物化公式归纳

合集下载

物化期末公式总结

物化期末公式总结

物化期末公式总结一、热力学方面的公式1. 热力学第一定律:ΔU = Q + W这个公式表示了能量的守恒,其中,ΔU是系统内能的变化,Q是系统吸收或释放的热量,W是系统对外界做功。

2. 热力学第二定律:ΔS≥0这个公式表示了熵的增加趋势,系统在无限接近绝对零度时,熵趋于最小。

3. 热力学第三定律:绝对零度熵为0这个公式表示了在绝对零度下,熵为0。

4. 焓的变化:ΔH = ΔU + PΔV这个公式表示了焓的变化,其中,ΔH是焓的变化,ΔU是系统内能的变化,P是压强,ΔV 是体积的变化。

5. 熵的变化:ΔS = Q/T这个公式表示了熵的变化,其中,ΔS是熵的变化,Q是系统吸收或释放的热量,T是温度。

二、化学反应方程的计算1. 物质的量与摩尔质量:物质的量n = m/M其中,n是物质的量,m是物质的质量,M是摩尔质量。

2. 化学反应的平衡常数:Kc = ([C]^c[D]^d) / ([A]^a[B]^b)其中,[C]、[D]、[A]、[B]分别表示化学反应中的物质浓度,a、b、c、d分别表示化学反应中物质的摩尔系数。

3. 反应速率与物质浓度的关系:v = k[A]^a[B]^b其中,v表示反应速率,k表示速率常数,[A]、[B]分别表示反应物质的浓度。

三、电化学方面的公式1. Faraday定律:m = nFz其中,m是电化学反应的产物质量,n是电子数,F是法拉第定数,z是电化学反应的化学当量。

2. 电池方程:Ecell = Ecathode - Eanode这个公式表示了电池的电动势,Ecell是电池的电动势,Ecathode是阴极半反应的标准电势,Eanode是阳极半反应的标准电势。

3. 纳仑方程:Ecell = E°cell - (RT/nF)lnQ这个公式表示了电池的电动势,E°cell是标准电动势,R是理想气体常量,T是温度,n 是电子数,F是法拉第定数,Q是反应物质浓度的比值。

物化各种公式概念总结

物化各种公式概念总结

第一章热力学第一定律一、基本概念系统与环境,状态与状态函数,广度性质与强度性质,过程与途径,热与功,内能与焓。

二、基本定律 热力学第一定律:ΔU =Q +W 。

三、基本关系式1、体积功的计算 δW = -p 外d V恒外压过程:W = -p 外ΔV定温可逆过程(理想气体):W =nRT 1221ln ln p p nRT V V = 2、热效应、焓:等容热:Q V =ΔU (封闭系统不作其他功)等压热:Q p =ΔH (封闭系统不作其他功)焓的定义:H =U +pV ; ΔH =ΔU +Δ(pV )焓与温度的关系:ΔH =⎰21d p T T T C3、等压热容与等容热容:热容定义:V V )(T U C ∂∂=;p p )(T H C ∂∂= 定压热容与定容热容的关系:nR C C =-V p热容与温度的关系:C p ,m =a +bT +cT 2四、第一定律的应用1、理想气体状态变化等温过程:ΔU =0 ; ΔH =0 ; W =-Q =⎰-p 外d V等容过程:W =0 ; Q =ΔU =⎰T C d V ; ΔH =⎰T C d p等压过程:W =-p e ΔV ; Q =ΔH =⎰T C d p ; ΔU =⎰T C d V可逆绝热过程:Q =0 ; 利用p 1V 1γ=p 2V 2γ求出T 2,W =ΔU =⎰T C d V ;ΔH =⎰T C d pC V (㏑T 2-㏑T 1)=nR(㏑V 1-㏑V 2)(T 与V 的关系)C p (㏑T 2-㏑T 1)=nR(㏑P 2-㏑P 1) (T 与P 的关系)不可逆绝热过程:Q =0 ;利用C V (T 2-T 1)=-p 外(V 2-V 1)求出T 2,W =ΔU =⎰T C d V ;ΔH =⎰T C d p2、相变化 可逆相变化:ΔH =Q =n ΔH ; W=-p (V 2-V 1)=-pV g =-nRT ; ΔU =Q +W3、实际气体节流膨胀:焦耳-汤姆逊系数:μJ-T (理想气体在定焓过程中温度不变,故其值为0;其为正值,则随p 降低气体T 降低;反之亦然)4、热化学标准摩尔生成焓:在标准压力和指定温度下,由最稳定的单质生成单位物质的量某物质的定压反应热(各种稳定单质在任意温度下的生成焓值为0) 标准摩尔燃烧焓:…………,单位物质的量的某物质被氧完全氧化时的反应焓第二章 热力学第二定律一、基本概念 自发过程与非自发过程二、热力学第二定律热力学第二定律的数学表达式(克劳修斯不等式)T Q dS δ≥ “=”可逆;“>”不可逆三、熵(0k 时任何纯物质的完美结晶丧子为0)1、熵的导出:卡若循环与卡诺定理(页522、熵的定义:T Q dS r δ=3、熵的物理意义:系统混乱度的量度。

物化公式

物化公式

rGm
=

r
G
θ m
+ RT ln
Jp
( ) J p
=

B
pB
pθ B
,称为反应的压力
商,其单位为 1。
Jp <K , rGm<0,反应正向自发进

Jp >K , rGm>0,反应不能自发进
行(逆向自发进行)
Jp = K , rGm =0,反应达到平衡
31. 范特霍夫方程
液中溶剂 A 的饱和蒸气分压,xA 为稀溶液 中 A 的摩尔分数。 28. 亨利定律:
恒温恒压,非体积功等于 0 的条件下,一切 可能自动进行的过程,其吉布斯函数减小, 平衡时 G 函数不变,G 函数不可能增大。
ST = nR ln(V2 /V1)=nR ln( p1 / p2 )
相变过程的熵变

β α
S
= αβH
/T
环境熵变
Samb=-Qsys/Tamb
23. 热力学基本方程
dU = T d S − pdV dH =T dS +V d p d A = −S dT − pdV dG = −S dT +V d p
7. 焓的定义式: H = U + pV
8. 摩尔热容 △U=nCV,m(T2-T1) △H=nCp,m(T2-T1)
C p,m − CV ,m = R 适用于理想气体。
单原子理想气体
CV,m=3/2R 双原子理想气体
Cp,m=5/2R
CV,m=5/2R
Cp,m=7/2R
9. 标准摩尔反应焓

24. 克拉佩龙方程
30. 化学反应的等温方程
d
p
/d T

最全物理化学公式集

最全物理化学公式集

最全物理化学公式集以下是一个详细的物理化学公式集合,包含了许多常用的公式和方程式。

这些公式可以帮助学生更好地理解物理化学的理论,并应用于解决相关问题。

1.经典力学:-牛顿第一定律:物体保持匀速直线运动或静止,直到有外力作用。

-牛顿第二定律:物体的加速度与作用在其上的力成正比,与物体的质量成反比。

-牛顿第三定律:对于任何两个物体,彼此之间的作用力大小相等,方向相反。

-动能定理:物体的动能等于其质量乘以速度的平方的一半。

-动量定理:物体的动量变化等于作用在其上的力乘以时间间隔。

-弹性碰撞:在碰撞中,总动量和总动能守恒。

2.热力学:-热力学第一定律:能量不会自行产生或消失,只会转化为其他形式。

-热容量公式:物体吸收或释放的热量与其质量、温度变化以及物体的热容量有关。

-理想气体状态方程:PV=nRT,其中P是压力,V是体积,n是物质的摩尔数,R是气体常数,T是温度。

-熵变方程:ΔS=Q/T,其中ΔS是系统的熵变,Q是吸收或释放的热量,T是温度。

3.电化学:-法拉第定律:通过电解的物质的质量与通过电解的电荷数成正比。

-电动势公式:电动势等于化学反应中产生的能量与电荷数的比值。

- 纳尔斯特方程:E = Eo - (RT/nF)ln(Q),其中E是电池的电动势,Eo是标准电动势,R是气体常数,T是温度,n是电子转移数,F是法拉第常数,Q是反应物的活性。

4.量子力学:-布罗意波长:λ=h/p,其中λ是波长,h是普朗克常数,p是物体的动量。

-不确定性原理:ΔxΔp≥h/(4π),其中Δx是位置的不确定度,Δp是动量的不确定度,h是普朗克常数。

5.光学:- 折射率公式:n₁sinθ₁ = n₂sinθ₂,其中n₁和n₂是介质的折射率,θ₁和θ₂是光线的入射和折射角度。

-焦距公式:1/f=1/u+1/v,其中f是透镜的焦距,u是物体的距离,v是像的距离。

6.分析化学:-摩尔浓度公式:C=n/V,其中C是溶液的摩尔浓度,n是溶质的物质的摩尔数,V是溶液的体积。

物化公式总结

物化公式总结

1. Ω是热力学概率,K 是玻尔兹曼常数,k=R/N=1.3807×10^(-23)J/K2. 在温度趋近于热力学温度0 K 时的等温过程中,体系的熵值不变。

即:3. 在0 K 时,任何完整晶体的熵等于零。

4.规定熵 4. 摩尔熵5.化学反应熵变任意温度下(无相变),,,,()()r m m G m H m A m B S gS hS aS bS ∆=+-+ln =⋅ΩB S k =⋅log S k w0lim 0→∆=T S n S S T m T =,hH gG bB aA +−→−+,298.15()(298.15K)T p m r m r m C dT S T S T ∆∆=∆+⎰0()(0)T p C S S T S K dTT ∆=-=⎰6. 亥姆霍兹能 -dFT ≥ -δ W吉布斯能当封闭系统在等温、等容、非体积功 W ' = 0 的条件下封闭系统在等温、等压、W ’=0 条件下上式中的W 为总功,为体积功(-P ed V )与非体积功W '之和。

7. 当封闭系统在等温、等容、非体积功 W ' = 0 的条件下: 自发过程可逆过程或处于平衡态F U TS ≡-',,0()0T V W F =∆≤',,0()0T V W F =∆<',,0()0T V W F =∆=',,0()0T V W F =∆>00',,()T P W G =∆<',()T P dG W δ-≥-00',,()T p W G =∆≤G H TS≡-',,0()0T V W F =∆≤00',,()T P W G =∆=不可能自发进行的过程8.9. 封闭系统、组成不变、只做体积功(W ' = 0)。

10. 麦克斯韦(Ma xwell)关系式00',,()T P W G =∆>=-dU TdS pdV=+dH TdS Vdp =--dF SdT pdV=-+dG SdT Vdp∂∂=-∂∂(()S V p T V S ∂∂=∂∂((S p T V p S ∂∂=∂∂((V T p S V T ∂∂=-∂∂((p T S V p T11.理想气体,等温 12.13. 21nRT G dp p ∆=⎰21ln p nRT p =21nRT F dV V ∆=-⎰21ln p nRT p =2()()G H T T T ∆∂∆=-∂212111(()(G G H T T T T ∆∆-=∆-。

物化公式整理整理版

物化公式整理整理版

1.E = U+T+V2.H ≡U +pV2.1 理想气体绝热可逆过程有3种等价的形式:(3)常数= T p (2)常数 = pV (1)常数= TV -1-1γγγγ3.单原子分子:CV,m=3/2R Cp,m=5/2R双原子分子:CV,m=5/2R Cp,m=7/2R多原子分子:CV,m=3R Cp,m=4R4.ξ:反应进度B B t B n n νξ)0()(-=5.基尔霍夫定律的定积分式:T1)-m(T2rCp, +rHm(T1)= mdTrCp, +rHm(T1) =rHm(T2)T2T1∆∆∆∆∆⎰6.卡诺热机η=-W/Q2=(T2-T1)/T2=1-(T1/T2)7.熵的微观意义:S=klnWW:宏观状态拥有的微观运动状态的数量k :Boltzmann 常数8.纯物质B 在状态(T,p)的规定熵即为下述过程的熵变:),()0(p T B K B →Kp T B TK p T B S S S S 0,0),(-=∆= 9. 等温过程的熵变: (理想气体)(p1/p2)nRln = S p2/p1=V2/V1∴p2V2=p1V1∵(1) (V2/V1)nRln = S1)/TnRTln(V2/V =-WR/T =QR/T =QR/T ∫=S ∆∆∆δ 10. 绝热过程:绝热可逆过程, 由熵的判别式:0 = S ∆ 绝热可逆 (2)绝热不可逆过程: 对此类过程需设计一条可逆途径, 从相同的始态到相同末态, 再沿可逆途径求算熵变.11. 变温过程: 简单体系A. 等压变温:)Cpln(T2/T1 = (4)(Cp/T)dT =QR/T ∫=SCpdT=QR ⎰∆δδB. 等容变温:ln(T2/T1)C = /T)dT ∫(C =/T Q ∫=SdTC =Q V V R V R δδ∆12.相变过程:平衡相变:平衡相变是一可逆过程, 在等温等压下进行./T Q =Q/T ∫=S R δ∆平衡相变有:H =Qp ∆ 故平衡相变的熵变为:相变H/T =S ∆∆ (6)即:平衡相变的熵变等于相变潜热除以相变温度13.理想气体的混合过程:(1).A, B 先各自等温可逆膨胀到各自的末态;(2).可逆混合.第一步的熵变为:2Rln2= )/V Rln(V +)/V Rln(V =S +S =S1B 1,B 2,A 1,A 2,B A ∆∆∆第二步熵变为零14.赫氏自由能 F ≡U -TS状态函数,广度性质,没有明确的物理意义,具有能量的量纲.15.在等温过程中,一封闭系统所能作的最大功等于系统的亥姆霍兹函数的减少。

物理化学公式大全

物理化学公式大全

1. 理想气体状态方程式或 RT n V p pV ==)/(m2. 气体混合物 (1) 组成摩尔分数 y B (或x B ) = ∑AA B /n n体积分数 /y B m,B B *=V ϕ∑*AV y A m ,A式中∑AA n 为混合气体总的物质的量。

A m,*V 表示在一定T ,p 下纯气体A 的摩尔体积。

∑*AA m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。

(2) 摩尔质量式中 ∑=BB m m 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。

上述各式适用于任意的气体混合物。

(3)V V p p n n y ///B B B B *=== 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。

*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。

3. 道尔顿定律p B = y B p ,∑=BB p p上式适用于任意气体。

对于理想气体 4. 阿马加分体积定律 此式只适用于理想气体。

第二章 热力学第一定律 主要公式及使用条件1. 热力学第一定律的数学表示式或 'amb δδδd δdU Q W Q p V W =+=-+Q 吸正放负 W外对内正 内对外负2. 焓的定义式3. 焓变(1) )(pV U H ∆+∆=∆式中)(pV ∆为pV 乘积的增量,只有在恒压下)()(12V V p pV -=∆在数值上等于体积功。

pVU H +=(2) 2,m 1d p H nC T ∆=⎰此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。

4. 热力学能变此式适用于理想气体单纯pVT 变化的一切过程。

5. 恒容热和恒压热 6. 热容的定义式 (1)定压热容和定容热容(2)摩尔定压热容和摩尔定容热容上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。

物理化学公式大全

物理化学公式大全

物理化学公式集热力学第一定律 功:δW=δW e +δW f1膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负. 2非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移.如δW 机械功=fdL,δW 电功=EdQ,δW 表面功=rdA.热 Q :体系吸热为正,放热为负.热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数. 热容 C =δQ/dT1等压热容:C p =δQ p /dT = H/T p 2等容热容:C v =δQ v /dT = U/T v 常温下单原子分子:C v,m =C v,m t =3R/2 常温下双原子分子:C v,m =C v,m t +C v,m r =5R/2 等压热容与等容热容之差:1任意体系 C p —C v =p +U/V T V/T p 2理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v T 1—T 2=p 1V 1—p 2V 2 理想气体多方可逆过程:W =T 1—T 2 热机效率:η= 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β= 焦汤系数: μJ -T ==- 实际气体的ΔH 和ΔU: ΔU=+ ΔH=+化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +RT 化学反应热效应与温度的关系: 热力学第二定律 Clausius 不等式:熵函数的定义:dS=δQR/T Boltzman熵定理:S=klnΩHelmbolz自由能定义:F=U—TS Gibbs自由能定义:G=H-TS 热力学基本公式:1组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU=TdS-pdV dH=TdS+VdpdF=-SdT-pdV dG=-SdT+Vdp2Maxwell关系:==-3热容与T、S、p、V的关系:CV =T Cp=TGibbs自由能与温度的关系:Gibbs-Helmholtz公式=-单组分体系的两相平衡:1Clapeyron方程式:=式中x代表vap,fus,sub.2Clausius-Clapeyron方程式两相平衡中一相为气相:=3外压对蒸汽压的影响: pg 是在惰性气体存在总压为pe时的饱和蒸汽压.吉不斯-杜亥姆公式:SdT-Vdp+=0dU=TdS-pdV+ dH=TdS+Vdp+dF=-SdT-pdV+ dG=-SdT+Vdp+在等温过程中,一个封闭体系所能做的最大功等于其Helmbolz自由能的减少.等温等压下,一个封闭体系所能做的最大非膨胀功等于其Gibbs自由能的减少.统计热力学波兹曼公式:S=klnΩ一种分布的微观状态数:定位体系:ti =N 非定位体系:ti=波兹曼分布:=在A、B两个能级上粒子数之比:=波色-爱因斯坦统计:Ni =费米-狄拉克统计:Ni=分子配分函数定义:q=-i为能级能量q=-i为量子态能量分子配分函数的分离:q=q n q e q t q r q v能级能量公式:平动:εt=转动:εr =振动:εv=分子配分函数表达式:平动:当所有的平动能级几乎都可被分子到达时一维:q t=二维:q t=A 三维:q t=转动:线性q r===为转动特征温度非线性q r=振动:双原子分子q V===为振动特征温度多原子线性:q V=多原子非线性:q V=+1电子运动:q e=2j+1 原子核运动:q n=2Sn热力学函数表达式:F=-kTlnq N定位 F=-kTln非定位S=klnq N+NkT定位 S=kln+NkT非定位G=-kTlnq N+NkTV定位G=-kTln+NkTV非定位U=NkT2 H=NkT2+NkTV=P=NkT CV一些基本过程的ΔS、ΔG、ΔF的运算公式W=0f一些基本过程的W、Q、ΔU、ΔH的运算公式Wf =0溶液-多组分体系体系热力学在溶液中的应用溶液组成的表示法:1物质的量分数:2质量摩尔浓度:3物质的量浓度:4质量浓度拉乌尔定律亨利定律:化学势的各种表示式和某些符号的物理意义:气体:1纯理想气体的化学势标准态:任意温度,p=pφ=101325Pa.μφT为标准态时的化学势2纯实际气体的化学势标准态:任意温度,f=pφ且复合理想气体行为的假想态即p =pφ,γ=1,μφT为标准态时的化学势.3混合理想气体中组分B的化学势因为所以不是标准态时的化学势,是纯B气体在指定T、p时的化学势.溶液:1 理想溶液组分的化学势所以不是标准态时的化学势而是温度为T、溶液上方总压为p时,纯液体B的化学势.2 稀溶液中各组分的化学势溶剂:不是标准态时的化学势而是温度为T、溶液上方总压为p时,纯溶剂A的化学势.溶质:,,均不是标准态时的化学势,均是T,p的函数,它们分别为:当xB =1,mB=1molkg-1,cB=1moldm-3时且服从亨利定律的那个假想态的化学势.4非理想溶液中各组分的化学势溶剂:不是标准态的化学势,而是aA,x =1即xA=1,γA=1的纯组分A的化学势.溶质:,,均不是标准态时的化学势,均是T,p的函数,它们分别为:当aB,x =1,aB,m=1,aB,c=1时且服从亨利定律的那个假想态的化学势. 4活度a的求算公式:ü 蒸汽压法:溶剂aA =γAxA=pA/pA溶质:aB=γBxB=pA/kcü 凝固点下降法:溶剂ü Gibbs-Duhem公式从溶质剂的活度求溶剂质的活度. 5理想溶液与非理想溶液性质:理想溶液:非理想溶液:超额函数:溶液热力学中的重要公式:1 Gibbs-Duhem公式2 Duhem-Margule公式:对二组分体系:稀溶液依数性:1凝固点降低:2沸点升高:3渗透压:化平衡学化学反应亲和势:A=-化学反应等温式:平衡常数的表达式:温度,压力及惰性气体对化学平衡的影响:电解质溶液法拉第定律:Q=nzF m=t+=====r+为离子移动速率,U+U-为正负离子的电迁移率亦称淌度.近似:浓度不太大的强电解质溶液离子迁移数:tB===+=1电导:G=1/R=I/U=kA/l电导率:k =1/ρ 单位:S·m -1 莫尔电导率:Λm =kV m =k/c 单位S·m 2·mol -1科尔劳乌施经验式:Λm = 离子独立移动定律:= 奥斯特瓦儿德稀释定律:= 平均质量摩尔浓度:=平均活度系数:= 平均活度:== 电解质B 的活度:a B == m +=v +m B m -=v -m B 离子强度:I =德拜-休克尔公式:lg =-A|z +z --| 可逆电池的电动势及其应用 Δr G T,p =-W f,max Δr G mT,p =zEFNernst Equation :若电池反应为 cC +dD =gG +hH E =E φ-标准电动势E φ与平衡常数K φ的关系:E φ= 还原电极电势的计算公式:=计算电池反应的有关热力学函数变化值:= =-zEF + Q R =T = zF zF =电极书面表示所采用的规则:负极写在左方,进行氧化反应是阳极,正极写在右方,进行还原反应是阴极 电动势测定的应用:1求热力学函数变量Δr G m 、Δr G m Φ、、及电池的可逆热效应Q R 等. 2求氧化还原反应的热力学平衡常数K Φ值:K Φ= E Φ=E =3求难溶盐的溶度积K sp 、水的离子积K w 及弱酸弱碱的电离常数等. 4求电解质溶液的平均活度系数和电极的值.5从液接电势求离子的迁移数.Pt,H 2p|HClm|HClm’| H 2p,Pt 1-1价型:E j =E =E c +E j = 高价型:M z+A z -m 1|M z +A z -m 2 E j =6利用醌氢醌电极或玻璃电极测定溶液的pH 电解与极化作用E 分解=E 可逆+ΔE 不可逆+IRΔE不可逆=η阴+η阳η阴=φ可逆-φ不可逆阴η阳=φ不可逆-φ可逆阳φ阳,析出=φ阳,可逆+η阳φ阴,析出=φ阴,可逆-η阴η=a+blnjE实际分解=E理论分解+η阴+η阳+IR对电解池,由于超电势的存在,总是使外加电压增加而多消耗电能;对原电池,由于超电势的存在,使电池电动势变小而降低了对外作功的能力.在阴极上,还原电势愈正者,其氧化态愈先还原而析出;同理,在阳机上,则还原电势愈负者其还原态愈先氧化而析出.需外加电压小化学反应动力学半衰期法计算反应级数:kp =kcRT1-n Ea-Ea’=Q化学反应动力学基础二:ZAB==μ=若体系只有一种分子:ZAA==碰撞参数:b=dABsinθ碰撞截面:反应截面:kSCTT=kSCTT==几个能量之间的关系:Ea =Ec+RT/2=E+mRT=式中是反应物形成活化络合物时气态物质的代数和,对凝聚相反应,=0.对气相反应也可表示为:Ea=式中n为气相反应的系数之和原盐效应:弛豫法:%界面现象与T的关系:两边均乘以T,,即的值将随温度升高而下降,所以若以绝热方式扩大表面积,体系的温度必将下降.杨-拉普拉斯公式:ps为曲率半径,若为球面ps =,平面 ps.液滴愈小,所受附加压力愈大;液滴呈凹形,R‘为负值,ps为负值,即凹形面下液体所受压力比平面下要小.毛细管:ps==Δρgh Δρgh=R为毛细管半径开尔文公式:p0和p分别为平面与小液滴时所受的压力对于液滴凸面R‘>0,半径愈小,蒸汽压愈大.对于蒸汽泡凹面R‘<0,半径愈小,蒸汽压愈小.两个不同液滴的蒸汽压:溶液越稀,颗粒越大.液体的铺展:非表面活性物质使表面张力升高,表面活性物质使表面张力降低.吉不斯吸附公式:为表面超额若,>0,正吸附;,<0,负吸附.表面活性物质的横截面积:Am=粘附功:Wa值愈大,液体愈容易润湿固体,液固界面愈牢.内聚功:浸湿功:铺展系数: ,液体可在固体表面自动铺展.接触角:Langmuir等温式:θ:表面被覆盖的百分数.离解为两个分子:混合吸附:即:BET公式:弗伦德利希等温式:乔姆金吸附等温式:吸附剂的总表面积:S=Am Ln n=Vm/22400cm3mol-1气固相表面催化反应速率:单分子反应:产物吸附很弱产物也能吸附双分子反应:AB都吸附AB均吸附,但吸附的B不与吸附的A反应B不吸附胶体分散体系和大分子溶液布朗运动公式:D为扩散系数球形粒子的扩散系数:渗透压:渗透力:F=扩散力=-F沉降平衡时粒子随高度分布公式:瑞利公式:电势表面电势 Stern电势电解质浓度增加电势减小.电泳速度: k=6时为电泳,k=4时为电渗.大分子稀溶液渗透压公式不是吧。

物理化学公式大全

物理化学公式大全

1. 理想气体状态方程式nRT RT M m pV ==)/(或 RT n V p pV ==)/(m2. 气体混合物 (1) 组成摩尔分数 y B (或x B ) = ∑AA B /n n体积分数 /y B m,B B *=V ϕ∑*AV y A m ,A式中∑AA n 为混合气体总的物质的量。

A m,*V 表示在一定T ,p 下纯气体A 的摩尔体积。

∑*AA m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。

(2) 摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中 ∑=BB m m 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。

上述各式适用于任意的气体混合物。

(3)V V p p n n y ///B B B B *=== 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。

*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。

3. 道尔顿定律p B = y B p ,∑=BB p p上式适用于任意气体。

对于理想气体V RT n p /B B =4. 阿马加分体积定律V RT n V /B B =*此式只适用于理想气体。

第二章 热力学第一定律 主要公式及使用条件1. 热力学第一定律的数学表示式W Q U +=∆或 'amb δδδd δdU Q W Q p V W =+=-+Q 吸正放负 W外对内正 内对外负2. 焓的定义式3. 焓变(1) )(pV U H ∆+∆=∆式中)(pV ∆为pV 乘积的增量,只有在恒压下)()(12V V p pV -=∆在数值上等于体积功。

(2) 2,m 1d p H nC T ∆=⎰此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。

4. 热力学能变此式适用于理想气体单纯pVT 变化的一切过程。

物理化学公式大全

物理化学公式大全

物理化学公式大全物理化学是研究物质的物理性质和化学性质之间的关系的学科。

以下是一些在物理化学中常用的公式:1.热力学方程:-理想气体状态方程:PV=nRT其中P为气体压强,V为气体体积,n为气体摩尔数,R为气体常数,T为气体温度。

-内能变化公式:ΔU=q+w其中ΔU为系统内能变化,q为系统吸取或放出的热量,w为系统对外界做的功。

-能量守恒定律:ΔE=q+w其中ΔE为系统总能量变化,q为系统吸取或放出的热量,w为系统对外界做的功。

2.动力学方程:-反应速率公式:r=k[A]^m[B]^n其中r为反应速率,k为反应速率常数,[A]和[B]分别为反应物A和B的浓度,m和n为反应物的反应级数。

- Arrhenius 公式:k = A * e^(-Ea/RT)其中 k 为反应速率常数,A 为 Arrhenius 常数,Ea 为活化能,R为气体常数,T 为反应温度。

3.量子力学方程:- 波函数公式:Ψ = Σcnφn其中Ψ 为波函数,cn 为系数,φn 为基态波函数。

- Schroedinger 方程:HΨ = EΨ其中H为哈密顿算符,Ψ为波函数,E为能量。

4.热力学方程:- 熵变公式:ΔS = q_rev / T其中ΔS 为系统熵变,q_rev 为可逆过程吸放热量,T 为温度。

- Gibbs 自由能公式:ΔG = ΔH - TΔS其中ΔG 为 Gibbs 自由能变化,ΔH 为焓变化,ΔS 为熵变化,T 为温度。

5.电化学方程:- Nerst 方程:E = E° - (RT / nF) * ln(Q)其中E为电池电势,E°为标准电势,R为气体常数,T为温度,n为电子数,F为法拉第常数,Q为电化学反应的反应物浓度比。

- Faraday 定律:nF = Q其中n为电子数,F为法拉第常数,Q为电荷数。

以上公式只是物理化学中的一小部分,这里列举的是一些常见的、基本的公式,实际上物理化学领域有非常多的公式和方程可供使用。

物化公式归纳

物化公式归纳

物化公式归纳 第一章 化学热力学基础 公式总结1.体积功 We = -Pe △V2.热力学第一定律的数学表达式 △U = Q + W 3.n mol 理想气体的定温膨胀过程.定温可逆时:Wmax=-Wmin=4.焓定义式 H = U + PV在封闭体系中,W ′= 0,体系发生一定容过程 Qv = △U在封闭体系中,W ′= 0,体系发生一定压过程 Qp = H2 – H1 = △H5.摩尔热容 Cm ( J ·K-1·mol-1 ): 定容热容 CV(适用条件 :封闭体系、无相变、无化学变化、 W ′=0 定容过程适用对象 : 任意的气体、液体、固体物质 )定压热容 Cp⎰=∆21,T T m p dTnC H (适用条件 :封闭体系、无相变、无化学变化、 W ′=0 的定压过程适用对象 : 任意的气体、液体、固体物质 )单原子理想气体: Cv,m = 1.5R , Cp,m = 2.5R 双原子理想气体: Cv,m = 2.5R , Cp,m = 3.5R 多原子理想气体: Cv,m = 3R , Cp,m = 4RCp,m = Cv,m + R6.理想气体热力学过程ΔU 、ΔH 、Q、W 和ΔS 的总结1221ln ln P PnRT V V nRT =nCC m =⎰=∆21,T T m V dTnC U7.定义:△fHm θ(kJ ·mol-1)-- 标准摩尔生成焓△H —焓变; △rHm —反应的摩尔焓变 △rHm θ—298K 时反应的标准摩尔焓变;△fHm θ(B)—298K 时物质B 的标准摩尔生成焓; △cHm θ(B) —298K 时物质B 的标准摩尔燃烧焓。

8.热效应的计算由物质的标准摩尔生成焓计算反应的标准摩尔焓变 △rH θm = ∑νB △fH θm ,B 由物质的标准摩尔燃烧焓计算反应的标准摩尔焓变 △rH θm = -∑νB △cH θm ,B 9.Kirchhoff (基尔霍夫) 方程△rHm (T2) = △rHm (T1) + 如果 ΔCp 为常数,则 △rHm (T2) = △rHm (T1) + △Cp ( T2 - T1)10.热机的效率为 对于卡诺热机 1211Q Q Q Q W R +=-=η= 可逆循环过程 < 不可逆循环过程11.熵变定义式 (体系经历一可逆过程的热温商之和等于该过程的熵变.)12.热力学第二定律的数学表达式(不等式中, “ > ”号表示不可逆过程 , “ = ” 号表示可逆过程 “ T ”—环境温度 , 对可逆过程也是体系温度. )13.熵增原理 (孤立体系的熵永不减少) △S 孤立 ≥ 0 > 不可逆过程, 自发过程 = 可逆过程, 体系达平衡.对于封闭体系△S 孤立 = △S 封闭 + △S 环境 ≥ 0 > 不可逆过程, 自发过程 = 可逆过程, 体系达平衡14.定温定压的可逆相变15.化学反应熵变的计算 △rS θm = ∑νBS θm ,B16.△rH θm 和△rS θm 与温度的关系:△rH θ m (T2) = △rH θ m (T1) +△rS θ m (T2) = △rS θ m (T1) +dTC p T T ⎰∆21121211Q Q Q Q Q Q W +=+=-=η121T T T -=02211≤+T Q T Q RBAA B TQS S S )(δ⎰=-=∆∑≥∆ii i T Q S (δTQdS δ≥环体环环环境T Q T Q S -==∆相变,相变T H n S m ∆=∆dTC p T T ⎰∆21d TTC pT T ∆⎰21第二章 自由能、化学势和溶液 公式1.第一和第二定律的联合公式为2.吉布斯自由能定义式G = U + PV – TS = H – TS △G = △H -T △S(G----体系的状态函数, ( J ) , 绝对值无法测量 ) 3.在定温定压下,有如下关系: ΔG=W’最大4.吉布斯自由能判据< 不可逆过程, 自发过程 = 可逆过程, 平衡态 > 反方向为自发过程56定压下.对任意相变或化学变化 7.定温物理变化?G 的计算(W’=0的封闭体系) . 理想气体定温过程0≥'+--W dV P dU dS T e e δ0,,≤'W P T dG 0,,≤∆'W P T G S TGP ∆-=∂∆∂(⎰⎰===∆212112ln P P P P T P PnRT dP P nRT dP V G. 纯液体或纯固体的定温过程. 定温定压可逆相变 dG = -SdT + VdP dT =0 dP =0 ?G T , P, W' = 0 。

物化公式

物化公式

法拉第定律:Q =nzF m =M zFQ dE r U dl ++= dE r U dl--= t +=-+I I =-++r r r +=-+U U U ++=∞∞+Λm ,m λ=()FU U FU ∞∞+∞+-+r +为离子移动速率,U +( U -)为正(负)离子的电迁移率(亦称淌度)。

近似:+∞+≈,m ,m λλ +∞+≈,m ,m U U m m Λ≈Λ∞ (浓度不太大的强电解质溶液)离子迁移数:t B =I I B=Q Q B ∑B t =∑+t +∑-t =1 电导:G =1/R =I/U =kA/l 电导率:k =1/ρ 单位:S·m -1 莫尔电导率:Λm =kV m =k/c 单位S·m 2·mol -1 cell lR K Aρρ== cell 1K R kR ρ==科尔劳乌施经验式:Λm =()c 1m β-∞Λ 离子独立移动定律:∞Λm =()m,m,+U U F λλ∞∞∞∞+--+=+ m U F λ∞∞+,+= 奥斯特瓦儿德稀释定律:Φc K =()mm m 2m c c ΛΛΛΛ∞∞Φ-平均质量摩尔浓度:±m =()v1v v m m --++平均活度系数:±γ=()v1v v --+γγ+ 平均活度:±a =()v1v v a a --++=m mγ±±Φ 电解质B 的活度:a B =va ±=vm m ⎪⎭⎫ ⎝⎛Φ±±γ+v v v B +a a a a ±--== m +=v +m B m -=v -m B ()1v v vB m v vm +±+--=离子强度:I =∑i2i i z m 21德拜-休克尔公式:lg ±γ=-A|z +z --|I可逆电池的电动势及其应用(Δr G )T,p =-W f,max (Δr G m )T,p =zEFNernst Equation :若电池反应为 cC +dD =gG +hHE =E φ-dDc C h Hg Ga a a a ln zF RT 标准电动势E φ与平衡常数K φ的关系:E φ=φlnK zFRT还原电极电势的计算公式:ϕ=氧化态还原态-a a lnzF RT φϕ 计算电池反应的有关热力学函数变化值:m r S ∆=p T E zF ⎪⎭⎫⎝⎛∂∂m r H ∆=-zEF +p T E zFT ⎪⎭⎫ ⎝⎛∂∂ Q R =T m r S ∆=pT E zFT ⎪⎭⎫⎝⎛∂∂zF ⎪⎪⎭⎫ ⎝⎛∆⎪⎪⎭⎫ ⎝⎛21m r 1122T 1T 1H T E T E -=- zF ⎰⎪⎭⎫ ⎝⎛T2E2T E 11T E d =dT T H 21T T 2mr ⎰∆ 电极书面表示所采用的规则:负极写在左方,进行氧化反应(是阳极),正极写在右方,进行还原反应(是阴极)电动势测定的应用:(1) 求热力学函数变量Δr G m 、Δr G m Φ、m r H ∆、m r S ∆及电池的可逆热效应Q R 等。

物理化学公式

物理化学公式

物理化学公式物理化学公式是物理学和化学的交叉学科的重要组成部分,被广泛应用于科学和工程领域。

这些公式描述了物质和能量之间的关系,提供了揭示自然界行为的数学工具。

在本文中,将介绍一些物理化学领域的常见公式。

物理化学学科涉及的公式众多且复杂,其中一些是由著名科学家在长期的研究和实验基础上总结出来的。

以下是一些物理化学中常见的公式:1. 理想气体状态方程:PV = nRT其中,P是气体的压强,V是体积,n是摩尔数,R是气体常数,T 是温度。

该公式描述了理想气体在不同温度和压力下的状态。

2. 质量守恒定律:m₁ + m₂ = m₃这是化学反应中最基本的公式,表示反应前后物质的质量守恒。

3. 热力学第一定律(能量守恒定律):ΔU = q + w其中,ΔU表示系统内能的变化,q表示系统吸收的热量,w表示系统对外做功。

这个公式表明了能量在物理化学过程中的守恒。

4. 阿伏伽德罗常数(用于描述分子和原子间的关系):Nₐ = 6.0221 × 10²³ mol⁻¹它表示在摩尔中包含的粒子数目,由此可推导出物质的摩尔质量。

5. 波尔原子模型公式:E = -2.178 × 10⁻¹⁸ (Z²/n²) J其中,E表示氢原子的能量,Z表示核电荷数,n表示电子的主量子数。

这个公式用于描述氢原子的能级和能量。

6. 平均气体动能公式:KE = (3/2) kT其中,KE表示气体分子的平均动能,k是玻尔兹曼常量,T是温度。

这个公式表明了温度和气体分子动能之间的关系。

7. 化学反应速率公式:v = k[A]ⁿ[B]ᵐ这是描述化学反应速率的公式,v表示反应速率,k是速率常数,[A]和[B]分别表示反应物A和B的浓度,ⁿ和ᵐ是反应物在反应速率中的指数。

8. Nernst方程:E = E° - (RT/nF) ln(Q)该方程描述了电池电势的计算,E表示电池的电势,E°是标准电势,R是气体常数,T是温度,n是电子转移数,F是法拉第常数,Q是反应物浓度的比值。

物化重点公式总结

物化重点公式总结

被压缩了的气体做恒温膨胀再回到原来
状态,问此过程的W、Q、U、H、S及
G又是多少?
2. 根据下列数据,求乙烯C2H6(g)在298K
时的标准摩尔生成热与标准摩尔燃烧热: (1) C2H6(g)+7/2O2(g)== 2CO2(g) + 3H2O(l)
r H m ,1 ( 298 K ) 1560 kJ .mol
* *
求总压为101.325kPa时气、液相浓度各为多少?
2.一定温度A和B构成的理想溶液中A的摩
尔分数浓度xA=0.5,求平衡气相的总压
和气相中A的摩尔分数浓度。
已知该温度下纯A的饱和蒸气压
PA 115 kPa , PB 60 . 0 kPa
* *
(一)相平衡总结
一、相律:f = C – P + 2 二、克拉贝龙方程 三、二组分系统基本相图:
1 1
三、溶液、相平衡及化学平衡
基本概念: 理想溶液、理想稀溶液、独立组分数、 自由度数、相律、标准生成吉布斯自 由能、标准平衡常数等。
▶ 概念题辨析
(1)克拉佩龙方程式用于纯物质的任何两相平衡。 (2)一定温度下的乙醇水溶液,可应用克—克 方程计算其饱和蒸气压。 (3)任一化学反应的标准平衡常数都只是温度 的函数。 (4) 理想稀溶液中的溶质遵守拉乌尔定律;溶 剂遵守亨利定律。
dp dT H
m
TVm
ln
p2 p1

vap H R
m
1 1 T 1 T2
1.两种固态物质完全不互溶的相图
l+AB2
β +B
l+B l+AB α+β α+ B A+AB2

物理化学公式大全

物理化学公式大全

物理化学公式大全物理化学是研究物质及其性质与能量变化之间关系的学科。

在物理化学的学习与研究过程中,掌握一些重要的公式是十分关键的。

下面是物理化学公式的大全,帮助你更好地理解和运用这些公式。

1. 热力学公式1.1 热力学第一定律dU = dq + dw其中,dU表示系统内能的变化,dq表示系统吸收的热量,dw表示系统对外界所做的功。

1.2 热力学第二定律(卡诺循环)η = 1 - Tc / Th其中,η表示卡诺循环的热效率,Tc表示循环过程中的低温热源温度,Th表示循环过程中的高温热源温度。

1.3 熵变ΔS = ∫dq / T其中,ΔS表示熵变,dq表示吸收的热量,T表示温度。

2. 电化学公式2.1 奥姆定律I = U / R其中,I表示电流强度,U表示电压,R表示电阻。

2.2 法拉第定律I = nFv其中,I表示电流强度,n表示电离物质的摩尔数,F表示法拉第常数,v表示电离的速率。

2.3 电解质溶液中浓度的关系c = n / V其中,c表示溶液的浓度,n表示溶质的物质的量,V表示溶液的体积。

3. 量子化学公式3.1 玻尔模型电子能级En = - 13.6 / n²其中,En表示第n个电子能级的能量。

3.2 库仑势能E = - (Z × e²) / (4πε₀r)其中,E表示两个带电粒子之间的库仑势能,Z表示电荷的量子数,e表示元电荷,ε₀表示真空介电常数,r表示两个带电粒子的距离。

4. 动力学公式4.1 反应速率常数k = A × e^(-Ea / RT)其中,k表示反应速率常数,A表示指前因子,Ea表示活化能,R 表示气体常数,T表示温度。

4.2 阿伦尼乌斯方程k = Z × f(ΔE)其中,k表示反应速率常数,Z表示碰撞频率,f(ΔE)表示碰撞激活因子,ΔE表示碰撞能量。

5. 其他公式5.1 时间-位移关系x = v₀t + 1/2at²其中,x表示位移,v₀表示初始速度,t表示时间,a表示加速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物化公式归纳 第一章 化学热力学基础 公式总结1.体积功 We = -Pe △V2.热力学第一定律的数学表达式 △U = Q + W 3.n mol 理想气体的定温膨胀过程.定温可逆时:Wmax=-Wmin=4.焓定义式 H = U + PV在封闭体系中,W ′= 0,体系发生一定容过程 Qv = △U在封闭体系中,W ′= 0,体系发生一定压过程 Qp = H2 – H1 = △H5.摩尔热容 Cm ( J ·K-1·mol-1 ): 定容热容 CV(适用条件 :封闭体系、无相变、无化学变化、 W ′=0 定容过程适用对象 : 任意的气体、液体、固体物质 )定压热容 Cp⎰=∆21,T T m p dTnC H (适用条件 :封闭体系、无相变、无化学变化、 W ′=0 的定压过程适用对象 : 任意的气体、液体、固体物质 )单原子理想气体: Cv,m = 1.5R , Cp,m = 2.5R 双原子理想气体: Cv,m = 2.5R , Cp,m = 3.5R 多原子理想气体: Cv,m = 3R , Cp,m = 4RCp,m = Cv,m + R6.理想气体热力学过程ΔU 、ΔH 、Q 、W和ΔS 的总结1221ln ln P PnRT V V nRT =nCC m =⎰=∆21,T T m V dTnC U7.定义:△fHm θ(kJ ·mol-1)-- 标准摩尔生成焓△H —焓变; △rHm —反应的摩尔焓变 △rHm θ—298K 时反应的标准摩尔焓变;△fHm θ(B)—298K 时物质B 的标准摩尔生成焓; △cHm θ(B) —298K 时物质B 的标准摩尔燃烧焓。

8.热效应的计算由物质的标准摩尔生成焓计算反应的标准摩尔焓变 △rH θm = ∑νB △fH θm ,B 由物质的标准摩尔燃烧焓计算反应的标准摩尔焓变 △rH θm = -∑νB △cH θm ,B 9.Kirchhoff (基尔霍夫) 方程△rHm (T2) = △rHm (T1) + 如果 ΔCp 为常数,则 △rHm (T2) = △rHm (T1) + △Cp ( T2 - T1)10.热机的效率为 对于卡诺热机 1211Q Q Q Q W R +=-=η= 可逆循环过程< 不可逆循环过程11.熵变定义式 (体系经历一可逆过程的热温商之和等于该过程的熵变.)12.热力学第二定律的数学表达式(不等式中, “ > ”号表示不可逆过程 , “ = ” 号表示可逆过程 “ T ”—环境温度 , 对可逆过程也是体系温度. )13.熵增原理 (孤立体系的熵永不减少) △S 孤立 ≥ 0 > 不可逆过程, 自发过程 = 可逆过程, 体系达平衡.对于封闭体系△S 孤立 = △S 封闭 + △S 环境 ≥ 0 > 不可逆过程, 自发过程 = 可逆过程, 体系达平衡14.定温定压的可逆相变15.化学反应熵变的计算 △rS θm = ∑νBS θm ,B16.△rH θm 和△rS θm 与温度的关系:△rH θ m (T2) = △rH θ m (T1) +△rS θ m (T2) = △rS θ m (T1) +dTC p T T ⎰∆21121211Q Q Q Q Q Q W +=+=-=η121T T T -=02211≤+T QT Q RBAA B TQS S S )(δ⎰=-=∆∑≥∆ii i T Q S )(δTQdS δ≥环体环环环境T Q T Q S -==∆相变,相变T H n S m ∆=∆dTC p T T ⎰∆21d TTC pT ∆⎰2第二章 自由能、化学势和溶液 公式1.第一和第二定律的联合公式为2.吉布斯自由能定义式G = U + PV – TS = H – TS △G = △H -T △S(G----体系的状态函数, ( J ) , 绝对值无法测量 ) 3.在定温定压下,有如下关系: ΔG=W’最大4.吉布斯自由能判据< 不可逆过程, 自发过程 = 可逆过程, 平衡态 > 反方向为自发过程56定压下.对任意相变或化学变化 7.定温物理变化∆G 的计算(W’=0的封闭体系) . 理想气体定温过程0≥'+--W dV P dU dS T e e δ0,,≤'W P T dG 0,,≤∆'W P T G S TGP ∆-=∂∆∂)(⎰⎰===∆212112ln P P P P T P PnRT dP P nRT dP V G. 纯液体或纯固体的定温过程. 定温定压可逆相变 dG = -SdT + VdP dT =0 dP =0 ∆G T , P, W' = 0 。

定温定压不可逆相变必须设计可逆过程 来求算, 由于△G 定温条件下的计算公式简单, 因此设计定温变压可逆途径 求解.而计算不可逆相变的 ∆H 和 ∆S 时 , 是设计定压变温可逆途径进行求解.8.化学反应∆G 的计算 化学反应△ r Gm θ的计算 。

由物质的△fGm θ求算△rG θm = ∑νB △fG θm ,B 。

由反应的△rH θm 和 △rS θm 求算 △rG θm = △rH θm - T △rS θm 。

估计该反应能自发进行的最高温度< 0 不可逆过程, 自发过程 △rG θm = △rH θm - T △rS θm = 0 可逆过程, 平衡态> 0 反方向为自发过程 9条件:定温定压(Z 代表任一广度性质 )对于纯物质的均相系统,偏摩尔量即为该物质的摩尔量⎰-==∆21)(12P P l l T P P V dP V G ⎰-==∆21)(12P P s s T P P V dP V G K S H T m r m r 3144241012.1333=-⨯-=∆∆=θθ)B (,,,≠⎪⎪⎭⎫⎝⎛∂∂=j n P T B m B j n z Z mP T m B V VV =∂=,,)(11.偏摩尔量的集合公式12.化学势定义式13.化学势(偏摩尔吉布斯自由能)集合公式在一定的温度, 压力和浓度的条件下,多组分体系处于一定的状态, 体系的吉布斯自由能可用下式计算纯组分:14.化学势与温度的关系15.化学势与压力的关系 16.化学势判据在定温、定压、W ´=0 的封闭体系中< 自发过程≤ 0 = 可逆过程或平衡态> 反方向为自发过程17.化学势判据与相平衡设在定温、定压、W ´=0 的条件下, 有dni mol 的 i 物质从 α相转移到 β 相,dG T, P, W ´=0 = (μi β -μi α)dni(1)若 μi β < μi α 则 dG < 0 ; 物质从α→β相的转移 是自发过程; (2)若 μi β > μi α 则 dG > 0 ; 物质从β→α相的转移是自发过程; (3)若 μi β = μi α 则 dG = 0 ; 体系处于相平衡状态. 18.化学势判据与化学平衡对定温、定压、W ´= 0 ,且 ξ = 1mol 的化学反应 a A + b B → g G + h H< 0 , 反应正方向自发 = 0 , 反应达到平衡 > 0 , 逆反应方向自发( 定T , 定P , W ´ = 0 的封闭体系 , 化学反应方向与限度的判据. 由化学势高的物质自发生成化学势低的物质) ∑=Bm B B Z n Z ,j n P T ii n G,,)(∂∂=μ∑=BBB n G μmG n G ==μm B n P B S T ,,)(-=∂∂∑μmB n T BV P ,,)(=∂∂∑μ∑=B B dn dG μBA H G BB m b a h g rG μμμμμν--+==∆∑20.拉乌尔定律 (PA,PA*分别表示定温时稀溶液中的溶剂的饱和蒸气压与该温度时的纯溶剂的饱和蒸气压,xA 是溶液中溶剂的摩尔分数).溶液的蒸气压下降∆p =p*-p = p* - p*xA =p*(1-xA)= p*xB .溶液沸点升高∆tb = tb -tb* = Kb. bB(Kb ——沸点上升常数,与溶剂有关。

)(tb*—纯溶剂的沸点, △vapHm —溶剂的摩尔蒸发焓).溶液的凝固点降低∆tf = tf*-tf = Kf bB(Kf ——凝固点下降常数,与溶剂性质有关。

)AA A x P P *=)()(2A M H t R K mvap b b ⋅∆=*)()(2A M t R K f f =*(tf*—纯溶剂的凝固点, △fusHm—溶剂的摩尔熔化焓)难挥发非电介质稀溶液依数性总结第三章公式归纳1.C = S – R – R´C――组分数S――物种数R--体系中独立的化学平衡数R´--- 体系中独立的浓度关系数( 只有在同一相中才能用此条件)2.相律f = C – P + 2(只适用于平衡体系,式中“2” 指的是温度和压力) 另外:f* = C – P + 1定温过程或定压过程f* = C – P 定温和定压过程(f* ---- 条件自由度)3.单组分体系f = C – P + 2=3-P4.水的相图:(1) 相区----- 面AOB 面-气态水的单相区。

P = 1 f = 2 AOC 面-液态水的单相区。

P = 1 f = 2 BOC 面-固态水的单相区。

P = 1 f = 2 (2) 相线OA 线-水的饱和蒸气压曲线,水和水蒸气两相平衡共存,P = 2 , f = 1 ;OB 线-冰的饱和蒸气压曲线,冰与水蒸气两相平衡共存, P = 2 , f = 1 ; OC 线-冰的熔点曲线,冰和水两相平衡共存,P = 2 , f = 1 ; (3)三相点O 点-三相点,液、固、气三相平衡, P = 3 , f = 05.Clapeyron 方程 (适用条件----- 任何纯物质的任意两相平衡. )T, P----- 为可逆相变时的温度和压力. ∆Hm ----- 定温、定压可逆相变时的摩尔相变热.∆Vm ----- 定温、定压可逆相变时的摩尔体积变化 对 l g对 s g6.Clausius – Clapeyron 方程其定积分式7.二组分双液体系 f = C – P + 2 = 4 – Pm mV T H dT dP ∆∆=2ln RT H dT P d mvap ∆=2ln RTHdT P d msub ∆=2ln RT H dT P d m∆=)11(ln 2112T T R H P P m -∆=8.二组分双液体系图 定温,p-x 图,pA=pA*xA pB=pB*xB p=pA+pBc 是总压与溶液组成的关系线,称为液相线p 与x 呈线性函数关系蒸气相组成:yA=pA/p=(pA*xA)/p yB=pB/p=(pB*xB)/p9.杠杆规则:物系点M ,相点P ,Q ,联结线PQ ,系统温度Tb,总组成XB,M,物质的量n g , n l, n 总互比量MQPM n n lg第四章 化学平衡1.化学平衡的条件(适用条件-----定T,P,W’= 0的封闭体系化学反应方向与限度的判据)a A +b B → g G + h H< 0 , 反应正方向自发= 0 , 反应达到平衡> 0 , 逆反应方向自发2.化学反应定温式 (c θ=1mol.L-1;分压以Pa 或kPa 为单位代入,p θ=105Pa=100kPa ;)(1)理想气体反应分压商化学反应定温式(△rGm (T) ——所求状态(任意)下反应的自由能变△rGm θ(T)——标准状态下反应的自由能变Q ——所求状态(任意)下的分压商(反应商))ln ln ln m m P PP P PrG rG RT Q Q RT K RT Q RTK θθθ∆=∆+=-+=QP < KP θ ,则 ΔrGm < 0 反应向右自发进行 QP > KP θ ,则 ΔrGm > 0 反应向左自发进行 QP = KP θ ,则 ΔrGm = 0 反应达到平衡在反应达到平衡时, ∆rGm = 0→(2)溶液中的反应θθμμC C RT T BB B ln)(+=C CC C Cln ln ln m m rG rG RT Q Q RT K RT Q RT K θθθ∆=∆+=-+=BA H GB B m b a h g rG μμμμμν--+==∆∑p m m Q RT rG rG ln +∆=∆θln m P rG RT K θθ∆=- d Da A h H g G p P P P P P P P P Q )()()()(θθθθ''''=()()()()g h GH C a dA D C C C C Q C C C C θθθθ''=''反应商: 任意状态C C ln m rG RT K θθθ∆=-()若溶质的浓度用 m 表示,其中(3)实际溶液 ( 溶质参加反应 )用活度代替浓度即可.(4)多相反应反应体系中, 气体是理想气体, 液体和固体是纯物质,则平衡常数的表达式中只出现气体的分压和溶液浓度. 例:CO2 (g) + H2 (g) === CO (g) + H2O (l )3.标准平衡常数的计算(1).对气相反应或纯物质间发生的反应( △rG θm = ∑νB △fG θm ,B△rG θm = △rH θm - T △rS θm ) (2).对稀溶液中的反应( )5.---- Van’t Hoff 公式d D a A h H g G m m m m m m m m m Q )()()()(θθθθ''''=θθθm m K RT m rG ln )(-=∆m m m Q RT K RT rG ln ln +-=∆θaa m Q RT K RT rG ln ln +-=∆θdD a A h H g G a a a a a K =θbB a A z Z y Y a a a a a Q )()()()(''''=22COCO H P P P P K P Pθθθθ=⋅θθKRT rG m ln -=∆θθθC m K RT C rG ln )(-=∆∑θθθθ∆ν=∆)C (G )C (rG m f B m 2ln RT rH dT K d mθθ∆=)11()()(ln 2112T T RrH T K T K m -∆=θθθ第五章电解质溶液1.Faraday定律Q = nFQ ---- 通入溶液的总电量( c ) ;F ---- 1mol电子所带的电量(Faraday常数) F = Le = 96485 c/moln --- 在阴极或阳极上发生电极反应、只含单位元电荷的物质的摩尔数. 也是阴极或阳极上转移的电子的摩尔数。

相关文档
最新文档