圆周运动及其运用学案

圆周运动及其运用学案
圆周运动及其运用学案

圆周运动及其运用

一、描述匀速圆周运动的物理量

1.概念:线速度、角速度、周期、转速、向心力、向心加速度,比较如表所示:

二、匀速圆周运动和非匀速圆周运动

1.匀速圆周运动

(1)定义:线速度_________的圆周运动.

(2)性质:向心加速度大小_____,方向总是_________的变加速曲线运动.

(3)质点做匀速圆周运动的条件合力______不变,方向始终与速度方向______且指向圆心.

【答案】大小不变

不变指向圆心

大小垂直

2.非匀速圆周运动

(1)定义:线速度大小、方向均__________的圆周运动.

(2)合力的作用.

①合力沿速度方向的分量Ft产生切向加速度,Ft=mat,它只改变速度的______.

②合力沿半径方向的分量Fn产生向心加速度,Fn=man,它只改变速度的______.

【答案】发生变化

大小方向

三、离心运动和近心运动

1.离心运动

(1)定义:做_________的物体,在所受合外力突然消失或不足以提供圆周运动所需________的情况下,所做的逐渐远离圆心的运动. (2)本质:做圆周运动的物体,由于本身的______,总有沿着圆周__________飞出去的倾向.

【答案】圆周运动向心力

惯性切线方向

(3)受力特点.

①当F=mω2r时,物体做__________运动;

②当F=0时,物体沿______方向飞出;

③当F

【答案】匀速圆周切线远离

2.近心运动

当提供向心力的合外力大于做圆周运动所需向心力时,即F>mω2r,物体将逐渐______圆心,做近心运动.

【答案】靠近

考点一水平面内的匀速圆周运动

1.在分析传动装置的物理量时,要抓住不等量和相等量的关系,表现为:

(1)同一转轴的各点角速度ω相同,而线速度v=ωR与半径R成正比,向心加速度大小a=Rω2与半径r成正比.

(2)当皮带不打滑时,用皮带连接的两轮边沿上的各点线速度大小相

等,由ω=v

R可知,ω与R成反比,由a=v2

R可知,a与R成反比.

2.用动力学方法解决圆周运动中的问题

(1)向心力的来源.

向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避

免再另外添加一个向心力.

(2)向心力的确定.

①确定圆周运动的轨道所在的平面,确定圆心的位置.

②分析物体的受力情况,找出所有的力,沿半径方向指向圆心的合力就是向心力.

(3)解决圆周运动问题的主要步骤.

①审清题意,确定研究对象;

②分析物体的运动情况,即物体的线速度、角速度、周期、轨道平面、圆心、半径等;

③分析物体的受力情况,画出受力示意图,确定向心力的来源;

④根据牛顿运动定律及向心力公式列方程;

⑤求解、讨论.

3. 水平面内的匀速圆周运动的分析方法

1.运动实例:圆锥摆、火车转弯、飞机在水平面内做匀速圆周飞行等.

2.这类问题的特点是:(1)运动轨迹是圆且在水平面内;(2)向心力的方向水平,竖直方向的合力为零.

3.解答此类问题的方法:

(1)对研究对象受力分析,确定向心力的来源;

(2)确定圆周运动的圆心和半径;

(3)应用相关力学规律列方程求解.

【例1】铁路转弯处的弯道半径r是根据地形决定的.弯道处要求外轨比内轨高,其内、外轨高度差h的设计不仅与r有关.还与火车在

弯道上的行驶速度v 有关.下列说法正确的是 ( ). A .速率v 一定时,r 越小,要求h 越大 B .速率v 一定时,r 越大,要求h 越大 C .半径r 一定时,v 越小,要求h 越大 D .半径r 一定时,v 越大,要求h 越大 【答案】 AD

【详解】火车转弯时,圆周平面在水平面内,火车以设计速率行驶时,向心力刚好由重力G 与轨道支持力FN 的合力来提供,如图所示,

则有mgtan θ=mv2r ,且tan θ≈sin θ=h

L ,其中L 为轨间距,是定值,有mg h L =mv2

r ,通过分析可知A 、D 正确. 考点二 竖直面内圆周运动问题分析

物体在竖直面内做的圆周运动是一种典型的变速曲线运动,该类运动常有临界问题,并有“最大”、“最小”、“刚好”等词语,常有两种模型——轻绳模型和轻杆模型,分析比较如下:

3.竖直平面内的圆周运动的求解思路

(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同,其原因主要是:“绳”不能支持物体,而“杆”既能支持物体,也能拉物体.

(2)确定临界点:v临=,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是FN表现为支持力还是拉力的临界点.

(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况.

(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程,F 合=F 向.

(5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程.

【例2】 如图所示,质量为60 kg 的体操运动员,做“单臂大回环”,用一只手抓住单杠,伸展身体,以单杠为轴做圆周运动.此过程中,运动员到达最低点时手臂受的拉力至少约为(忽略空气阻力,g =10 m/s2) ( ).

A.600 N B .2 400 N C .3 000 N D .3 600 N 【答案】C

【详解】解析 运动员在最低点受的拉力至少为FN ,此时运动员的重心的速度为v ,设运动员的重心到手的距离为R ,由牛顿第二定律得:FN -mg =m v2

R

又由机械能守恒定律得:mg·2R =1

2mv2 由以上两式代入数据得:FN =5mg

运动员的重力约为G =mg =600 N 所以FN =3 000 N ,应选. C 【2013年】

20.D2、D4 [2013·福建卷] 如图,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小s =0.4 m .设物体所受的最大静摩擦力等于滑动摩擦力,取重力加速度g =10 m/s2.求:

(1)物块做平抛运动的初速度大小v0; (2)物块与转台间的动摩擦因数μ.

20.[解析] (1)物块做平抛运动,在竖直方向上有 H =1

2gt2① 在水平方向上有 s =v0t ② 由①②式解得 v0=s

g

2H =1 m/s ③

(2)物块离开转台时,最大静摩擦力提供向心力,有

fm =m v20R ④ fm =μN =μmg ⑤ 由③④⑤式解得 μ=v20

gR =0.2 【2013年-2013年】

1.(2013.安徽高考)一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替。如图(a )所示,曲线上的A 点的曲率圆定义为:通过A 点和曲线上紧邻A 点两侧的两点作一圆,在极限情况下,这个圆就叫做A 点的曲率圆,其半径ρ叫做A 点的曲率半径。现将一物体沿与水平面成α角的方向已速度υ0抛出,如图(b )所示。则在其轨迹最高点p 处的曲率半径是

A.20v g

B.220sin v g α

C.220cos v g α

D.220cos sin v g α

α

【答案】选C.

【详解】物体做斜上抛运动,最高点速度即为斜上抛的水平速度

α

cos 0v v p =,最高点重力提供向心力

R v m

mg p

2

=,由两式得

g v g v R p

α22

02

c o s =

=。

2.(2013·海南物理·T15)如图,水平地面上有一个坑,其竖直截面为半圆。ab 为沿水平方向的直径。若在a 点以初速度0v 沿ab 方

向抛出一小球, 小球会击中坑壁上的c 点。已知c 点与水平地面的距离为圆半径的一半,求圆的半径。

【答案】g v )347(420

+ 【详解】如图所示,

2R h =

,则R

Od 23

=

小球做平抛运动的水平位移R R x 23+

=

竖直位移2R

h y =

=

根据

1y gt

=

22,0x v t =

联立以上两式解得

g v R )347(420

+=

3. (2013·上海理综)8.如图是位于锦江乐园的摩天轮,

高度为108m ,直径是98m 。一质量为50kg 的游客乘坐该摩天轮做匀速圆周运动旋转一圈需25min 。如果以地面为零势能面,则他到达最高处时的(取g=10m/s2)( )。 A .重力势能为5.4×104J ,角速度为0.2rad/s B .重力势能为4.9×104J ,角速度为0.2rad/s C .重力势能为5.4×104J ,角速度为4.2×10-3rad/s D .重力势能为4.9×104J ,角速度为4.2×10-3rad/s 答案:C

4.(2013·江苏卷)14. (16分)在游乐节目中,选手需要借助悬挂在高处的绳飞越到水面的浮台上,小明和小阳观看后对此进行了讨论。如图所示,他们将选手简化为质量m=60kg 的指点, 选手抓住绳由静止开始摆动,此事绳与竖直方向夹角

α=30,绳的悬挂点O 距水面的高度为H=3m.不考虑

空气阻力和绳的质量,浮台露出水面的高度不计,水

足够深。取中立加速度2

10/g m s =, sin 530.8=,cos530.6=

求选手摆到最低点时对绳拉力的大小F ;

若绳长l=2m, 选手摆到最高点时松手落入手中。设水碓选手的平均浮力1800f N =,平均阻力2700f N =,求选手落入水中的深度d ; 若选手摆到最低点时松手, 小明认为绳越长,在浮台上的落点距岸边越远;小阳认为绳越短,落点距岸边越远,请通过推算说明你的观点。

【解析】(1)机械能守恒

21(1cos )2mgl mv α-=

圆周运动 F ′-mg =m 2

v l

解得 F ′=(3-2cos α)mg 人对绳的拉力 F =F ′

则 F =1080N

(2)动能定理 mg (H -lcos α+d )-(f1+f2)d =0

则d=

12(cos )

mg H l f f mg α-+-

解得

(3)选手从最低点开始做平抛运动

x=vt

H-l=212gt

且有①式

解得x =当

2H

l =

时,x 有最大值,解得l=1.5m

因此,两人的看法均不正确。当绳长钺接近1.5m 时,落点距岸边越远。

本题考查机械能守恒,圆周运动向心力,动能定理,平抛运动规律及求极值问题。 难度:较难。

5. (2013·重庆卷)24.(18分)小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动。当球某次运动到最低点时,绳突然断掉,

球飞行水平距离d 后落地。如题24图所示。已知

握绳的手离地面高度为d ,手与球之间的绳长为3

4d,

重力加速度为g 。忽略手的运动半径和空气阻力。 (1)求绳断时球的速度大小1

v 和球落地时的速度大

小2v 。

(2)向绳能承受的最大拉力多大?

(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断

掉,要使球抛出的水平距离最大,绳长应是多少?最大水平距离为多少? 解析:

(1)设绳段后球飞行时间为t ,由平抛运动规律,有

竖直方向2

1142d gt =,水平方向1d v t =

得1v =由机械能守恒定律,有

2221113

()224mv mv mg d d =+-

2v =

(2)设绳能承受的最大拉力大小为T ,这也是球受到绳的最大拉力大小。

球做圆周运动的半径为

3

4R d =

由圆周运动向心力公式,有

2

1mv T mg R -=

11

3T mg =

(3)设绳长尾l ,绳断时球的速度大小为3v ,绳承受的最大推力不变,

2

3mv T mg l -=

得3v =绳断后球做平抛运动,竖直位移为d l -,水平位移为x ,时间为1t 有

2

112d l gt -=

31x v t =

得 x =

2d l =

时,x 有极大值,max 3x d

=

1.匀速圆周运动属于( )

A.匀速运动

B.匀加速运动

C.加速度不变的曲线运动

D.加速度变化的曲线运动

【解析】选D.线速度是矢量,在匀速圆周运动中,线速度大小不变,但方向不断变化,所以匀速圆周运动是一个变速曲线运动或者称为速率一定的曲线运动,由于其加速度为向心加速度,方向始终指向圆心,因此加速度方向也不断发生变化,所以选项D 正确.

2.一个环绕中心线AB 以一定的角速度转动,P 、Q 为环上两点,位置如图所示,下列说法正确的是

( ).

A .P 、Q 两点的角速度相等

B .P 、Q 两点的线速度相等

C .P 、Q 两点的角速度之比为3∶1

D .P 、Q 两点的线速度之比为3∶1 【答案】AD

【详解】P 、Q 两点的角速度相等,半径之比RP ∶RQ =Rsin 60°∶(Rsin

30°)=3∶1,由v =ωR 可得vp ∶vQ =RP ∶RQ =3∶1.

3. 如图所示,两个质量不同的小球用长度不等的细线拴在同一点,并在同一水平面内做匀速圆周运动,则它们的 ( ).

A .周期相同

B .线速度的大小相等

C .角速度的大小相等

D .向心加速度的大小相等 【答案】 AC

【详解】设圆锥摆的高为h ,则mg·r h =m v2

r =mω2r =m ? ??

??2πT 2r =ma ,故v =r g

h ,ω= g h ,

T =2π

h g ,a =r

h g.因两圆锥摆的h 相同,而r 不同,故两小球运动

的线速度不同,角

速度的大小相等,周期相同,向心加速度不同.

4. (2013·东北地区名校联考)如图所示,质量为m 的小球在竖直平面内的光滑圆环轨道上做圆周运动.圆环半径为R ,小球经过圆环最高点时刚好不脱离圆环,则其通过最高点时 ( ).

A .小球对圆环的压力大小等于mg

B .小球受到的向心力等于0

C .小球的线速度大小等于gR

D .小球的向心加速度大小等于g 【答案】 CD

【详解】小球在最高点时刚好不脱离圆环,则圆环刚好对小球没有作用力,小球只受重力,

重力竖直向下提供向心力,根据牛顿第二定律得小球的向心加速度大小为a =mg

m =g ,再

根据圆周运动规律得a =v2

R =g ,解得v =gR(竖直平面内圆周运动的绳模型).

5.全国铁路大面积提速后,京哈、京沪、京广、胶济等提速干线的部分区段时速可达300公里,我们从济南到青岛乘“和谐号”列车就可以体验时速300公里的追风感觉.火车转弯可以看成是在水平面内做匀速圆周运动,火车速度提高会使外轨受损.为解决火车高速转弯时外轨受损这一难题,以下措施可行的是

( ).

A .适当减小内外轨的高度差

B .适当增加内外轨的高度差

C .适当减小弯道半径

D .适当增大弯道半径 【答案】BD

【详解】设火车轨道平面的倾角为α时,火车转弯时内、外轨均不受损,根据牛顿第二定

律有mgtan α=m v2

r ,解得v =grtan α,所以为解决火车高速转弯时外轨受损这一难题,

可行的措施是适当增加内外轨的高度差(即适当增大角α)和适当增大弯道半径r.

6.“天宫一号”目标飞行器经过我国科技工作者的不懈努力,终于在2013年9月29日晚21点16分发射升空.等待与神舟八号、九号、十号飞船对接.“天宫一号”在空中运行时,沿曲线从M 点向N 点飞行的过程中,速度逐渐减小,在此过程中“天宫一号”所受合力可能是下图中的

( ).

【答案】C 【

7.(2013·南京模拟)如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们与盘间的动摩擦因数相同,当圆盘转速加快到两物体刚要发生滑动时,烧断细线,则( )

A.两物体均沿切线方向滑动

B.物体B仍随圆盘一起做匀速圆周运动,同时所受摩擦力减

C.两物体仍随圆盘一起做匀速圆周运动,不会发生滑动

D.物体B仍随圆盘一起做匀速圆周运动,物体A发生滑动,离圆盘圆心越来越远

【答案】选B、D.

【详解】当圆盘转速加快到两物体刚要发生滑动时,A物体靠细线的拉力与圆盘的最大静摩擦力的合力提供向心力做匀速圆周运动,所以烧断细线后,A所受最大静摩擦力不足以提供其做圆周运动所需要的向心力,A要发生相对滑动,但是B仍保持相对圆盘静止状态,故A、C选项错误,D选项正确;而且由于没有了细线的拉力,B受静摩擦力减小,B选项正确.

8.如图所示,质量为m的小球在竖直平面内的光滑圆环轨道上做圆周运动.圆环半径为R,小球经过圆环最高点时刚好不脱离圆环,则其通过最高点时()

A .小球对圆环的压力大小等于mg

B .小球受到的向心力等于0

C .小球的线速度大小等于gR

D .小球的向心加速度大小等于g 【答案】 CD

【详解】小球在最高点时刚好不脱离圆环,则圆环刚好对小球没有作用力,小球只受重力作用,重力竖直向下且过圆心,根据牛顿第二定律得小球的向心加速度大小为a =mg m =g ,此时小球满足mg =mv2

R ,得v =gR.

9.甲、乙两名溜冰运动员,面对面拉着弹簧测力计做圆周运动.已知M 甲=80 kg ,M 乙=40 kg ,两人相距0.9 m ,弹簧测力计的示数为96 N ,下列判断中正确的是 ( )

A.两人的线速度相同,约为40 m/s

B.两人的角速度相同,为2 rad/s

C.两人的运动半径相同,都是0.45 m

D.两人的运动半径不同,甲为0.3 m ,乙为0.6 m 【答案】选B 、D.

【详解】两人旋转一周的时间相同,故两人的角速度相同,两人做圆周运动所需的向心力相同,由F=mω2r可知,旋转半径满足:r甲∶r乙=M乙∶M甲=1∶2,又r甲+r乙=0.9 m,则r甲=0.3 m,r乙=0.6 m.两人的角速度相同,则v甲∶v乙=1∶2.由F=M甲ω2r甲可得ω=2 rad/s.故选项B、D正确.

10.如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,管道内侧壁半径为R,小球半径为r,则下列说法中正确的是( )

A.小球通过最高点时的最小速度

B.小球通过最高点时的最小速度vmin=0

C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力

D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力

【答案】选B、C.

【详解】小球沿管上升到最高点的速度可以为零,故A错误,B正确;小球在水平线ab以下的管道中运动时,由外侧管壁对小球的作用力FN与球重力在背离圆心方向的分力Fmg的合力提供向心力,即:,因此,外侧管壁一定对球有作用力,而内侧管壁无

《匀速圆周运动》教学案例

《匀速圆周运动》教学案例 蔡之刚 一、课程设计背景 这是一节概念课,内容多且抽象,不好上。如果按照传统的上法,将是一节乏味的概念课。新课程将这一节课的内容作了一些整合,首先在导入过程运用在南极附近通过慢速曝光得到的星空照片和游乐场的过山车,说明了身边的圆周运动,接着通过运用较多的实验器材配合概念教学,既增强了学生对概念的理解,又增加了课堂的情趣。我在处理这一节内容时,除了根据教材要求,运用“过山车模型”替代游乐场的过山车导入外,还视实验室的具体情况采用其他的替代实验进行演示。但我认为采用教材的导入还不够,若能增加“水流星”的实验导入将会引起学生更大的兴趣。如果真是这样的话,那么这节课将成功一半。基于这样的想法,我在设计时就将“水流星”的实验增加到导入过程里了。 二、教学过程 上课时,我按照设计好的顺序,首先引导学生观看在南极附近通过慢速曝光得到的星空照片,体会地球的圆周运动,接着通过“过山车模型”说明了游乐场过山车的圆周运动。我发现学生的好奇心开始被激发起来,但还没有达到高潮。这时我拿出了自制的“水流星”装置问:“哪位同学上来表演水流星?”,在大家的推举下,一位同学大胆地走上讲台,在没有任何指点的情况下表演了“水流星”。由于缺乏经验,该同学在收回“水流星”装置时,不小心将“水流星”中的水洒了一半到地上,引起了同学们的一阵笑声。该同学有些不好意思,有退缩的表现。这时我鼓励他要大胆表现自己,要勇于克服困难。在我的指导下,该同学将“水流星”装置重新装满水,再次进行了表演。这次表演“水

流星”中的水洒了一点点到地上,只引起同学们轻微的叹息声。接着,我将“水流星”从他的手中接过来亲自表演,并将有关方法向同学们阐述清楚。当表演即将结束时,我照着“水流星”的惯性顺势一带,“水流星”便稳稳当当地停了下来,一滴水都没掉出来。表演获得了圆满成功,全体同学报以热烈的掌声,课堂气氛达到了高潮,同学们的注意力完全被吸引到课程内容上。接下来可想而知,整堂课上得非常活。 三、反思与评价 我对这一堂课有两个想不到,第一个想不到的是我在导入过程增设“水流星”的实验,原本是要增加一些课堂气氛,没想到课堂气氛会那么热烈。第二个想不到的是原本很枯燥的概念课会上得那么活。 新课程提出“知识与技能”,即学习物理的概念、定律、模型、理论及实验技能等,认识物理科学对社会的影响;“过程与方法”,即经历科学探究的过程,动手实验,学习科学方法,体会科学思想,形成自主学习的能力;“情感态度与价值观”,即培养学习物理的兴趣与激情,感受自然的和谐与奇妙,领悟其中的意义,养成科学精神与科学态度的“三维目标”,在“三维目标”中必须以“知识与技能”为载体,重视“过程与方法”的体验,关注“情感态度与价值观”的熏陶。 为了在课堂教学中顺利地实现三维目标,必须首先要创设问题情境,为教学问题创造良好的教学氛围,这样可以引起学生对教学内容的兴趣,激发学生的求知欲望,为达成课程目标打下基础,为教学活动的顺利开展创造条件。从本次公开课的导入所产生的效应可以看出新课程理念下创设问题情境的重要性。 1、身边的课程资源是创设问题情境的源泉

2020高考物理一轮复习 考点大通关 专题4-3 圆周运动学案

【2019最新】精选高考物理一轮复习考点大通关专题4-3 圆周运 动学案 考点精讲 1.匀速圆周运动 (1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动. (2)特点:加速度大小不变,方向始终指向圆心,是变加速运动. (3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心. 2.描述圆周运动的物理量 描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:

二、匀速圆周运动的向心力 1.作用效果 向心力产生向心加速度,只改变速度的方向,不改变速度的大小. 2.大小 F=m=mω2r=mr=mωv=4π2mf2r. 3.方向 始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力. 4.来源 向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力. 2.轨道的确定 确定圆周运动的轨道所在的平面,确定圆心的位置.寻找与半径相关的已知量. 3.受力分析

分析物体的受力,画出物体受力示意图,利用力的合成或分解把力分解到三个方向上. (1)与轨道圆垂直的方向,此方向受力平衡. (2)轨道圆的切线方向,匀速圆周运动中此方向受力平衡;变速圆周运动中速度最大或最小的点,此方向也受力平衡. (3)轨道圆的径向,此方向合力指向圆心即向心力,使用牛顿第二定律. 根据三个方向上所列方程求解. 三、离心现象 1.定义 做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动. 2.本质 做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的趋势. 3.受力特点 当F=mrω2时,物体做匀速圆周运动;当F=0时,物体沿切线方向飞出;当F

圆周运动学案

第4节圆周运动 预习:1.描述圆周运动的物理量 (1)线速度 ①线速度的大小:做圆周运动的物体_______ ________叫线速度的大小. ②物理意义:描述质点沿圆周运动的______ _____. ③线速度的大小计算公式_____________. ④线速度的方向:_______________. 注意:线速度是做圆周运动的瞬时速度,是矢量,不仅有大小.而且有方向,且方向时刻改变. (2)角速度 ①定义:在圆周运动中_______ __________叫质点运动的角速度. ②物理意义:描述质点___________ ___________ ③公式___________,单位__________ (3)周期、频率、转速 ①周期:做圆周运动的物体运动_____ _________叫周期. 符号:_______,单位:________ ②频率:周期的倒数叫频率. 符号:__________,单位:__________ ③转速:做圆周运动的物体__________沿圆周绕圆心转过的__________叫转速.符号__________单位__________.

2.匀速圆周运动 (1)定义:物体沿圆周运动并且_____ _______处处相等,这种运动叫匀速圆周运动. (2)匀速圆周运动的性质是_______ _____的曲线运动. 3.线速度、角速度、周期间的关系 线速度和周期的关系式__________,角速度和周期的关系式__________,线速度与角速度的关系式__________, 周期与频率的关系式__________. 探究:1.如何描述匀速圆周运动的快慢?2.角速度大,线速度一定大吗?3.匀速圆周运动是匀速运动吗? 例1:做匀速圆周运动的物体,10 s内沿半径为20 m的圆周运动100 m,试求物体做匀速圆周运动时: (1)线速度的大小;(2)角速度的大小;(3)周期的大小. 例2:关于做匀速圆周运动的物体的线速度、角速度、周期的关系,下面说法中正确的是() A.线速度大的角速度一定大 B.线速度大的周期一定小 C.角速度大的半径一定小 D.角速度大的周期一定小

2021年高中物理 .1匀速圆周运动学案1 粤教版必修

2021年高中物理 2.1匀速圆周运动学案1 粤教版必修2 【学习目标】 【知识和技能】 1.了解物体做圆周运动的特征 2.理解线速度、角速度和周期的概念,知道它们是描述物体做匀速圆周运动快慢的物理量,会用它们的公式进行计算。 3.理解线速度、角速度、周期之间的关系: 【过程和方法】 1.联系日常生活中所观察到的各种圆周运动的实例,找出共同特征。 2.联系各种日常生活中常见的现象,通过课堂演示实验的观察,归纳总结描述物体做圆周运动快慢的方法,进而引出描述物体做圆周运动快慢的物理量:线速度大小,角速度大小,周期T、转速n等。 3.探究线速度与周期之间的关系,结合,导出。 【情感、态度和价值观】 1.经历观察、分析总结、及探究等学习活动,培养尊重客观事实、实事求是的科学态度。2.通过亲身感悟,获得对描述圆周运动快慢的物理量(线速度、角速度、周期等)以及它们相互关系的感性认识。 【学习重点】 线速度、角速度、周期概念的理解,及其相互关系的理解和应用,匀速圆周运动的特点【知识要点】 一、线速度 1.定义:质点做圆周运动通过的弧长与所用时间的比值叫做线速度。 2.公式:。单位:m/s 3.矢量 4.方向:质点在圆周上某点的线速度方向就是沿圆周上该点的切线方向。线速度也有平均值和瞬时值之分。如果所取的时问间隔很小很小,这样得到的就是瞬时线速度。上面我们所说的速度方向就是指瞬时线速度的方向,与半径垂直,和圆弧相切。 5.物理意义:描述质点沿圆周运动快慢的物理量。线速度越大,质点沿圆弧运动越快。6.匀速圆周运动 (1)定义:物体沿着圆周运动,并且线速度大小处处相等的运动叫匀速圆周运动。或质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动。(2)因线速度方向不断发生变化,故匀速圆周运动是一种变速运动,这里的“匀速”是指速率不变。

《圆周运动的实例分析》教案设计

教学设计 高一年级物理《圆周运动的实例分析》 子 洲 中 学 艾娜

高一年级物理《圆周运动的实例分析》教学设计 一、教材依据 本节课是沪科版高中物理必修2第二章《研究圆周运动》的第3节《圆周运动的实例分析》。 二、设计思路 (一)、指导思想 ①突出科学的探究性和物理学科的趣味性; ②体现了以学生为主体的学习观念;注重了循序渐进性原则和学生的认知规律,使学生从感性认识自然过渡到理性认识。 (二)、设计理念 本节对学生来说是比较感兴趣的,要使学生顺利掌握本节内容。引导学生在日常生活经验的基础上通过观察和主动探究和归纳,就成为教学中必须解决的关键问题。所以在本节课的设计中,结合新课改的要求,利用“六步教学法”:教师主导——提出问题;学生探求——发现问题;主体互动——研究问题;课堂整理——解决问题;课堂练习——巩固提高;反思小结——信息反馈,为学生准备了导学提纲,重视创设问题的情境和指导学生探究实验,引导学生分析实验现象,归纳总结出实验结论。 (三)教材分析 本节是《研究圆周运动》这一章的核心,它既是圆周运的向心力与向心加速度的具体应用,也是牛顿运动定律在曲线运动中的升华,它也将为学习后续的万有引定律应用、带电粒子在磁场中运动等内容作知识与方法上的准备。 本节通过对自行车、交通工具等具体事例的分析,理解圆周运动规律分析和解决物理问题的方法。在本节教学内容中,圆周运动与人们日常生活、生产技术有着密切的联系,本节教材从生活场景走向物理学习,又从物理学习走向社会应用,体现了物理与生活、社会的密切联系。 (四)学情分析 本人任教的学生基础较好、动手能力较强,对物理学科特别是紧密联系生活的内容特感兴趣。而且学生已经学完向心力和向心加速度理论知识,将会在极大的好奇心中学习本节内容,只是缺乏对实际圆周运动的深度分析,还没有能将其上升至理论高度。 三、教学目标 (一)知识与技能

2021届高考物理人教版一轮复习教学案:第20讲 常见的圆周运动动力学模型 (含解析)

第20讲常见的圆周运动动力学模型 能力命题点一水平面内的圆周运动 1.向心力的来源 向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力。 2.几种典型的运动模型 运动模型向心力的来源图示 飞机水平转弯 火车转弯 (以规定速度行驶) 圆锥摆 飞车走壁 如图所示,用一根长为l=1 m的细线,一端系一质量为m=1 kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为F T(sin37°=0.6,cos37°=0.8, g取10 m/s2,结果可用根式表示)。求:

(1)若要小球离开锥面,则小球的角速度ω0至少为多大? (2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大? 解析 (1)小球刚好离开锥面时,小球受到重力和细线拉力,如图所示。 小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用 牛顿第二定律及向心力公式得mg tan θ=mω20l sin θ 解得ω0= g l cos θ=52 2 rad/s 。 (2)当细线与竖直方向成60°角时,小球已离开锥面,由牛顿第二定律及向心力公式得mg tan60°=mω′2l sin60° 解得ω′= g l cos60° =2 5 rad/s 。 答案 (1)522 rad/s (2)2 5 rad/s 求解圆周运动问题的“一、二、三、四”

1.(2019·北京期末)(多选)如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球A和B紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则下列说法不正确的是() A.球A的线速度必定大于球B的线速度 B.球A的角速度必定等于球B的角速度 C.球A的运动周期必定小于球B的运动周期 D.球A对筒壁的压力必定大于球B对筒壁的压力 答案BCD 解析以A为例对小球进行受力分析,可得支持力和重力的合力充当向心力, 设圆锥筒的锥角为θ,则F N=mg sinθ,F n=mg tanθ =m v2 r =mω2r=m4π2 T2r,A、B质量相 等,A做圆周运动的半径大于B做圆周运动的半径,所以球A的线速度必定大于球B的线速度,球A的角速度必定小于球B的角速度,球A的运动周期必定大于球B的运动周期,球A对筒壁的压力必定等于球B对筒壁的压力,A正确,B、C、D错误。 2.(2019·北京期末)如图所示为火车车轮在转弯处的截面示意图,轨道的外轨高于内轨,在此转弯处规定的火车行驶速度为v,则() A.若火车通过此弯道时速度大于v,则火车的轮缘会挤压外轨

教案竖直平面内的圆周运动及实例分析

竖直平面内的圆周运动及实例分析 说明:竖直平面内的圆周运动一般是变速圆周运动(带电粒子在匀强磁场中运动除外),运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小,所以对此要根据牛顿第二定律的瞬时性解决问题:在变速圆周运动中,虽然物体在各位置受到的向心力分别产生了物体通过各位置的向心加速度,但向心力公式仍是适用的.但要注意,对于物体做匀速圆周运动的情况,只有在物体通过最高点和最低点时,向心力才是合外力.一般不研究任意位置的情况,只研究特殊的临界位置──最高点和最低点。同时,还可以向学生指出:此问题中出现的对支持面的压力大于或小于物重的现象,是发生在圆周运动中的超重或失重现象. 一、教学目标: 1.知识与技能: (1)理解匀速圆周运动是变速运动; (2)进一步理解向心力的概念;(3)掌握竖直平面内最高点和最低点的圆周运动。 2.过程与方法: 通过对竖直平面内特殊点的研究,培养学生观察能力、抽象概括和归纳推理能力。 3.情感态度价值观:渗透科学方法的教育。 二、重点难点: 教学重点:分析向心力来源. 教学难点:实际问题的处理方法. 向心力概念的建立及计算公式的得出是教学重点,也是难点。通过生活实例及实验加强感知,突破难点。 三、授课类型:习题课 四、上课过程: (一)、情景引入: (二)、两类模型——轻绳类和轻杆类 (1)轻绳模型:一轻绳系一小球在竖直平面内做圆周运动.小球能到达最高点(刚好做圆2v mgm,这时的速度是做圆周运=周运动)的条件是小球的重力恰好提供向心力,即r v=动的最小 速度. (绳只能提供拉力不能提供支持力).min 内侧的圆周运动,水流星的类此模型:竖直平面内的内轨道,竖直(光滑)圆弧 运动(水流星在竖直平面内作圆周运动过最高点的临界条件),过山车运动等, word 编辑版.

人教版 高一物理 必修二 第五章 曲线运动 章末复习导学案设计(无答案)

21m ω 第五章 曲线运动 复习 学习目标:1、熟记线速度、角速度、周期、频率的物理意义及它们间的关系表达式。 2、深入理解向心加速度物理意义,掌握向心力的四个(v,w,T,f )表达式。 3、会在具体问题中分析向心力的来源。熟练应用F 提供=F 需要计算相关物理量。 4、结合“离心运动”条件,继续深入理解圆周运动几种代表物理模型。 学习重点:准确记忆、应用圆周运动的相关公式。 学习难点:竖直方向上的圆周运动两种物理模型区别与理解。 学法指导:1、本章引入了很多新的物理量、物理公式。应该先去理解记忆每个物理量的物理含义、 代表符号和单位,然后整理公式,多次翻阅记忆,决不能死记。 2、圆周运动依然是满足牛顿第二定律的运动,和直线运动的区别是加速度的效果不是 改变速度的大小,而是改变了速度的方向。 整体复习★知识梳理 要求:先独立思考填空,不会的翻阅课本、资料和6到12份学案准确完成。书写整洁。 1、圆周运动的快慢可以用物体通过的 与所用 的比值来量度,我们把此比值称为线速度,用v 表示。线速度是 ,其方向沿 方向。 2、物体沿着圆周运动,并且线速度的大小 的运动叫做匀速圆周运动。注意,匀速圆周运动的线速度的 是不断变化的,因此匀速圆周运动是一种 运动,这里的“匀速”是指 不变。 3、物体做圆周运动的快慢还可以用它与圆心连线扫过角度的快慢来描述,我们把比值称为 ,用ω表示。角速度的单位是 ,符号是 或 。 4、圆周运动的快慢还常用转速n 、周期T 等物理量来描述。转速指 ;周期是指做匀速圆周运动的物体 。 5、线速度与角速度的关系:在圆周运动中,线速度的大小等于半径与角速度大小的乘积,即 。 6、做匀速圆周运动的物体,加速度方向始终指向 ,这个加速度叫做 。 7、向心加速度的大小表达式有a n = 、a n = 、a n = 、a n = ___; 8、匀速圆周运动是一个加速度大小不变、方向时刻变化的变加速曲线运动。 9、做匀速圆周运动的物体受到的合外力方向总指向 ,这个合力叫做向心力。 向心力是产生 的原因,它使物体速度的 不断改变,但不能改变速度的 。向心力是按 命名的力,它可由重力、弹力、摩擦力等提供,也可以是这些力的合力或它们的分力来提供。 10、 线速度公式 角速度公式 周期共识 频率公式 向心加速度: 向心力: 向心力的方向总是沿半径指向圆心,方向时刻改变,所以向心力是变力。 11、① 当物体受到的合外力 所需的向心力时,物体做离圆心越来越近的曲线运动; ② 当物体受到的合外力 所需的向心力时,物体做离圆心越来越远的曲线运动; ③ 当物体受到的合外力 所需的向心力时,物体做轨道半径不变的稳定的圆周运动。 夯实基础★知识应用 要求:梳理本章概念规律后,完成下列基础检测题,先独立思考再小组内相互订正答案。 1、一质点做匀速圆周运动,轨道半径为r ,在时间t 内从A 到B 转过的弧长为s ,则质点通过C 点时线速度的大小为 ,方向沿 的切线方向;质点通过C 点时角速度的大小为 ;质点做圆周运动的周期为 ;质点在C 点时的加速度大小为 ,方向从 指向 。 2、关于向心加速度的物理意义,下列说法正确的是( ) A. 它描述的是线速度方向变化的快慢 B.它描述的是线速度大小变化的快慢 C. 它描述的是转速变化的快慢 D.它描述的是角速度变化的快慢 3、如图,在皮带传动装置中,主动轮A 和从动轮B 半径不等,皮带与轮之间无相对滑动,则下列说法中正确的是( ) A.两轮的角速度相等 B.两轮边缘的线速度大小相等 C.两轮边缘的向心加速度大小相等 D.两轮转动的周期相同 知识迁移★能力提升 要求:先独立思考课前完成,再小组内交流讨论整理出答案,并选一名代表进行展示。 4、如图所示,线段OA =2AB .A 、B 两球质量相等,当它们绕O 点在光滑的水平桌面上以相同的角速度转动时,线段OA 、AB 的拉力之比为多少? 5、如图,长为L 的细线,拴一质量为m 的小球,一端固定于O 点. 让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动).求摆线L 与竖直方向的夹角是θ时,求 (1)线的拉力F ; (2)小球运动的线速度的大小; (3)小球运动的角速度及周期. 6、一人用一根长1m ,只能承受46N 的绳子,拴着一个质量为1kg 的小球,在竖直平面内作圆周运动,已知转轴O 离地21m ,如图 所示,(g=10m/s2) (1)若小球到达最低点时绳恰好断,求小球到达最低点的速率。 (2)此条件下小球落地点到O 点的水平距离。

圆周运动学案

5.4 圆周运动(预习案) 班级小组姓名 【学习目标及方法指导】 1.了解物体做圆周运动的特征。 2.理解线速度、角速度和周期的概念,知道它们是描述物体做匀速圆周运动快慢的物理量,会用它们的公式进行计算。 3.理解线速度、角速度、周期之间的关系。 【学习重点、难点】 线速度、角速度、周期概念,及其相互关系的理解和应用,匀速圆周运动的特点。【自主学习过程】 一、线速度 1.定义:做圆周运动的质点通过的与的比值叫做圆周运动的线速度。 2.公式: 3.单位: 4.矢量性:量,方向: 5.匀速圆周运动:如果物体沿着,并且处处相等,这种运动叫做匀速圆周运动。 注意:“匀速”指的是? 练习:质点做匀速圆周运动,则( ) A.在任何相等的时间里,质点的位移都相等 B.在任何相等的时间里,质点通过的路程都相等 C.在任何相等的时间里,连接质点和圆心的半径转过的角度都相等 D.在任何相等的时间里,质点运动的平均速度都相等 二、角速度 1.定义:角速度等于和的比值角速度是描述的物理量。 2.公式: 3.单位:三、周期,频率,转速 1.周期的定义: 周期的符号:,单位: 2.频率的定义:物质在1秒内完成周期性变化的次数叫做频率。 常用 f 表示,单位Hz 3.转速的定义: 4.转速的符号:,单位: 四、线速度、角速度、周期之间的关系 分析:一物体做半径为r的匀速圆周运动,问: 1.它运动一周所用的时间叫,用T表示,它在周期T内转过的弧长为。由此可知它的线速度为。 2.一个周期T内转过的角度为,物体的角速度为。 思考总结得到角速度与线速度的关系: 讨论:(1)当v一定时,与成反比。 (2)当ω一定时,与成正比。 (3)当r一定时,与成正比。 思考:物体做匀速圆周运动时,v、ω、T是否改变? 五、匀速圆周运动的特点 由于匀速圆周运动是不变的运动,物体单位时间通过的弧长相等,所以物体在单位时间转过的角也相等。因此可以说,匀速圆周运动是.的圆周运动。 【自主检查】 1.对于做匀速圆周运动的物体,下列说法中正确的是() A.线速度不变B.周期不变 C.角速度大小不变D.运动状态不变 2.关于角速度和线速度,下列说法正确的是() A.半径一定,角速度与线速度成反比 B.半径一定,角速度与线速度成正比 C.线速度一定,角速度与半径成正比 D.角速度一定,线速度与半径成反比

2020-2021学年高中物理 第4章 匀速圆周运动整合提升学案 鲁科版必修2

第4章匀速圆周运动 一、圆周运动的描述:线速度、角速度、向心力、加速度 1.线速度:反映质点沿圆周运动快慢的物理量. v=错误!=错误! 2.角速度:反映质点绕圆心转动快慢的物理量 ω=错误!=错误! 3.向心力:根据效果命名的力,可以是几个力的合力,也可以是某个力的分力,还可能是重力、弹力或摩擦力.如果物体做匀速圆周运动,合力一定全部提供向心力. 4.向心加速度:反映速度方向变化快慢的物理量. a=错误!=ω2r=错误!r=ωv.

例1如图1所示是一个皮带传动减速装置,轮A和轮B共轴固定在一起,各轮半径之比R A∶R B∶R C∶R D=2∶1∶1∶2,求在运转过程中,轮C边缘上一点和轮D边缘上一点向心加速度之比. 图1 二、圆周运动问题分析 1.明确圆周运动的轨道平面、圆心和半径是解题的基础.分析圆周运动问题时,首先要明确其圆周轨道是怎样的一个平面,确定其圆心在何处,半径是多大,这样才能掌握做圆周运动物体的运动情况. 2.分析物体受力情况,搞清向心力的来源是解题的关键.如果物体做匀速圆周运动,物体所受各力的合力就是向心力;如果物体做变速圆周运动,它所受的合力一般不是向心力,但在某些特殊位置(例如:竖直平面内圆周的最高点、最低点),合力也可能就是向心力. 3.恰当地选择向心力公式.向心力公式F=m错误!=mrω2=m错误!2r中都有明确的特征,应用时要根据题意,选择适当的公式计算. 例2如图2所示,两根长度相同的轻绳,连接着相同的两个小球,让它们穿过光滑的杆

在水平面内做匀速圆周运动,其中O为圆心,两段细绳在同一直线上,此时,两段绳子受到的拉力之比为多少? 图2 三、圆周运动中的临界问题 1.临界状态 当物体从某种特性变化为另一种特性时发生质的飞跃的转折状态,通常叫做临界状态,出现临界状态时,既可理解为“恰好出现”,也可理解为“恰好不出现”. 2.轻绳类 轻绳拴球在竖直面内做圆周运动,过最高点时,临界速度为v=错误!,此时F绳=0.

匀速圆周运动的实例分析

匀速圆周运动的实例分析 北京市密云县第二中学蔡小娟 教学设计思路: 一、教学理念 本节课的教学设计努力遵循教育部颁发的《普通高中物理课程标准》倡导的“促进学生自主学习,让学生积极参与、乐于探究、勇于实验、勤于思考”的教学理念.在课堂教学中以问题为主线,倡导情景设置、师生交流,在自主、合作、探究的氛围中,引导学生自己提出问题,努力促使学生成为一个研究者. 学习任务分析: 圆周运动在实际生活中有广泛的应用,有关圆周运动的问题是对牛顿运动定律的进一步应用,是教学的难点,同时也是学习机械能和电学知识的基础,通过实例分析求解,教会学生解决问题的一般方法,特别要掌握几个模型及条件. 一、培养学生分析向心力来源的能力,引导学生对做圆周运动的物体进行受力分析,让学生清楚地认识到物体沿半径方向受到的合外力,就是提供给物体做圆周运动的向心力. 二、培养学生运用物理知识解决实际问题的能力,通过对例题的分析与讨论(结合动画或课件),引导学生从中领悟、掌握运用向心力公式的思路和方法. 学习者分析: 一、学生学完匀速圆周运动的理论知识,尚缺乏实际的应用,对定律的理解还比较粗浅,本节课帮助学生建立一个生动活泼的场景,利于学生的理解、消化. 二、本节课来源于生活中的大量实例,但学生对相关新事物、新情况的了解较为片面,不能很好地由感性认识提升为理性认识,通过对本节的学习让学生掌握探究学习的一般方法,使其成为学生终身学习的基础. 教学目标: 一、知识与技能 1.知道如果一个力或几个力的合力的效果是使物体产生向心加速度,那么这个力或这个合力就是做匀速圆周运动的物体所受的向心力.会在具体问题中分析向心力的来源.2.能理解运用匀速圆周运动的规律分析和处理生产和生活中的具体实例. 3.知道向心力和向心加速度的公式也适用于变速圆周运动,会求变速圆周运动中物体在特殊点的向心力和向心加速度. 二、过程与方法 1.通过对匀速圆周运动实例的分析,渗透理论联系实际的观点,提高学生分析和解决问题的能力. 2.通过匀速圆周运动的规律在变速圆周运动中使用,渗透特殊性和一般性之间的辩证关系,提高学生的分析能力. 3.通过对离心现象的实例分析,提高学生综合应用知识解决问题的能力. 三、情感态度与价值观 1.通过对几个实例的分析,使学生明确具体问题必须具体分析,理解物理与生活的联系,学会用合理、科学的方法处理问题. 重点难点

圆周运动中的临界问题分析+教案+教学设计

《圆周运动中的临界问题》教学设计 高一物理组龙 一、教材分析 圆周运动的临界问题继是人教版高中《物理》必修2第五章的内容。在此之前,学生已经学习了直线运动的相关内容,和曲线运动的基本知识,自然界和日常生活中运动轨迹为圆周的许多事物也为学生的认知奠定了感性基础,本节课主要是帮助学生在原有的感性基础上进一步认识圆周运动,为今后学习万有引力等知识打下基础。 二、学情分析 高一(14)班是二层次班级,学生基础、领会能力相对较弱。不过学生已经学习了圆周运动、向心加速度、向心力等圆周运动的相关知识,已基本了解和掌握了圆周运动的特点和规律,对圆周运动的临界问题的学习已打下了基础。 三、学习目标 1. 通过学生讨论,小组合作,老师引导,让学生进一步熟练圆周运动问题的解题步骤; 2. 通过学生讨论,小组合作,老师讲解,达到知道临界状态的目标; 3. 通过学生讨论,小组合作,老师讲解,达到知道圆周运动中的临界问题,并能正确解题的目标。 四、教学重难点 1. 重点

a圆周运动问题的解题步骤 b 竖直水平圆周运动的临界状态 c 运用所学知识解决圆周运动中的临界问题 2. 难点 a竖直水平圆周运动的临界状态 b 运用所学知识解决圆周运动中的临界问题 五、导入 播放视频—电唱机做匀速圆周运动,创设情境,导入新课六、教学设计 (一) 预习案 1.公式默写 角速度: 线速度: 运行周期:

向心加速度: 向心力: 复习巩固 (二) 探究案 1.圆周运动问题的解题步骤

例、例. 如图所示,半径为R的圆筒绕竖直中心轴OO′转动,小物块A靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要使A不下落,则圆筒转动的角速度ω至少为( D ) 小组讨论,得出结果,并归纳总结出圆周运动解题步骤。 解:A物体不下落,说明静摩擦力等于重力,A随着转动过程中,支持力提供向心力 即 且 联立解得

圆周运动及其运用学案

圆周运动及其运用 一、描述匀速圆周运动的物理量 1.概念:线速度、角速度、周期、转速、向心力、向心加速度,比较如表所示: 二、匀速圆周运动和非匀速圆周运动 1.匀速圆周运动 (1)定义:线速度_________的圆周运动. (2)性质:向心加速度大小_____,方向总是_________的变加速曲线运动. (3)质点做匀速圆周运动的条件合力______不变,方向始终与速度方向______且指向圆心. 【答案】大小不变 不变指向圆心 大小垂直 2.非匀速圆周运动 (1)定义:线速度大小、方向均__________的圆周运动. (2)合力的作用.

①合力沿速度方向的分量Ft产生切向加速度,Ft=mat,它只改变速度的______. ②合力沿半径方向的分量Fn产生向心加速度,Fn=man,它只改变速度的______. 【答案】发生变化 大小方向 三、离心运动和近心运动 1.离心运动 (1)定义:做_________的物体,在所受合外力突然消失或不足以提供圆周运动所需________的情况下,所做的逐渐远离圆心的运动. (2)本质:做圆周运动的物体,由于本身的______,总有沿着圆周__________飞出去的倾向. 【答案】圆周运动向心力 惯性切线方向 (3)受力特点. ①当F=mω2r时,物体做__________运动; ②当F=0时,物体沿______方向飞出; ③当F

【答案】匀速圆周切线远离 2.近心运动 当提供向心力的合外力大于做圆周运动所需向心力时,即F>mω2r,物体将逐渐______圆心,做近心运动. 【答案】靠近 考点一水平面内的匀速圆周运动 1.在分析传动装置的物理量时,要抓住不等量和相等量的关系,表现为: (1)同一转轴的各点角速度ω相同,而线速度v=ωR与半径R成正比,向心加速度大小a=Rω2与半径r成正比. (2)当皮带不打滑时,用皮带连接的两轮边沿上的各点线速度大小相 等,由ω=v R可知,ω与R成反比,由a=v2 R可知,a与R成反比. 2.用动力学方法解决圆周运动中的问题 (1)向心力的来源. 向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避

匀速圆周运动教学设计

匀速圆周运动 一、教学内容分析 “匀速圆周运动”选自人教版高中《物理》第一册第五章第4节。在此之前,学生已经学习了直线运动的相关内容,和曲线运动的基本知识,自然界和日常生活中运动轨迹为圆周的许多事物也为学生的认知奠定了感性基础,本节课主要是帮助学生在原有的感性基础上建立匀速圆周运动的几个概念,为今后进一步学习向心力、向心加速度以及万有引力的知识打下基础。 此外,匀速圆周运动与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有重要的意义。 二、学习情况分析 本节内容是继学生学习平抛运动后,又一种变速曲线运动。在曲线运动的学习中,学生已经知道了曲线运动的速度方向在曲线这一点的切线方向并知道曲线运动是变速运动,此前,学生也已经掌握了直线运动及其快慢描述方法。这些知识都为匀速圆周运动的学习奠定了基础。此外,高一学生已具备一定观察能力和经验抽象思维能力,并对未知新事物有较强的探究欲望。 三、设计思想 “匀速圆周运动”是以概念教学为主的一节课,对物理概念的理解和认识是教学要达到的目标之一,也是教学的出发点。物理是一门培养和发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,我在整节课的教学设计中,以建构主义理论为指导,辅以多媒体手段,采用情景教学法和引导式教学法,结合师生共同讨论、归纳,以“情境产生问题”,注重知识的形成过程,针对“什么是匀速圆周运动”以及“匀速圆周运动快慢的描述”展开探究活动,在问题交流讨论中发展学生观点,最终形成对概念的理解。 四、教学目标 知识目标 1、知道匀速圆周运动的概念; 2、理解线速度、角速度和周期; 3、理解线速度、角速度和周期三者之间的关系。 能力目标 能够用匀速圆周运动的有关公式分析和解决实际问题。 情感目标 具有协作意识和探究精神,并在活动中感受学习物理的乐趣。 五、教学重点和难点 重点

圆周运动复习课教学案例

创新平台条件下的课堂教学案例 圆周运动复习课 [设计思想]: 本教学设计以新课程三维目标为依据,充分借助创新平台优势,落实“学生主体,教师主导”的生本教学理念,促进学生的全面发展。 [设计特点]: 1、重视学生的自主学习过程。通过课前学案发布,借助问题的引导和学习资源的 帮助,最大限度的促进学生自主学习的成果。 2、重视学习中的生生互动、师生互动,促进学生思维的发展,让学生感受与体验 认知的过程;借助平台的互动功能,让学生在活跃、宽松、平等的氛围中发表见解,展开讨论,促进课堂上每一名学生的认知发展。 3、利用平台的丰富教学资源,实现对各层次学生的因材施教;教学设计中,教师 可以根据学生不同层次设计不同的教学要求,也可以根据学生的认知特点设计相应的教学提示帮助不同学生达到统一的教学要求,真正实现让每一名学生都“跳一跳,够得着”,促进每一名学生的发展。 4、: 5、利用平台高效的统计分析功能,对学生学习现状即时检测,及时反馈修正,保 证教学不留死角; 6、借助资源中心丰富的案例储备,实现对重点、难点问题的突破,提高学习效率。[教材分析]: 本节课是人教版普通高中课程标准实验教科书必修2第六章曲线运动的圆周运动部分,主要内容:复习描述圆周运动的基本物理量,掌握线速度、角速度、周期、频率、转速、向心加速度、向心力的概念,掌握各量之间的关系;掌握匀速圆周运动的特点,理解向心加速度的概念,理解圆周运动中向心力与合力的关系;解决圆周运动的具体实例,会分析向心力的来源,能列出动力学方程并解决。 [教学目标]: 知识与技能: 1、掌握描述圆周运动的物理量,理解物理量的概念,掌握各物理量间的关系;

(完整版)《圆周运动》教学设计

《圆周运动》教学设计 六盘水市第二实验中学卢毅 一、教材分析 本节课的教学内容为新人教版第五章第四节《圆周运动》,它是在学生学习了曲线运动的规律和曲线运动的处理方法以及平抛运动后接触到的又一类曲线运动实例。本节作为该章的重要内容之一,主要向学生介绍了描述圆周运动快慢的几个物理量,匀速圆周运动的特点,在此基础上讨论这几个物理量之间的变化关系,为后续学习圆周运动打下良好的基础。 二、学情分析 通过前面的学习,学生已对曲线运动的条件、运动的合成和分解、曲线运动的处理方法、平抛运动的规律有了一定的了解和认识。在此基础上了,教师通过生活中的实例和实物,利用多媒体,引导学生分析讨论,使学生对圆周运动从感性认识到理性认识,得出相关概念和规律。在生活中学生已经接触到很多圆周运动实例,对其并不陌生,但学生对如何描述圆周运动快慢却是第一次接触,因此学生在对概念的表述不够准确,对问题的猜想不够合理,对规律的认识存在疑惑等。教师在教学中要善于利用教学资源,启发引导学生大胆猜想、合理推导、细心总结、敢于表达,这就能对圆周运动的认识有深度和广度。 三、设计思想 本节课结合我校学生的实际学习情况,对教材进行挖掘和思考,始终把学生放在学习主体的地位,让学生在思考、讨论交流中对描述圆周运动快慢形成初步的系统认识,让学生的思考和教师的引导形成共鸣。 本节课结合了曲线运动的规律及解决方法,利用生活中曲线运动实例(如钟表、转动的飞轮等)使学生建立起圆周运动的概念,在此基础上认识描述圆周运动快慢的相关物理量。总体设计思路如下:

四、教学目标 (一)、知识与技能 1、知道什么是圆周运动、匀速圆周运动。理解线速度、角速度、周期的概念,会用线速度角速度公式进行计算。 2、理解线速度、角速度、周期之间的关系,即r r T v ωπ ==2。 3、理解匀速圆周运动是变速运动。 4、能利用圆周运动的线速度、角速度、周期的概念分析解决生活生产中的实际问题。 (二)、过程与方法 1、知道并理解运用比值定义法得出线速度概念,运用极限思想理解线速度的矢量性和瞬时性。 2、体会在利用线速度描述圆周运动快慢后,为什么还要学习角速度。能利用类比定义线速度概念的方法得出角速度概念。 (三)、情感、态度与价值观 1、通过极限思想的运用,体会物理与其他学科之间的联系,建立普遍联系的世界观。 2、体会物理知识来源于生活服务于生活的价值观,激发学生的学习兴趣。 3、通过教师与学生、学生与学生之间轻松融洽的讨论和交流,让学生感受快乐学习。 五、教学重点、教学难点

圆周运动”画圆体验式教学案例

“圆周运动”画圆体验式教学案例 一、“圆周运动”教学的困惑 圆周运动课是选自高中物理必修2第五章第五节内容,本节内容作为该部分的起始章节,而且作为曲线运动的一个特殊运动模型而安排的,它是典型性强,且可向多方面拓展,是电学学习的基础,因此本节内容有承前启后的作用。本节内容概念多,需要说明的问题也比较多。教材首先定义什么是圆周运动,接着列举日常生活中的圆周运动,让学生去体会和感悟圆周运动;通过观察自行车大齿轮、小齿轮、后轮的关联转动,提出了描述圆周运动快慢的问题,让学生讨论与交流给出线速度、角速度以及周期、转速等概念,对于匀速圆周运动的定义,教科书是在讲述线速度概念后给出的,这样安排会显的比较严谨;最后推导出线速度、角速度、周期间的关系。各个知识点的形成过程有机地联系在一起,因此,这节课编排的目的是:让学生通过生活实例和课堂演示实验,增加感性认识,改变想当然的错误观念,这要求在课堂教学中必须精心设计实验,用事实战胜假象,帮助学生建立正确的物理概念和模型。 但是,高一的学生学习了直线运动,是用速度来描述运动快慢,而圆周运动是由线速度、角速度、转速和周期来描述运动的快慢,如何纠正学生原有的错误认识和片面理解,让学生在认识事物时,要用辩证的全面的观点,从多角度去认识,存在一定的困难,严重影响高二物理的学习。物理被称为高中最难学的科目,怎样降低难度一直是高中物理教学的一重要的课题。可能是正是这个缘故,各种新教材都把难度稍低的平抛运动放在圆周运动的前面,这样处理有利于学生逐步适应高中物理学习,但这并没有降低学生学习圆周运动的难度,因为平抛运动处理方法还是把它分解为直线运动,而圆周运动是从直线运动到曲线运动跨度还很大,难度并没有降低,学生学到这部分内容时依然感到困难。在教学的过程中,最后老师只好“谆谆善诱”地提醒,引导学生得出线速度、角速度、转速和周期的概念。因此,要圆满完成任务,如何降低难度,让学生亲身体验就成了关键。 二、我的处理方案 让学生(教师自制的圆规)画圆比一比,体验和观察笔尖圆周运动,再通过学生举生活中的实例,让学生去体会和感悟圆周运动;通过一段月球和地球的情

2020高三物理一轮复习教学案(27)圆周运动中的临界问题

2020高三物理一轮复习教学案(27)圆周运动中的临界问题【学习目标】 1.熟练处理水平面内的临界咨询题 2.把握竖直面内的临界咨询题 【自主学习】 一.水平面内的圆周运动 例1:如图8—1所示水平转盘上放有质量为m的物快,当物块到转轴的距离为r时,假设物块始终相对转盘静止,物块和转盘间最大静摩擦力是正压力的μ倍,求转盘转动的最大角速度是多大? 注:分析物体恰能做圆周运动的受力特点是关键图8—1 二.竖直平面内圆周运动中的临界咨询题 图8—2甲图8—3甲图8—3乙 1.如图8—2甲、乙所示,没有支撑物的小球在竖直平面作圆周运动过最高点的情形 ○1临界条件 ○2能过最高点的条件,现在绳或轨道对球分不产生______________ ○3不能过最高点的条件 2.如图8—3甲、乙所示,为有支撑物的小球在竖直平面做圆周运动过最高点的情形 竖直平面内的圆周运动,往往是典型的变速圆周运动。关于物体在竖直平面内的变速圆周运动咨询题,中学时期只分析通过最高点和最低点的情形,同时经常显现临界状态,下面对这类咨询题进行简要分析。○1能过最高点的条件,现在杆对球的作用力 ○2当0gr时,杆对小球的力为其大小为____________ 讨论:绳与杆对小球的作用力有什么不同? 例2.长度为L=0.50m的轻质细杆OA,A端有一质量为m=3.0kg的小球,如图8—4所示,小球以O点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0m/s,〔g=10m/s2〕那么现在细杆OA受 的〔〕 A. 6.0N的拉力 B. 6.0N的压力 C.24N的压力 D. 24N的拉力

高中物理 《匀速圆周运动 》导学案 教科版必修

高中物理《匀速圆周运动》导学案教科版必 修 复习案导学案 【学习目标】 1、理解匀速圆周运动,线速度、角速度、周期、圆周运动的向心力和向心加速度 2、能用匀速圆周运动规律解决实际问题 【重点难点】 1、匀速圆周运动中线速度、角速度、周期、圆周运动的向心力和向心加速度的理解 2、圆周运动的质点受力分析并求圆周运动的向心力 【使用说明及学法指导】 细读教材,根据预习案的提示先自学然后通过小组合作完成导学案。 【旧知回顾】 知识点 一、匀速圆周运动 1、线速度: 2、角速度: 3、频率f 和周期T:

4、线速度、角速度和半径的关系:v = rω 5、匀速圆周运动的特点: 线速度的大小不变,方向时刻都在改变。匀速圆周运动性质:变加速曲线运动 6、两个有用的结论:①皮带上及轮子边缘上各点的线速度相同(皮带传动或齿轮传动)②同一轮上各点的角速度相同(同轴转动)知识点 二、向心力和向心加速度 1、向心加速度(1)、方向:始终指向圆心(2)、物理意义:描述速度方向变化的快慢(3)、向心加速度的大小:2向心力(1)、方向:始终指向圆心(1)、向心力的大小: 3、向心力的来源:沿半径方向的合力(匀速圆周运动:合力充当向心力) 4、离心运动和向心运动(1)离心运动:物体能提供的向心力小于物体做圆周运动需要的向心力,即:F供F需 5、常见的匀速圆周运动受力分析实例: 【课内探究】 1、关于匀速圆周运动,正确的是:() A、线速度不变 B、角速度不变 C、向心加速度不变

D、匀变速曲线运动。 2、如图所示的皮带传动装置中,O为轮子A和B的共同转轴,O′为轮子C的转轴, A、 B、C分别是三个轮子边缘上的质点,且RA=RC=2RB,则三质点的向心加速度大小之比aA∶aB∶aC等于() A、4∶2∶1 B、2∶1∶2 C、1∶2∶4 D、4∶1∶ 43、做匀速圆周运动的物体,10 s内沿半径是20 m的圆周运动了100 m,则其线速度大小是 m/s,周期是s,角速度是rad/s。 4、 A、B两质点分别做匀速圆周运动,在相同时间内,它们通过的弧长之比sA∶sB=2∶3,而转过的角度之比φA∶φB=3∶2,则它们的周期之比TA∶TB=;角速度之比ωA∶ωB =;线速度之比vA∶vB=,半径之比RA∶RB=、6、质量为m的小球在竖直平面内的圆形轨道内侧运动,若经最高点不脱离轨道的临界速度为v,则当小球以2v速度经过最高点时,求小球对轨道压力的大小为多少? 【能力提升】

相关文档
最新文档