________. 17.在R t ABC △中,90C ∠=︒,斜边AB上的高为h ,则两条直角边的和a b+与斜边及其高的和c h+的大小关系是a b +___________c h +.(填“)”、“〈”或“=”)18.Figure 3 is composed of squareABC Dand triangleBEC,where BEC ∠ is a right angle,Suppose the lengthof C Eis a ,and the length of BEis b ,then the distance between point Aand lineC Eequals to _______________.(英汉词典:be composed of 由……组成,right angle 直角,length 长度,distance 距离) 19.如图4,在ABC △中,A BB C>,BD 平分ABC ∠,若BD 将ABC△的周长分为4:3的两部分,则ABD △和D B C △的面积之比等于_____________.20.将n 个棋子放入10个盒子内,可以找到一种放法,使每个盒子内都有棋子,且这10个盒子内的棋子数都不相同.若将()1n +个棋子放入11个盒子内,却找不到一种放法,能够使每个盒子内都有棋子,并且这11个盒子内的棋子数都不相同.则整数n 的最大值等于_____________,最小值等于_______________. 三、B 组填空题EDCBAFigure 3图4D CBA21.如果自然数a 和()b a b >的和、差、积、商相加得27,那么a =______________,b=____________.(拟题:李国威 上海市青浦区教师进修学院 201700)22.若a b c b cc aa b==+++,则223a b c a b c +++-=_____________或______________.23.若以x 为未知数的方程212(1)1232aa x xx x +-=---+无解,则a =__________或___________或________________.24.对于正整数k ,记直线111k yx k k =-+++与坐标轴所围成的直角三角形的面积为k S ,则kS =___________,1234S S S S +++=___________________.25.将1111234100,,,,这99个分数化成小数,则其中的有限小数有____________个,纯循环小数有________________个(纯循环小数,是从小数点后第一位开始循环的小数)参考答案一、 选择题 题号 1 2 3 4 5 6 7 8 9 10 答案 BACAADCDBA提 示1.周角为360︒,对应全体学生,则表示视力达标的扇形的圆心角为836057.650⨯︒=︒,选B .2.点()B x y ,在第四象限,所以00x y ><,,且满足k y x=,即xy k =<,ABC△的面积12ABCS xy =,△由已知得1482xy xy ==,,则8k xy ==-,所以批比例函数的解析式是8y x =-,选A .3.由题目条件得()()()()()22221312221212121bb b b b a b b b b ---+-===-++-=()2221232121b b b b +---,因为b 是有理数,则2321bb -和22121b b +-也都是有理数,而2是无理数,所以a 是无理数.选C .4.设3A 型号的复印纸长为x ,宽为y ,对折后得到4A 型号的复印纸长为y ,宽为2x,由题意得2x y x y=,即222x y=,所以 :2:1 1.414:1x y =≈,选A5.译文:关于x 的不等式组20321x a x -⎧⎨->-⎩,≥的整数解恰好有6个,那么实数a 的取值范围是()A . 2.52a -<-≤B . 2.52a --≤≤C .54a -<-≤D .32a -<-≤解 解20x a -,≥得2x a ≥;解321x ->-,得2x <, 所以不等式组的解是22a x <≤,由题意知不等式组恰好有6个整数解,所以这6个整数解应为 -4,-3,-2,-1,0,1, 所以 524a -<-≤,解得 2.52a -<-≤,选A .6.由题意,分式232x x --的值为负,则2x -和32x -异号.当320x ->,即23x >时,应当有202x x -<<,,解得22x -<<,又23x >,所以 223x <<;当320x -<,即23x <时,应当有202x x ->>,,解得2x >或2x <-,又23x <,所以2x <-.综上可知,x 的取值是范围是223x <<或2x <-,选D .7.解法1 用()A n 表示不大于n 的非零自然数中既不是完全平方数也不是完全立方数的数的个数. 由于36999104100010310004<<<=<<,,,所以 (99)99(942)88A =-+-=. 由于3631100032100010310004<<=<<,,,所以 (1000)1000(31103)962A =-+-=故有(1000)(99)96288874A A -=-=.即在100到1000的整数中(含100和1000),既不是完全平方数也不是完全立方数的数有874个,选C .解法2 因为2221001031100032=<<,,所以在100到1000之间的完全平方数有222210111231 ,,,,,共22个, 又因为33341005100010<<=,,所以在100到1000之间的完全立方数有333356910 ,,,,共6个, 其中3629327==即是完全平方米,也是完全立方数.所以,在100到1000的整数中(含100和1000),既不是完全平方数也不是完全立方数的数有901-22-6+1=874(个),选C .8.如图5所示,从点E 作EG AF⊥,垂足为G .在R t D AE △和R t G AE△中,AE AE DAE EAG=∠=∠,,所以 D AE G AE≅△△,所以AG AD BC EG ED EC====,,AEDAEG∠=∠.GABCDE F图5又在R t EFG △和R t EFC △中,EF EF EG EC ==,,所以 EFG EFC≅△△,FC GF FEG FEC =∠=∠,,所以 AF AG G F BC FC=+=+,D 选项正确.又AEAD BC>=,可知AFAE FC<+,C 选项错误.由AED AEG FEGFEC∠=∠∠=∠,,且这四个角之和等于180︒,所以 90AEF ∠=︒.令1AB =,在R t AFE △中,22254AE AD DE =+=,所以 225(1)4G F EF-=+, ①在R t EFC △中,222214EFEC FC FC=+=+ ②①+②,并由G FFC=得14FC =,故14FC BC =,B 选项错误.据此可知FAB DAE FAB EAF ∠≠∠∠≠∠,,A 选项错误. 故选D . 9.原式=()()3322227227272272+⨯++-⨯+=()()3322227272⎡⎤⎡⎤++-⎢⎥⎢⎥⎣⎦⎣⎦=()()337272++-=()()()()3232223737237273723722+⨯⨯+⨯⨯+-⨯⨯+⨯⨯-=277674387⨯+⨯=,选B .10.当3x=时,392008a b c ++=, ①当7x =时,7492009a b c ++=. ② ②-①,得4401b c +=.当b c ,都是整数时,上式左边总为偶数,不可能等于1.所以不存在这样的代数式,选A . 二、A 组填空题 题号 11 12 1314 1516 17 1819 20 答案 950073x =-2120082π42+<a b+4:364:55提 示11.抽取的200户居民中,已经安装电话的有60+35=95(户),则该地区的20000户居民中,已经安装电话的大约有95200009500200⨯=(户) 12.因为2145212x x +-=-, 所以 2211470x x --=,即23210x x --=,所以 ()22645232177x x x x -+=--+=. 13.由12x x->得21x x ->, 即()121x ->,因为 120-<,所以()121 2.41412x <=-+≈--,所以 原不等式的最大整数解是3x =-. 14.由450210200m m m +>->->,,,解得1202m <<, 因为m 是整数,所以 119m ≤≤,又由“三角形两边之和大于第三边”得452120452021212045m m m m m m m m m ++->-⎧⎪++->-⎨⎪-+->+⎩,,, 解得2272624.3m m m ⎧>⎪⎪>-⎨⎪⎪<⎩,,得222473m <<,因为m 是整数,所以只能取34,. 当3m =时,三角形三边的长分别是17517,,;当4m=时,三角形三边的长分别是21716,,.故满足题意的三角形共有2个. 15.当a 为实数时,把x a =与1x a=分别代入代数式221xx+中,得到的两个值的和是222222211111111aaa aaaa+=+=++++,所以,若将11112320092342009x = ,,,,,,,,代入代数式221xx+中求值,得到的所有值的和是2008,又当1x =时,22112xx=+所以,得到的所有代数式的值的和等于120082.16.由一次函数22y x y x =+=-+,和x 轴可以确定三条直线,每两条直线相交于一点,共得三个点(0,2)(-2,0),(2,0),它们构成了一个三角形,这个三角形的面积为4. 由于点(1,1)在直线2y x =-+上,所以圆的一半与三角图6yx(2,0)(1,1)(0,2)(0,0)(-2,0)形重叠,如图6所示.所以,所求图形的面积为21π4π1422+⨯⨯=+.17.因为ABC △是直角三角形,所以222a b c+=,又1122ABC S ab ch==△,所以 ab ch=则()()2222222222a b a ab b c ch c ch h c h +=++=+<++=+,所以 a b c h+<+18.译文:图3由正方形ABC D 和三角形BEC 构成,其中BEC ∠是直角,记C E 的长为a ,BE 的长为b ,则点A 到直线C E 的距离等于___________________. 解 如图7所示,从点A 作AF CE ⊥,交线段C E 于点F ,交线段BC 于点H ;从点B 作BGAF⊥交AF 于G ,则四边形B E F G 是矩形,G FBE b==.因为 90BAG BH A ∠=︒-∠,90BC E C H F∠=︒-∠, 又BH A C H F∠=∠, 所以 BAG BC E∠=∠.在R t ABG △与R t C BE △中,90BAG BCE AB CB AGB BEC ∠=∠=∠=∠=︒,,所以 ABG CBE AG CE a ≅==,△△,所以 AF AG G F a b===+19.如图8所示,作DE AB⊥于E ,D FBC⊥于F .因为BD是ABC ∠的平分线,GHF图7ABCDEF EBDE AB DF BC⊥⊥,,所以 DE DF=,则11:::22ABD D BC S S A B D EB C D E A B B C ⎛⎫⎛⎫=⋅⋅= ⎪ ⎪⎝⎭⎝⎭△△又 ::ABD DBC S S AD CD=△△,所以:():()4:3ABD DBC S S AB AD BC CD =++=△△.20.由题意,将n 个棋子放入10个盒子中,可以找到一种放法,使每个盒子内都有棋子,且这10个盒子内的棋子数都不相同,按最少的放法,盒子内依次放入1,2,3,…,10个棋子,即至少需要1+2+3+…+10=55(个)棋子,所以55n ≥.同理,将1n +个棋子放入11个盒子内,找不到一种放法,使每个盒子内都有棋子,并且这11个盒子内的柜子数都不相同,则11231166n +<++++= ,即65n <.综上,得5565n ≤≤,取5564n ≤≤. 三、B 组填空题题号 21 22 232425答案 6;2-5;14-2;32-;1-12(1)k k +;2514;39提 示21.将两数a 和b 的和、差、积、商相加得27,因为27是整数,所以a 必是b 的整数倍,设a kb=(k 是整数),则有227kb b kb b kb k ++-++=,化简得2227kb kb k ++=,222(1)33271k b +=⨯=⨯,则 326k b a ===,,,或2700k b a ===,,(不符合题意,舍去).所以 326k b a ===,,.22.令 a b ckb cc aa b===+++.当0a b c ++≠时,()122a b ck a b c ++==++,所以()12c a b =+,()()()()1222251332a b a b a b c a b ca b a b +++++==-+-+-⋅+.当0a b c ++=时,()c a b =-+, 所以()()()()2221334a b a b a b c a b ca b a b +-+++==+-+++.23.当10x -≠且20x -≠时,将原方程去分母得()()()2121x a x a -+-=+,整理得 ()134a x a +=+, 当1a≠-时,原方程的解为341a x a +=+.由于原方程无解,那么可能的情况是1a =-或求得的根是增根.当增根是1x =时,即 3411a a +=+,解得32a =-;当增根是2x =时,即 3421a a +=+,解得2a=-,所以a 的值为32-或-2或-1.24.直线111k yx k k =-+++与横轴的交点坐标为10k ⎛⎫⎪⎝⎭,,与纵轴的交点坐标为101k ⎛⎫ ⎪+⎝⎭,,所以该直线与坐标轴所围成的直角三角形的面积是()121k S k k =+,所以该直线与坐标轴所围成的直角三角形的面积是()()112321kS k n k k ==+ ,,,,.123411111212233445S S S S ⎛⎫+++=+++ ⎪⨯⨯⨯⨯⎝⎭=11111111122233445⎛⎫-+-+-+- ⎪⎝⎭=25.25.⑴若p 为正整数,且1p是有限小数,则p 可以写成25mn⋅(m n ,是自然数)的形式.其中若0n =,则22100m ≤≤,得123456m =,,,,,.即248163264p =,,,,,共6个;若1n =,则1220m ≤≤,得01234m =,,,,,即510204080p =,,,,共5个; 若2n =,则124m ≤≤,得012m =,,,即25p =,50,100共3个; 若3n ≥,则不存在合理的m 的值. 所以可以化为有限小数的分数共有6+5+3=14(个).(2)若p 为正整数,且1p是纯循环小数,则p 的质因数一定没有2或5.在2到100的整数中,质因数含有2的数有50个,质因数含有5的数有20个,质因数同时含有2和5的数有10个,所以从2到100这99个整数中,质因数中不含有2且不含有5的整数有99-50-20+10=39(个)。

数学希望杯初二试题及答案

数学希望杯初二试题及答案

数学希望杯初二试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是正整数?A. -5B. 0C. 2D. -22. 如果\( a \)和\( b \)是互质数,那么\( a \times b \)的最小公倍数是:A. \( a \)B. \( b \)C. \( a + b \)D. \( a \times b \)3. 一个长方形的长是宽的两倍,如果宽是\( x \)米,那么长方形的面积是:A. \( x^2 \)B. \( 2x \)C. \( 2x^2 \)D. \( 4x^2 \)4. 一个数的平方根是它自己,这个数是:A. 0B. 1C. -1D. 25. 下列哪个是二次根式?A. \( \sqrt{16} \)B. \( \sqrt{2} \)C. \( 3\sqrt{2} \)D. \( \sqrt{-9} \)6. 一个数的相反数是它自己,这个数是:A. 0B. 1C. -1D. 27. 一个圆的半径是\( r \),那么它的面积是:A. \( \pi r \)B. \( \pi r^2 \)C. \( 2\pi r \)D. \( \pi r^3 \)8. 一个数的绝对值是它自己,这个数是:A. 0B. 正数C. 负数D. 任意实数9. 一个等腰三角形,两边相等,如果底边是\( a \),那么它的周长是:A. \( 2a \)B. \( 3a \)C. \( 4a \)D. \( 无法确定 \)10. 如果\( x \)和\( y \)是实数,\( x = y \),那么下列哪个等式是正确的?A. \( x + 1 = y + 1 \)B. \( x^2 = y^2 \)C. \( x - y = 0 \)D. 所有选项都是正确的二、填空题(每题2分,共20分)11. 一个数的平方根是\( \sqrt{4} \),那么这个数是______。

12. 如果\( a \)和\( b \)是相反数,那么\( a + b = ______。

希望杯试题及答案初二

希望杯试题及答案初二

希望杯试题及答案初二一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333…D. 2/3答案:B2. 一个等腰三角形的两边长分别为5和10,那么这个三角形的周长是多少?A. 15B. 20C. 25D. 30答案:C3. 如果一个数的平方等于它本身,那么这个数可能是?A. 0B. 1C. -1D. 以上都是答案:D4. 下列哪个方程的解是x=2?A. x^2 - 4x + 4 = 0B. x^2 - 3x + 2 = 0C. x^2 - 5x + 6 = 0D. x^2 - 6x + 9 = 0答案:A5. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B6. 一个长方体的长、宽、高分别是2、3、4,那么它的体积是多少?A. 24B. 36C. 48D. 64答案:A7. 下列哪个函数是一次函数?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^3答案:B8. 一个等差数列的前三项分别是1、3、5,那么它的第五项是多少?A. 7B. 9C. 11D. 13答案:C9. 如果一个角的补角是120°,那么这个角的度数是多少?A. 30°B. 45°C. 60°D. 75°答案:A10. 下列哪个图形是轴对称图形?A. 圆B. 正方形C. 正三角形D. 以上都是答案:D二、填空题(每题3分,共30分)11. 一个数的相反数是-5,那么这个数是______。

答案:512. 一个数的绝对值是7,那么这个数可能是______或______。

答案:7或-713. 一个等腰三角形的底边长为6,高为4,那么它的面积是______。

答案:1214. 一个二次方程x^2 - 5x + 6 = 0的两个根是______和______。

答案:2和315. 一个圆的直径是10,那么它的周长是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级希望杯模拟试题一
拓展探究
一、选择:
2.设非零实数a ,b ,c ,满足⎩
⎪⎨⎪⎧
a +2b+3c =02a +3b+4c =0则a
b +b
c +ca
a 2+
b 2+
c 2的值为( )
(A )—12 (B )0 (C )1
2
(D )1
【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2
()0a b c ++=.于是2221()2ab bc ca a b c ++=-
++,所以222
1
2
ab bc ca a b c ++=-++. 3.对于任意实数x ,y ,z ,定义运算“*”为:x y *=3x 3y +3x 2y 2+xy 3+45
(x +1)3+(y +1)3—60,且x y z =x y z ****(),
则2013201232****…的值为( )
(A )607967 (B )1821 967 (C )5463 967 (D )16389 967
【解答】设201320124m **
*=,则
()20132012433m **
**=*3232
33392745
93316460
m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*32233339239292455463
10360967
⨯⨯+⨯⨯+⨯+=
=+-. 二、填空:
4.已知,化简得 .
解:∵,∴,,
原式=.
5. 设a ,b 是a 2的小数部分,则(b +2)3的值为____________.
【解答】由于2123a a <<<<,故2
22b a =-=,因此33(2)9b +==.
6.
7.如图,在矩形ABCD 中,AB =3,BC =4,点E 是AD 上一个动点,把△BAE 沿BE 向矩形内部折叠,当点A 的对应点A 1恰落在∠BCD 的平分线上时,CA 1= .
解:过A 1作A 1M ⊥BC ,垂足为M ,设CM =A 1M =x ,则BM =4-x , 在Rt △A 1BM 中,

∴=
,∴x =A 1M =

∴在等腰Rt △A 1CM 中,C A 1=.
8.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF , △BFE ,△BCF 的面积分别为3,4,5,则四边形AEFD 的面积是____________.
【解答】如图,连接AF ,则有:
45
=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,
35
4
AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,
解得10813AEF S ∆=,96
13
AFD S ∆=. 所以,四边形AEFD 的面积是204
13

9.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅 笔和圆珠笔共350支,当天虽然笔没有卖完,但是他的销售收入恰好是2013元,则他至少 卖出了__________支圆珠笔.
【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,
,+=⎧⎨
+<⎩
x y x y
所以201371
(5032)44
y y x y -+=
=-+
, 于是14
y +是整数.又20134()343503x y y y =++<⨯+,
所以204y >,故y 的最小值为207,此时141x =.
三、解答:
10.设a ,b ,c 是素数,记x b c a y c a b z a b c =+-=+-=+-,,,当
2,2z y ==时,a ,b ,c 能否构成三角形的三边长?证明你的结论.
【解答】不能.
依题意,得111
()()()222
a y z
b x z
c x y =
+=+=+,,. 因为2
y z =,所以211(1)()()222
z z a y z z z +=+=+=.
又由于z 为整数,a 为素数,所以2z =或3-,3a =.
当2z =时,2
2
42)16y z x ====,.进而,9b =,10c =,与b ,c 是素数矛盾;
当3z =-时,0a b c +-<,所以a ,b ,c 不能构成三角形的三边长.
11.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数).求正整数n 的最小值,使得存在互不相同的正整数12n a a a ,,…,,满足对任意一个正整数m ,在12n a a a ,,…,中都至少有一个为m 的魔术数.
【解答】若n ≤6,取m =1,2,…,7,根据抽屉原理知,必有12n a a a ,,…,中的一个正整数M 是(1i j ,≤i <j ≤7)的公共的魔术数,即7|(10M i +),7|(10M j +).则有7|(j i -),但0<j i -≤6,矛盾.故n ≥7.
又当12n a a a ,,…,为1,2,…,7时,对任意一个正整数m ,设其为k 位数(k 为正整
数).则10k i m +(12i =,,…,7)被7除的余数两两不同.若不然,存在正整数i ,(1j ≤
i <j ≤7),满足7|[(10)(10)]k k j m i m +-+,即7|10()k j i -,从而7|()j i -,矛盾.
故必存在一个正整数i (1≤i ≤7),使得7|(10)k
i m +,即i 为m 的魔术数. 所以,n 的最小值为7.。

相关文档
最新文档