近世代数模拟试题4套附详细答案
近世代数复习
世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)1、设人=B=R (实数集),如果A 到B 的映射:x-x+2,xCR,则是从A 到B 的() A 、满射而非单射B 、单射而非满射C 、一一映射D 、既非单射也非满射2、设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合AXB 中含有()个元素。
A 、2B 、5C 、7D 、103、在群G 中方程ax=b,ya=b,a,bCG 都有解,这个解是()乘法来说 A 、不是唯一B 、唯一的C 、不一定唯一的D 、相同的(两方程解一样)4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数() A 、不相等B 、0C 、相等D 、不一定相等。
5、n 阶有限群G 的子群H 的阶必须是门的() A 、倍数B 、次数C 、约数D 、指数二、填空题(本大题共10小题,每空3分,共30分) 1、设集合A1,0,1;B1,2,则有BA 。
2、若有元素eCR 使每aCA,都有ae=ea=a,则e 称为环R 的。
3、环的乘法一般不交换。
如果环R 的乘法交换,则称R 是一个。
4、偶数环是的子环。
5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个。
6、每一个有限群都有与一个置换群。
7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是,元a 的逆元是。
8、设I 和S 是环R 的理想且ISR,如果I 是R 的最大理想,那么 9、一个除环的中心是一个。
三、解答题(本大题共3小题,每小题10分,共30分)并把和写成对换的乘积。
2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。
3、设集合M m {0,1,2,,m1,m}(m1),定义M m 中运算“m ”为a m b=(a+b)(modm),则(M m,m)是不是群,为什么?四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、设G 是群。
《近世代数》模拟试题及答案
近世代数模拟试题一. 单项选择题(每题5分,共25分)1、在整数加群(Z,+)中,下列那个是单位元().A. 0B. 1C. -1D. 1/n,n是整数2、下列说法不正确的是().A . G只包含一个元g,乘法是gg=g。
G对这个乘法来说作成一个群;B . G是全体整数的集合,G对普通加法来说作成一个群;C . G是全体有理数的集合,G对普通加法来说作成一个群;D. G是全体自然数的集合,G对普通加法来说作成一个群.3. 如果集合M的一个关系是等价关系,则不一定具备的是( ).A . 反身性 B. 对称性 C. 传递性 D. 封闭性4. 对整数加群Z来说,下列不正确的是().A. Z没有生成元.B. 1是其生成元.C. -1是其生成元.D. Z是无限循环群.5. 下列叙述正确的是()。
A. 群G是指一个集合.B. 环R是指一个集合.C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在.D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在.二. 计算题(每题10分,共30分)1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成的群,试求中G 中下列各个元素1213,,0101c d cd ⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭,的阶.2. 试求出三次对称群{}3(1),(12),(13),(23),(123),(132)S = 的所有子群.3. 若e是环R的惟一左单位元,那么e是R的单位元吗?若是,请给予证明.三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分).1. 证明: 在群中只有单位元满足方程2.x x=2.设G是正有理数乘群,G是整数加群. 证明::2n bn aϕg a是群G到G的一个满同态,其中,a b是整数,而(,2)1ab=.3.设S是环R的一个子环.证明: 如果R与S都有单位元,但不相等,则S的单位元必为R的一个零因子.近世代数模拟试题答案2008年11月一、单项选择题(每题5分,共25分)1. A2. D3. D 4 . A 5 . C二. 计算题(每题10分,共30分) 1. 解:易知 c 的阶无限, (3分)d 的阶为2. (3分)但是 11,01cd ⎛⎫=⎪-⎝⎭(2分)的阶有限,是2. (2分) 2. 解:3S 的以下六个子集{}{}{}123(1),(1),(12),(1),(13),H H H ==={}{}4563(1),(23),(1),(123),(132),H H H S === (7分)对置换乘法都是封闭的,因此都是3S 的子集. (3分) 3. 解: e 是R 的单位元。
近世代数复习
世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)1、设人=B=R (实数集),如果A 到B 的映射:x-x+2,xCR,则是从A 到B 的() A 、满射而非单射B 、单射而非满射C 、一一映射D 、既非单射也非满射2、设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合AXB 中含有()个元素。
A 、2B 、5C 、7D 、103、在群G 中方程ax=b,ya=b,a,bCG 都有解,这个解是()乘法来说 A 、不是唯一B 、唯一的C 、不一定唯一的D 、相同的(两方程解一样)4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数() A 、不相等B 、0C 、相等D 、不一定相等。
5、n 阶有限群G 的子群H 的阶必须是门的() A 、倍数B 、次数C 、约数D 、指数二、填空题(本大题共10小题,每空3分,共30分) 1、设集合A1,0,1;B1,2,则有BA 。
2、若有元素eCR 使每aCA,都有ae=ea=a,则e 称为环R 的。
3、环的乘法一般不交换。
如果环R 的乘法交换,则称R 是一个。
4、偶数环是的子环。
5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个。
6、每一个有限群都有与一个置换群。
7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是,元a 的逆元是。
8、设I 和S 是环R 的理想且ISR,如果I 是R 的最大理想,那么 9、一个除环的中心是一个。
三、解答题(本大题共3小题,每小题10分,共30分)并把和写成对换的乘积。
2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。
3、设集合M m {0,1,2,,m1,m}(m1),定义M m 中运算“m ”为a m b=(a+b)(modm),则(M m,m)是不是群,为什么?四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、设G 是群。
近世代数期末模拟考试与答案
近 世 代 数 试 卷一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。
( f )2、设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。
( f )3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。
( t )4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。
(t )5、如果群G 的子群H 是循环群,那么G 也是循环群。
( f )6、群G 的子群H 是不变子群的充要条件为H Hg g H h G g ⊆∈∀∈∀-1;,。
( t )7、如果环R 的阶2≥,那么R 的单位元01≠。
( t )8、若环R 满足左消去律,那么R 必定没有右零因子。
( t )9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。
( f )10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。
( f )二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。
答案选错或未作选择者,该题无分。
每小题1分,共10分)1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ⨯⨯⨯ 21到D 的一个映射,那么( 2 ) ①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换; ③n A A A ⨯⨯⨯ 21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21 的象可以不唯一。
2、指出下列那些运算是二元运算( 3 )4①在整数集Z 上,abba b a +=; ②在有理数集Q 上,ab b a = ; ③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。
近世代数模拟试题及答案
近世代数模拟试题一、单项选择题每题5分,共25分1、在整数加群Z,+中,下列那个是单位元;A 0B 1C -1D 1/n,n是整数2、下列说法不正确的是;A G只包含一个元g,乘法是gg=g;G对这个乘法来说作成一个群B G是全体整数的集合,G对普通加法来说作成一个群C G是全体有理数的集合,G对普通加法来说作成一个群D G是全体自然数的集合,G对普通加法来说作成一个群3、下列叙述正确的是;A 群G是指一个集合B 环R是指一个集合C 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在D 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在4、如果集合M的一个关系是等价关系,则不一定具备的是;A 反身性B 对称性C 传递性D 封闭性S的共轭类;5、下列哪个不是3A 1B 123,132,23C 123,132D 12,13,23二、计算题每题10分,共30分S的正规化子和中心化子;1.求S={12,13}在三次对称群32.设G ={1,-1,i,-i},关于数的普通乘法作成一个群,求各个元素的阶;3.设R 是由一切形如⎪⎪⎭⎫ ⎝⎛0,0,y x x,y 是有理数方阵作成的环,求出其右零因子;三、证明题每小题15分,共45分1、设R 是由一切形如⎪⎪⎭⎫ ⎝⎛0,0,y x x,y 是有理数方阵作成的环,证明⎪⎪⎭⎫ ⎝⎛0,00,0是其零因子;2、设Z 是整数集,规定a ·b =a +b -3;证明:Z 对此代数运算作成一个群,并指出其单位元;3、证明由整数集Z和普通加法构成的Z,+是无限阶循环群;近世代数模拟试题答案一、单项选择题每题5分,共25分1. A2. D3. C4. D5. B二、计算题每题10分,共30分1. 解:正规化子NS ={1,23};;;;;;;;;;;;6分中心化子CS ={1};;;;;;;;;;;;;;;;;;4分2. 解:群G 中的单位元是1;;;;;;;;;;;;;;;;;;;;;;;;2分1的阶是1,-1的阶是2,i 和-i 的阶是4;;;;4×2分3. 解:设其右零因子为⎪⎪⎭⎫ ⎝⎛0,0,b a ;;;;;;;;;;;;;;;;;;;;;;;2分 所以⎪⎪⎭⎫ ⎝⎛0,0,y x ⎪⎪⎭⎫ ⎝⎛0,0,b a =⎪⎪⎭⎫ ⎝⎛0,0,xb xa =0;;;;;;;;;;;;;;;3分因为x 任意,所以a =b =0;;;;;;;;;;;;;;;;;;;;3分因此右零因子为⎪⎪⎭⎫⎝⎛0,00,0;;;;;;;;;;;;;;;;;;;;;;;;2分三、证明题每小题15分共45分 1.证明:设其右零因子为⎪⎪⎭⎫ ⎝⎛0,0,b a ;;;;;;;;;;;;;;;;;;;;;;;2分 所以⎪⎪⎭⎫ ⎝⎛0,0,y x ⎪⎪⎭⎫ ⎝⎛0,0,b a =⎪⎪⎭⎫ ⎝⎛0,0,yb xa =0;;;;;;;;;;;;;;;;5分 因为x,y 任意,所以a =b =0;;;;;;;;;;;;;;;;;8分同理设其右零因子为⎪⎪⎭⎫ ⎝⎛0,0,b a ;;;;;;;;;;;;;;;;;;;;10分 所以⎪⎪⎭⎫ ⎝⎛0,0,b a ⎪⎪⎭⎫ ⎝⎛0,0,y x =⎪⎪⎭⎫ ⎝⎛0,0,yb xa =0;;;;;;;;;;;;;;;;12分 因为x,y 任意,所以a =b =0;;;;;;;;;;;;;;;;;14分因此零因子为⎪⎪⎭⎫ ⎝⎛0,00,0;;;;;;;;;;;;;;;;;;;;;;;;15分2.明:首先该代数运算封闭;;;;;;;;;;;;;;;;;;;;3分其次我们有:a ·b ·c =a +b -3·c =a +b -3+c -3=a +b +c -3-3=a ·b ·c,结合律成立;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;6分令e =3,验证a ·e =a +e -3=a,有单位元;;;;7分对任意元素a,6-a 是其逆元,因为a ·6-a =3;;;8分因此,Z 对该运算作成一个群;显然,单位元是e =3;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;10分3.证明:首先证明Z,+是群,+满足结合律,对任意的Z x ∈,x x x =+=+00,0是运算+的单位元又由于: ()()0=+-=-+x x x x所以 ,1x x -=-从而Z,+为群;;;;;;;;;2分由于+满足交换律,所以Z,+是交换群;;;;4分Z,+的单位元为0,对于1Z ∈,由于 1+-1=0,所以111-=-,;;;5分于是对任意Z k ∈,若0=k ,则:010=;若0>k ,则k k =+++=1111 ;;;;;;;;;;;8分若0<k ,则()()()k k k k ------===111111)1()1()1(---++-+-=个k))(1(k --= k = ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;10分综上,有k k =1,对任意的Z k ∈. 因而,{}Z k Z k ∈=1,从而Z,+是无限阶循环群;;;;;;;;;;;;;;;;;;15分。
近世代数期末考试题库45962
近世代数模拟试题一一、 单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备 选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或 未选均无分。
1、 设A= B = R (实数集),如果A 到B 的映射:X 一X B 的()A 、满射而非单射B 、单射而非满射C -------- 映射D 、既非单射也非满射2、 设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合 AxB 中含有()个元素。
A 、22,X U R ,则是从A 到 D 、103、 在群G 中方程ax=b ,ya=b , a,b UG 都有解,这个解是()乘法来说A 、不是 唯一 B 、唯一的C 、不一定唯一的D 、相同的(两方程解一样)4、 当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数() A 、不相等B 、0 C 、相等D 、不一定相等。
5、 n 阶有限群G 的子群H 的阶必须是n 的()A 、倍数B 、次数C 、约数D 、指 数二、 填空题(本大题共W 小题,每空3分,共30分)请在每小题的空格中填上正 确答案。
错填、不填均无分。
1 '设集合5 ; B1.2 5则有B A .................... 。
2、 若有元素eU R 使每aU A ,都有ae=ea=a ,则e 称为环R 的。
3、 环的乘法一般不交换。
如果环R 的乘法交换,则称R 是4、 偶数环是 个集合A 的若干个“变换的乘法作成的群叫做A 的一个 。
6、 每一个有限群都有与一个置换群--。
7、 全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是元 a 的逆元是 。
8、 设I 和S 是环R 的理想且 Z 如果I 是R 的最大理想,那么 一个除环的中心是一个--。
、解答题(本大题共3小题,每小题W 分,共30分)1、设置撫和分别为:578 12345678g 和的奇彳禹性/并把和 写成对换的乘积。
近世代数练习题(附答案)
《近世代数》练习题(附答案)一.选择题1. 设R 是实数集, 则对任意的,a b R ∈, 代数运算2a b a b =+ ( C )(A) 适合结合律但不适合交换律 (B) 适合交换律但不适合结合律(C) 不适合结合律和交换律 (D) 适合结合律和交换律2. 在群G 中,a G ∈, a 的阶为12, 则8a 的阶为 ( B )(A) 12 (B) 3 (C) 4 (D) 63.在7次对称群7S 中(25)(437)π=和(13)(546)λ=, 则πλ等于( A )(A) (1376524) (B) (137)(6524) (C) (65)(24137) (D) (1746253)4.在一个无零因子环R 中,,a b R ∈,,0a b ≠对加法来说,有( C )(A) a 的阶<3b 的阶 (B) a 的阶>3b 的阶(C) a 的阶=3b 的阶 (D) 4a 的阶>3b 的阶5.设p 为整环I 中素元, 则下列正确的是 ( D )(A) p 为零元 (B) p 为单位 (C) p 有真因子 (D) p 仅有平凡因子6. 假定φ是A 与A 间的一一映射,A a ∈, 则)]([1a φφ-和)]([1a -φφ分别为 ( D )(A) a , a (B) 无意义, a (C) 无意义,无意义 (D) a ,无意义7. 在群G 中, G b a ∈,, 则方程b ax =和b ya =分别有唯一解为 ( B )(A) 1-ba , b a 1- (B) b a 1-, 1-ba (C) a b 1-, b a 1- (D) b a 1-, 1-ab8. 设M 是正整数集, 则对任意的,a b R ∈, 下面“o ”是代数运算的是( B ) (A) b a b a = (B) b a b a = (C) 2a b a b =+- (D) 2a b ab =- 9. 设M 是实数集, 代数运算是普通加法,下列映射是M 的自同构的是( D )(A) 2x x → (B) sin x x → (C) x x → (D) 5x x →-10. 在偶数阶群G 中阶等于2的元数为 ( A )(A) 奇数 (B) 偶数 (C) 1 (D) 不可确定11.在5次对称群5S 中元1(15)(24)π=和2(154)π=的乘积12ππ是( D )(A) (14)(25) (B) (124) (C) (152) (D) (142)12.若群G 的阶为48, G 的真子群H 的阶不可能为 ( C )(A) 12 (B) 16 (C) 18 (D) 2413.群G 中元a 的阶为24中,那么G 的循环子群9()a 的阶为 ( C )(A)3 (B) 4 (C) 8 (D) 914.在一个环R 里如果有一个消去律成立,那么下面不正确的是( B )(A) 另一个消去律也成立 (B) R 中非零元都有逆元(C) R 是无零因子环 (D) R 中非零元对加法的阶都一样15.假定F 是一个域,则一元多项式环[]F x 一定是 ( A )(A) 欧式环 (B) 除环 (C) 域 (D) 无法确定16.设12,εε为唯一分解环I 中单位, a 是I 中任意元, 则下列正确的是 ( B )(A) 12εε+ 也是单位 (B) 12,εε互为相伴元(C) 12,εε 都是a 的真因子 (D) a 有唯一分解17.一个30个元的域的特征可能是( A )(A) 5 (B) 6 (C) 10 (D) 1518.假定域R 与R 同态, 则R 是( C )(A) 域 (B) 整环 (C) 环 (D) 除环19.若I 是一个唯一分解环,I a ∈且a 21p p =和a 21q q =(其中2121,,,q q p p 都为素元),则下列说法正确的是 ( D )(A) 1p 与1q 互为相伴元 (B) 1p 与1q 互为相伴元和2p 与2q 互为相伴元(C) 2p 与2q 互为相伴元 (D) 1p 与1q 互为相伴元或1p 与2q 互为相伴元20.假定)(a 和)(b 是整环I 的两个主理想, 若)()(b a =, 则 ( A )(A) b 是a 的相伴元 (B) b 与a 互素 (C) b 是a 的真因子 (D) |b a 21.=A {所有整数},令τ: 2a a →,当a 是偶数;21+→a a ,当a 是奇数.则τ为 ( B )(A) 单射变换 (B) 满射变换 (C) 一一变换 (D) 不是变换22.若)(a G =,且a 的阶为有限整数n ,则下列说法正确的是 ( A )(A) G 与模n 的剩余类加群同构 (B) G 的阶可能无限(C) 元21012,,,,,---n a a a a a 中没有相同元 (D) G 与整数加群同构23.若R 是一个特征为有限整数n 的无零因子环,且R b a ∈,,则 ( D )(A) 0,00≠≠⇒=b a b a (B) 21n n n =,其中21,n n 为素数(C) 存在R 中元c 的阶为无限整数 (D) R 对乘法成立两个消去律24. 设Q 是有理数集, 则对任意的,a b Q ∈,下列“o ”是代数运算的是( C ) (A)22a b b a b =+ (B)b a b a= (C) 22a b a ab b =-+ (D) 10a b a b += 25. 在群G 中, ,,a b c G ∈, 则方程xaxba xbc =的唯一解为 ( D )(A)11abca b -- (B) 111bca a b --- (C) 111a b a bc --- (D) 111a bca b ---26.在6次对称群6S 中123456326514π⎛⎫= ⎪⎝⎭的阶是( A ) (A) 5 (B) 24 (C) 12 (D) 627.除环有理想( C )(A) 4个 (B) 1个 (C) 2个 (D) 无穷个28.假定F 是一个域,则一元多项式环[]F x 一定是 ( B )(A) 除环 (B) 欧式环 (C) 域 (D) 无法确定29.若Q 是一个域, 不正确的是 ( B )(A) Q 是交换除环 (B) Q 对乘法作成群(C) Q 无零因子 (D) Q 中不等于零的元都有逆元30.若I 是主理想环, p 是I 中素元, 且I b a ∈, 则 ( C )(A) 主理想)(p 不是I 的最大理想 (B) a 没有唯一分解(C) 若p |ab ,有p |a 或p |b (D) I /()p 不是域31. 设R 是实数集, 则对任意的,a b R ∈, 代数运算a b a b =- ( C )(A) 适合结合律但不适合交换律 (B) 适合交换律但不适合结合律(C) 不适合结合律和交换律 (D) 适合结合律和交换律32. 设Q 是有理数集, 则对任意的,a b Q ∈,下列“o ”是代数运算的是( A )(A) 2a b a b =+ (B)b a b a= (C) a b b a = (D) 10a a b = 33. 在群G 中, ,a b G ∈, 则方程xaxb xb =的唯一解为 ( D )(A)1aba - (B) 11a b -- (C) 11ba b -- (D) 1a -34.在5次对称群5S 中1234532541π⎛⎫= ⎪⎝⎭的阶是( B )(A) 2 (B) 3 (C) 4 (D) 535.除环有理想( C )(A) 4个 (B) 1个 (C) 2个 (D) 无穷个36.假定R 是一个整环,则一元多项式环[]R x 一定是 ( A )(A) 整环 (B) 除环 (C) 域 (D) 无法确定37. 在16阶循环群()G a =中 , 循环子群6()a 的阶为 ( D )(A) 6 (B) 3 (C) 4 (D) 838.一个有8个元的域的特征是( A )(A) 2 (B) 4 (C) 6 (D) 839.设p 为整环I 中素元, 则下列正确的是 ( D )(A) p 为零元 (B) p 为单位 (C) p 有真因子 (D) p 仅有平凡因子40.若群G 的阶为48, G 的子群H 的阶为16,则H 在G 中的指数为( C )(A) 1 (B) 2 (C) 3 (D) 441. 设R 是实数集, 则对任意的,a b R ∈, 代数运算a b a b =- ( C )(A) 适合结合律但不适合交换律 (B) 适合交换律但不适合结合律(C) 不适合结合律和交换律 (D) 适合结合律和交换律42. 设Q 是有理数集, 则对任意的,a b Q ∈,下列“o ”是代数运算的是( C ) (A)a b b a = (B)b a b a= (C) 2a b a b =+ (D) 10a a b = 43. 在群G 中, ,a b G ∈, 则方程xaxb xb =的唯一解为 ( C )(A)1aba - (B) 11a b -- (C) 1a - (D) 11ba b --44.在5次对称群5S 中1234532541π⎛⎫= ⎪⎝⎭的阶是( B ) (A) 2 (B) 3 (C) 4 (D) 545.除环有理想( C )(A) 4个 (B) 1个 (C) 2个 (D) 无穷个46.假定R 是一个整环,则一元多项式环[]R x 一定是 ( A )(A) 整环 (B) 除环 (C) 域 (D) 无法确定47. 在16阶循环群()G a =中 , 循环子群6()a 的阶为 ( D )(A) 6 (B) 3 (C) 4 (D) 848.一个有8个元的域的特征是( )(A) 2 (B) 4 (C) 6 (D) 849.设p 为整环I 中素元, 则下列正确的是 ( D )(A) p 为零元 (B) p 为单位 (C) p 有真因子 (D) p 仅有平凡因子50.若群G 的阶为48, G 的子群H 的阶为16,则H 在G 中的指数为( C )(A) 1 (B) 2 (C) 3 (D) 4二.填空题1.设是集合A 的元间的一个等价关系,那么满足反射律、 对称律 、 推移律 .2.若G 为群,,,a b c G ∈,则3211()b c a c --- 123c ac b .3.循环群()a 的阶是50,则它的子群15()a 的阶是 10 .4. 群G 的中心N 是G 的一个 不变 子群.5.n 次对称群n S 的阶为 !n .6.假定B A ⊂,那么B A A , B A B .7. 假定A 和A 同态, A 和A 同态, 则A 和A 也同态 .8. 在群G 中, G b a ∈,, 则方程b ya =有唯一解为 1ba .9.设集合A 的元数为3 ,那么A 共有子集 8 个,A 的元间的关系共有 512 个.10.若G 为群, 方程1x ax bx -=的唯一解为 1ba .11.一个有限非可换群至少含有______ 6 ______个元素 .12.设~是集合A 的元间的一个等价关系,那么~满足自反律、对称律 、 推移律 .13.若G 为群,,,a b c G ∈,则211()bc a --- 21ac b .14.5次对称群5S 的阶为 120 .15.若φ是环R 与R 的同态满射, 则同态核中元都是R 中 单位元 e 的逆象,且同态核是R 的一个 理想 .16.设A 是有单位元的交换环R 的一个最大理想,那么剩余类环R A 是一个 域 .17.在整数环Z 中,理想(3,7)等于主理想 (1) .18.设9Z 为模9的剩余类环,那么[5]的负元为 [4] ,逆元为 【2】 .19.设G 是17阶群,则G 的生成元有 16 个.20.除环的最大理想是 零理想 .21.设R 是模7的剩余类环,在多项式环[]R x 中2([6][4])([2][5])x x x +-+=32[6][6]x x x -++22.设10Z 为模10的剩余类环,那么[3]的负元为 [7] ,逆元为[7] .23.在整数环I 中,主理想()()a b =当且仅当b 是a 的 相伴元 .24.设{,,}A a b c =,{,,,}R aRa aRc cRa cRc =.那么由R 决定的A 的分类为 {,},{}a c b .25.设I 是一个唯一分解环,那么多项式环[]I x 是 唯一分解 环.26.设9Z 为模9的剩余类环,那么[7]的负元为 [2] ,逆元为[4] .27.设I 是一个唯一分解环,那么I 的元12,,,n a a a 的两个最大公因子d 和d '相差一个相伴元 .28.若群的元a 的阶是15,b 的阶是8,且ab ba =, 则8a 和ab 的阶分别是 15 和 120 .29.在一个特征为p 的无零因子的交换环R 中,有p 为 素 数,且()p a b += p p a b + .30. 若群G 的阶为60, G 的子群H 的阶为15,则H 在G 中的指数为 4 .31. 若φ是环R 与R 的同态满射,则对,,a b c R ∈,它们的象分别为,,a b c ,则元()a b c +的象为 ()a b c + .32.设A 是环R 的一个最大理想,那么包含A 的R 的理想仅有 A 和R .33.在整数环Z 中,理想(42,35)等于主理想 (7) .34.在唯一分解环I 中,若素元p 能整除ab ,则p 必能整除 ,a b 中一个元 .35. 若G 是由集合A 的全体一一变换所作成, 则G 是一个 变换 群.36.若R 是有单位元的交换环,则R 的主理想)(a 中的元有形式为 ,ra r R . 37.0R 是有单位元的交换环, x 是0R 的子环R 上的未定元, 则仅当 010n a a a时,才有010=+++n n x a x a a 成立.38. R 是一个有单位元的环, 且}0{≠R ,则在R 中必有一个元没有逆元, 它是 0 ; 必有两个元有逆元,它们是 1和-1 .39.唯一分解环I 中的元a 和b 的两个最大公因子d 和d '只能差一个 相伴元 .40.设}2,1{=A ,}4,3{=B .那么=⨯B A { (1,3),(1,4),(2,3),(2,4) } .41.若群G 和集合G 同态,则G 是 群 ,并且有G 中元e 和1-a 的象为G 中元e 和1a .42.在无零因子环R 中,如果对R b a ∈,有0=ab , 那么必有 0a 或0b .43.群的元a 的阶是n ,若d 是整数r 和n 的最大公因子,则r a 的阶是 n d. 44.在一个域Q 中,若有0,0,,≠≠∈d b Q d c b a ,则=+d c b a ad bc bd. 45.设φ是环R 与R 的同态满射, 则φ的核是环R 的一个 理想 . 46.在整环中必有一个元没有逆元,它是 0 ; 必有两个元有逆元,它们是 1和-1 .47.整环I 的元a 是][x I 的多项式)(x f 的根, 当且仅当)(x f 能被 xa 整除.三.判断题1.设}4,3,2,1{=A ,则能找到A A ⨯到A 的一一映射. ( × )2.无限群中的元的阶都无限. ( × )3.除环的最大理想是单位理想. ( × )4.整环中的素元只能有有限个数的因子. ( × )5.任何欧式环一定是主理想环,也一定是唯一分解环. ( √ )6.A 为不等于零的实数的全体,那么普通除法适合结合律. ( × )7.有限群中存在某个元的阶无限. ( × )8.假定域R 与R 同态, 则R 也是域. ( × )9.整环中的单位ε同素元p 的乘积p ε还是一个素元. ( √ )10.除环除了零理想和单位理想还有其它理想. ( × )四.解答题1. 用循环置换的方法写出三次对称群3S 的全体元.说明集合})23(,)1({=N 是3S 的子群,并且写出N 的所有左陪集.解: )}132(),123(),23(),13(),12(),1{(3=S ,(2分) 因为N 是有限集合, 由)1()1)(1(=,)23()23)(1(=,)23()1)(23(=,)1()23)(23(=知N 是封闭的,所以N 是3S 的子群.(4分) N 的全体左陪集为(6分):)}23(),1{()23()1(==N N ,)}132(),12{()132()12(==N N ,)}123(),13{()123()13(==N N .2. 求模6的剩余类环F 的所有子环.解:因为剩余类环F 是循环加群,所有子环为主理想:([1]),([2]),([3]),([6]).3. 设A 是整数集,规定A 中元间的关系R 如下:)6(b a aRb ≡⇔说明R 是A 中元间的等价关系,并且写出模6的所有剩余类.解: 因为对任意的整数 c b a ,,有(1)反射律: a 与a 模6同余;(2分)(2)对称律: 若a 与b 模6同余,那么必有b 与a 模6同余;(2分)(3)推移律: 若a 与b 模6同余,b 与c 模6同余,那么必有a 与c 模6同余, 所以R 是A 中元间的等价关系.(2分)模6的全体剩余类为(6分):},12,6,0,6,12,{]0[ --=, },13,7,1,5,11,{]1[ --=,},14,8,2,4,10,{]2[ --=, },15,9,3,3,9,{]3[ --=,},16,10,4,2,8,{]4[ --=, },17,11,5,1,7,{]5[ --=.4.求出阶是32的循环群()a 的所有子群.这些子群是否都是不变子群.解: 因为()a 为循环群,所以()a 为交换群,又因为32的所有正整数因子为:1,2,4,8,16,36. (2分) 所以循环群()a 的所有子群为循环子群:()a ,2()a ,4()a ,8()a ,16()a 360()(){}a a e ==. (8分)并且这些子群都是不变子群. (10分)5.设Z 是整数环,请把Z 的理想(3)(4)和(3,4)的元列出来.解: Z 是整数环,理想(3)(4)和(3,4)如下:(3)(4){,9,6,3,0,3,6,9,}{,12,8,4,0,4,8,12,}=------ (2分){,24,12,0,12,24,}=-- (4分)(12)= (6分) (3,4)(1){,3,2,1,0,1,2,3,}Z ===--- (10分)6.设R 是模8的剩余类环,在一元多项式环[]R x 中把32([2][7][3])([5][2])x x x x +--+计算出来,并求432()[4][5][2][7]f x x x x x =-+-+的导数. 解: R 是模8的剩余类环(1) 32([2][7][3])([5][2])x x x x +--+543322[2][5][2][2][2][7][5][7][7][2][3][5][3][3][2]x x x x x x x x =-++-+-+- (1分)543322[2][2][4][3][7][6][7][3][6]x x x x x x x x =-++-+-+- (3分) 5432[2][2][7][6][6]x x x x x =-+-+- (5分)(2) 多项式432()[4][5][2][7]f x x x x x =-+-+的导数为32()4[1]3[4]2[5][2]f x x x x '=-+- (2分)32[4][4][2][2]x x x =-+-.7.找出对称群3S 的所有子群.解:因为3{(1),(12),(13),(23),(123),(132)}S =,它的子群的阶只可能为:1,2,3,6.所以它的所有子群为:1阶子群1{(1)}H =; (1分) 2阶子群21{(1),(12)}H =,22{(1),(13)}H =,23{(1),(23)}H =; (4分) 3阶子群3{(1),(123),(132)}H =; (5分) 6阶子群3{(1),(12),(13),(23),(123),(132)}S =。
近世代数试题及答案
近世代数试题及答案一、单项选择题(每题3分,共30分)1. 群的元素a的阶是指最小的正整数n,使得a^n=e,其中e是群的()。
A. 单位元B. 零元C. 负元D. 逆元答案:A2. 环R中,如果对于任意的a,b∈R,都有a+b=b+a,则称R 是()。
A. 交换环B. 非交换环C. 整环答案:A3. 向量空间V中,如果存在非零向量α,使得对于V中任意向量β,都有α⊥β,则称α是V的一个()。
A. 基B. 零向量C. 法向量D. 正交向量答案:C4. 有限域F中,如果存在元素a∈F,使得a^p=a对于所有a∈F 成立,则称F是()。
A. 素域B. 特征域C. 完全域答案:B5. 群G的一个子群H,如果对于任意的h∈H,g∈G,都有ghg^-1∈H,则称H是G的一个()。
A. 正规子群B. 非正规子群C. 子群D. 群答案:A6. 环R中,如果对于任意的a,b∈R,都有ab=ba,则称R是()。
A. 交换环B. 非交换环C. 整环答案:A7. 向量空间V中,如果存在一组向量α1,α2,…,αn,使得V中任意向量都可以表示为这些向量的线性组合,则称这组向量是V的一个()。
A. 基B. 零向量C. 法向量D. 正交向量答案:A8. 群G的一个子群H,如果H=G,则称H是G的一个()。
A. 正规子群B. 非正规子群C. 子群答案:C9. 环R中,如果对于任意的a,b∈R,都有a-b=b-a,则称R 是()。
A. 交换环B. 非交换环C. 整环D. 除环答案:A10. 向量空间V中,如果存在一组向量α1,α2,…,αn,使得这些向量线性无关,并且V中任意向量都可以表示为这些向量的线性组合,则称这组向量是V的一个()。
A. 基B. 零向量C. 法向量D. 正交向量答案:A二、填空题(每题4分,共40分)1. 群G中,如果对于任意的a,b∈G,都有ab=ba,则称G是________。
答案:交换群2. 环R中,如果对于任意的a,b∈R,都有ab=0,则称R是________。
近世代数期末考试题库45962
近世代数模拟试题一一、单项选择题(本大题共 5 小题,每小题 3 分,共15 分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设A=B=R(实数集),如果A到 B 的映射:x→x+2,x∈R,则是从A到B的()A、满射而非单射B、单射而非满射C、一一映射D、既非单射也非满射2、设集合A中含有 5 个元素,集合 B 中含有 2 个元素,那么,A与B的积集合A×B中含有()个元素。
A、2B、 5 C 、7 D、103、在群G中方程ax=b,ya=b,a,b ∈G都有解,这个解是()乘法来说A、不是唯一 B 、唯一的 C 、不一定唯一的 D 、相同的(两方程解一样)4、当G为有限群,子群H所含元的个数与任一左陪集aH所含元的个数()A、不相等 B 、0 C 、相等 D 、不一定相等。
5、n 阶有限群G的子群H的阶必须是n 的()A、倍数 B 、次数 C 、约数 D 、指数二、填空题(本大题共10 小题,每空 3 分,共30 分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、设集合 A 1,0,1; B 1,2,则有 B A ------------------------ 。
2、若有元素e∈R使每a∈A,都有ae=ea=a,则 e 称为环R的。
3、环的乘法一般不交换。
如果环R的乘法交换,则称R是一个。
4、偶数环是--- 的子环。
5、一个集合 A 的若干个-- 变换的乘法作成的群叫做 A 的一个。
6、每一个有限群都有与一个置换群-- 。
7、全体不等于0 的有理数对于普通乘法来说作成一个群,则这个群的单位元是--- ,元a 的逆元是。
8、设I 和S是环R 的理想且I S R,如果I 是R的最大理想,那么----- 。
9、一个除环的中心是一个-- 。
三、解答题(本大题共 3 小题,每小题10 分,共30 分)1、设置换和分别为:12345678,12345678,判断和的奇偶性,并把和64173528 23187654写成对换的乘积。
《近世代数》练习题及参考答案
《近世代数》练习题及参考答案1.设A={a ,b ,c ,d}试写出集合A 的所有不同的等价关系。
2.证明::实数域R 上全体n 阶方阵的集合Mn(R),关于矩阵的加法构成一个交换群。
3.证明:实数域R 上全体n 阶正交矩阵的集合On(R)关于矩阵的乘法构成群.这个群称为n 阶正交群.4.设G=。
⎭⎬⎫⎩⎨⎧≠∈⎪⎪⎭⎫ ⎝⎛0,a R a a a a a 证明:G 关于矩阵的乘法构成群。
5.证明:所有形如n m 32的有理数(m ,n ∈Z )的集合关于数的乘法构成群。
参考答案1. 设A= 试写出集合A 的所有不同的等价关系。
解2.证明::实数域R 上全体n 阶方阵的集合Mn(R),关于矩阵的加法构成一个交换群。
证:(1)显然,Mn(R)为一个具有“+”的代数系统。
(2)∵矩阵的加法满足结合律,那么有结合律成立。
(3)∵矩阵的加法满足交换律,那么有交换律成立。
(4)零元是零矩阵。
∀A ∈Mn(R),A+0=0+A=A 。
(5)∀A ∈Mn(R),负元是-A 。
A+(-A)=(-A)+A=0。
∴(Mn(R),+)构成一个Abel 群。
3.证明:实数域R 上全体n 阶正交矩阵的集合On(R)关于矩阵的乘法构成群.这个群称为n 阶正交群.证:(1)由于E ∈On (R),∵On (R)非空。
(2 ) 任意A,B ∈On (R),有(AB )T=B T A T =B -1A -1=(AB) -1,∴AB ∈On(R),于是矩阵的乘法在On(R)上构成代数运算。
(3) ∵矩阵的乘法满足结合律,那么有结合律成立。
(4)对任意A ∈On (R),有AE=EA=A .∴E 为On (R)的单位元。
(5)对任意A ∈On (R),存在A T ∈On (R),满足AA T =E=AA -1, A T A=E=A -1A .∴A T 为A 在On (R)中的逆元。
∴On (R)关于矩阵的乘法构成一个群。
{}d c b a ,,,4.设G=。
近世代数模拟试题--附详细答案
近世代数模拟试题一一、单项选择题<本大题共5小题,每小题3分,共15分>在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设A =B =R<实数集>,如果A 到B 的映射ϕ:x →x +2,∀x ∈R,则ϕ是从A 到B 的〔 〕A 、满射而非单射B 、单射而非满射C 、一一映射D 、既非单射也非满射2、设集合A 中含有5个元素,集合B 中含有2个元素,则,A 与B 的积集合A ×B 中含有〔 〕个元素。
A 、2B 、5C 、7D 、103、在群G 中方程ax=b,ya=b, a,b ∈G 都有解,这个解是〔 〕乘法来说A 、不是唯一B 、唯一的C 、不一定唯一的D 、相同的<两方程解一样> 4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数〔 〕A 、不相等B 、0C 、相等D 、不一定相等。
5、n 阶有限群G 的子群H 的阶必须是n 的〔 〕A 、倍数B 、次数C 、约数D 、指数二、填空题<本大题共10小题,每空3分,共30分>请在每小题的空格中填上正确答案。
错填、不填均无分。
1、设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B ---------。
2、若有元素e ∈R 使每a ∈A,都有ae=ea=a,则e 称为环R 的--------。
3、环的乘法一般不交换。
如果环R 的乘法交换,则称R 是一个------。
4、偶数环是---------的子环。
5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个--------。
6、每一个有限群都有与一个置换群--------。
7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是---,元a 的逆元是-------。
8、设I 和S 是环R 的理想且R S I ⊆⊆,如果I 是R 的最##想,则---------。
近世代数期末考试题库
近世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设A=B=R(实数集),如果A到B的映射:x→x+2,x∈R,则是从A到B的()A、满射而非单射B、单射而非满射C、一一映射D、既非单射也非满射2、设集合A中含有5个元素,集合B中含有2个元素,那么,A与B的积集合A×B中含有()个元素。
A、2B、5C、7D、103、在群G中方程ax=b,ya=b,a,b∈G都有解,这个解是()乘法来说A、不是唯一B、唯一的C、不一定唯一的D、相同的(两方程解一样)4、当G为有限群,子群H所含元的个数与任一左陪集aH所含元的个数()A、不相等B、0C、相等D、不一定相等。
5、n阶有限群G的子群H的阶必须是n的()A、倍数B、次数C、约数D、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、设集合A1,0,1;B1,2,则有BA---------。
2、若有元素e∈R使每a∈A,都有ae=ea=a,则e称为环R的--------。
3、环的乘法一般不交换。
如果环R的乘法交换,则称R是一个------。
4、偶数环是---------的子环。
5、一个集合A的若干个--变换的乘法作成的群叫做A的一个--------。
6、每一个有限群都有与一个置换群--------。
7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是---,元a的逆元是-------。
8、设I和S是环R的理想且I S R,如果I是R的最大理想,那么---------。
9、一个除环的中心是一个-------。
三、解答题(本大题共3小题,每小题10分,共30分)1、设置换和分别为:写成对换的乘积。
1234567864173528,1234567823187654,判断和的奇偶性,并把和12、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。
(完整版)近世代数复习
世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)1、设A =B =R(实数集),如果A 到B 的映射ϕ:x →x +2,∀x ∈R ,则ϕ是从A 到B 的( )A 、满射而非单射B 、单射而非满射C 、一一映射D 、既非单射也非满射2、设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合A ×B 中含有( )个元素。
A 、2B 、5C 、7D 、103、在群G 中方程ax=b ,ya=b , a,b ∈G 都有解,这个解是( )乘法来说A 、不是唯一B 、唯一的C 、不一定唯一的D 、相同的(两方程解一样)4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数( )A 、不相等B 、0C 、相等D 、不一定相等。
5、n 阶有限群G 的子群H 的阶必须是n 的( )A 、倍数B 、次数C 、约数D 、指数二、填空题(本大题共10小题,每空3分,共30分)1、设集合{}1,0,1A =-;{}1,2B =,则有B A ⨯= 。
2、若有元素e ∈R 使每a ∈A ,都有ae=ea=a ,则e 称为环R 的 。
3、环的乘法一般不交换。
如果环R 的乘法交换,则称R 是一个 。
4、偶数环是 的子环。
5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个 。
6、每一个有限群都有与一个置换群 。
7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是 ,元a 的逆元是 。
8、设I 和S 是环R 的理想且I S R ⊆⊆,如果I 是R 的最大理想,那么 。
9、一个除环的中心是一个 。
三、解答题(本大题共3小题,每小题10分,共30分)1、设置换σ和τ分别为:1234567864173528σ⎡⎤=⎢⎥⎣⎦,1234567823187654τ⎡⎤=⎢⎥⎣⎦,判断σ和τ的奇偶性,并把σ和τ写成对换的乘积。
2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。
近世代数模拟试题及答案
近世代数模拟试题及答案一、选择题1. 下列哪个集合不是群?A. 自然数集NB. 整数集ZC. 有理数集QD. 实数集R答案:A2. 在群G中,若a, b属于G,且a*b=b*a对所有a, b成立,则称G 为交换群。
以下哪个不是交换群?A. 整数加法群B. 奇数乘法群C. 偶数乘法群D. 所有实数的加法群答案:C二、填空题1. 一个环R,如果满足乘法交换律,则称R为_________。
答案:交换环2. 有限群的阶是指群中元素的个数,设群G的阶为n,则群G的拉格朗日定理表明,G的任何子群的阶都是n的_________。
答案:因数三、简答题1. 解释什么是子群,并给出一个例子。
答案:子群是指一个群G的一个非空子集H,使得H中的元素在G的运算下封闭,并且包含G的单位元。
例如,整数集Z在加法运算下构成自然数集N的一个子群。
2. 描述什么是环的零因子,并给出一个例子。
答案:在环R中,如果存在非零元素a和b,使得a*b=0,则称a和b为零因子。
例如,在模6的剩余类环Z6中,元素3和3是零因子,因为3*3=9≡0 (mod 6)。
四、计算题1. 给定群G={1, a, a^2, a^3},其中a^4=1,求证G是一个群,并找出它的所有子群。
答案:首先验证群的四个基本性质:- 封闭性:对于任意g, h属于G,g*h也属于G。
- 结合律:对于任意g, h, k属于G,(g*h)*k = g*(h*k)。
- 单位元:1是G的单位元,因为对于任意g属于G,1*g = g*1 = g。
- 逆元:对于任意g属于G,存在g的逆元g^(-1),使得g*g^(-1) = g^(-1)*g = 1。
例如,a的逆元是a^3。
G的子群有:- {1}:平凡子群。
- {1, a^2}:由a^2的幂构成的子群。
- G本身:{1, a, a^2, a^3}。
2. 证明在任何交换环中,如果a和b是可逆元素,则它们的乘积ab也是可逆的。
答案:设a和b是交换环R中的可逆元素,存在a^(-1)和b^(-1)使得a*a^(-1)=1且b*b^(-1)=1。
近世代数模拟试题
近世代数模拟试题一、选择题(每题4分,共40分)1. 以下哪个选项是群的一个例子?A. 整数集合B. 偶数集合C. 正实数集合D. 所有实数的集合2. 群的运算满足以下哪个性质?A. 封闭性B. 结合律C. 存在单位元D. 所有选项都满足3. 在群中,单位元具有什么性质?A. 唯一性B. 可逆性C. 交换性D. 以上都不是4. 以下哪个选项是环的一个例子?A. 整数集合B. 有理数集合C. 复数集合D. 所有选项都是5. 环中的加法运算满足以下哪个性质?A. 交换律B. 结合律C. 存在单位元D. 所有选项都满足6. 以下哪个选项是域的一个例子?A. 整数集合B. 有理数集合C. 实数集合D. 所有选项都是7. 域中的乘法运算满足以下哪个性质?A. 交换律B. 结合律C. 存在单位元D. 所有选项都满足8. 向量空间中的向量加法满足以下哪个性质?A. 交换律B. 结合律C. 存在单位元D. 所有选项都满足9. 线性变换的定义域和值域必须是?A. 向量空间B. 群C. 环D. 域10. 以下哪个选项是线性无关的例子?A. 一组线性方程的解B. 一组线性方程的系数C. 一组线性方程的增广矩阵D. 一组线性方程的系数矩阵二、填空题(每题4分,共20分)11. 如果一个群的元素个数是有限的,则称该群为________群。
12. 群的运算满足封闭性,即对于任意两个元素a和b,它们的运算结果________。
13. 环中的元素a和b,如果满足ab=ba,则称这两个元素________。
14. 域中的元素a和b,如果满足ab=1,则称b为a的________。
15. 向量空间中的一组向量,如果它们之间不存在非平凡的线性组合等于零向量,则称这组向量________。
三、解答题(每题20分,共40分)16. 给定一个群G,证明群G中的单位元是唯一的。
17. 证明如果一个环R的乘法运算满足交换律,则称R为交换环。
近世代数参考答案
近世代数参考答案《近世代数》A/B 模拟练习题参考答案⼀、判断题(每题4分,共60分)1、如果循环群G=(a)中⽣成元a 的阶是⽆限的,则G 与整数加群同构。
( √ )2、如果群G 的⼦群H 是循环群,那么G 也是循环群。
( × )3、两个⼦群的交⼀定还是⼦群。
( × )4、若环R 满⾜左消定律,那么R 必定没有右零因⼦。
( √ )5、任意置换均可表⽰为若⼲个对换的乘积。
( √ )6、F (x)中满⾜条件p(a)=0的多项式叫做元a 在域F 上的极⼩多项式。
( × )7、已知H 是群G 的⼦群,则H 是群G 的正规⼦群当且仅当g G ?∈,都有 1gHg H -= ( √ )8、唯⼀分解环必是主理想环。
( × )9、已知R 是交换环,I 是R 的理想,则I 是R 的素理想当且仅当是/R I 整环。
( √ )10、欧⽒环必是主理想环。
( √ )11、整环中,不可约元⼀定是素元。
( √ )12、⼦群的并集必是⼦群。
( × )13、任何群都同构于某个变化群。
( √ )14、交换环中可逆元与幂零元的和是可逆元。
( √ )15、集合,A Z B N ==,::2f A B nn →+是从A 到B 的映射。
( × )⼆、证明题(每题20分,共300分)1Q 上的最⼩多项式。
解:令=u 32==u u .于是3223323315(32-?-=+-+=u u u u u u .移项后得32152(3+-=-u u u 两边平⽅,得到3222(152)(35)5+-=-?u u u .这是u 上满⾜的Q 上6次⽅程,故[():]6≤Q u Q .⼜3(2=u ()Q u .由[]2=Q Q 及[]|[():]Q Q Q u Q ,知2|[():]Q u Q .u (()=Q u Q u .⼜[]3=Q Q 及[]|[():]Q Q Q u Q ,得3|[():]Q u Q .于是6|[():]Q u Q ,因⽽[():]6=Q u Q . 由于3222(152)(35)50+---?=u u u ,故6次多项式3222(152)5(35)+---x x x 是u 在Q 上的最⼩多项式.2、求出阶是32的循环群(a )的所有⼦群,这些⼦群是否都是不变⼦群。
近世代数模拟试题四
近世代数模拟试题三一、填空题1、如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f 1 。
2、如果G 是一个交换群,那么G 的任一个子群H 都是-------------子群。
3、设 为 的子群. 则 在 中左陪集的个数与右陪集的个数--------。
.4、设集合M=﹛1,2,3﹜,G 是M 上的置换群,H=﹛I ,(1,3)﹜是G 的子群,则H 的右陪集为 。
5、变换群一般 ------------- 交换群。
6、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是---------,元a 的逆元是-----------。
7、任一个群G 的子群G 和e 总是-------------子群。
8、设 , 为 的两个子群, 则 为 的子群的充分必要条件是-----------------。
.9、集合A 到A 的所有变换的集合,关于变换的乘法是一个-----------群。
二、选择题1、下面的代数系统(G ,*)中,( )不是群。
A. G 为整数集合,*为加法B. G 为偶数集合,*为加法C.G 为有理数集合,*为加法D. G 为有理数集合,*为乘法2、剩余类加群Z18的子群有( )。
A.3个B.6个C.9个D.12个3、设S 是群G 的非空子集,G 的含 S 的所有的子群的交仍是G 的子群,这个子群称为G 的由( )子群。
A 、G 生成的B 、G 不作成的C 、S 生成的D 、元0生成的。
4、设21:R R f →是环同态满射,b a f =)(,那么下列错误的结论为( )A.若a 是零元,则b 是零元;B.若a 是单位元,则b 是单位元;C.若a 不是零因子,则b 不是零因子;D 若2R 是不交换的,则1R 不交换。
5、子群包含的三层意思是( )A 、H G ;H 成群;H 与G 有相同的运算B 、H ≠G ;H 是G 的子半群;H 有两种运算。
C 、H G ;H 有单位元;H 的运算相同。
近世代数期末考试题库
世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设A= B= R(实数集),如果A到B的映射「:x-x+ 2, - x€ R,则「是从A到B的(c )A、满射而非单射B、单射而非满射C ---- 映射D既非单射也非满射2、设集合A中含有5个元素,集合B中含有2个元素,那么,A与B的积集合A X B中含有(d)个元素。
A、2B、5C、7D、103、在群G中方程ax=b, ya=b, a,b € G都有解,这个解是(b )乘法来说A、不是唯一B、唯一的C、不一定唯一的D、相同的(两方程解一样)4、当G为有限群,子群H所含元的个数与任一左陪集aH所含元的个数(c ) A、不相等B、0C、相等D、不一定相等。
5、n阶有限群G的子群H的阶必须是门的(d )A、倍数B、次数C、约数D、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、设集合A…,01;B,2』,则有B A二。
2、若有元素e€ R使每a € A,都有ae=ea=a,则e称为环R的单位元。
3、环的乘法一般不交换。
如果环R的乘法交换,则称R是一个交换环。
4、偶数环是整数环的子环。
5、一个集合A的若干个--变换的乘法作成的群叫做A的一个变换全。
6、每一个有限群都有与一个置换群同构。
7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是_, 元a的逆元是a」。
8设I和S是环R的理想且I SR,如果|是R的最大理想,那么------------ 。
9、一个除环的中心是一个-域-----。
三、解答题(本大题共3小题,每小题10分,共30分)1、设置换二和分别为:匚=12345678 , . 12345678,判断二和•的奇偶性,并把二和1(64173528 〔[23187654写成对换的乘积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四题试拟模数代世近
。e=a2ba 和 a=aba 是件条要必分充的 1-a=b 明证�群半幺含为 M、2 。想理位单和想理零是就想理个两有只 R 环除个一、1 �分 52 共�分 51 题小 2 第�分 01 题 1 第�题小 2 共题大本�题明证、四 。性偶奇的 � � 和 �� 换置定确�2 1�
中其�射映个一的 mZ 到 Z 是 � �群加类余剩的模为 m 以为 mZ�群加数整为 Z 设.61 �分 03 共�分 01 题小每�题小 3 共题大本�题答解、三 。___________是式项多小极的上 Q 在 3 + 2 元数代的上 Q 域数理有.51 ___________是位单有所的中 �i� Z则 �1��2i 中其 �}Z∈b �a|ib�a{� �i� Z 环数整斯高设.41 _____________�)x(则�想理主的成生 x 式项多由是)x(�环式项多数系整是�x�Z 设.31 。___________是子 。___________ 。___________
m
�
“算运中
m
M
义定�
)1 � m (}m ,1 � m ,�� ,2,1,0{ � m M
合集设、3
。和之阵矩称对反个一与阵矩称
� � � � 4 5 6 7 8 1 3 2 8 2 5 3 7 1 4 6 � � � �为别分 和 换置设、1 � � �� � 偶奇的 � 和 � 断判� � � � �87654321� �87654321�
1
群是定一、C 群是能可不、A
�它�群半的元上以或个 2 有具个一意任、5
� 2 � 、D
2
2
� 、C
2
� 1 � 、B
1
2
� ቤተ መጻሕፍቲ ባይዱA
�
=3 � �42�= 2 �� �31� �32� �21�= 1 � 中其�换置个三是 3 、 2 �、 1 � 设、4 � �41� � |b-a|=b*a、D � b2+a=b*a 、C }b,a{xam=b*a、B
�的 n 是须必阶的 H 群子的 G 群限有阶 n、5 等相、C 0、B 等相不、A
。等相定一不、D �
�数个的元含所 Ha 集陪左一任与数个的元含所 H 群子�群限有为 G 当、4 的一唯定一不、C
7、C
)样一解程方两(的同相、D 说来法乘�
01、D
的一唯、B
5、B
一唯是不、A
2、A �
�是解个这�解有都 G∈b,a �b=ay�b=xa 程方中 G 群在、3
。分无均选未或选多、选错。内号括的后题在写填码代其将请�的求要目题合符是个一有 只中项选备个四的出列题小每在)分 51 共�分 3 题小每�题小 5 共题大本(题择选项单、一
一题试拟模数代世近
。域商个一 的 R 含包 F 么那�域的 R 含包个一是 F�环的元的上以个两有个一是 R 定假、2 。群换交是 G 则� e � x 有� G � x 的意任对果如�明证。群是 G 设、1 2 �分 52 共�分 51 题小 2 第�分 01 题 1 第�题小 2 共题大本�题明证、四 �么什为�群是不是� m � m �则,)mdom()b+a(=b m a � M � 为”
1�
。___________�H)21(素元
。___________是能可只阶的
。)积之换置环循的字 。___________
等个一的 A 是”�“称则�___________足满”�“果如�系关个一的 A 合集是”�“设.6 。分无均填不、填错。案答确正上填中格空的题小每在请 )分 03 共�分 3 空每�题小 01 共题大本(题空填、二
。b–a�m 当仅且当 b〜� a 系关元二的上 Z 集数整义定 m 用利 �数整正个一是 m 设 、2 。b�x*a 得使 G∈x 的一惟有必�G∈b、a 的意任于对则�群是>*�G<若、1 �分 52 共�分 51 题小 2 第�分 01 题 1 第�题小 2 共题大本�题明证、四 。q ,p 和 ]b,a[ ,)b,a(求 ,193=b ,394=a、3
----- 的 F 在 存 果 如 � 元 数 代 个 一 的 F 域 做 叫 � 、 7
0 � n �n a � � � � 1a � 0 a
。构同-------与 G 么那�n 数整限有个一是若阶的 a、4 。------于等阶的 a 则�05 于等阶的 a 素元的中 G 群知已、3 4 。环整为称-----子因零无的元位单有个一、2 。构同----------个一同都群子个一任�说理定莱凯、1 。分无均填不、填错。案答确 正上填中格空的题小每在请)分 03 共�分 3 空每�题小 01 共题大本(题空填、二 群换交是 、D 群是定一不、B 。 �
�= 3 则� �4231� �
b-a=b*a、A
��的合结可是算运种哪列下�上 N 集数然自在、3 法加为*�合集数理有为 G、C 法加为*�合集数整为 G、A � �中�*�G�统系数代的面下、2
法乘为*�合集数理有为 G、D 法加为*�合集数偶为 G、B 群是不�
� a ,a ,e� 、D
3
� a ,e� 、C
3
�e ,a� 、B
�a� 、A
。群子是� �集子的 G 则�元成生是 a�群环循的素元个 6 有 G 设、1 。分无均选未或选多 、选错。内号括的后题在写填码代其将请�的求要目题合符是个一有只中项选备 个四的出列题小每在)分 51 共�分 3 题小每�题小 5 共题大本(题择选项单、一
二题试拟模数代世近
�格界有成构集序偏个哪列下、4 数倍的 4、C 数奇、B 数偶、A
�于等定一数个的素元的数代尔布限有、3 个 7、D 个 6、C 个 5、B 个 4、A
。群换交是 G 定肯能不则�素元个� �有 G�群是 G 设、2 阶 6 、D 。 � 阶 4、C 阶 3、B 阶 2、A
�是不定一群子何任的群限有阶 6、1 。分无均选未或选多
、选错。内号括的后题在写填码代其将请�的求要目题合符是个一有只中项选备 个四的出列题小每在)分 51 共�分 3 题小每�题小 5 共题大本(题择选项单、一
三题试拟模数代世近
射满非也射单非既.D
射满非而射单.B �
�R∈x � �2�x→x� � 0 1. D
�的 B 到 A 从是 � 则
射单非而射满.A
�分 03 共�分 01 题小每�题小 3 共题大本�题答解、三
对个一成示表地一唯可都阵方何任�明证、2。积乘的换对成写 � 和 � 把并�性
。 得使
n
a , �, 1a , 0 a
。-----------------为 � 称则�射满是又射单是既 � 射映若、6 。-----=B∩A 么那 }6.5.2{=B }3.2.1{=A、5
。---------为 a 称则 � x � a � x 立成均 A � x 何任对 �素元的 )0,A ( 统系数代是 a 、8
G 足满果如�群个一成作 G 合集空非限有的法乘有个一�义定一另的群限有、9
、9 。--------为系关除整在存 n 与 m 么那 � e � a 果如 � m 为阶的 a 素元中 G 群设 n 。-----------的 R 为称数阶法加的同共的元零非有所中 R 环子因零无、8 。---------的己自它/他于构同能只群个每�点观的构同从、7 。----------数个的集陪左、右的 H 群子个一、6 。----------------------- 有子因零的 8Z 环、5 。——————————=|xa|则,8=|x|,6=|a|中 G 群换可、4 。---------- � �� a� f � f 则�元个一的 A 是 a �射映一一的间 A 与 A 是 f 果如、2 1� 。-------是元位单的 }b ,a nim{ � b � a 算运的上]2�1[间区、3
�Z∈k � � �k�→k� �
。___________是 n�么那�数限有个一是 n 征特其�环的子因零无个一是 R 设.21
因零有所的中 6Z 则�环类余剩的模为 6 以是}�5� � �4� � �3� � �2� � �1 � � �0�{�6Z 设.11 的中 H/G 群商则�群子变不个一的 3S 是})231(�)321(�)1({�H 设�中 3S 群称对次 3 在.01 a 素元则�G∈a � 于对�知理定 egnargaL 据根�么那�群的素元个 51 有含个一是 G 果如.9 数共公有没个干若成示表(___________� τ σ么那�5S∈)532()3421(� τ�)53()32(� σ设.8 � )ba(且而�元逆可的中 G 是也 G∈ba 则�G∈b�a � 于对�么那�群个一是)· �G(设.7
一是� � �E� �算运的中 E 是” � “则�法乘的数是” � “ �合集的成做数偶有所是 E 设、2 �么什为�群是不是� � �E�问�统系数代个
。集陪有所的 H 出写�})2 1(,I{=H�群子的 G 是 H�群换置的上 A 是 G}3,2,1{=A 合集设、1 �分 03 共�分 01 题小每�题小 3 共题大本�题答解、三 。----------是 P 则�群环循个一成作来法加于对 R 环个一、01 。---------、立成律合结�闭封法乘于对
。的--------是素元逆的素元个每�的--------是元位单的群、1 。分无均填不、填错。案答确 正上填中格空的题小每在请)分 03 共�分 3 空每�题小 01 共题大本(题空填、二 素元有所的中 3S、D )32(�)31(�)21、B )321(�)1(、C )231(�)321(�)1(、A � �有素元有所的换交 )321(与以可中 3S 在 �么那 �})231(�)321(�)32(�)31(�)21( �)1({�3S 设、5 ) � ,)A(P( 、D � � ,Z� 、B � 幂次数整正的 2、D 。 � � �系关除整�|,}21,6,4,3,2{� 、C 、A � � ,N�