第二章三极管要点
第二章 双极型晶体三极管
第二章 双极型晶体三极管(BJT )§2.1 知识点归纳一、BJT 原理·双极型晶体管(BJT )分为NPN 管和PNP 管两类(图2-1,图2-2)。
·当BJT 发射结正偏,集电结反偏时,称为放大偏置。
在放大偏置时,NPN 管满足C B C V V V >>;PNP 管满足C B E V V V <<。
·放大偏置时,作为PN 结的发射结的V A 关系是:/BE T v V E ES i I e =(NPN ),/E B T v VE ES i I e =(PNP )。
·在BJT 为放大偏置的外部条件和基区很薄、发射区较基区高掺杂的内部条件下,发射极电流E i 将几乎转化为集电流C i ,而基极电流较小。
·在放大偏置时,定义了CNE i i α=(CN i 是由E i 转化而来的C i 分量)极之后,可以导出两个关于电极电流的关系方程:C E CBO i i I α=+(1)C B CBO B CEO i i I i I βββ=++=+其中1αβα=-,CEO I 是集电结反向饱和电流,(1)CEO CBO I I β=+是穿透电流。
·放大偏置时,在一定电流范围内,E i 、C i 、B i 基本是线性关系,而BE v 对三个电流都是指数非线性关系。
·放大偏置时:三电极电流主要受控于BE v ,而反偏CB v 通过基区宽度调制效应,对电流有较小的影响。
影响的规律是;集电极反偏增大时,C I ,E I 增大而B I 减小。
·发射结与集电结均反偏时BJT 为截止状态,发射结与集电结都正偏时,BJT 为饱和状态。
二、BJT 静态伏安特性曲线·三端电子器件的伏安特性曲线一般是画出器件在某一种双口组态时输入口和输出口的伏安特性曲线族。
BJT 常用CE 伏安特性曲线,其画法是:输入特性曲线:()CE B BE V i f v =常数(图2-13)输出特性曲线:()B B CE I i f v =常数(图2-14)·输入特性曲线一般只画放大区,典型形状与二极管正向伏安特性相似。
第二章 晶体三极管和场效应晶体管
第二章晶体三极管和场效应晶体管一、是非题(1)为使晶体管处于放大工作状态,其发射结应加反向电压,集电结应加正向电压。
()(2)无论是哪种晶体三极管,当处于放大状态时,b极电位总是高于e极电位,c极电位也总是高于b极电位。
()(3)晶体三极管的发射区和集电区是由同一类半导体(N型或P型)构成的,所以e极和c极可以互换使用。
()(4)晶体三极管的穿透电流I CEO的大小不随温度而变化。
()(5)晶体三极管的电流放大系数β随温度的变化而变化,温度升高,β减少。
()(6)对于NPN三极管,当V BE>0,V BE>V CE,则该管的工作状态是饱和状态。
()(7)已知某三极管的射极电流I E=1.36mA,集电极电流I C=1.33mA,则基极电流I B=30微安。
()(8)某晶体三极管的射极电流I B=10微安时,I C=0.44mA;当I B=20微安时,I C=0.89mA 则它的电流放大系数β=45。
()(9)可以用两个二极管连接成一个三极管。
()(10)晶体三极管具有电压放大作用。
()二、填空题1、晶体三极管的三个电极分别称为、、。
三极管在放大电路中,PNP管电位最高的一极是,NPN管电位最高的一极是。
此时,三极管发射结为偏置,集电结为偏置。
晶体三极管工作在饱和区和截止区时,具有特性,可应用于脉冲数字电路中。
2、测得工作在放大电路中的晶体管的两个电极在无交流信号输入时的电流大小及方向如图2-1所示,则另一电极的电流大小为,该管属于管(PNP NPN)。
0.1mA4mA-++ 10K20K1V图2-13、工作在放大区的某三极管,基极电流从20μA增大到40μA,集电极电流从1mA变为2mA,则该三极管的电流放大倍数为。
4、当晶体三极管工作在饱和状态时,其特点是集电结处于偏置,发射结处于偏置。
当工作在放大状态时,其特点是集电结处于偏置,发射结于偏置。
当工作在截止状态时,其特点是集电结处于偏置,发射结于偏置。
第二章_三极管放大电路
一. 多级放大器的耦合方式
1.阻容耦合 优点:
iC
放大电路产生 截止失真
输入波形
uCE
ib
ib失真 uo 输出波形
(2-41)
2. Q点过高,信号进入饱和区 iC
放大电路产生 饱和失真
输入波形
ib
uCE
输出波形
uo
(2-42)
实现放大的条件
1. 晶体管必须偏置在放大区。发射结正偏,集电结 反偏。 2. 正确设置静态工作点,使整个波形处于放大区。 3. 输入回路将变化的电压转化成变化的基极电流。
rbe从几百欧到几千欧。
(2-25)
从输出回路看:
iC近似平行
i C IC i c β(I B i b ) βI B βi b
iC
所以: c i
βi b
uCE
uCE
(1) 输出端相当于一个受ib 控制 的电流源。 (2) 考虑 uCE对 iC的影响,输出 端还要并联一个大电阻rce。
rce的含义:
Δu CE u ce rce Δi C ic
(2-26)
三极管的微变等效电路 c
ib
ic
ib
ic ube rbe uce
ib
b
rce
uce
ube
eቤተ መጻሕፍቲ ባይዱ
ib
b
rbe
ib
c
rce很大, 一般忽略。
微变等效电路
e
(2-27)
2、放大电路的微变等效电路
将交流通道中的三极管用微变等效电路代替: uo ui RB
4. 输出回路将变化的集电极电流转化成变化的集电 极电压,经电容滤波只输出交流信号。
晶体三极管及其基本放大电路
22
2.4、三极管的主要参数
• 1、电流放大系数 • i)共射极电流放大系数
直流电流放大系数 IC
IB
交流电流放大系 数 Vic
Vib
h( fe 高频)
一般工作电流不十分大的情况下,可认为
Ma Liming
Electronic Technique
23
ii)共基极电流放大系数
共基极直流电流放大系数
3
6
9
IB=0 12 vCE(V)
区时, 有:VB>VC Rb
+
-
UBB
Ma Liming
+ 对于PNP型三极管,工作在饱和区 UCC 时, 有:VB<VC<VE
-
Electronic Technique
13
例:如图,已知三极管工作在放大状态, 求:1).是NPN结构还是PNP结构?
Ma Liming
Electronic Technique
20
方法二:用万用表的 hFE档检测 值
1. 拨到 hFE挡。
2.将被测晶体管的三个引脚分别插入相应的插孔 中(TO-3封装的大功率管,可将其3个电极接 出3根引线,再插入插孔),三个引脚反过来 再插一次,读数大的为正确的引脚。
3.从表头或显示屏读出该管的电流放大系数。
N
b
c PV
Rb
eN
+
-
UBB
Ma Liming
+
UCC 对于PNP型三极管,工作在放大区 - 时, 有:VC<VB<VE
Electronic Technique
10
iC(mA ) 4 3
2 1
第二章半导体三极管与分立元件放大电路
IC IB
IE(1)IB
三、三极管的电流放大作用
(1)三极管的电流放大作用就是基极电流IB的微小变化控 制了集电极电流IC较大的变化。
(2)三极管放大电流时,被放大的IC是由电源VCC提供 的,并不是三极管自身生成的,放大的实质是小信号对大信 号的控制作用。
(3)三极管是一种电流控制器件。
UB
Rb 2V CC Rb1 Rb2
若电路满足I1≥(5~10)IB,UB≥(5~10)UBE由上式可知, UB由Rb1、Rb2分压而定,与温度变化基本无关。
如果温度升高使IC增大,则IE增大,发射极电位UE=IERe升 高,结果使UBE=UB-UE减小,IB相应减小,从而限制了IC的增 大,使IC基本保持不变。上述稳定工作点的过程可表示为
这个值时,放大性能下降或损坏管子。
(2)反向击穿电压(Reverse breakdown voltage) U(BR)CBO : 发射极开路时,集电极-基极之间允许施加的最高 反向电压,超过此值,集电结发生反向击穿。 U(BR)EBO : 集电极开路时,发射极-基极之间允许施加的最高反 向电压。 U(BR)CEO:基极开路时,集电极与发射极之间所能承受的最高反 向电压。为可靠工作,使用时VCC取U(BR)CEO的1/2或2/3。在输出特 性曲线中,iB=0的曲线开始急剧上翘所对应的电压即为U(BR)CEO , 其值比U(BR)CBO小。T↑,U(BR)↓。
图(b)的电路,由于C1的隔断直流作用,VCC不能通过Rb 使管子的发射结正偏即发射结零偏,因此三极管不工作在放大 区,无放大作用。
2.2.4 共射基本电路的静态工作点
一般,三极管的UBE可视为已知量,硅管│UBE│取0.7V, 锗管│UBE│取0.2V,VCC>>UBE。
第二章_双极型晶体三极管(BJT)
传输到集电极的电流 发射区注入的电流
ICn
Rb
IE
IC ICBO IC
EB
IE
IE
一般要求 ICn 在 IE 中占的比例尽量大
ICBO IB
b IBn
c
IC
ICn
IEn e IE 一般可达 0.95 ~ 0.99
Rc EC
13
(2) i与C 的i关B 系
输入
b
+
cUCE 输出
e
V 回路UCE
回路
V
UBE
电流,UCE是输出电压;
VCC
25
1、共射输入特性曲线
I B f (U BE ) UCE 常数
(1) UCE = 0 时的输入特性曲线
Rb IB b c
VBB
+e
UBE _
IB/A
UCE 0
类似为PN结正偏时的伏安特性曲线。
O
U BE / V
IE = IC + IB IC IE ICBO
IB=IBn-ICBO
当IE=0时,IC=ICBO
IC ( IC IB ) ICBO
1
IC 1 IB 1 ICBO
IC IB (1 )ICBO
= IB ICEO
穿透电流。
其中:
1
共射直流电流放大 系数。
14
IC IB ICEO
• 直流参数
– 直流电流放大系数 和
– 极间反向电流 和ICBO ICEO
• 交流参数
– 交流电流放大系数 和
– 频率参数 和 f
fT
• 极限参数
集电极最大允许电流ICmax 集电极最大允许功耗PCmax 反向击穿电压
第二章 三极管及放大电路基础
第二章三极管及放大电路基础教学重点1.了解三极管的外形特征、伏安特性和主要参数。
2.在实践中能正确使用三极管。
3.理解放大的概念、放大电路主要性能指标、放大电路的基本构成和基本分析方法。
4.掌握共发射极放大电路的组成、工作原理,并能估算电路的静态工作点、放大倍数、输入和输出电阻等性能指标。
5.能搭建分压式放大电路,并调整静态工作点。
教学难点1.三极管的工作原理。
2.放大、动态和静态以及等效电路等概念的建立。
3.电路能否放大的判断。
学时分配2.1三极管2.1.1三极管的结构与符号 通过实物认识常见的三极管三极管有三个电极,分别从三极管内部引出,其结构示意如图所示。
按两个PN 结组合方式的不同,三极管可分为PNP 型、NPN 型两类,其结构示意、电路符号和文字符号如图所示。
PNP 型 NPN 型有箭头的电极是发射极,箭头方向表示发射结正向偏置时的电流方向,由此可以判断管子是PNP 型还是NPN 型。
基区 发射区e基极 ceVTe基极 cecVT《电子技术基础与技能》配套多媒体CAI 课件 电子教案三极管都可以用锗或硅两种材料制作,所以三极管又可分为锗三极管和硅三极管。
2.1.2三极管中的电流分配和放大作用动画:三极管电流放大作用的示意做一做:三极管中电流的分配和放大作用观察分析实验参考数据:1)三极管各极电流分配关系:I E = I B + I C ,I E ≈ I C ≫I B2)基极电流和集电极电流之比基本为常量,该常量称为共发射极直流放大系数β,定义为:BCI I =β 3)基极电流有微小的变化量Δi B ,集电极电流就会产生较大的变化量Δi C ,且电流变化量之比也基本为常量,该常量称为共发射交流放大系数β,定义为:BCΔi i ∆=β1.三极管的电流放大作用,实质上是用较小的基极电流信号控制较大的集电极电流信号,实现“以小控大”的作用。
2.三极管电流放大作用的实现需要外部提供直流偏置,即必须保证三极管发射结加正向电压(正偏),集电结加反向电压(反偏)。
电子技术课件第二章三极管及基本放大电路
2.三极管的主要参数
(1)直流参数 反映三极管在直流状态下的特性。
直流电流放大系数hFE 用于表征管子IC与IB的分配比例。
漏电电流。ICBO大的三极管工作的稳定性较差。
集—基反向饱和电流ICBO 它是指三极管发射极开路时,流过集电结的反向
ICBO测量电路
ICEO测量电路
加上一定电压时的集电极电流。ICEO是ICBO的(1+β)倍,所以它受温度影响不可忽视。
性。 A——PNP锗材料,B——NPN锗材料, C——PNP硅材料,D——NPN硅材料。
三极管型号的读识 3 A G 54 A
规格号
第三部分是用拼音字母表示管子的类型。
X——低频小功率管,G ——高频小功率管, D——低频大功率管,A ——高频大功率管。
三极管 NP锗材料 高频小功率 序号
第四部分用数字表示器件的序号。 第五部分用拼音字母表示规格号。
饱和区 当VCE小于VBE时,三极管的发
四、三极管器件手册的使用
三极管的类型非常多,从晶体管手册可以查找到三极管的型号,主要用途、主 要参数和器件外形等,这些技术资料是正确使用三极管的依据。
1.三极管型号
国产三极管的型号由五部分组成。
第一部分是数字“3”,表示三极管。 第二部分是用拼音字母表示管子的材料和极
一、放大电路静态工作点不稳定的原因
(1)温度影响 (2)电源电压波动 (3)元件参数改变
二、分压式偏置放大电路 1.电路组成
Rb1是上偏置电阻,Rb2是下偏置电阻。电源电压经Rb1、Rb2串联分压后为三极 管提供基极电压VBQ。Re起到稳定静态电流的作用,Ce是Re的交流信号旁路电容。
分压式偏置放大电路
放大电路的电压和电流波形
三极管及放大电路解析
6. 集电极最大允许耗散功耗PCM PCM取决于三极管允许的温升,消耗功率过大,温升过高会烧坏三极管。 PC PCM =IC UCE
硅管允许结温约为150C,锗管约为7090C。
由三个极限参数可画出三极管的安全工作区 IC
ICM
ICUCE=PCM
安全工作区 O
ICE 与 IBE 之比称为共发射极电流放大倍数
C IC
ICBO
N
ICE IB
P
EC
B
ICEICICBO IC
RB
IBE
N
IBE IBICBO IB
EB
E IE
IC IB ( 1)IC BO IB ICEO
若IB =0, 则 IC ICE0
集-射极穿透电流, 温度ICEO
忽 IC略 E , O IC 有 IB (常用公式)
(3)通频带 衡量放大电路对不同频率信号的适应能力。
由于电容、电感及放大管PN结的电容效应,使放大电路在信号频率较低和较高时电压放大倍数数值下降, 并产生相移。
下限频率
fbwfHfL
(4)最大不失真输出电压Uom:交流有效值。 (5)最大输出功率Pom和效率η:功率放大电路的主要指标参数
上限频率
二、基本共射极放大电路 1、基本放大电路组成及各元件作用
问题:
将两个电源合二为
1. 两种电源
一
2. 信号源与放大电路不“共地”
共地,且要使信号驮载在静 态之上
-+ UBEQ
有交流损失
有直流分量
静态时(ui=0),
UBEQURb1
动态时,VCC和uI同时作用于晶体管的输入回 路。
(2)阻容耦合放大电路
三极管PPT课件
一、三极管的基本结构
2021/6/24
它是通过一定的制作工艺,将两 个PN结结合在一起的器件,两个PN结 相互作用,使三极管成为一个具有控制 电流作用的半导体器件。
三极管可以用来放大微弱的信号
和作为无触点开关。
4
2.1.1 三极管的结构
2021/6/24
三极管的结构模型和符号
5
2.1.1 三极管的结构
2021/6/24
12
2.1.3 三极管的电流分配关系 和电流放大作用
二、三极管的电流分配关系
(1)IC与IE的关系
α
=
IC IE
α 称为共基极直流电流放大系数 ,是
小于1且接近于1的值,一般为0.9-
0.99。
2021/6/24
13
2.1.3 三极管的电流分配关系 和电流放大作用
(2)IC与IB的关系
2021/6/24
24
2.1.4 三极管的伏安特性曲线
二、输出特性曲线
iCf uCEIB常数
2021/6/24
21 25
2.1.4 三极管的伏安特性曲线
(3)饱和区
工作条件:发射结正偏,集电结正偏。
工作特点:
① iC几乎不随iB变化,uCE略有增加,iC迅速上升。
②UCE很小,称之为饱和电压,用UCES表示。
19
2.1.4 三极管的伏安特性曲线
输入特性曲线的讨论:
(1)当UCE<1V时
三极管的发射结、集电结均正偏,此时的三极 管相当于两个PN结的并联,曲线与二极管相似, 所以增大UCE时,输入曲线明显右移。
(2)当UCE≥1V时
发射结正偏、集电结反偏,此时再继续增大
UCE特性曲线右移不明显,不同的UCE输入曲线
三极管开关原理及运用要点
三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。
分成NPN和PNP 两种。
我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。
一、电流放大下面的分析仅对于NPN型硅三极管。
如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流 Ic。
这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。
三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。
如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic 很大的变化。
如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I 可以算得,这电阻上电压就会发生很大的变化。
我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。
二、偏置电路三极管在实际的放大电路中使用时,还需要加合适的偏置电路。
这有几个原因。
首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。
当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。
但实际中要放大的信号往往远比 0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。
如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。
二极管、三极管及整流与放大电路
复习与自我检测(五)二极管、三极管及整流与放大电路一、学习要点1.半导体的基本知识(1)半导体的特性导电性能介于导体和绝缘体之间的物质称为半导体。
半导体能得到广泛应用,是由于它的导电能力会随温度、光照或所掺杂质的不同而显著变化。
(2)PN结的单向导电性当在PN结两端加上正向电压时,因外加电场的方向与内电场的方向相反,削弱了内电场,打破了PN结中的动态平衡状态,使载流子的扩散运动大于漂移运动,形成较大的扩散电流,PN结导通。
当在PN结两端加上反向电压时,因外加电场的方向与内电场的方向相同,增强了内电场,也打破了PN结中的动态平衡,使少数载流子的漂移运动大于多数载流子的扩散运动,形成较小的反向电流,可以认为PN结截止。
2.半导体二极管二极管的正向电流是多数载流子的扩散电流,其值较大(毫安级),但正向电压只有零点几伏,说明二极管的正向电阻较小。
当正向电压大于死区电压后,电流增加较快。
二极管正向导通时,其正向压降变化不大,硅管约为0.6-0.7V;锗管约为0.2-0.3V。
反向电流是少数载流子的漂移电流,其值随温度的上升增长得很快,并且只要外加反向电压在一定范围内,反向电流基本上维持不变,和反向电压的数值无关(反向电阻高)。
当反向电压增大到击穿电压时,反向电流突然增大,管子被击穿而损坏。
二极管的参数反映了它的电性能,是合理选择与正确使用的依据。
对正向而言,有最大整流电流I OM,使用时不得超过。
对反向而言,有最高反向工作电压U RM和反向饱和电流I R3.稳压管是工作于反向可逆击穿状态下的二极管。
稳压管的反向击穿特性曲线很陡,它的特点是在一定的电流范围内的电压稳定不变。
4.单相桥式整流电路整流电路的任务是把交流电变换成直流电,完成这一任务主要靠二极管的单向导电作用,所以通常二极管是构成各种整流电路的核心元件。
5.滤波电路滤波原理利用储能元件滤掉单向脉动电压中的交流分量,即保留直流分量,使负载电压脉动减小。
半导体三极管教案
教师环视学生集中学生注意力
学生回答
教师叙述
10分钟
15分钟
教学环节
教 学 内 容
教学活动
时间
讲授新课
小 结
作业:
课后回顾
输出特性曲线把三极管分为三个区域:截止区、放大区和饱和区
1)截止区:
条件:发射结反偏,集电结反偏
特点:IB=0,IC≈ICE0≈0
教学环节
教学内容
教学活动
时间
组织教学
复习旧课
导入新课
讲授新课
考勤,教师组织学生做好上课准备
课前教育:
1.三极管的结构、符号
2.三极管放大的实质是什么?
3.三极管进行电流放大的外部条件
在实际中使用三极管要了解它的特性,用什么来反映三极管的特性呢?
§2-1三极管
三、三极管的特性曲线
1、输入特性:UCE保持一定时,加在基极和发射极之间的电压UBE和基极电流IB之间的关系。
3)集电极最大允许耗散功率PCM
1、三极管的特性曲线
2、三极管的三种工作状态
3、三极管的极性、材料、类型的识别
习题册1-3部分习题
教师板书,学生听述并记录笔记
学生听述并思考
15分钟
5分钟
课题名称第二章晶体三极管
§2-1晶体三极管
教学目的1、认识三极管的特性曲线
2、知道三极管的三种工作状态
3、会识别三极管的极性、材料、类型
教学重点三极管的特性曲线、三极管的三种工作状态
教学难点三极管的极性、材料、类型的识导入新课→讲授新课→练习→小结→作业
2)放大区:
条件:发射结正偏,集电结反偏
第二章半导体三极管及放大电路
(2)输出特性曲线 iC=f(uCE) iB=const
现以iB=60uA一条加以说明。
(1)当uCE=0 V时,因集电极无收集作用,iC=0。
(2) uCE ↑ → Ic ↑ 。
i C(mA)
IB =100uA IB =80uA
(3) 当uCE >1V后, 收集电子的能力足够强。 这时,发射到基区的电 子都被集电极收集,形 成iC。所以uCE再增加, iC基本保持不变。 同理,可作出iB=其他值的曲线。
3dB带宽 fL 下限截 止频率 上限截 fH 止频率 f
通频带: fbw=fH–fL
2.4 单管共射放大电路的工作原理
一.三极管的放大原理
三极管工作在放大区: 发射结正偏, 集电结反偏。
IC +△IC I B +△IB T
+ +
+△UCE UCE
+
放大原理:
Rb VBB
ui →△UBE→△IB
UBE+△ UBE -
IC IB
i = C i B
△ iC
2.3 1.5
△ iB
IB =60uA IB =40uA IB =20uA IB=0 uCE (V)
I C 2.3mA 38 I B 60A
iC (2.3 1.5)mA = 40 iB (60- 40)A
(2)共基极电流放大系数:
放大区——
放大区
IB =100uA IB =80uA IB =60uA IB =40uA IB =20uA IB=0 uCE (V)
曲线基本平行等 距。 此时,发 射结正偏,集电 结反偏。 该区中有:
IC=IB
截止区
四. BJT的主要参数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三极管的电流放大原理 由于基极电流IB 的变化,使集电极电流IC 发生更大的变化。即基极电流IB 的微
小变化控制了集电极IC 较大的变化,这就是三极管的电流放大原理。
三极管放大后的电流IC 是由电源提供,并不是IB提供。可见这是一种以小 电流控制大电流的作用,并不是把IB真正放大为IC ,只是将直流能量经过三极 管的特殊关系按IB的变化规律转换为幅度更大的交流能量而已,三极管并没有 创造能量,这才是三极管起电流放大作用的实质所在。
它是指一定基极电流IB下,三极管的集电极电流IC与集电结电压UCE之间的关系曲线。实 验测得三极管的输出特性曲线如图所示。
三极管的输出特性曲线
从图中可以看出三极管的输出特性曲线分为三 个区域:
1.截止区 2.放大区
3.饱和区
三极管的三种不同工作状态
一般把三极管的输出特性分为3个工作区域,下面分别介绍。
按用途分:放大管 开关管
按结构和工艺分:合金管 平面管
1.可否用二个二极管组合构成一个三极管?为什么? 2.三极管的集电极c和发射极e能不能对调?为什么? 3.三极管内部结构必须具备哪三个特点?
三极管的放大原理与电流分配
要实现三极管的电流放大作用,除了要满足内部结构特点外,还得给三极管各电极加上正确 的电压。三极管实现放大的外部条件是:其发射结必须加正向电压(正偏),而集电结必须加 反向电压(反偏),其数值应大于发射结的死区电压。
结论
由实验及测量结果可以得出以下结论。 (1)实验数据中的每一列数据均满足关系:IE=IC+IB; 此结果符合基尔霍夫电流定律。 (2)每一列数据都有IC>>IB,而且有IC与IB的比值近似相等。
当基极电流有微小变化时,将引起集电极电流较大的变化。我们集电极电流和基极电流之前的 倍率关系叫做直流放大倍数 β(没有单位)。
即发射结正偏,集电结反偏。
三极管放大时各极电位关系 利用三极管放大时发射结正偏,集电极反偏的特点
VC>VB>VE
VC<VB<VE
三极管的电流电流分配 各级电流关系 :
三极管各级电流流向
IC
IB IE
IC IB
IE
无论是NPN还是PNP型三极管,均满足这一规律。它也符合基尔霍夫定律,相 当于把三极管看成一个节点,流入管子电流之和等于流出管子的电流之和。
第二章三极管要点
1
晶体三极管
学习要求: 1.掌握三极管的结构特点和类型。 2.掌握三极管的电流分配。
3.理解掌握三极管的放大条件。
重点: 三极管的结构特点和放大条件。
引言 半导体三极管又称晶体三极管(三极管),一般简称晶体管,或双极型晶体
管。它是通过一定的制作工艺,将两个PN结结合在一起的器件,两个PN结相互作 用,使三极管成为一个具有控制电流作用的半导体器件。三极管可以用来放大微 弱的信号和作为无触点开关。
二极管和三级管的结构对比
二极管有:
个结 个电极 个区
三极管有: 一
二
二
两个结 三个电极 三个区
NPN型三极管的结构及符号
集电区
b 基极
c
集电极
集电结 N
基区 P
N
发射结
发射区 e
发射极
PNP型三极管的结构及符号
集电区
b 基极
c
集电极
集电结 P
基区 N
P
发射结
发射区 e
发射极
三极管的结构特点
集电区:面积较大
),
电流放大倍数1.β95为mA( )。如果三极管的基极电流为4020uA,发射极电流为1mA,则三极管的集
电极电流为(
),电流的放大倍数β为(
)
1.02mA
51
2.图中三极管均处在放大状态,测得各级电位,试判断三极管类型(NPN或PNP), 材料(硅或锗)及发射极。
PNP 锗管
NPN 硅管
NPN 硅管
总结
(1)要使三极管有放大作用,发射结正偏,集电极反偏。 (2)三极管电位关系NPN:VC>VB>VE
PNP:VC<VB<VE (3) 一般β>>1;通常认为β=IC / IB =△IC / △ IB (4)三极管的电流分配及放大关系式为:
IE=IC+IB IC=βIB
1.已知三极管的集电极电流为2mA,基极电流为0.05mA,则三极管的发射极 电流为(
PNP 锗管
晶体三极管的特性曲线
1.三极管的特性曲线 三极管的特性曲线是指三极管外加电压与电流之间的关系曲线,它反映出三极管的性能与 特点,是分析和设计三极管电路的重要依据。包括输入特性曲线和输出特性曲线。以NPN 型硅三极管为例。
(1)输入特性曲线
它是指一定集电极和发射极电压UCE下,三极管的基极电流IB与发射结电压 UBE之间的关系曲线。实验测得三极管的输入特性曲线如图所示。
•工 •艺 •特 •点
B 基极
工艺特点小结:
三极管不是俩PN结的简单组合 是三极管具有电流放大作用的内部条件
C
集电极
N P N
E 发射极
基区:较薄,掺杂浓度低
发射区:掺 杂浓度较高
三极管的种类
按半导体材料分:硅三极管 锗三极管
按功率分:小功率管 中功率管 大功率管
按工作频率分:低频管 高频管 超高频管
β=IC / IΒιβλιοθήκη IC=βIB把集电极电流变化量和基极电流变换量的倍率叫做交流放大倍数β。 β=△IC / △IB
通常认为β≈ β
三极管的三种接法
三极管在电路中的连接方式有三种:共发射极接法、共基极接法、共集电极接法。 共什么极就是把这个极作为电路的公共端。
共发射极
共基极
共集电极
1.加电原则相同 要使三极管正常放大,必须发射结正偏,集电结反偏。 2.各级电流的分配规律相同 三极管接法不同,并没有改变三极管内部结构,电流关系依然有:IE =IC+IB IC=βIB 3.电流的实际方向不因接法不同而改变。
1.发射结电压正偏电压必须大于死 区电压 时,三极管才会出现基极电流IB
2.三极管开始导通时,电流增加缓慢,但UBE 变化上升一点,电流增加很快。三极管正常
放大时UBE变化不大,硅管0.7v左右锗管0.3v左 右。
三极管的输入特性曲线
3.三极管工作时,测量三极管UBE可知道 其是否正常工作。
(2)输出特性曲线
① 截止区 三极管工作在截止状态时,具有以下几个特点: (a)发射结和集电结均反向偏置; (b)若不计穿透电流ICEO,有IB、IC近似为0; (c)三极管的集电极和发射极之间电阻很大,三极管相当于一个开关断开。
② 放大区 图1.31中,输出特性曲线近似平坦的区域称为放大区。三极管工作在放大状态时,具有以下