平面向量基础知识点+思维导图练习

合集下载

高一数学人教A版(2019)必修第二册思维导图

高一数学人教A版(2019)必修第二册思维导图

第六章平面向量及其应用平面向量的概念向量的几何表示向量的定义:既有大小,又有方向的量叫做向量.向量的模向量的大小称为向量的长度或称模记作零向量长度为的向量叫做零向量记作单位向量:长度等于1个单位长度的向量叫做单位向量.相等向量与共线向量平行(共线)向量:方向相同或相反的非零向量叫做平行向量,也叫共线向量.零向量与任意向量平行.相等向量:长度相等且方向相同的向量叫做相等向量.平面向量的运算向量的加法运算三角形法则平行四边形法则对于零向量与任意向量有向量的加法运算律交换律结合律向量形式的三角不等式当且仅当方向相同时等号成立向量的减法运算相反向量:与向量长度相等方向相反的向量叫做的相反向量记作零向量的相反向量仍是零向量.向量的减法:减去一个向量相当于加上这个向量的相反向量.向量的数乘运算定义一般地我们规定实数与向量的积是一个向量这种运算叫做向量的数乘记作长度与方向的规定()当时()当时的方向与的方向相同当时的方向与的方向相反向量数乘的运算律设为任意实数则有()()()特别地,有向量的加、减、数乘运算统称为向量的线性运算.对于任意向量以及任意实数恒有向量与共线的充要条件是存在唯一一个实数使向量的数量积向量的夹角:已知两个非零向量是平面上的任意一点作则叫做向量与的夹角当时与同向当时与反向当时与垂直记作数量积的定义:已知两个非零向量与它们的夹角为则数量叫做向量与的数量积(或内积)记作即零向量与任一向量的数列积为投影与投影向量.性质设是非零向量它们的夹角是是与方向相同的单位向量则()()()当与同向时当与反向时特别地或()数量积的运算律()()()平面向量基本定理及坐标表示平面向量基本定理如果是同一平面内的两个不共线向量那么对于这一平面内的任一向量有且只有一对实数使基底若不共线则把叫做表示这一平面内所有向量的一个基底平面向量的正交分解:把一个向量分解为两个互相垂直的向量,叫做把向量作正交分解.叫做向量的坐标表示平面向量加、减运算的坐标表示设两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差).一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标.平面向量数乘运算的坐标表示设实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设向量共线的充要条件是平面向量数量积的坐标表示设两个向量的数量积等于它们对应坐标的乘积的和.若则设则设都是非零向量是与的夹角则平面向量的应用向量在平面几何中的应用向量在物理中的应用余弦定理在中角的对边分别为正弦定理在中角的对边分别为第七章复数复数的概念数系的扩充和复数的概念形如的数叫做复数其中叫做虚数单位满足全体复数构成的集合叫做复数集复数通常用字母表示即其中的与分别叫做复数的实部与虚部与相等当且仅当且复数的分类实数虚数当时为纯虚数复数的几何意义建立直角坐标系来表示复数的平面叫做复平面,轴叫做实轴,轴叫做虚轴,实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数复数与复平面内的点一一对应复数与平面向量一一对应复数的模向量的模叫做复数的模或绝对值记作或即其中共轭复数当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.虚部不等于的两个共轭复数也叫做共轭虚数复数的共轭复数用表示即如果那么复数的四则运算复数加、减法的运算法则设是任意两个复数则复数加法的运算律对任意有复数加法的几何意义:复数的加法可以按照对应向量的加法来进行.复数的乘法法则设是任意两个复数则复数乘法的运算律对任意有复数的除法法则且复数的三角表示一般地任何一个复数都可以表示成的形式其中是复数的模是以轴的非负半轴为始边向量所在射线射线为终边的角叫做复数的辐角叫做复数的三角表示式简称三角形式叫做复数的代数表示式简称代数形式在范围内的辐角的值为辐角的主值,通常记作即复数乘法的三角表示两个复数相乘,积的模等于各复数的模的积,积的辐角等于各复数的辐角的和.复数除法的三角表示两个复数相除,商的模等于被除数的模除以除数的模所得的商,商的辐角等于被除数的辐角减去除数的辐角所得的差.第八章立体几何初步基本立体图形多面体一般地,由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.旋转体一条平面曲线(包括直线)绕它所在平面内的一条定直线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.两个互相平行的面叫做棱柱的底面,它们是全等的多边形;其余各面叫做棱柱的侧面,它们都是平行四边形;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.直棱柱:侧棱垂直于底面的棱柱.斜棱柱:侧棱不垂直于底面的棱柱.正棱柱:底面是正多边形的直棱柱.平行六面体:底面是平行四边形的四棱柱.棱锥有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.这个多边形面叫做棱锥的底面;有公共顶点的各个三角形面叫做棱锥的侧面;相邻侧面的公共边叫做棱锥的侧棱;各侧面的公共顶点叫做棱锥的顶点.底面是正多边形,并且顶点与底面中心的连线垂直于底面的棱锥叫做正棱锥.棱台用一个平行于棱锥底面的平面去截棱锥,底面和截面之间那部分多面体叫做棱台.原棱锥的底面和截面分别叫做棱台的下底面和上底面.圆柱以矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体叫做圆柱.旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,平行于轴的边都叫做圆柱侧面的母线.圆锥以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转一周形成的面所围成的旋转体叫做圆锥.圆台用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.球半圆以它的直径所在直线为旋转轴,旋转一周形成的曲面叫做球面,球面所围成的旋转体叫做球体,简称球.半圆的圆心叫做球的球心;连接球心和球面上任意一点的线段叫做球的半径;连接球面上两点并且经过球心的线段叫做球的直径.简单组合体由简单几何体组合而成的几何体.立体图形的直观图用斜二测画法画空间几何体的直观图的画法()在几何体中取水平平面作互相垂直的轴再作轴使()画出与对应的轴使或所确定的平面表示水平平面平面和表示竖直平面()在几何体中,平行于轴,轴或轴的线段,在直观图中分别画成平行于轴,轴或轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同()在几何体中平行于轴和轴的线段,在直观图中保持长度不变,平行于轴的线段,长度为原来的一半()擦除作为辅助线的坐标轴,就得到了空间几何体的直观图简单几何体的表面积与体积表面积棱柱、棱锥、棱台的表面积就是围成它们的各个面的面积的和.圆柱是底面半径是母线长圆锥是底面半径是母线长圆台分别是上、下底面半径是母线长球是球的半径体积棱柱是底面面积是高棱锥是底面面积是高棱台分别是上、下底面面积是高圆柱(是底面半径是高圆锥是底面半径是高圆台分别是上、下底面半径是高球是球的半径空间点、直线、平面之间的位置关系空间直线、平面的平行空间直线、平面的垂直平面空间中直线与直线的位置关系空间中直线与平面的位置关系空间中平面与平面的位置关系基本事实1:过不在一条直线上的三个点,有且只有一个平面.基本事实2:如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内.基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.推论1:经过一条直线和这条直线外一点,有且只有一个平面.共面直线异面直线:不同在任何一个平面内,没有公共点直线在平面内----有无数个公共点两个平面平行----没有公共点两个平面相交----有一条公共直线基本事实1可以说成不共线的三点确定一个平面推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.相交直线:在同一平面内,有且只有一个公共点平行直线:在同一平面内,没有公共点直线在平面外直线与平面相交----有且只有一个公共点直线与平面平行----没有公共点直线与直线平行直线与平面平行平面与平面平行基本事实4 平行于同一条直线的两条直线平行.定理:如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补.判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.性质定理:一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.判定定理:如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行.性质定理:两个平面平行,如果另一个平面与这两个平面相交,那么两条交线平行.直线与直线垂直直线与平面垂直平面与平面平行异面直线所成的角已知两条异面直线经过空间任一点分别作直线直线与所成的角叫做异面直线与所成的角(或夹角)如果两条异面直线所成的角是直角那么这两条异面直线互相垂直直线与直线垂直记作如果直线与平面内的任意一条直线都垂直我们就说直线与平面互相垂直记作直线叫做平面的垂线平面叫做直线的垂面它们唯一的公共点叫做垂足过一点垂直于已知平面的直线有且只有一条.点到平面的距离:过一点作垂直于已知平面的直线,则该点与垂足间的线段,叫做这个点到该平面的垂线段,垂线段的长度叫做这个点到该平面的距离.判定定理:如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直.直线与平面所成的角:平面的一条斜线和它在平面上的射影所成的角.性质定理:垂直于同一个平面的两条直线平行.直线到平面的距离:一条直线与一个平面平行时,这条直线上任意一点到这个平面的距离,叫做这条直线到这个平面的距离.平面到平面的距离:如果两个平面平行,那么其中一个平面内的任意一点到另一个平面的距离都相等,我们把它叫做这两个平行平面间的距离.二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面.二面角的平面角在二面角的棱上任取一点以点为垂足在半平面和内分别作垂直于棱的射线和则射线和构成的叫做二面角的平面角一般地两个平面相交如果它们所成的二面角是直二面角就说这两个平面互相垂直平面与垂直记作判定定理:如果一个平面过另一个平面的垂线,那么这两个平面垂直.性质定理:两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直.第九章统计随机抽样简单随机抽样分层随机抽样用样本估计总体简单随机抽样的特点:()总体个数有限:简单随机抽样要求被抽取样本的总体个数有限,这样便于通过样本对总体进行分析()逐个抽取:简单随机抽样是从总体中逐个进行抽取,这样便于实际操作()不放回抽样:简单随机抽样是一种不放回抽样,这样便于样本的获取和一些相关的计算()等可能抽样:不仅每次从总体中抽取一个个体时各个个体被抽到的可能性相等,而且在整个抽样过程中,各个个体被抽到的可能性也相等,从而保证了这种抽样方法的公平性抽签法的操作步骤:第一步,编号:将个个体编号(号码可以从到,也可以使用已有的号码)第二步,写签:将个号码写到大小、形状相同的号签上第三步,抽签:将号签搅拌均匀,每次从中抽取一个号签,连续不放回地抽取次,并记录其编号第四步,定样:从总体中找出与号签上的号码对应的个体,组成样本随机数法:先把总体中的个体编号,用随机数工具产生与总体中个体数量相等的整数随机数,把产生的随机数作为抽中的编号,并剔除重复的编号,直到抽足样本所需要的个体数产生随机数的方法:①用随机试验生成随机数,②用信息技术生成随机数分层随机抽样:一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,在把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层.比例分配:在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.分层随机抽样的平均数计算:在分层随机抽样中,以层数是层为例,如果第层和第层包含的个体数分别为和,抽取的样本量分别为和,第层和第层样本的平均数分别为和,则样本的平均数总体平均数:一般地,总体中有个个体,它们的变量值分别为,则称为总体均值,又称总体平均数样本平均数:如果从总体中抽取一个容量为的样本,它们的变量值分别为,则称为样本均值,又称样本平均数总体取值规律的估计总体百分位数的估计总体集中趋势的估计总体离散程度的估计画频率分布直方图的步骤:求极差:极差为一组数据中最大值与最小值的差决定组距与组数:一般数据的个数越多所分组数也越多当样本容量不超过时常分成组为了方便起见一般取等长组距并且组距应力求取整将数据分组列频率分布表:计算各小组的频率频率频数样本容量画频率分布直方图:频率分布直方图的纵轴表示频率组距小长方形的面积组距频率组距频率在频率分布直方图中各小长方形的面积的总和等于即样本数据落在整个区间的频率为第百分数:一般地,一组数据的第百分位数是这样一个值,它使得这组数据中至少有的数据小于或等于这个值,且至少有的数据大于或等于这个值平均数:在频率分布直方图中,样本平均数可以用每个小矩形底边中点的横坐标与小矩形的面积的乘积之和近似代替中位数:在频率分布直方图中,中位数左边和右边的直方图的面积应该相等众数:在频率分布直方图中,众数是最高小矩形底边的中点所对应的数据一组数据的平均数为方差:标准差:总体中所有个体的变量值分别为,总体平均数为若一个样本中个体的变量值分别为,样本平均数为总体方差:总体标准差:样本方差:样本标准差:如果总体的个变量值中,不同的值共有个,记为,其中出现的频数为,则总体方差为。

《平面向量的正交分解及坐标表示》《6

《平面向量的正交分解及坐标表示》《6

《6.3.2平面向量的正交分解及坐标表示》《6.3.3平面向量加、减运算的坐标表示》一、学习目标1.知道平面向量的正交分解,掌握向量的坐标表示.2.掌握两个向量加、减运算的坐标表示.二、知识思维导图三、导学指导与检测导学导学检测及课堂展示阅读相关材料完成相应练习知识点一向量的正交分解1.向量的正交分解:把一个向量分解为的向量,叫做把向量作正交分解.2.向量的坐标表示在平面直角坐标系中,设与x轴、y轴方向相同的两个单位向量分别为i,j,取{i,j}作为基底,对于平面内的任意一个向量a,由平面向量基本定理可知,有且只有一对实数x,y,使得a=x i+y j,我们把有序实数对叫做向量a的坐标,记作a=,此式叫做向量a的坐标表示,其中x 叫做a在x轴上的坐标,y叫做a在y轴上的坐标.3.向量与坐标的关系:设OA→=x i+y j,则向量OA→的坐标就是终点A的坐标;反过来,终点A的坐标(x,y)就是向量OA→的坐标.因此,在平面直角坐标系内,每一个平面向量都可以用一有序实数对唯一表示,即以原点为起点的向量与实数对是.思考:特别地,i,j,0的坐标分别是什么?[例1]在平面直角坐标系中,向量a,b,c的方向如图所示,|a|=2,|b|=3,|c|=4,向量a,b,c的坐标分别为_____,________,________.[变式训练1]在平面直角坐标系中,|a|=4,且a如图所示,则a的坐标为()A.(23,2) B.(2,-23) C.(-2,23) D.(23,-2)知识点二平面向量加、减运算的坐标表示已知a=(x1,y1),b=(x2,y2),则:(1)a+b=,a-b=,即两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差).(2)若点A坐标为(x1,y1),点B坐标为(x2,y2),O为坐标原点,则OA→=,OB→=,AB →=OB →-OA →=(x 2,y 2)-(x 1,y 1)= ,即一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标.思考:2.与坐标轴平行的向量的坐标有什么特点?[例2] 已知边长为单位长度的正方形ABCD ,若A 点与坐标原点重合,边AB 、AD 分别落在x 轴、y 轴的正方向上,则向量AB →-BC →+AC →的坐标为________.[变式训练2] 已知平面上三点的坐标分别为A (-2,1),B (-1,3),C (3,4),求点 D 的坐标,使这四点构成平行四边形的四个顶点.四、巩固诊断1.已知MN →=(2,3),则点N 位于( )A .第一象限B .第二象限C .第三象限D .不确定2.已知向量a ,b 满足a +b =(1,3),a -b =(3,-3),则a ,b 的坐标分别为( )A .(4,0),(-2,6)B .(-2,6),(4,0)C .(2,0),(-1,3)D .(-1,3),(2,0)3.向量OA →=(2x ,x -1),O 为坐标原点,则点A 在第四象限时,x 的取值范围是( )A .x >0B .x <1C .x <0或x >1D .0<x <14.若向量a =(2x -1,x 2+3x -3)与AB →相等,已知A (1,3),B (2,4),则x = .5.已知O 是坐标原点,点A 在第一象限,|OA →|=43,∠xOA =60°.(1)求向量OA →的坐标. (2)若B (3,-1),求BA →的坐标.。

(完整版)北师大版数学必修4《平面向量的坐标表示及其运算》同步导学练习案附思维导图答案解析

(完整版)北师大版数学必修4《平面向量的坐标表示及其运算》同步导学练习案附思维导图答案解析

第5课时平面向量的坐标表示及其运算1.掌握向量的正交分解及坐标表示,理解直角坐标系中的特殊意义.2.理解向量坐标的定义,并能正确用坐标表示坐标平面上的向量,对起点不在原点的平面向量能利用向量相等的关系来用坐标表示.3.会用坐标表示平面向量的加、减与数乘运算.4.理解用坐标表示平面向量共线的条件.足球运动员在踢足球的过程中,将球踢出时的一瞬间的速度为υ.能否建立适当的坐标系,表示踢出时的水平速度和竖直速度?能不能用水平方向和竖直方向的单位向量来表示这个速度呢?问题1:平面向量的正交分解把一个向量分解为两个的向量的线性表示,叫作向量的正交分解,向量的正交分解是平面向量基本定理的特例,即当基底e1、e2时的情况.问题2:平面向量的坐标表示在平面直角坐标系内,分别取与x轴,y轴方向相同的两个单位向量i、j作为基底,a为坐标平面内的任意向量,如图,以坐标原点O为起点作=a,由平面向量基本定理可知,一对实数x,y,使得= ,因此a=xi+yj.我们把实数对叫作向量a的坐标,记作.问题3:平面向量在坐标表示下的线性运算(1)向量和的坐标运算:若a=(x1,y1),b=(x2,y2),则a+b= .即两个向量的和的坐标等于这两个向量相应坐标的和.(2)向量差的坐标运算:若a=(x1,y1),b=(x2,y2),则a-b= .即实数与向量的差的坐标等于这两个向量相应坐标的差.(3)实数与向量的积的坐标运算:设λ∈R,a=(x,y),则λa=.即实数与向量的乘积的坐标分别等于实数与相应坐标的乘积.(4)的坐标表示:若A(x1,y1),B(x2,y2),则=-= .即一个向量的坐标等于其终点的相应坐标减去起点的相应坐标.问题4:如何用坐标表示两个平面向量共线?由向量的共线定理可知:若a,b(b≠0)共线,则存在唯一的实数使得.设a=(x1,y1),b=(x2,y2)≠0,则(x1,y1)=λ(x2,y2)=,得即两式相减消去λ得,这就是两个向量平行的条件.由于规定向量可与任一向量平行,所以在应用时可以去掉b≠0,即:当且仅当x1y2-x2y1=0时,向量a,b 共线.若x2≠0,且y2≠0(也可写作x2y2≠0),则x1y2-x2y1=0可以写成(两向量平行的条件是相应坐标).1.已知i、j分别为与x轴正方向、y轴正方向相同的两个单位向量,若a=(3,4),则a可以用i、j表示为().A.a=3i+4jB.a=3i-4jC.a=-3i+4jD.a=4i+3j2.已知平面向量a=(1,2),b=(-2,m),且a∥b,则2a+3b=().A.(-2,-4)B.(-3,-6)C.(-4,-8)D.(-5,-10)3.设a=(1,2),b=(2,3),若向量λa+b与向量c=(-4,-7)共线,则λ=.4.(1)设向量a,b的坐标分别是(-1,2),(3,-5),求a+b,a-b,2a+3b.(2)设a,b,c的坐标分别是(1,-3),(-2,4),(0,5),求3a-b+c的坐标.平面向量的正交分解在直角坐标系xOy中,向量a,b的位置如图所示,已知|a|=4,|b|=3,且∠AOx=45°,∠OAB=105°,分别求向量a,b的坐标及A、B点的坐标.平面向量的坐标运算已知点A(-1,2),B(2,8)及=,=-,求点C、D和的坐标.平行向量的坐标运算已知四边形ABCD的顶点依次为A(0,-x),B(x2,3),C(x,3),D(3x,x+4),若AB∥CD,求x的值.在平面内以点O的正东方向为x轴的正方向,正北方向为y轴的正方向建立直角坐标系.质点在平面内做直线运动.分别求下列位移向量的坐标.(1)用向量表示沿东北方向移动了2个长度单位;(2)用向量表示沿西偏北60°方向移动了3个长度单位;(3)用向量表示沿东偏南30°方向移动了4个长度单位.已知A、B、C的坐标分别为A(2,-4)、B(0,6)、C(-8,10),求向量+2-的坐标.已知a=(1,2),b=(-3,2),当k为何值时,ka+b与a-3b平行?平行时它们是同向还是反向?1.设向量=(-2,-5),若点A的坐标为(3,7),则点B的坐标为().A.(5,12)B.(12,5)C.(2,1)D.(1,2)2.已知点A(1,3),B(4,-1),则与向量同方向的单位向量为().A.(,-)B.(,-)C.(-,)D.(-,)3.已知边长为单位长度的正方形ABCD,若A与坐标原点重合,边AB,AD分别落在x轴、y轴正方向上,则向量2+3+的坐标为.4.已知平行四边形ABCD的三个顶点A,B,C的坐标分别为(-2,1)、(-1,3)、(3,4),求顶点D 的坐标.(2013年·陕西卷)已知向量a=(1,m),b=(m,2), 若a∥b,则实数m等于().A.-B.C.-或D.0考题变式(我来改编):答案第5课时平面向量的坐标表示及其运算知识体系梳理问题1:相互垂直垂直问题2:有且仅有xi+yj (x,y)a=(x,y)问题3:(1)(x1+x2,y1+y2)(2)(x1-x2,y1-y2)(3)(λx,λy)(4)(x1-x2,y1-y2)问题4:a=λb(λx2,λy2)λx2λy2x1y2-x2y1=0零=成比例基础学习交流1.A a=(3,4)=3i+4j.2.C由a=(1,2),b=(-2,m),且a∥b,得1×m=2×(-2)⇒m=-4,从而b=(-2,-4),那么2a+3b=2×(1,2)+3×(-2,-4)=(-4,-8).3.2∵λa+b=(λ+2,2λ+3)与c=(-4,-7)共线,∴(λ+2)×(-7)-(2λ+3)×(-4)=0,解得λ=2.4.解:(1)a+b=(-1,2)+(3,-5)=(-1+3,2-5)=(2,-3),a-b=(-1,2)-(3,-5)=(-1-3,2+5)=(-4,7),2 a+3b=2(-1,2)+3(3,-5)=(-2+9,4-15)=(7,-11).(2)3a-b+c=3(1,-3)-(-2,4)+(0,5)=(3,-9)-(-2,4)+(0,5)=(3+2+0,-9-4+5)=(5,-8).重点难点探究探究一:【解析】设a=(a1,a2),b=(b1,b2),∵∠AOx=45°,∴a1=|a|cos 45°=4×=2,a2=|a|sin 45°=4×=2,∴a=(2,2)=,∴A点的坐标为(2,2).将b的起点平移至原点,令b的终点为B',由题意可知∠B'Ox=120°,所以b1=|b|cos 120°=3×(-)=-,b2=|b|sin 120°=3×=,∴b=(-,).又∵b==-,∴=b+=(2-,2+).故a=(2,2),b=(-,),A点的坐标为(2,2),B点的坐标为(2-,2+).【小结】(1)相等向量的坐标是相同的,而它们的起点、终点坐标可以不同.在解决很多问题时,常常需要把始点不在原点的向量移到原点.(2)起点在原点的向量终点坐标即为向量坐标,起点不在原点的向量的坐标为终点坐标减去起点坐标.求终点坐标时可用起点坐标加上向量坐标.(3)若已知向量a=(x,y),a的模为|a|,a的方向与x轴正方向的夹角为θ,由三角函数的定义可知,x=|a|cos θ,y=|a|sin θ.要注意公式中的θ是向量a的方向与x轴正方向的夹角.探究二:【解析】设点C(x1,y1),D(x2,y2),由题意得=(x1+1,y1-2),=(3,6),=(-1-x2,2-y2),∵=,=-,∴(x1+1,y1-2)=(3,6)=(1,2),(-1-x2,2-y2)=-(-3,-6)=(1,2),则有和解得和∴点C、D的坐标分别为(0,4)和(-2,0), =(-2,-4).【小结】求点的坐标时,可先设点的坐标,根据题中给出的关系,列出方程组求解即可.探究三:【解析】∵AB∥CD,∴∥,又∵=(x2,x+3),=(2x,x+1),∴x2(x+1)-2x(x+3)=0,解得x=-2或x=0或x=3.[问题]上述解法正确吗?[结论]不正确,错误一:没有注意四边形ABCD顶点的顺序,需满足,反向才行.错误二:没有注意向量的平行与线段平行的不同,∥时,AB与CD可能平行也可能重合.于是,正确解答如下:=(x2,x+3),=(2x,x+1),∵在四边形ABCD中,AB∥CD,∴与平行且反向.于是解得x=-2.经检验,x=-2满足题意.【小结】两个向量平行包括它们对应的有向线段不共线和共线两种情况,但在含有几何背景的向量平行中就要排除共线的情况,如本题中要保证ABCD是四边形就要注意向量,不能在同一条直线上且反向平行.思维拓展应用应用一:设(1)(2)(3)中的向量分别为=a,=b,=c,并设P(x1,y1),Q(x2,y2),R(x3,y3).(1)如图,因为∠POP'=45°,||=2,所以a==+=i+j,所以a=(,).(2)因为∠QOQ'=60°,||=3,所以b==+=-i+j,所以b=(-,).(3)因为∠ROR'=30°,||=4,所以c==+=2i-2j,所以c=(2,-2).应用二:A(2,-4)、B(0,6)、C(-8,10),得=(-2,10),=(-8,4),=(-10,14),∴+2-=(-2,10)+2(-8,4)-(-10,14)=(-2,10)+(-16,8)-(-5,7)=(-18,18)-(-5,7)=(-13,11).应用三:(法一)ka+b=k(1,2)+(-3,2)=(k-3,2k+2),a-3b=(1,2)-3(-3,2)=(10,-4).∵(ka+b)∥(a-3b),∴(k-3)×(-4)-10(2k+2)=0,解得k=-.此时ka+b=(--3,-+2)=(-,)=-(10,-4)=-(a-3b).∴k=-,且此时ka+b与a-3b平行,并且反向.(法二)由题意知ka+b=(k-3,2k+2),a-3b=(10,-4),当ka+b与a-3b平行时,存在唯一实数λ,使ka+b=λ(a-3b),由(k-3,2k+2)=λ(10,-4),∴解得∴当k=-时,ka+b与a-3b平行,这时ka+b=-(a-3b).∵λ=-<0,∴它们的方向相反.∴k=-,此时ka+b与a-3b平行,并且反向.基础智能检测1.D设点B的坐标为(x,y),则=(x,y),=(3,7),=-=(x-3,y-7)=(-2,-5),∴解得2.A=(3,-4),所以||=5,这样同方向的单位向量是=(,-),选A.3.(3,4)如图,建立直角坐标系,有A(0,0),B(1,0),C(1,1),D(0,1),即=(1,0),=(0,1),=(1,1),则有2+3+=(2,0)+(0,3)+(1,1)=(3,4).4.解:设顶点D的坐标为(x,y).∵=(-1-(-2),3-1)=(1,2),=(3-x,4-y),由=,得(1,2)=(3-x,4-y).∴∴∴顶点D的坐标为(2,2).全新视角拓展C因为a=(1,m),b=(m,2),且a∥b,所以1·2=m·m⇒m=±,所以选C.思维导图构建xi+yj (x,y)(x1±x2,y1±y2)(λx1,λy1)(x2-x1,y2-y1)x1y2=x2y1。

高中平面向量知识点详细归纳总结(附带练习)

高中平面向量知识点详细归纳总结(附带练习)

向量的概念一、高考要求:理解有向线段及向量的有关概念,掌握求向量和与差的三角形法则和平行四边形法则,掌握向量加法的交换律和结合律.二、知识要点:1. 有向线段:具有方向的线段叫做有向线段,在有向线段的终点处画上箭头表示它的方向.以A 为始点,B 为终点的有向线段记作AB ,注意:始点一定要写在前面,已知AB ,线段AB 的长度叫做有向线段AB 的长(或模),AB 的长度记作AB ||.有向线段包含三个要素:始点、方向和长度.2. 向量:具有大小和方向的量叫做向量,只有大小和方向的向量叫做自由向量.在本章中说到向量,如不特别说明,指的都是自由向量.一个向量可用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.用有向线段AB 表示向量时,我们就说向量AB .另外,在印刷时常用黑体小写字母a 、b 、c 、…等表示向量;手写时可写作带箭头的小写字母a 、b 、c 、…等.与向量有关的概念有:(1) 相等向量:同向且等长的有向线段表示同一向量或相等的向量.向量a 和b 同向且等长,即a 和b 相等,记作a =b .(2) 零向量:长度等于零的向量叫做零向量,记作0.零向量的方向不确定.(3) 位置向量:任给一定点O 和向量a ,过点O 作有向线段OA a =,则点A 相对于点O 的位置被向量a 所唯一确定,这时向量a 又常叫做点A 相对于点O 的位置向量.(4) 相反向量:与向量a 等长且方向相反的向量叫做向量a 的相反向量,记作a -.显然,()0a a +-=.(5) 单位向量:长度等于1的向量,叫做单位向量,记作e .与向量a 同方向的单位向量通常记作0a ,容易看出:0a a a =│ │. (6) 共线向量(平行向量):如果表示一些向量的有向线段所在的直线互相平行或重合,即这些向量的方向相同或相反,则称这些向量为共线向量(或平行向量).向量a 平行于向量b ,记作a ∥b .零向量与任一个向量共线(平行).三、典型例题:例:在四边形ABCD 中,如果AB DC =且AB BC =│ │ │ │ ,那么四边形ABCD 是哪种四边形? 四、归纳小结:1. 用位置向量可确定一点相对于另一点的位置,这是用向量研究几何的依据.2. 共线向量(平行向量)可能有下列情况: (1)有一个为零向量;(2)两个都为零向量;(3)方向相同,模相等(即相等向量);(4)方向相同,模不等;(5)方向相反,模相等;(6)方向相反,模不等.五、基础知识训练:(一)选择题:1. 下列命题中: (1)向量只含有大小和方向两个要素. (2)只有大小和方向而无特定的位置的向量叫自由向量. (3)同向且等长的有向线段表示同一向量或相等的向量. (4)点A 相对于点B 的位置向量是BA . 正确的个数是( )A.1个B.2个C.3个D.4个2. 设O 是正△ABC 的中心,则向量,,AO OB OC 是( )A.有相同起点的向量B.平行向量C.模相等的向量D.相等向量3. a b =的充要条件是( )A.a b =│ │ │ │ B.a b =│ │ │ │ 且a b ∥ []l C.a b ∥ D.a b =│ │ │ │ 且a 与b 同向 4. AA BB ''=是四边形ABB A ''是平行四边形的( )A.充分条件B.必要条件C.充要条件D.既非充分又非必要条件5. 依据下列条件,能判断四边形ABCD 是菱形的是( )A.AD BC =B.AD BC ∥且AB CD ∥C.AB DC =且AB AD =│ │ │ │ D.AB DC =且AD BC = 6. 下列关于零向量的说法中,错误的是( )A.零向量没有方向B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向任意7. 设与已知向量a 等长且方向相反的向量为b ,则它们的和向量a b +等于( )A.0B.0C.2aD.2b(二)填空题:8. 下列说法中: (1)AB 与BA 的长度相等 (2)长度不等且方向相反的两个向量不一定共线 (3)两个有共同起点且相等的向量,终点必相同(4)长度相等的两个向量必共线。

(完整版)北师大版数学必修4《平面向量的坐标表示及其运算》同步导学练习案附思维导图答案解析

(完整版)北师大版数学必修4《平面向量的坐标表示及其运算》同步导学练习案附思维导图答案解析

第5课时平面向量的坐标表示及其运算、课程学习目标1. 掌握向量的正交分解及坐标表示,理解直角坐标系中磁的特殊意义•2. 理解向量坐标的定义,并能正确用坐标表示坐标平面上的向量,对起点不在原点的平面向量能利用向量相等的关系来用坐标表示3. 会用坐标表示平面向量的加、减与数乘运算4. 理解用坐标表示平面向量共线的条件左知识记忆与理解二I靠学区■不看不讲W Jfi ‘IRgieF■’TV]知识徉系梳理iisva足球运动员在踢足球的过程中,将球踢出时的一瞬间的速度为U.能否建立适当的坐标系,表示踢出时的水平速度和竖直速度?能不能用水平方向和竖直方向的单位向量来表示这个速度呢?问题1:平面向量的正交分解把一个向量分解为两个 ___________ 的向量的线性表示,叫作向量的正交分解,向量的正交分解是平面向量基本定理的特例,即当基底e i、e2 _______________ 时的情况.问题2:平面向量的坐标表示在平面直角坐标系内,分别取与x轴,y轴方向相同的两个单位向量i、j作为基底,a为坐标平面内的任意向量,如图,以坐标原点0为起点作;^=a,由平面向量基本定理可知,一对实数x,y,使得碘僅 _________ ,因此a=xi+yj.我们把实数对__________ 叫作向量a的坐标,记作___________ .问题3:平面向量在坐标表示下的线性运算(1) 向量和的坐标运算:若a=(x i, y i),b=(X2, y2),则a+b= ____________ .即两个向量的和的坐标等于这两个向量相应坐标的和(2) 向量差的坐标运算:若a=(x i, y i),b=(X2, y2),则a-b= ______________ .即实数与向量的差的坐标等于这两个向量相应坐标的差(3) 实数与向量的积的坐标运算:设入€ R, a=(x, y),贝U入a= __________ .即实数与向量的乘积的坐标分别等于实数与相应坐标的乘积⑷漏的坐标表示:若A(x i, y i), B(X2, y",则凤菸.一-丽= ________________________ .即一个向量的坐标等于其终点的相应坐标减去起点的相应坐标:量知行j lin,若a=(3,4),则a可以用).B a= 3i- 4j C.a=- 3i+ 4j D.a= 4i+ 3ja=(1,2), b=(-2, m),且a// b,则2a+3b=( ).B(-3,-6) C. (-4,-8) D. (-5, -10)入二.思维探究与创新J第二层级\导学凰讦辺栉A ft A A童点港点探究()««-平面向量的正交分解在直角坐标系xOy中,向量a, b的位置如图所示,已知|a|= 4, |b|= 3,且 / AOx=45° , / OAB=05° ,分别求向量a, b的坐标及A、B点的坐标.平面向量的坐标运算已知点A(-1,2),巳2,8)及.=爾,卜,-:!=*.疣,求点C、D和广门的坐标."三平行向量的坐标运算已知四边形ABCD勺顶点依次为A(0, -x), B(x2,3), C(x,3), D(3x,x+4),若AB// CD求x 的值.才A K A他力JMMt思维拓展应用直用一在平面内以点O的正东方向为x轴的正方向,正北方向为y轴的正方向建立直角坐标系质点在平面内做直线运动.分别求下列位移向量的坐标.(1) 用向量表示沿东北方向移动了2个长度单位;(2) 用向量表示沿西偏北60°方向移动了3个长度单位;(3) 用向量表示沿东偏南30°方向移动了4个长度单位.已知A、B C的坐标分别为A(2, -4)、耳0,6)、C(-8,10),求向量一+2存-:黍的坐标.应用三已知a=(1,2), b=(-3,2),当k为何值时,ka+b与a-3b平行?平行时它们是同向还是反向用与9&展国孝区・不嵐不许世祀「It僅救虚幌、基础智能检测1. 设向量,.=(-2,-5),若点A的坐标为(3,7),则点B的坐标为().A (5,12) B. (12,5) C(2,1) D . (1,2)2. 已知点A(1,3), B(4, -1),则与向量乔?同方向的单位向量为().A(f,峙)B. (£,-吉C (-謠)D.(看)3. 已知边长为单位长度的正方形ABCP若A与坐标原点重合,边AB AD分别落在x轴、y轴正方向上,则向量2._+3_._+評的坐标为 ________ .4. 已知平行四边形ABC啲三个顶点ABC的坐标分别为(-2,1)、(-1,3)、(3,4),求顶点D 的坐标.料样・鼻祀5槻* $丄杞全新视角拓嚴(2013年•陕西卷)已知向量a=(1, m), b=(m2), 若a// b,则实数m等于().A-‘历B血 C.-桎或洛 D. 0考题变式(我来改编):第5课时 平面向量的坐标表示及其运算知识体系梳理问题1:相互垂直垂直答案学滋社卞,'1歩•表朱1细> illl.t : .71-: ff :讥位n|fiO tJ J .<■卡初内杆:一向» 0 .邙几刊一引W ®S|需国刃为向踐■的喙喬表亦”记作■二¥腐向ft的世孙袁拆1li'JBf'^j 的舉标址算"他』)上赳知加上」4l"ia屮舟41*比・蛊屣嘉車忧・学习体验分事问题 2:有且仅有 xi+yj (x , y ) a=( x , y )问题 3:(1)( X 1+X 2, y i +y 2) (2)( X 1-X 2, y i -y 2)(3)(入 x,入 y)(4)( X 1-X 2, y i -y 2)问题 4: a=Xb (入 X 2,入 y2) 入 X 2 Xy 2 X i y 2-X 2y i =0 零 = 成比例 T-a "W M基础学习交流 1. A a=(3,4) =3i+ 4j.2. C 由 a=(i,2), b=(-2, m ),且 a // b ,得 i x m=2X (-2)?m=4,从而 b=(-2, -4),那么 2a+3b=2X (i,2) +3 X (-2, -4) =(-4, -8).3.2 •.•入 a+b=(入+ 2,2 入+3)与 c=(-4,-7)共线,A (入+2) X (-7)-(2 入+3) X (-4) =0,解得入二2.4.解:⑴ a+b=(-i,2) +(3, -5) =(-i +3,2 -5)=(2, -3), a-b=(-i,2) -(3, -5) =(-i -3,2 +5) =(-4,7),2 a+3b=2(-i,2)+3(3, -5) =(-2+9,4-i5) =(7, -ii).(2)3 a-b+c=3(i, -3)-(-2,4) +(0,5) =(3, -9) -(-2,4) +(0,5) =(3+2+0, -9-4+5) =(5, -8). 重点难点探究探究一:【解析】设 a=(a i , a 2), b=( b i , b 2), ■/ Z AOx=5°, Aa i =|a| cos 45 ° =4X =2J*a 2=|a| sin 45 ° =4X 字=2界,A a=(2 搭,2 叔)=y ,AA 点的坐标为(2嵌,2雨).将b 的起点平移至原点,令b 的终点为B', 由题意可知Z B'Ox=i20°,所以 b i =|b| cos i20 ° =3X (-.)=-], b 2=|b| sin i20 ° =3X 手•• b =(-,).又•/ b=^=.-- %:•••一 =b+. =(2 J?- ,2 .+ ). 故 a=(2 - ,2), b=(--,^^), A 点的坐标为(2 讹£,2皿-),B 点的坐标为(2 --.,2 .+•).【小结】(i)相等向量的坐标是相同的,而它们的起点、终点坐标可以不同.在解决很多 问题时,常常需要把始点不在原点的向量移到原点 .(2) 起点在原点的向量终点坐标即为向量坐标,起点不在原点的向量的坐标为终点坐标减去起点坐标.求终点坐标时可用起点坐标加上向量坐标(3) 若已知向量a=(x ,y ), a 的模为|a| , a 的方向与 定义可知,x=|a| cos e , y=|a| sin e.要注意公式中的 角.探究二:【解析】 设点乳=(X i +i, y i - 2),皿;=(3,6),曲;=(-i -x 2,2 -y 2), •.•朋=;抄:,兀=冷丽,/. (X i +i,y i -2) = (3,6) =(i,2), (-i -x 2,2 -y 2)=-; 贝U 有-和 解得 「和. A 点 C D 的坐标分别为(0,4)和(-2,0), ,=(-2,-4).【小结】求点的坐标时,可先设点的坐标,根据题中给出的关系,列出方程组求解即可. 探究三:【解析】T AB// CD A :- //亠,X 轴正方向的夹角为e ,由三角函数的 e是向量a 的方向与X 轴正方向的夹C (x i , y i ),D (X 2, y 2), 由 题意得-3,-6) =(i,2),f-L-xa = 1,)"J —Il J—学一乙- 2 ■又:,=(x , x+3)^ _ =(2x, x+1),2•••x (x+1)-2x(x+3)=0,解得x=- 2或x=0或x=3.[问题]上述解法正确吗?[结论]不正确,错误一:没有注意四边形ABC□顶点的顺序,需满足,亠,…反向才行• 错误二:没有注意向量的平行与线段平行的不同,一 // 一一时,AB与CD可能平行也可能重合.=-.(10,-4) =-_(a-3b).k=-.,且此时ka+b与a-3b平行,并且反向.(法二)由题意知ka+b=(k-3,2 k+2), a-3b=(10, -4),当ka+b与a-3b平行时,存在唯一实数入, 使ka+b=X (a-3b),由(k-3,2 k+2) = X (10, -4),•••当k=-时,ka+b 与a-3b 平行, 这时ka+b=-. ( a- 3b).V O, 向相反.• k=-.,此时ka+b与a-3b平行,并且反向基础智能检测1. D 设点 B 的坐标为(x, y),..=(x,y)_. =(3,7), 」=..-丽[=(x-3,y-7)=(-2,-5), •_ 解得叮二2. A :_=(3, -4),所以| 一 |=5,这样同方向的单位向量是=(,-),选A.3.于是,正确解答如下:札话=(x1 2 3, x+3), T;=(2X, x+1),•••在四边形ABCD^ ,AB// CD二嘉与莎平行且反向.J JHL- H_dflL ■皿■ a-V J -------解得x=-2.C Q ■ -TT% 、h fh曰,是经检验,x=- 2满足题意.【小结】两个向量平行包括它们对应的有向线段不共线和共线两种情况背景的向量平行中就要排除共线的情况不能在同一条直线上且反向平行思维拓展应用应用一:设(1)(2)(3) F(X1, yd,Q X2, y2), R>3, y3).,但在含有几何,如本题中要保证ABC是四边形就要注意向量歹?一的向量分另U为乩=a,=b,乔?=c,并设(*-a = ia^ b办+ 7 —-J.3解得(3,4) 如图,建立直角坐标系,有A(0,0), B(1,0), Q1,1), Q0,1),即一 =(1,0),諮=(0,1),..=(1,1),则有2」+3-- + ..=(2,0) +(0,3) +(1,1) =(3,4).4.解:设顶点D的坐标为(x, y).亠=(-1-(-2),3 -1)=(1,2), =(3-x ,4-y),由乔=…,得(1,2) =(3 -x ,4 -y)..i 一…:. -…1戈二4-V,…5 =亍・•顶点D的坐标为(2,2).全新视角拓展C 因为a=(1, n)i, b=(m2),且a// b,所以1 ^2 =m- n? m=±^,所以选C.思维导图构建xi+yj (x, y) (X1±X2, y1 ±y2) (入X1, Xy 1) (x2-x 1, y2-y 1) X1y2=X2y1(1) 如图,因为/ POP'=45°, | 裕|=2,所以a=^=-F+^=^i+;.^j ,所以a=(羽,屜).(2) 因为/ QOQ'=O°,同|=3,所以b=^=吋+.. 一玉血=-i+一j ,所以b=(二,竽).(3) 因为/ ROR'=30°, | 巫|=4,所以c=^?=..七屜=2阀i- 2j ,所以C=(2 •.画,-2).应用二:A(2, -4)、B(0,6)、C(-8,10),得,=(-2,10),…=(-8,4), ..=(-10,14),•••忌+2站-蘇=(-2,10) +2( - 8,4) - (-10,14)=(-2,10) +(-16,8) -(-5,7)=(-18,18) -(-5,7)=(-13,11).应用三:(法一)ka+b=k(1,2) +(-3,2) =( k- 3,2 k+2), a-3b=(1,2) -3(-3,2) =(10, -4).■/ (ka+b) //( a- 3b),• (k- 3) X (-4)-10(2 k+2) =0,解得k=-. 此时ka+b=(-討-3, - +2) =( - ,-)。

平面向量知识点+例题+练习+答案

平面向量知识点+例题+练习+答案

五、平面向量1.向量的概念①向量 既有大小又有方向的量。

向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a |。

向量不能比较大小,但向量的模可以比较大小。

向量表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。

如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。

向量和数量的区别:向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。

如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0))②零向量长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ⇔|a |=0。

由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。

(注意与0的区别)③单位向量 模为1个单位长度的向量,向量0a 为单位向量⇔|0a |=1。

(与AB 共线的单位向量是||AB AB ±);④平行向量(共线向量)方向相同或相反的非零向量。

任意一组平行向量都可以移到同一直线上,方向相同或相反的向量,称为平行向量,记作a ∥b ,规定零向量和任何向量平行。

由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。

提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线;数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的。

高一第二册数学知识点思维导图

高一第二册数学知识点思维导图

高一第二册数学知识点思维导图一、函数与方程1. 函数的定义和性质1.1 函数的概念1.2 函数的性质2. 一次函数与二次函数2.1 一次函数的性质与图像2.2 二次函数的性质与图像3. 指数函数与对数函数3.1 指数函数的定义和性质3.2 对数函数的定义和性质4. 幂函数与反比例函数4.1 幂函数的定义和性质4.2 反比例函数的定义和性质5. 方程的解及图像5.1 方程的解5.2 方程的图像二、三角函数与解三角形1. 三角函数的基础知识1.1 弧度制与角度制1.2 三角函数的定义和性质2. 三角函数的图像与性质2.1 正弦函数的图像与性质 2.2 余弦函数的图像与性质2.3 正切函数的图像与性质3. 三角函数的计算3.1 三角函数的基本关系式3.2 三角函数的合并与分解4. 解三角形的基本概念4.1 直角三角形的解析4.2 一般三角形的解析三、数列与数学归纳法1. 等差数列与等比数列1.1 等差数列的基本性质1.2 等比数列的基本性质2. 数列的递推关系与通项公式2.1 等差数列的递推关系与通项公式2.2 等比数列的递推关系与通项公式3. 数列的求和3.1 等差数列的求和3.2 等比数列的求和4. 数学归纳法的基本概念4.1 数学归纳法的思想和原理4.2 数学归纳法的应用四、平面向量与立体几何1. 平面向量的基础知识1.1 平面向量的定义和性质1.2 平面向量的运算法则2. 点、直线、平面与向量的关系2.1 点与向量的关系2.2 直线与向量的关系2.3 平面与向量的关系3. 空间向量与立体几何的基础概念 3.1 空间向量的定义和性质3.2 空间几何的基本公理4. 空间直线与平面的位置关系4.1 空间直线与平面的相交关系4.2 平行与垂直的判定五、概率论与数理统计1. 随机事件与概率的基础知识1.1 随机事件的概念和性质1.2 概率的定义和性质2. 随机变量与概率分布2.1 随机变量的概念和性质2.2 概率分布的基本概念和形式3. 统计与估计3.1 统计的基本概念和方法3.2 参数估计的基本原理和方法4. 假设检验与方差分析4.1 假设检验的基本概念和过程4.2 方差分析的基本原理和应用六、数学证明与数学建模1. 数学证明的基本方法1.1 直接证明法和间接证明法1.2 数学归纳法的证明方法2. 常见数学定理与证明2.1 勾股定理及其证明2.2 平行线定理及其证明2.3 傅里叶级数展开及其证明3. 数学建模的基本步骤3.1 建立模型的思路和方法3.2 模型求解的策略和技巧以上是高一第二册数学知识点的思维导图,通过这个思维导图,你可以清晰地了解到该册数学所包含的内容。

《平面向量的线性运算》考点讲解复习与同步训练

《平面向量的线性运算》考点讲解复习与同步训练

《6.2.1 平面向量的线性运算》考点讲解【思维导图】【常见考法】考法一 向量的加法运算【例1-1】如图,在下列各小题中,已知向量a 、b ,分别用两种方法求作向量a b +.【例1-2】如果a 表示“向东走10km ”, b 表示“向西走5km ”, c 表示“向北走10km ”, d 表示“向南走5km ”,那么下列向量具有什么意义? (1)a a +;(2)a b +;(3)a c +;(4)b d +;(5)b c b ++;(6)d a d ++.【例1-3】向量()()AB MB BO BC OM ++++﹒化简后等于( )A.AMB.0C.0D.AC 【例1-4】已知点D ,E ,F 分别是△ABC 各边的中点,则下列等式中错误的( )A .FD DA FA +=B .0FD DE EF ++=C .DE DA EC +=D .DE DA FD +=【一隅三反】1.如图,已知向量a ,b ,c ,求作和向量a +b +c .2.在平行四边形ABCD 中,AB AD +等于( )A .ACB .BDC .BCD .CD3.(多选)如图,在平行四边形ABCD 中,下列计算正确的是( )A .AB AD AC +=B .AC CD DO OA ++= C .AB AD CD AD ++= D .0AC BA DA ++=4.化简(1)BC →+AB →; (2)AO →+BC →+OB →; (3)AB →+DF →+CD →+BC →+FA →.(4)DB →+CD →+BC →; (5)(AB →+MB →)+BO →+OM →.考法二 向量的减法运算【例2-1】如图,在各小题中,已知,a b ,分别求作a b -.【例22-2】.化简下列各式:①()AB CB CA --;②AB AC BD CD -+-;③OA OD AD -+;④NQ QP MN MP ++-.其中结果为0的个数是( )A .1B .2C .3D .4【一隅三反】1.如图,已知向量,,,a b c d ,求作向量a b -,c d -.2.如图,已知向量a ,b ,c ,求作向量a -b -c .3.在五边形ABCDE 中(如图),AB BC DC +-=( )A .ACB .ADC .BD D .BE 4.化简AB CD AC BD --+=______.5.化简(1)(AB →-CD →)-(AC →-BD →) (2)OA →-OD →+AD →;(3)AB →+DA →+BD →-BC →-CA →.考法三 向量的数乘的运算【例3-1】把下列各小题中的向量b 表示为实数与向量a 的积:(1)3a e =,6b e =;(2)8a e =,14b e =-;(3)23a e =-,13b e =; (4)34a e =-,23b e =-.【例3-2】如图,OADB 是以向量,OA a OB b ==为边的平行四边形,又11,33BM BC CN CD ==,试用,a b 表示,,OM ON MN .【一隅三反】1.计算:(1)(3)4a -⨯;(2)3()2()a b a b a +---;(3)(23)(32)a b c a b c +---+.2.化简:(1)()()522423a b b a -+-;(2)()()634a b c a b c -+--+-; (3)()()113256923a b a a b ⎡⎤-+--⎢⎥⎣⎦; (4)()()()()x y a b x y a b -+---.3.如图,解答下列各题:(1)用,,a d e 表示DB ;(2)用,b c 表示DB ;(3)用,,a b e 表示EC ;(4)用,d c 表示EC .考法四 向量的共线定理【例4-1】判断向量,a b 是否共线(其中1e ,2e 是两个非零不共线的向量):(1)113,9a e b e ==-; (2)121211,3223a e eb e e =-=-; (3)1212,33a e e b e e =-=+.【例4-2】 (1)已知向量12,e e 不共线,若12210AB e e =+,1228BC e e =-+,()123CD e e =-,试证:,,A B D 三点共线.(2)设12,e e 是两个不共线向量,已知122AB e ke =+,123CB e e =+,122CD e e =-,若,,A B D 三点共线,求k 的值.【一隅三反】1.判断下列各小题中的向量a ,b 是否共线(其中12,e e 是两个非零不共线向量).(1)115,10a e b e ==-;(2)121211,3223a e eb e e =-=-; (3)1212,33a e e b e e =+=-.2.设,a b 是不共线的两个非零向量.(1)若233OA a b OB a b OC a b =-=+=-,,,求证:A B C ,,三点共线;(2)若8a kb +与2ka b +共线,求实数k 的值;(3)若232AB a b BC a b CD a kb =+=-=-,,,且A C D ,,三点共线,求实数k 的值.3.O 为ABC ∆内一点,且20OA OB OC ++=,AD t AC =,若B ,O ,D 三点共线,则t 的值为( )A .13 B .14 C .12 D .23《6.2.1 平面向量的线性运算(精讲)》考点讲解答案解析考法一 向量的加法运算【例1-1】如图,在下列各小题中,已知向量a 、b ,分别用两种方法求作向量a b +.【答案】见解析【解析】将b 的起点移到a 的终点,再首尾相接,可得a b +;将两个向量的起点移到点A ,利用平行四边形法则,以a 、b 为邻边,作出平行四边形,则过点A 的对角线为向量a b +.如图所示,AB a b =+.(1);(2);(3) ;(4).【例1-2】如果a 表示“向东走10km ”, b 表示“向西走5km ”, c 表示“向北走10km ”, d 表示“向南走5km ”,那么下列向量具有什么意义? (1)a a +;(2)a b +;(3)a c +;(4)b d +;(5)b c b ++;(6)d a d ++.【答案】(1)向东走20km ;(2)向东走5km ;(3)向东北走;(4)向西南走;(5)向西北走;(6)向东南走.【解析】由题意知:a 表示“向东走10km ”, b 表示“向西走5km ”, c 表示“向北走10km ”, d 表示“向南走5km ”(1)a a +表示“向东走20km ”(2)a b +表示“向东走5km ”(3)a c +表示“向东北走”(4)b d +表示“向西南走”(5)b c b ++表示“向西北走”(6)d a d ++表示“向东南走”【例1-3】向量()()AB MB BO BC OM ++++﹒化简后等于( )A.AMB.0C.0D.AC 【答案】D【解析】()()AB MB BO BC OM AB BO OM MB BC AO OM MB BC ++++=++++=+++ AM MB BC AB BC AC =++=+=, 故选D.【例1-4】已知点D ,E ,F 分别是△ABC 各边的中点,则下列等式中错误的( )A .FD DA FA +=B .0FD DE EF ++=C .DE DA EC +=D .DE DA FD +=【答案】D 【解析】由题意,根据向量的加法运算法则,可得FD DA FA +=,故A 正确; 由0FD DE EF FE EF ++=+=,故B 正确;根据平行四边形法则,可得DE DA DF EC =+=,故C 正确,D 不正确.故选:D.【一隅三反】1.如图,已知向量a ,b ,c ,求作和向量a +b +c .【答案】见解析【解析】 方法一 可先作a +c ,再作(a +c )+b ,即a +b +c .如图①,首先在平面内任取一点O ,作向量OA →=a ,接着作向量AB →=c ,则得向量OB →=a +c ,然后作向量BC →=b ,则向量OC→=a +b +c 为所求.① ②方法二 三个向量不共线,用平行四边形法则来作.如图②,(1)在平面内任取一点O ,作OA →=a ,OB →=b ;(2)作平行四边形AOBC ,则OC →=a +b ;(3)再作向量OD →=c ; (4)作平行四边形CODE ,则OE →=OC →+c =a +b +c .即OE →即为所求.2.在平行四边形ABCD 中,AB AD +等于( )A .ACB .BDC .BCD .CD【答案】A【解析】根据向量加法的平行四边形法则可得AB AD AC +=,故选:A.3.(多选)如图,在平行四边形ABCD 中,下列计算正确的是( )A .AB AD AC +=B .AC CD DO OA ++= C .AB AD CD AD ++=D .0AC BA DA ++=【答案】ACD 【解析】由向量加法的平行四边形法则可知AB AD AC +=,故A 正确;AC CD DO AD DO AO OA ++=+=≠,故B 不正确;AB AD CD AC CD AD ++=+=,故C 正确;0AC BA DA BA AC DA BC DA ++=++=+=,故D 正确.故选:ACD. 4.化简(1)BC →+AB →; (2)AO →+BC →+OB →; (3)AB →+DF →+CD →+BC →+FA →.(4)DB →+CD →+BC →; (5)(AB →+MB →)+BO →+OM →.【答案】(1)AC →(2)AC →(3)0(4)0(5)AB →【解析】 (1)BC →+AB →=AB →+BC →=AC →.(2)AO →+BC →+OB →=AO →+OB →+BC →=AB →+BC →=AC →.(3)AB →+DF →+CD →+BC →+FA →=AB →+BC →+CD →+DF →+FA →=AC →+CD →+DF →+FA →=AD →+DF →+FA →=AF →+FA →=0.(4)DB →+CD →+BC →=BC →+CD →+DB →=BD →+DB →=0.(5)方法一 (AB →+MB →)+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB →.方法二 (AB →+MB →)+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0=AB →.方法三 (AB →+MB →)+BO →+OM →=(AB →+BO →+OM →)+MB →=AM →+MB →=AB →.考法二 向量的减法运算【例2-1】如图,在各小题中,已知,a b ,分别求作a b -.【答案】见解析【解析】将,a b 的起点移到同一点,再首尾相接,方向指向被减向量,如图,BA a b =-,(1) (2)(3) (4)【例22-2】.化简下列各式:①()AB CB CA --;②AB AC BD CD -+-;③OA OD AD -+;④NQ QP MN MP ++-.其中结果为0的个数是( )A .1B .2C .3D .4 【答案】D【解析】①()0AB CB CA AB BC CA AC CA --=++=+=;②()()0AB AC BD CD AB BD AC CD AD AD -+-=+-+=-=;③0OA OD AD DA AD -+=+=;④0NQ QP MN MP NP PN ++-=+=;以上各式化简后结果均为0,故选:D【一隅三反】1.如图,已知向量,,,a b c d ,求作向量a b -,c d -.【答案】见解析【解析】如下图所示,在平面内任取一点O ,作OA a =,OB b =,OC c =,OD d =,则BA a b =-,DC c d =-.2.如图,已知向量a ,b ,c ,求作向量a -b -c .【答案】见解析【解析】在平面内任取一点O ,作向量OA →=a ,OB →=b ,则向量a -b =BA →,再作向量BC →=c ,则向量CA →=a -b -c .3.在五边形ABCDE 中(如图),AB BC DC +-=( )A .ACB .ADC .BD D .BE【答案】B 【解析】AB BC DC AB BC CD AD +-=++=.故选:B4.化简AB CD AC BD --+=______.【答案】0【解析】0AB CD AC BD AB BD DC CA --+=+++=.故答案为:0.5.化简(1)(AB →-CD →)-(AC →-BD →) (2)OA →-OD →+AD →;(3)AB →+DA →+BD →-BC →-CA →.【答案】(1)0⃑ (2)0⃑ (3)AB →【解析】(1)方法一(统一成加法) (AB →-CD →)-(AC →-BD →)=AB →-CD →-AC →+BD →=AB →+DC →+CA →+BD →=AB →+BD →+DC →+CA →=AD →+DA →=0.方法二(利用OA →-OB →=BA →) (AB →-CD →)-(AC →-BD →)=AB →-CD →-AC →+BD →=(AB →-AC →)-CD →+BD →=CB →-CD →+BD →=DB →+BD →=0.方法三(利用AB →=OB →-OA →) 设O 是平面内任意一点,则(AB →-CD →)-(AC →-BD →)=AB →-CD →-AC →+BD →=(OB →-OA →)-(OD →-OC →)-(OC →-OA →)+(OD →-OB →)=OB →-OA →-OD →+OC →-OC →+OA →+OD →-OB →=0. (2)OA →-OD →+AD →=OA →+AD →-OD →=OD →-OD →=0.(3)AB →+DA →+BD →-BC →-CA →=AB →+DA →+BD →+CB →+AC →=(AB →+BD →)+(AC →+CB →)+D A →=AD →+AB →+DA →=AD →+DA →+AB →=0+AB →=AB →.考法三 向量的数乘的运算【例3-1】把下列各小题中的向量b 表示为实数与向量a 的积:(1)3a e =,6b e =;(2)8a e =,14b e =-;(3)23a e =-,13b e =; (4)34a e =-,23b e =-. 【答案】(1)2b a =;(2)74b a =-;(3)12b a =-;(4)89b a =. 【解析】(1)623b e e ==⨯,2b a =;(2)71484b e e =-=-⨯,74b a =-; (3)112()323b e e ==-⨯-,12b a =-; (4)283()394b e e =-=⨯-,89b a =. 【例3-2】如图,OADB 是以向量,OA a OB b ==为边的平行四边形,又11,33BM BC CN CD ==,试用,a b 表示,,OM ON MN .【答案】1566OM a b =+,2233ON a b =+,1126MN a b =- 【解析】14222,()33333CN CD ON OC OA OB a b =∴==+=+ 11,,36BM BC BM BA =∴= 1()6OM OB BM OB OA OB ∴=+=+-1566a b =+ 1126MN ON OM a b ∴=-=- 【一隅三反】1.计算:(1)(3)4a -⨯;(2)3()2()a b a b a +---;(3)(23)(32)a b c a b c +---+.【答案】(1)12a -;(2)5b ;(3)52a b c -+-.【解析】(1)原式(34)12a a =-⨯=-;(2)原式33225a b a b a b =+-+-=;(3)原式233252a b c a b c a b c =+--+-=-+-.2.化简:(1)()()522423a b b a -+-;(2)()()634a b c a b c -+--+-; (3)()()113256923a b a a b ⎡⎤-+--⎢⎥⎣⎦; (4)()()()()x y a b x y a b -+---.【答案】(1)22a b --;(2)102210a b c -+;(3)132a b +;(4)2()x y b - 【解析】(1)()()522423101081222a b b a a b b a a b -+-=-+-=--.(2)()()6346186444102210a b c a b c a b c a b c a b c -+--+-=-++-+=-+. (3)()()()()1115113256932693232262a b a a b a b a a b a b ⎡⎤-+--=-+--=+⎢⎥⎣⎦. (4)()()()()()()()2x y a b x y a b x y x y a x y x y b x y b -+---=--++-+-=-.3.如图,解答下列各题:(1)用,,a d e 表示DB ;(2)用,b c 表示DB ;(3)用,,a b e 表示EC ;(4)用,d c 表示EC .【答案】(1)DB d e a =++.(2)DB b c =--.(3)EC e a b =++.(4)EC c d =--.【解析】由题意知,AB a =,BC b =,CD c =,DE d =,EA e =,则(1)DB DE EA AB d e a =++=++.(2)DB CB CD BC CD b c =-=--=--.(3)EC EA AB BC e a b =++=++.(4)()EC CE CD DE c d =-=-+=--.考法四 向量的共线定理【例4-1】判断向量,a b 是否共线(其中1e ,2e 是两个非零不共线的向量):(1)113,9a e b e ==-; (2)121211,3223a e eb e e =-=-; (3)1212,33a e e b e e =-=+.【答案】(1)共线,(2)共线,(3)不共线.【解析】(1)∵113,9a e b e ==-,∴3b a =-,∴,a b 共线.(2)∵1211,23a e e =-12121132623b e e e e ⎛⎫=-=- ⎪⎝⎭,∴6b a =,∴,a b 共线. (3)假设()b a λλ=∈R ,则()121233e e e e λ+=-,∴12(3)(3)0e e λλ-++=. ∵12,e e 不共线,∴30,30.λλ-=⎧⎨+=⎩此方程组无解.∴不存在实数λ,使得b a λ=,∴,a b 不共线.【例4-2】 (1)已知向量12,e e 不共线,若12210AB e e =+,1228BC e e =-+,()123CD e e =-,试证:,,A B D 三点共线.(2)设12,e e 是两个不共线向量,已知122AB e ke =+,123CB e e =+,122CD e e =-,若,,A B D 三点共线,求k 的值.【答案】(1)见解析(2)-8【解析】(1)()1212122835BD BC CD e e e e e e =+=-++-=+,12210AB e e =+, 2AB BD ∴=,BD ∴与AB 共线.又BD 与AB 有公共点B ,,,A B D ∴三点共线.(2)()()121212234BD CD CB e e e e e e =-=--+=-. ,,A B D 三点共线,,AB BD ∴共线.∴存在实数λ使AB BD λ=,即()121224e ke e e λ+=-. 12(2)(4)e k e λλ∴-=--.1e 与2e 不共线,24k λλ=⎧∴⎨=-⎩,,8k ∴=-. 【一隅三反】1.判断下列各小题中的向量a ,b 是否共线(其中12,e e 是两个非零不共线向量).(1)115,10a e b e ==-;(2)121211,3223a e eb e e =-=-;(3)1212,33a e e b e e =+=-.【答案】(1) a 与b 共线;(2) a 与b 共线;(3) a 与b 不共线.【解析】(1)∵2b a =-,∴a 与b 共线.(2)∵16a b =,∴a 与b 共线. (3)设a b =λ,则()121233e e e e λ+=-,∴12(13)(13)0e e λλ-++=.∵1e 与2e 是两个非零不共线向量,∴130λ-=,130λ+=.这样的λ不存在,∴a 与b 不共线. 2.设,a b 是不共线的两个非零向量.(1)若233OA a b OB a b OC a b =-=+=-,,,求证:A B C ,,三点共线;(2)若8a kb +与2ka b +共线,求实数k 的值;(3)若232AB a b BC a b CD a kb =+=-=-,,,且A C D ,,三点共线,求实数k 的值.【答案】(1)证明见解析;(2)4±.(3)43k =. 【解析】证明:(1)22AB OB OA a b AC OC OA a b =-=+=-=--,,所以AC AB =-. 又因为A 为公共点,所以A B C ,,三点共线.(2)设()82a kb ka b λλ+=+∈R ,,则82k k λλ=⎧⎨=⎩,,解得42k λ=⎧⎨=⎩,或42k λ=-⎧⎨=-⎩,, 所以实数k 的值为4±.(3)()()2332AC AB BC a b a b a b =+=++-=-,因为A C D ,,三点共线,所以AC 与CD 共线.从而存在实数μ使AC CD μ=,即()322a b a kb μ-=-,得322.k μμ=⎧⎨-=-⎩,解得324.3k μ⎧=⎪⎪⎨⎪=⎪⎩,所以43k =. 3. O 为ABC ∆内一点,且20OA OB OC ++=,AD t AC =,若B ,O ,D 三点共线,则t 的值为( )A .13B .14C .12D .23【答案】A【解析】由AD t AC =有()OD OA t OC OA -=-,所以(1)OD tOC t OA =+-,因为B ,O ,D 三点共线,所以BO OD λ=,则2(1)OA OC tOC t OA λλ+=+-,故有2(1){1t tλλ=-=,13t =,选A.《6.2 1 平面向量的线性运算》同步练习【题组一 向量的加法运算】1.化简.(1)AB CD BC DA +++.(2)()()AB MB BO BC OM ++++.2.下列四式不能化简为AD 的是( )A .MB AD BM +-B .()()AD MB BC CM +++ C .()AB CD BC ++ D .OC OA CD -+ 3.(1)如图(1),在ABC 中,计算AB BC CA ++;(2)如图(2),在四边形ABCD 中,计算AB BC CD DA +++;(3)如图(3),在n 边形123n A A A A 中,12233411?n n n A A A A A A A A A A -+++++=证明你的结论.4.(1)已知向量a ,b ,求作向量c ,使0a b c ++=.(2)(1)中表示a ,b ,c 的有向线段能构成三角形吗?5.一艘船垂直于对岸航行,航行速度的大小为16/km h ,同时河水流速的大小为4/km h 求船实际航行的速度的大小与方向(精确到l °).6.一架飞机向北飞行300km ,然后改变方向向西飞行400km ,求飞机飞行的路程及两次位移的合成.【题组二 向量的减法运算】1.已知向量a ,b ,c ,求作a b c -+和()a b c --.2.化简:AB CB CD ED AE -+--=( )A .0B .ABC .BAD .CA3.化简:(1)AB BC CA ++; (2) ()AB MB BO OM +++;(3)OA OC BO CO +++; (4)AB AC BD CD -+-;(5)OA OD AD -+; (6)AB AD DC --;(7)NQ QP MN MP ++-.4.(多选)下列各式中,结果为零向量的是( )A .AB MB BO OM +++B .AB BC CA ++ C .OA OC BO CO +++D .AB AC BD CD -+-5.(多选)已知,a b 为非零向量,则下列命题中正确的是( )A .若a b a b +=+,则a 与b 方向相同B .若a b a b +=-,则a 与b 方向相反C .若a b a b +=-,则a 与b 有相等的模D .若a b a b -=-,则a 与b 方向相同【题组三 向量的数乘运算】1.化简:(1)5(32)4(23)a b b a -+-;(2)111(2)(32)()342a b a b a b -----;(3)()()x y a x y a +--.2.化简下列各式:(1)2(32)3(5)5(4)a b a b b a -++--;(2)1[3(28)2(42)]6a b a b +--.3.作图验证: (1)11()()22a b a b a ++-= (2)11()()22a b a b b +--=4.已知点B 是平行四边形ACDE 内一点,且AB = a ,AC = b ,AE = c ,试用,,a b c表示向量CD 、BC 、BE 、CE 及BD .4.如图,四边形OADB 是以向量OA a =,OB b =为边的平行四边形,又13BM BC =,13CN CD =,试用a 、b 表示OM 、ON 、MN .5.向量,,,,a b c d e 如图所示,据图解答下列问题:(1)用,,a d e 表示DB ;(2)用,b c 表示DB ;(3)用,,a b e 表示EC ;(4)用,d c 表示EC .【题组四 向量的共线定理】1.设12,e e 是两个不共线的向量,若向量()12a e e R λλ=+∈与()212b e e =--共线,则( )A .λ=0B .λ=-1C .λ=-2D .λ=-122.设,a b 是不共线的两个非零向量,已知2AB a pb =+,,2BC a b CD a b =+=-,若,,A B D 三点共线,则p 的值为( )A .1B .2C .-2D .-13.判断下列各小题中的向量a 与b 是否共线:(1)2a e =-,2b e =;(2)12a e e =-,1222b e e =-+.4.已知向量m ,n 不是共线向量,32a m n =+,64b m n =-,c m xn =+(1)判断a ,b 是否共线;(2)若a c ,求x 的值5.已知非零向量12,e e 不共线,且122AP e e =-,1234PB e e =-+,122CQ e e =--,1245QD e e =-,能否判定A ,B ,D 三点共线?请说明理由.6.设12,e e 是两个不共线向量,已知1228AB e e =-,123CB e e =+,122CD e e =-.若123BF e ke =-,且B ,D ,F 三点共线,求k 的值.7.已知12,e e 是两个不共线的向量,若1228AB e e =-,123CB e e =+,122CD e e =-,求证:A ,B ,D 三点共线.8.如图所示,在平行四边形ABCD 中,AD a = ,AB b =,M 为AB 的中点,点N 在DB 上,且2DN NB =.证明:M ,N ,C 三点共线.9.如图,点C 是点B 关于点A 的对称点,点D 是线段OB 的一个靠近点B 的三等分点,设,AB a AO b ==.(1)用向量a 与b 表示向量,OC CD ;(2)若45OE OA =,求证:C ,D ,E 三点共线.10.如图所示,已知D ,E 分别为ABC ∆的边AB ,AC 的中点,延长CD 至点M 使DM CD =,延长BE 至点N 使BE EN =,求证:M ,A ,N 三点共线.《6.2 1 平面向量的线性运算(精练)》同步练习答案解析【题组一 向量的加法运算】1.化简.(1)AB CD BC DA +++.(2)()()AB MB BO BC OM ++++. 【答案】(1)0;(2)AC .【解析】(1)0AB CD BC DA AB BC CD DA +++=+++=;(2)()()AB MB BO BC OM AB BO OM MB BC AC ++++=++++=.2.下列四式不能化简为AD 的是( )A .MB AD BM +-B .()()AD MB BC CM +++ C .()AB CD BC ++D .OC OA CD -+ 【答案】A【解析】对B ,()()AD MB BC CM AD MB BC CM AD +++=+++=,故B 正确; 对C ,()AB CD BC AB BC CD AD ++=++=,故C 正确;对D ,OC OA CD AC CD AD -+=+=,故D 正确;故选:A.3.(1)如图(1),在ABC 中,计算AB BC CA ++;(2)如图(2),在四边形ABCD 中,计算AB BC CD DA +++;(3)如图(3),在n 边形123n A A A A 中,12233411?n n n A A A A A A A A A A -+++++=证明你的结论.【答案】(1)0(2)0(3)0,见解析【解析】(1)0AB BC CA AC CA AC AC ++=+=-=(2)0AB BC CD DA AC CD DA AD DA AD AD +++=++=+=-=.(3)122334n 110n n A A A A A A A A A A -+++++=.证明如下:12233411n n n A A A A A A A A A A -+++++ 133411n n n A A A A A A A A -=++++ 1411n n n A A A A A A -=+++11110n n n n A A A A A A A A =+=-=4.(1)已知向量a ,b ,求作向量c ,使0a b c ++=.(2)(1)中表示a ,b ,c 的有向线段能构成三角形吗?【答案】(1)见解析.【解析】(1)方法一:如图所示,当向量a ,b 两个不共线时,作平行四边形OADB ,使得OA a =,OB b =,则a b OD +=,又0a b c ++=,所以0OD c +=,即OD c OC =-=-,方法二:利用向量的三角形法则,如下图:作ABC ∆,使得AB a =,BC b =,CA c =,则0AB BC CA ++=,即0a b c ++=,当向量a ,b 两个共线时,如下图:使得AB a =,BC b =,DE c =则AB BC a b +=+,()DE a b =-+,所以,0AB BC DE ++=,即0a b c ++=.(2)向量a ,b 两个不共线时,表示a ,b ,c 的有向线段能构成三角形,向量a ,b 两个共线时,a ,b ,c 的有向线段不能构成三角形.5.一艘船垂直于对岸航行,航行速度的大小为16/km h ,同时河水流速的大小为4/km h 求船实际航行的速度的大小与方向(精确到l °).【答案】,方向与水流方向成76°角【解析】设船的航行速度为1v ,水流速度为2v ,船的实际航行速度为v ,v 与2v 的夹角为α,则||416//)v km km h === 由16tan 44α==,得76α︒≈.船实际航行的速度的大小为,方向与水流方向成76°角.6.一架飞机向北飞行300km ,然后改变方向向西飞行400km ,求飞机飞行的路程及两次位移的合成.【答案】飞机飞行的路程为700km ;两次位移的合成是向北偏西约53°方向飞行500km .【解析】由向量的加减运算可知:飞机飞行的路程是700km ;两次位移的合成是向北偏西约53°,方向飞行500km .【题组二 向量的减法运算】1.已知向量a ,b ,c ,求作a b c -+和()a b c --.【答案】详见解析【解析】由向量加法的三角形法则作图:a b c -+由向量三角形加减法则作图:()a b c --2.化简:AB CB CD ED AE -+--=( )A .0B .ABC .BAD .CA 【答案】A【解析】AB CB CD ED AE -+--AB BC CD DE AE =+++-0AE AE =-=.故选:A .3.化简:(1)AB BC CA ++; (2) ()AB MB BO OM +++;(3)OA OC BO CO +++; (4)AB AC BD CD -+-;(5)OA OD AD -+; (6)AB AD DC --;(7)NQ QP MN MP ++-.【答案】(1)0.(2)AB (3)BA .(4)0(5)0(6)CB .(7)0【解析】(1)原式0AC AC =-=.(2)原式AB BO OM MB AB =+++=(3)原式OA OC OB OC BA =+--=.(4)原式0AB BD DC CA =+++=(5)原式0OA AD DO =++=(6)原式()AB AD DC AB AC CB =-+=-=.(7)原式0MN NQ QP PM =+++=4.(多选)下列各式中,结果为零向量的是( )A .AB MB BO OM +++B .AB BC CA ++ C .OA OC BO CO +++D .AB AC BD CD -+- 【答案】BD【解析】对于选项A :AB MB BO OM AB +++=,选项A 不正确; 对于选项B : 0AB BC CA AC CA ++=+=,选项B 正确;对于选项C :OA OC BO CO BA +++=,选项C 不正确;对于选项D :()()0AB AC BD CD AB BD AC CD AD AD -+-=+-+=-= 选项D 正确.故选:BD5.(多选)已知,a b 为非零向量,则下列命题中正确的是( )A .若a b a b +=+,则a 与b 方向相同B .若a b a b +=-,则a 与b 方向相反C .若a b a b +=-,则a 与b 有相等的模D .若a b a b -=-,则a 与b 方向相同【答案】ABD【解析】如图,根据平面向量的平行四边形或三角形法则,当,a b 不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有||||||||||||a b a b a b -<±<+.当,a b 同向时有||||||a b a b +=+,||||||a b a b -=-.当,a b 反向时有||||||||a b a b +=-,||+||||a b a b =-故选:ABD【题组三 向量的数乘运算】1.化简:(1)5(32)4(23)a b b a -+-;(2)111(2)(32)()342a b a b a b -----; (3)()()x y a x y a +--.【答案】(1)32a b -;(2)111123a b -+;(3)2ya . 【解析】(1)原式151081232a b b a a b =-+-=-;(2)原式123111111334222123a b a b a b a b =--+-+=-+; (3)原式2xa ya xa ya ya =+-+=.2.化简下列各式:(1)2(32)3(5)5(4)a b a b b a -++--;(2)1[3(28)2(42)]6a b a b +--.【答案】(1)149a b -; (2) 11433a b -+.【解析】(1)原式64315205149a b a b b a a b =-++-+=-.(2)原式11114(62484)(228)6633a b a b a b a b =+-+=-+=-+. 3.作图验证:(1)11()()22a b a b a ++-= (2)11()()22a b a b b +--= 【答案】(1)见解析(2)见解析【解析】如图,在平行四边形ABCD 中,设,AB a AD b ==,则11(),()22AO a b OB a b =+=-.(1)因为AO OB AB +=,所以11()()22a b a b a ++-= (2)因为AO OB AO BO AO OD AD -=+=+=,所以11()()22a b a b b +--= 4.已知点B 是平行四边形ACDE 内一点,且AB = a ,AC = b ,AE = c ,试用,,a b c 表示向量CD 、BC 、BE 、CE 及BD .【答案】CD c BC b a ==-;;BE =c a -;CE =c b - ;BD =b a c -+.【解析】∵四边形A CDE 为平行四边形.∴CD =AE =c ; BC =AC -AB =b a -; BE =AE -AB = -c a ; CE =AE -AC =-c b ; BD =BC +CD = b a c -+.4.如图,四边形OADB 是以向量OA a =,OB b =为边的平行四边形,又13BM BC =,13CN CD =,试用a 、b 表示OM 、ON 、MN .【答案】1566OM a b =+;()23ON a b =+;1126MN a b =- 【解析】13BM BC =,BC CA =,16BM BA ∴=, ∴111()()666BM BA OA OB a b ==-=-. ∴()115666OM OB BM b a b a b =+=+-=+. 13CN CD =,CD OC =, ∴2222()3333ON OC CN OD OA OB a b =+==+=+.∴221511336626MN ON OM a b a b a b =-=+--=-.5.向量,,,,a b c d e 如图所示,据图解答下列问题:(1)用,,a d e 表示DB ;(2)用,b c 表示DB ;(3)用,,a b e 表示EC ;(4)用,d c 表示EC .【答案】(1)DB d e a =++;(2)DB b c =--;(3)EC e a b =++;(4)EC c d =--.【解析】由图知,,,,AB a BC b CD c DE d EA e =====,(1)DB DE EA AB d e a =++=++;(2)DB CB CD BC CD b c =-=--=--;(3)EC EA AB BC e a b =++=++;(4)()EC CE CD DE c d =-=-+=--【题组四 向量的共线定理】1.设12,e e 是两个不共线的向量,若向量()12a e e R λλ=+∈与()212b e e =--共线,则( )A .λ=0B .λ=-1C .λ=-2D .λ=-12【答案】D【解析】由已知得存在实数k 使a kb =,即()12212e e k e e λ+=--,于是1=2k 且λ=-k ,解得λ=-12. 2.设,a b 是不共线的两个非零向量,已知2AB a pb =+,,2BC a b CD a b =+=-,若,,A B D 三点共线,则p 的值为( )A .1B .2C .-2D .-1【答案】D【解析】因为,,A B C ,故存在实数λ,使得AB BD λ=,又2BD a b =-,所以22a pb a b λλ+=-,故1,1p λ==-,故选D.3.判断下列各小题中的向量a 与b 是否共线:(1)2a e =-,2b e =;(2)12a e e =-,1222b e e =-+.【答案】(1)a 与b 共线;(2)a 与b 共线.【解析】(1)2b e a ==-,所以a 与b 共线;(2)1212222()2b e e e e a ==-=-+--,所以a 与b 共线.4.已知向量m ,n 不是共线向量,32a m n =+,64b m n =-,c m xn =+(1)判断a ,b 是否共线;(2)若a c ,求x 的值 【答案】(1)a 与b 不共线.(2)23x = 【解析】(1)若a 与b 共线,由题知a 为非零向量,则有b a λ=,即()6432m n m n λ-=+, ∴6342λλ=⎧⎨-=⎩得到2λ=且2λ=-,∴λ不存在,即a 与b 不平行.(2)∵a c ∥,则c ra =,即32m xn rm rn +=+,即132r x r=⎧⎨=⎩,解得23x =. 5.已知非零向量12,e e 不共线,且122AP e e =-,1234PB e e =-+,122CQ e e =--,1245QD e e =-,能否判定A ,B ,D 三点共线?请说明理由.【答案】无法判定A ,B ,D 三点共线,见解析【解析】无法判定A ,B ,D 三点共线,证明如下:()()1212122343AB AP PB e e e e e e =+=-+-+=-+, ()()12121224526CD CQ QD e e e e e e =+=--+-=-,所以2CD AB =-,所以向量AB 与CD 共线.由于向量共线包括对应的有向线段平行与共线两种情况,所以无法判定A ,B ,D 三点共线.6.设12,e e 是两个不共线向量,已知1228AB e e =-,123CB e e =+,122CD e e =-.若123BF e ke =-,且B ,D ,F 三点共线,求k 的值.【答案】12k =【解析】()()12121212234,3BD CD CB e e e e e e BF e ke =-=--+=-=-, ∵B ,D ,F 三点共线,∴BF BD λ=,即121234e ke e e λλ-=-. 由题意知12,e e 不共线,得34k λλ=⎧⎨-=-⎩,解得12k =. 7.已知12,e e 是两个不共线的向量,若1228AB e e =-,123CB e e =+,122CD e e =-,求证:A ,B ,D 三点共线.【答案】见解析【解析】∵123CB e e =+,122CD e e =-,∴214BD CD CB e e =-=-.又()12122824AB e e e e =-=-,∴,∴AB BD .∵AB 与BD 有公共点B ,∴A ,B ,D 三点共线.8.如图所示,在平行四边形ABCD 中,AD a = ,AB b =,M 为AB 的中点,点N 在DB 上,且2DN NB =.证明:M ,N ,C 三点共线.【答案】证明见解析【解析】∵2DN NB =, ∴111()()333NB DB AB AD b a ==-=-. 连接,MN NC ,则1111()2363MN MB BN MB NB b b a b a =+=-=--=+,2122()333NC DC DN AB NB b b a b a =-=-=--=+, ∴2NC MN =,∴NC 与MN 共线. 又NC 与MN 有公共点N ,∴M ,N ,C 三点共线.9.如图,点C 是点B 关于点A 的对称点,点D 是线段OB 的一个靠近点B 的三等分点,设,AB a AO b ==.(1)用向量a 与b 表示向量,OC CD ;(2)若45OE OA =,求证:C ,D ,E 三点共线.【答案】(1)OC b a =--,5133CD a b =+;(2)证明见解析. 【解析】(1)∵AB a =,AO b =,∴OC OA AC b a =+=--,11151()2()33333CD CB BD CB BO CB BA AO a a b a b =+=+=++=+-+=+. (2)证明: 45OE OA = ()413555CE OE OC b a b a b CD ∴=-=-++=+=, ∴CE 与CD 平行,又∵CE 与CD 有共同点C ,∴C ,D ,E 三点共线.10.如图所示,已知D ,E 分别为ABC ∆的边AB ,AC 的中点,延长CD 至点M 使DM CD =,延长BE 至点N 使BE EN =,求证:M ,A ,N 三点共线.【答案】见解析【解析】连接BM ,CN (图略).∵D 为MC 的中点,且D 为AB 的中点,∴四边形ACBM 为平行四边形,∴AB AM AC =+,∴AM AB AC CB =-=.同理可证,AN AC AB BC =-=.∴AM AN =-,∴AM ,AN 共线且有公共点A ,∴M ,A ,N 三点共线.。

2020秋新人教版高中数学必修二第六章平面向量及其应用复习课题型知识框架课思维导图

2020秋新人教版高中数学必修二第六章平面向量及其应用复习课题型知识框架课思维导图

第六章平面向量及其应用复习课要点训练一平面向量的运算1.向量的线性运算包括向量及其坐标运算的加法、减法、数乘,向量的加法遵循三角形法则和平行四边形法则,减法可以转化为加法进行运算,向量的加法满足交换律、结合律,数乘向量满足分配律.利用向量证明三点共线时,应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.2.两平面向量共线的充要条件有两种形式:(1)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是x1y2-x2y1=0.(2)若a ∥b (a ≠0),则b =λa . 应视题目条件灵活选择.1.已知点A (1,3),B (4,-1),则与向量AB ⃗⃗⃗⃗⃗ 同方向的单位向量为( ) A.( 35,-45) B.(45,-35) C.(-35,45) D.(-45,35)解析:AB ⃗⃗⃗⃗⃗ =(3,-4),与其同方向的单位向量e =AB⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |=15(3,-4)=(35,-45).答案:A2.(全国卷Ⅰ)设D 为△ABC 所在平面内一点,BC ⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ ,则( )A.AD ⃗⃗⃗⃗⃗ =-13AB ⃗⃗⃗⃗⃗ +43AC⃗⃗⃗⃗⃗ B.AD ⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ -43AC⃗⃗⃗⃗⃗ C.AD ⃗⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗⃗ +13AC⃗⃗⃗⃗⃗ D.AD ⃗⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗⃗ -13AC⃗⃗⃗⃗⃗ 解析:AD ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +13BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +13(AC ⃗⃗⃗⃗⃗ -AB ⃗⃗⃗⃗⃗ )=43AC ⃗⃗⃗⃗⃗ -13AB ⃗⃗⃗⃗⃗ =-13AB ⃗⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗⃗ . 答案:A3.(全国卷Ⅲ)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=12.解析:由题意可得2a +b =(4,2).因为c ∥(2a +b ),c =(1,λ),所以4λ-2=0,即λ=12.要点训练二 平面向量的夹角与垂直问题1.两个向量a =(x 1,y 1),b =(x 2,y 2)垂直⇔a ·b =0⇔x 1x 2+y 1y 2=0,利用这两个结论,可以判断两个向量的位置关系.2.两个向量的夹角公式:cos θ=a·b|a||b|=1212√x12+y12√x22+y22.1.已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为()A.π6B.π3C.2π3D.5π6解析:设a与b的夹角为θ,因为(a-b)⊥b,所以(a-b)·b=a·b-b2=0,所以a·b=b2,所以cos θ=a·b|a|·|b|=|b|22|b|2=12,所以a与b的夹角为π3.答案:B2.已知向量a=(2,2),b=(-8,6),则a与b的夹角的余弦值为-√210.解析:设a与b的夹角为θ,则cos θ=a·b|a|·|b|=√22+22×√(-8)2+62=-√210.3.已知向量a=(-4,3),b=(6,m),且a⊥b,则m=8.解析:向量a=(-4,3),b=(6,m),a⊥b,则a·b=0,即-4×6+3m=0,所以m=8.4.已知向量a=(-2,3),b=(3,m),且a⊥b,则m=2.解析:由题意可得,a·b=0,所以-2×3+3m=0,解得m=2.要点训练三有关向量的模(长度)与距离问题的解法求向量的模主要有以下两种方法:①利用公式|a|2=a2将它转化为向量的数量积问题,再利用数量积的性质进行展开、合并,使问题得以解决;②利用公式|a|=√x12+y12将其转化为实数运算,使问题得以解决.1.(全国卷Ⅱ)设非零向量a,b满足|a+b|=|a-b|,则 ()A.a⊥bB.|a|=|b|C.a∥bD.|a|>|b|解析:由向量加法与减法的几何意义可知,以非零向量a ,b 的模长为边长的平行四边形是矩形,从而可得a ⊥b .故选A .答案:A2.已知向量a ,b 的夹角为120°,|a |=1,|b |=3,则|5a -b |=7. 解析:|5a -b |=√|5a -b |2=√(5a -b )2=√25a 2+b 2-10a ·b = √25+9-10×1×3×(-12)=7.3.(浙江高考)已知正方形ABCD 的边长为1,当每个λi (i =1,2,3,4,5,6)取遍±1时,|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗⃗ |的最小值是0,最大值是2√5.解析:如图所示,以AB ,AD 所在直线分别为x 轴、y 轴建立平面直角坐标系,则AB ⃗⃗⃗⃗⃗ =(1,0),BC ⃗⃗⃗⃗⃗ =(0,1),CD ⃗⃗⃗⃗⃗ =(-1,0),DA ⃗⃗⃗⃗⃗ =(0,-1),AC ⃗⃗⃗⃗⃗ =(1,1),BD ⃗⃗⃗⃗⃗⃗ =(-1,1).令y =|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗⃗ |=√(λ1-λ3+λ5-λ6)2+(λ2-λ4+λ5+λ6)2≥0.因为λi (i =1,2,3,4,5,6)可取遍±1,所以当λ1=λ3=λ4=λ5=λ6=1,λ2=-1时,有最小值y min =0.因为(λ1-λ3+λ5)和(λ2-λ4+λ5)的取值不相关,λ6=1或λ6=-1,所以当(λ1-λ3+λ5)和(λ2-λ4+λ5)分别取得最大值时,y 有最大值,所以当λ1=λ2=λ5=λ6=1,λ3=λ4=-1时,有最大值y max =√22+42=√20=2√5.要点训练四 建模思想利用正弦定理、余弦定理解三角形及其应用,常根据已知条件中所给的边、角关系,利用解三角形的常见类型求解;解决应用问题常根据距离、高度、角度的求解方法解决,都体现了建模思想.1.(全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc = ( )A.6B.5 C .4 D.3解析:由已知及正弦定理可得a 2-b 2=4c 2, 由余弦定理推论可得 -14=cos A =b 2+c 2-a 22bc ,所以c 2-4c 22bc=-14,所以3c 2b =14,所以b c=6. 答案:A2.(全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知b sin A +a cos B =0,则B =3π4.解析:由正弦定理,得sin B sin A +sin A cos B =0.因为A ∈(0,π),B ∈(0,π),所以sin A ≠0,所以sin B +cos B =0,即 tan B =-1,所以B =3π4.3.(浙江高考)在△ABC 中,∠ABC =90°,AB =4,BC =3,点D 在线段AC 上,若∠BDC =45°,则BD =12√25,cos ∠ABD =7√210.解析:如图所示,在△ABD 中,由正弦定理,得AB sin∠ADB =BDsin∠BAC,而AB =4,∠ADB =3π4,AC =√AB 2+BC 2=5, sin ∠BAC =BC AC =35,cos ∠BAC =AB AC =45,所以BD =12√25.cos ∠ABD =cos(∠BDC -∠BAC )=cos π4cos ∠BAC + sin π4sin ∠BAC =7√210.4.(全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知a sinA+C 2=b sin A.(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 解:(1)由题设及正弦定理,得 sin A sinA+C 2=sin B sin A.因为sin A ≠0,所以sinA+C 2=sin B.由A +B +C =180°,可得sinA+C2=cos B2,故cos B 2=sin B =2sin B 2cos B 2.因为cos B2≠0,故sin B 2=12,所以B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =√34a. 由正弦定理,得a =csinA sinC=sin (120°-C )sinC=√32tanC +12. 由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故12<a <2,所以√38<S △ABC <√32,即△ABC 面积的取值范围是(√38,√32).。

(完整版)平面向量重要基础知识点

(完整版)平面向量重要基础知识点

平面向量重要知识点1、向量有关概念:(1) 向量的概念:既有大小又有方向的量,向量是可以平移的,(2)零向量:长度为0 的向量叫零向量,记作:0,注意零向量的方向是任意的;uuu单位向量:长度为一个单位长度的向量叫做单位向量 (与AB 共线的单位向量是 相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 平行向量(也叫共线向量):方向相同或相反 的非零向量a 、b 叫做平行向量,记作:a // b ,规定零向量和任何向量平行。

提醒平行向量 无传递性!(因为有0)2.平面向量的基本定理:如果e i 和e 2是同一平面内的两个不共线向量,那么对该平面内的任4、平面向量的数量积: (1)两个向量的夹角:(2) 平面向量的数量积:规定:零向量与任一向量的数量积是 0注意数量积是一个实数,不再是一个向量。

(3) b 在a 上的投影为|b|cos ,它是一个实数,但不一定大于 0。

(4) a ?b 的几何意义:数量积a?b 等于a 的模与b 在a 上的投影的积。

(5)向量数量积的性质:设两个非零向量a ,b ,其夹角为,则:r r rb a?b 0 ;(3) uuuAB ).uuu), |AB|一向量a ,有且只有一对实数12,使 a= 1^ + 2 62。

3、实数与向量的积:实数 与向量a 的积是一个向量,记作 a :当>0时,a 的方向与a 的方向相同,当 <0时,a 的方向与a 的方向相反②当「2 r r 特别地,a a?aa ,b 同向时,a ?b =拧 ;当a 与b 反向时,;当为锐角时,a?b > 0,且a、b不同向,ab 0是为锐角的必要非充分a ? b5、向量的运算:(1)几何运算:掌握三角形发展或者平行四边形法则, (2)坐标运算:设 a (x 1, y 1),b (x 2, y 2),贝U:7、向量平行(共线)的充要条件 8、8.线段的定比分点:(1)定比分点的概念:设点P 是直线P 1P 2上异于P i 、P 2的任意一点,若存在一个实数的定比分点;X L 1(知道怎样推出来的吗)* y 2 19.向量平移平面向量章节复习题r f r r条件;当 为钝角时,a ?b < 0,且a 、b 不反向,r ra b 0是为钝角的必要非充分条件; ③非零向量a , b 夹角的计算公式:cos④ ia?bi |;|£|。

(完整版)高中数学必修4平面向量知识点总结与典型例题归纳.docx

(完整版)高中数学必修4平面向量知识点总结与典型例题归纳.docx

平面向量【基本概念与公式】【任何时候写向量时都要带箭头】1. 向量:既有大小又有方向的量。

记作:uuur rAB 或 a 。

uuur r2.向量的模:向量的大小(或长度),记作: | AB |或 | a |。

r r3. 单位向量:长度为 1 的向量。

若e是单位向量,则| e| 1。

r r4.零向量:长度为 0 的向量。

记作:0。

【0方向是任意的,且与任意向量平行】5.平行向量(共线向量):方向相同或相反的向量。

6.相等向量:长度和方向都相同的向量。

7.相反向量:长度相等,方向相反的向量。

8.三角形法则:uuur uuur AB BA。

uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur uuurAB BC AC;AB BC CD DE AE; AB AC CB (指向被减数)9.平行四边形法则:r r r r r r以 a, b 为临边的平行四边形的两条对角线分别为a b , a b 。

r r r r r r r r10. 共线定理:a b a / /b 。

当0 时,a与b同向;当0 时,a与b反向。

11.基底:任意不共线的两个向量称为一组基底。

12.r rx2y 2r 2r r r r r2向量的模:若 a(x, y) ,则| a |, a| a |2, | a b |( a b)r r r rr rcos ra br13.数量积与夹角公式: a b| a | | b | cos;| a || b |r r r r r r r r14.平行与垂直: a / / b a b x1 y2x2 y1; a b a b0x1 x2y1 y2 0题型 1. 基本概念判断正误:(1)共线向量就是在同一条直线上的向量。

(2)若两个向量不相等,则它们的终点不可能是同一点。

( 3)与已知向量共线的单位向量是唯一的。

( 4)四边形 ABCD是平行四边形的条件是uuur uuurAB CD 。

高一 平面向量基本定理及坐标表示知识点+例题+练习 含答案

高一 平面向量基本定理及坐标表示知识点+例题+练习 含答案

1.平面向量基本定理如果e 1、e 2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21. (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2) (a ≠0),如果a ∥b ,那么x 1y 2-x 2y 1=0;反过来,如果x 1y 2-x 2y 1=0,那么a ∥b . 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( × )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( √ )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( √ )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( × )(5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( √ )1.设e 1,e 2是平面内一组基底,那么下列说法正确的是________(填序号). ①若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0;②空间内任一向量a 可以表示为a =λ1e 1+λ2e 2(λ1,λ2为实数); ③对实数λ1,λ2,λ1e 1+λ2e 2不一定在该平面内;④对平面内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对. 答案 ①2.在△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s =________. 答案 0解析 因为CD →=2DB →,所以CD →=23CB →=23(AB →-AC →)=23AB →-23AC →,则r +s =23+⎝⎛⎭⎫-23=0. 3.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________. 答案 (-3,-5)解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1), ∴BD →=AD →-AB →=BC →-AB →=(-3,-5).4.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.答案 12解析 ∵a ∥b ,∴sin 2θ×1-cos 2 θ=0, ∴2sin θcos θ-cos 2 θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=12.5.(教材改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. 答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧ 4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________.(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________. 答案 (1)45 (2)311解析 (1)因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB →=85AN →-45AM →,所以λ+μ=45.(2)设BP →=kBN →,k ∈R . 因为AP →=AB →+BP →=AB →+kBN → =AB →+k (AN →-AB →)=AB →+k (14AC →-AB →)=(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.思维升华 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.(1)在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=________.(用e 1,e 2表示)(2)如图,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM →=xAB →,AN →=yAC →,则xy x +y的值为________.答案 (1)-23e 1+512e 2 (2)13解析 (1)如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.(2)易知AG →=13AB →+13AC →,MN →=-xAB →+yAC →,故MG →=⎝⎛⎭⎫13-x AB →+13AC →.由于MG →与MN →共线,所以⎝⎛⎭⎫13-x y =-13x , 即xy =13(x +y ),因此xy x +y =13.题型二 平面向量的坐标运算例2 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c =________. (2)已知点A (1,3),B (4,-1),则与向量A B →同方向的单位向量为__________. 答案 (1)⎝⎛⎭⎫-133,-43 (2)⎝⎛⎭⎫35,-45 解析 (1)由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4).所以c =⎝⎛⎭⎫-133,-43. (2)A B →=O B →-O A →=(4,-1)-(1,3)=(3,-4), ∴与A B →同方向的单位向量为A B→|A B →|=⎝⎛⎭⎫35,-45. 思维升华 向量的坐标运算主要是利用加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.(1)已知点A (-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为__________.(2)在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC →=________.答案 (1)(5,14) (2)(-6,21)解析 (1)设点B 的坐标为(x ,y ),则AB →=(x +1,y -5).由AB →=3a ,得⎩⎪⎨⎪⎧ x +1=6,y -5=9,解得⎩⎪⎨⎪⎧x =5,y =14.(2)BC →=3PC →=3(2PQ →-P A →)=6PQ →-3P A →=(6,30)-(12,9)=(-6,21).题型三 向量共线的坐标表示命题点1 利用向量共线求向量或点的坐标例3 (1)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =________.(2)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 答案 (1)(-4,-8) (2)(2,4)解析 (1)由a =(1,2),b =(-2,m ),且a ∥b , 得1×m =2×(-2),即m =-4. 从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8). (2)∵在梯形ABCD 中,AB ∥CD ,DC =2AB , ∴DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x,2-y ), AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 命题点2 利用向量共线求参数例4 若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 答案 -54解析 AB →=(a -1,3),AC →=(-3,4),根据题意AB →∥AC →,∴4(a -1)=3×(-3),即4a =-5, ∴a =-54.命题点3 求交点坐标例5 已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________. 答案 (3,3)解析 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ). 又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0,解得λ=34,所以OP→=34OB →=(3,3),所以点P 的坐标为(3,3). 方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3, 所以点P 的坐标为(3,3).思维升华 平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线.设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b 的最小值为________.答案3+222解析 由题意得AB →=(-a +2,-2),AC →=(b +2,-4), 又AB →∥AC →,所以(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λ(b +2),-2=-4λ,整理得2a +b =2, 所以1a +1b =12(2a +b )(1a +1b )=12(3+2a b +b a )≥12(3+22a b ·b a )=3+222(当且仅当b =2a 时,等号成立).11.解析法(坐标法)在向量中的应用典例 (14分)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.思维点拨 可以建立平面直角坐标系,将向量坐标化,求出点A ,B 的坐标,用三角函数表示出点C 的坐标,最后转化为三角函数求最值. 规范解答解 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32).[4分]设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得⎩⎨⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α,[8分] 所以x +y =cos α+3sin α=2sin(α+π6),[11分]又α∈[0,2π3],所以当α=π3时,x +y 取得最大值2.[14分]温馨提醒 本题首先通过建立平面直角坐标系,引入向量的坐标运算,然后用三角函数的知识求出x +y 的最大值.引入向量的坐标运算使得本题比较容易解决,体现了解析法(坐标法)解决问题的优势,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.[方法与技巧]1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 2.根据向量共线可以证明点共线;利用两向量共线也可以求点的坐标或参数值. [失误与防范]1.要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息;两个向量共线有方向相同、相反两种情况.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.A 组 专项基础训练 (时间:40分钟)1.如图,设O 是平行四边形ABCD 两对角线的交点,给出下列向量组: ①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为该平面内其他向量的基底的是________. 答案 ①③解析 ①中AD →,AB →不共线;③中CA →,DC →不共线.2.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =________.答案 (-1,2)解析 12a =(12,12),32b =(32,-32),故12a -32b =(-1,2). 3.已知a =(1,1),b =(1,-1),c =(-1,2),则c =________. 答案 12a -32b解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎪⎨⎪⎧-1=λ+μ,2=λ-μ,∴⎩⎨⎧λ=12,μ=-32,∴c =12a -32b .4.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=________. 答案 12解析 ∵a +λb =(1+λ,2),c =(3,4), 且(a +λb )∥c ,∴1+λ3=24,∴λ=12.5.已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则m n 的值为________.答案 3解析 ∵OA →·OB →=0,∴OA →⊥OB →,以OA 为x 轴,OB 为y 轴建立直角坐标系,OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ).∵tan 30°=3n m =33,∴m =3n ,即mn=3. 6.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →,则实数a =________.答案 2解析 设C (x ,y ),则AC →=(x -7,y -1),CB →=(1-x,4-y ),∵AC →=2CB →,∴⎩⎪⎨⎪⎧ x -7=2(1-x ),y -1=2(4-y ),解得⎩⎪⎨⎪⎧x =3,y =3.∴C (3,3).又∵C 在直线y =12ax 上,∴3=12a ·3,∴a =2.7.已知点A (-1,2),B (2,8),AC →=13AB →,DA →=-13BA →,则CD →的坐标为________.答案 (-2,-4)解析 设点C ,D 的坐标分别为(x 1,y 1),(x 2,y 2). 由题意得AC →=(x 1+1,y 1-2),AB →=(3,6), DA →=(-1-x 2,2-y 2),BA →=(-3,-6). 因为AC →=13AB →,DA →=-13BA →,所以有⎩⎪⎨⎪⎧ x 1+1=1,y 1-2=2和⎩⎪⎨⎪⎧-1-x 2=1,2-y 2=2.解得⎩⎪⎨⎪⎧ x 1=0,y 1=4和⎩⎪⎨⎪⎧x 2=-2,y 2=0.所以点C ,D 的坐标分别为(0,4),(-2,0), 从而CD →=(-2,-4).8.已知向量OA →=(3,-4),OB →=(0,-3),OC →=(5-m ,-3-m ),若点A ,B ,C 能构成三角形,则实数m 满足的条件是________. 答案 m ≠54解析 由题意得AB →=(-3,1),AC →=(2-m,1-m ),若A ,B ,C 能构成三角形,则AB →,AC →不共线,则-3×(1-m )≠1×(2-m ),解得m ≠54. 9.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解 (1)由已知得AB →=(2,-2),AC →=(a -1,b -1),∵A ,B ,C 三点共线,∴AB →∥AC →.∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC →=2AB →,∴(a -1,b -1)=2(2,-2).∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧a =5,b =-3.∴点C 的坐标为(5,-3).10.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →.(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线.(1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2). 当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0, 故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM →=(4t 2,4t 2+2).∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →,∴AM →与AB →共线,又有公共点A ,∴A ,B ,M 三点共线.B 组 专项能力提升(时间:15分钟)11.在△ABC 中,点P 是AB 上的一点,且CP →=23CA →+13CB →,Q 是BC 的中点,AQ 与CP 的交点为M ,又CM →=tCP →,则t 的值为________.答案 34解析 ∵CP →=23CA →+13CB →, ∴3CP →=2CA →+CB →,即2CP →-2CA →=CB →-CP →.∴2AP →=PB →,因此P 为AB 的一个三等分点.∵A ,M ,Q 三点共线,∴CM →=xCQ →+(1-x )CA →=x 2CB →+(x -1)AC → (0<x <1). ∵CB →=AB →-AC →,∴CM →=x 2AB →+⎝⎛⎭⎫x 2-1AC →. ∵CP →=CA →-P A →=-AC →+13AB →, 且CM →=tCP →(0<t <1),∴x 2AB →+⎝⎛⎭⎫x 2-1AC →=t ⎝⎛⎭⎫-AC →+13AB →. ∴x 2=t 3且x 2-1=-t ,解得t =34. 12.已知向量a =(1,2),b =(0,1),设u =a +k b ,v =2a -b ,若u ∥v ,则实数k 的值为________.答案 -12解析 ∵u =(1,2)+k (0,1)=(1,2+k ),v =(2,4)-(0,1)=(2,3),又u ∥v ,∴1×3=2(2+k ),得k =-12. 13.已知向量a =(1,1),b =(1,-1),c =(2cos α,2sin α)(α∈R ),实数m ,n 满足m a +n b =c ,则(m -3)2+n 2的最大值为________.答案 16解析 由m a +n b =c ,可得⎩⎪⎨⎪⎧m +n =2cos α,m -n =2sin α,故(m +n )2+(m -n )2=2,即m 2+n 2=1,故点M (m ,n )在单位圆上,则点P (3,0)到点M 的距离的最大值为OP +1=3+1=4,故(m -3)2+n 2的最大值为42=16.14.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =________.答案 3解析 ∵MA →+MB →+MC →=0,∴M 为△ABC 的重心.如图所示,连结AM 并延长交BC 于D ,则D 为BC 的中点.∴AM →=23AD →. 又AD →=12(AB →+AC →), ∴AM →=13(AB →+AC →), 即AB →+AC →=3AM →,∴m =3.15.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.答案 (-1,0)解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0. 又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).。

(完整版)必修四平面向量复习基本知识点总结及基础训练

(完整版)必修四平面向量复习基本知识点总结及基础训练

a b a b AB DC AB DC a (1,1), b 1), c c 按向量 =(-1、向量有关概念:平面向量复习基本知识点及经典结论总结(1) 向量的概念:既有大小又有方向的量,注意向量和数量的区别。

向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。

例:已知 A (1,2),B (4,2),则把向量1,3)平移后得到的向量是 AB a。

(2) 零向量:长度为 0 的向量叫零向量,记作: 0 ,注意零向量的方向 ;(3) 单位向量:长度为一个单位长度的向量叫做单位向量(与 AB 共线的单位向量是:);(4) 相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有 ;(5) 平行向量(也叫):方向 或的非零向量 a 、b 叫做平行向量,记作:,规定零向量和任何向量平行。

提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0 );④三点 A 、、B C 共线⇔ AB 、AC 共线;(6) 相反向量:长度相等方向相反的向量叫做相反向量。

a 的相反向量是。

例:命题:(1)若 =,则 =。

(2)两个向量相等的充要条件是它们的起点相同,终点相同。

(3)若 = ,则 ABCD 是平行四边形。

(4)若 ABCD 是平行四边形,则 =。

(5)若 a = b ,b = c ,则 a = c 。

(6)若 a // b ,b // c ,则 a // c 。

其中正确的是 ; 2、向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如 AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如 a , b , c 等;(3)坐标表示法:在 平面内建立直角坐标系,以与 x 轴、 y 轴方向相同的两个单位向量 i , j 为基底,则平面内的任一向量 a 可表示为 a = xi + y j = (x , y ),称(x , y )为向量 a 的坐标, a =叫做向量 a 的坐标表示。

第02讲 平面向量的线性运算(3个知识点+4种题型+强化训练)解析版

第02讲 平面向量的线性运算(3个知识点+4种题型+强化训练)解析版

第02讲 平面向量的线性运算(3个知识点+4种题型+强化训练)知识点一、向量加法1.向量加法的定义定义:求两个向量和的运算 叫做向量的加法. 对于零向量与任意向量a 规定0+a =a +0=a . 2.向量求和的法则三角形法则已知非零向量a b 在平面内任取一点A 作AB →=a BC →=b 则向量AC →叫做a 与b的和 记作a +b 即a +b =A B →+BC →=A C →.平行四边形法则已知两个不共线向量a b 作AB →=a AD →=b 以AB → AD →为邻边作▱ABCD 则对角线上的向量AC →=a +b .思考:两个向量相加就是两个向量的模相加吗?[提示] 不是 向量的相加满足三角形法则 而模相加是数量的加法. 3.向量加法的运算律 (1)交换律:a +b =b +a .(2)结合律:(a +b )+c =a +(b +c ). 知识点二、向量减法1.相反向量(1)定义:与向量a 长度相等 方向相反的向量 叫做a 的相反向量. (2)性质:①-(-a )=a .②对于相反向量有:a +(-a )=0. ③若a b 互为相反向量 则a =-b a +b =0. 2.向量的减法(1)定义:a -b =a +(-b ) 即减去一个向量相当于加上这个向量的相反向量. (2)作法:在平面内任取一点O 作OA →=a OB →=b 则向量BA →=a -b 如图所示.思考:在什么条件下|a-b|=|a|+|b|?[提示]当a b至少有一者为0或a b非零且反向时成立.知识点三、向量的数乘运算(1)定义:规定实数λ与向量a的积是一个向量这种运算叫做向量的数乘记作:λa它的长度与方向规定如下:①|λa|=|λ||a|;②当λ>0时λa的方向与a的方向相同;当λ<0时λa的方向与a的方向相反.(2)运算律:设λμ为任意实数则有:①λ(μ a)=(λμ)a;②(λ+μ)a=λa+μ a;③λ(a+b)=λa+λb;特别地有(-λ)a=λ(-a)=-(λa);λ(a-b)=λa-λb.(3)线性运算:向量的加、减、数乘运算统称为向量的线性运算向量线性运算的结果仍是向量.对于任意向量a b以及任意实数λμ1μ2恒有λ(μ1a+μ2b)=λμ1a±λμ2b.(4) 共线向量定理向量a(a≠0)与b共线的充要条件是:存在唯一一个实数λ使b=λa.思考:定理中把“a≠0”去掉可以吗?[提示]定理中a≠0不能漏掉.若a=b=0则实数λ可以是任意实数;若a=0b≠0则不存在实数λ使得b=λa.知识复习题型一、向量的加法一、单选题1.在平面四边形ABCD中下列表达式化简结果与AB相等的是()A.AC CD+B.AD DC CB++C.CA CB+--D.CB DA DC【答案】B【分析】根据平面的线性运算求得正确答案.【详解】AC C AD+=不符合题意.D++=+=符合题意.AD DC CB AC CB ABCA CB BA-=不符合题意.=+-+≠不符合题意.CB DA DC CB CA AB故选:B2.(2024下·全国·高一专题练习)下列等式不正确的是()①()()++=++;a b c a c b②0+=;AB BA③AC DC AB BD=++.A.②③B.②C.①D.③【答案】B【分析】根据向量加法的运算律判断即可.【详解】对于① ()()++=++正确;a b c a c b对于② 0+=错误;AB BA对于③ DC AB BD AB BD DC AC++=++=正确.故选:B3.(2024下·全国·高一专题练习)如图所示的方格纸中有定点O P Q E F G H则OP OQ+=()A.OE B.OF C.OG D.OH【答案】B【分析】根据平行四边形法则即可求.【详解】以OP OQ 为邻边作平行四边形 可知OF 为所作平行四边形的对角线故由平行四边形法则可知OF 对应的向量OF 即所求向量. 故选:B4.(2024下·全国·高一专题练习)已知四边形ABCD 为菱形 则下列等式中成立的是( ) A .AB BC CA += B .AB AC BC += C .AC BA AD += D .AC AD DC +=【答案】C【分析】根据菱形的性质 结合平面向量加法的运算性质进行判断即可. 【详解】对于A AB BC AC += 故A 错误;对于B 因为AB BC AC += 所以2AB AC AB BC +=+ 故B 错误; 对于C AC BA BA AC BC AD +=+== 故C 正确;对于D 因为AD DC AC += 所以2AC AD AD DC +=+ 故D 错误. 故选:C5.(2024上·河北石家庄·高一石家庄市第二十四中学校考期末)向量()AB OM BO MB +++= ( ) A .BC B .AB C .AC D .AM【答案】B【分析】利用向量加法的三角形法则及向量加法的运算律即可求解. 【详解】由()AB OM BO MB AB BO OM MB AB +++=+++= 故B 正确. 故选:B. 二、填空题6.(2024下·全国·高一专题练习)已知向量a 表示“向东航行3km” b 表示“向南航行3 km” 则a b +表示 .【答案】向东南航行32km. 【分析】根据向量加法法则分析即可.【详解】根据题意由于向量a 表示“向东航行3km” 向量b 表示“向南航行3km” 那么可知a b +表示向东南航行223332+=km. 故答案为:向东南航行32km 7.(2023·全国·高一随堂练习)化简:(1)AB BC CD ++= ; (2)AB BC CD DE EF ++++= ; (3)AB CB AC --= ; (4)12231n n A A A A A A -++⋅⋅⋅+= . 【答案】 AD AF 0 1n A A 【分析】根据向量加减法的几何意义进行运算即可. 【详解】(1)AB BC CD AC CD AD ++=+=;(2)AB BC CD DE EF AC CD DE EF ++++=+++AD DE EF AE EF AF =++=+=; (3)0AB CB AC AB BC AC AC AC --=+-=-=; (4)122311311111n n n n n n n n A A A A A A A A A A A A A A A A ----++⋅⋅⋅+=+⋅⋅⋅+==+=.故答案为:AD ;AF ;0;1n A A . 三、解答题8.(2023·全国·高一随堂练习)如果0AB BC CA ++= 那么A B C 三点是否一定是一个三角形的三个顶点? 【答案】不一定【分析】考虑A B C 三点是否共线即可回答.【详解】当A B C 三点共线也有0AB BC CA ++= 所以A B C 三点不一定是一个三角形的三个顶点.9.(2024下·全国·高一专题练习)如图 已知a 、b 、c 求作向量a b c ++.【答案】作图见解析【分析】在平面内任取一点O 作OA a = AB b = BC c = 利用平面向量加法的三角形法则可作出向量a b c ++.【详解】作法:如图所示 在平面内任取一点O 作OA a = AB b = BC c = 则OC OA AB BC a b c =++=++.题型二、向量的减法 一、单选题1.(2022上·江西·高三校联考阶段练习)对于非零向量a b “0a b +=”是“a b ∥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】根据相反向量一定是共线向量 共线向量不一定是相反向量可求解. 【详解】由0a b +=得0a b += 所以a b =- 则a b ∥; 由a b ∥得a 与b 方向相同或相反 模长不一定相等 所以0a b +=不一定成立所以“0a b +=”是“a b ∥”的充分不必要条件. 故选:A.2.(2023下·河北张家口·高一河北省尚义县第一中学校考阶段练习)向量AB CB DA -+=( ) A .BD B .CDC .DCD .0【答案】C【分析】根据向量的概念 以及向量加减法的运算律 即可得出答案. 【详解】由AB CB DA AB BC DA AC AD DC -+=++=-=. 故选:C.3.(2024下·全国·高一专题练习)已知,a b 为非零向量 则下列说法错误的是( ) A .若||||||a b a b +=+ 则a 与b 方向相同B .若||||||a b a b +=- 则a 与b 方向相反C .若||||||a b a b +=- 则a 与b 有相等的模D .若||||||a b a b -=- 则a 与b 方向相同 【答案】C【分析】运用向量三角不等式的取等条件求解即可.【详解】由向量三角不等式可知 只有当非零向量,a b 同向时 有||||||a b a b +=+||||||a b a b -=- 故A D 正确;只有当非零向量,a b 反向时 有||||||||b b a a +=- ||||||a b a b +=- 故B 正确 C 错误.故选:C . 二、多选题4.(2023下·湖南怀化·高一校考期中)下列各式中结果一定为零向量的是( ) A .BO OM MB ++ B .AB BC +C .C BO OB O CO +++D .AB AC BD CD -+-【答案】ACD【分析】利用向量的加法运算 结合零向量的意义逐项计算判断作答. 【详解】对于A 0O M BO M B MO OM ++=+= A 是; 对于B AB BC AC += AC 不一定是零向量 B 不是;对于C ()()000BO O OB OC CO B O C BO C O +++=+++=+= C 是; 对于D ()0AB AC BD CD AB AD AD BD AC CD -+-=+-+=-= D 是. 故选:ACD 5.若a 、b 为相反向量 且1a = 1b = 则a b += a b -= . 【答案】 0 2【分析】利用相反向量的定义结合平面向量的加、减法可求得结果. 【详解】因为a 、b 为相反向量 且1a = 1b = 则0a b += 2a b a -= 因此 0a b += 22a b a -==. 故答案为:0;2.6.(2022下·上海闵行·高一上海市七宝中学校考阶段练习)若向量a 与b 共线 且1==a b 则+=a b . 【答案】0或2【分析】由题可知a 与b 相等或互为相反向量 据此即可求a b + 【详解】向量a 与b 共线 且a b = ∴a 与b 相等或互为相反向量 当a 与b 相等时 22a a b ==+ 当a 与b 互为相反向量时 0=0a b =+. 故答案为:0或2.7.(2022·高一课时练习)如图所示 中心为O 的正八边形1278A A A A 中()11,2,,7i i i a A A i +== ()1,2,,8j j b OA j == 则25257a a b b b ++++= .(结果用i a ib 表示)【答案】6b【分析】根据向量的加减运算即可求得答案. 【详解】由题图可知 25257a a b b b ++++2356257A A A A OA OA OA =++++()()2235567OA A A OA A A OA =++++367OA OA OA =++36366OA OA OA OA b =+-==,故答案为:6b8.已知长度相等的三个非零向量,,OA OB OC 满足OA OB OC ++=0,则由A ,B ,C 三点构成的∴ABC 的形状是 三角形. 【答案】等边【详解】如图,以OA ,OB 为邻边作菱形OAFB ,则OA OB OF +=,∴OF OC +=0,∴OF =-OC . ∴O ,F ,C 三点共线. ∴四边形OAFB 是菱形, ∴CE 垂直平分AB.∴CA=CB. 同理,AB=AC.∴△ABC 为等边三角形. 四、解答题9.(2022下·河南周口·高一校考阶段练习)化简下列各式: (1)()()BA BC ED EC ---; (2)()()AC BO OA DC DO OB ++--- 【答案】(1)DA(2)0【分析】(1)根据平面向量加法和减法的运算法则化简即可得出结果; (2)首先化简出两个向量的结果 再与第三个向量进行加减运算即可求得结果. 【详解】(1)利用平面向量的加减运算法则可得()()()BA BC ED EC BA CB ED CE CA CD CA DC DA ---=+-+=-=+=(2)由平面向量的加减运算法则可得()()()()AC BO OA DC DO OB AC BA DC OD BO ++---=+-++()0BC DC BD BC BC =-+=-=题型三 、向量的数乘运算 一、单选题1.(2023·湖南岳阳·校联考模拟预测)已知向量,a b 则()()2a b a b +--=( ) A .a b + B .a b - C .3a b + D .3ab【答案】D【分析】直接由向量的线性运算即可求解.【详解】由题意()()2223a b a b a b a b a b +--=+-+=+. 故选:D.2.(2024上·河南焦作·高三统考期末)已知ABC 所在平面内一点D 满足102DA DB DC ++=则ABC 的面积是ABD △的面积的( ) A .5倍 B .4倍C .3倍D .2倍【答案】A【分析】利用平面向量的线性运算计算即可.【详解】设AB 的中点为M 因为102DA DB DC ++=所以2()CD DA DB =+ 所以4CD DM = 所以点D 是线段CM 的五等分点所以5ABC ABDCM S SDM==,所以ABC 的面积是ABD △的面积的5倍. 故选:A.3.(2023下·河南洛阳·高一河南省偃师高级中学校考阶段练习)在ABC 中 点M 是AB 的中点 N 点分AC 的比为:1:2,AN NC BN =与CM 相交于E 设,AB a AC b == 则向量AE =( )A.1132a b+B.1223a b+C.2155a b+D.3455a b+【答案】C【分析】由三点共线性质以及平面向量基本定理解方程组即可得解.【详解】由题意,,B E N三点共线所以存在Rλ∈使得()113AE AB AN AB ACλλλλ-=+-=+同理,,C E M三点共线所以存在Rμ∈使得()112AE AC AM AC ABμμμμ-=+-=+由平面向量基本定理可得1213μλλμ-⎧=⎪⎪⎨-⎪=⎪⎩解得21,55λμ==所以2155AE a b=+.故选:C.4.(2023·湖南永州·统考二模)在ABC中若1,2AB AC CA CB+=+=则ABC的面积的最大值为()A.16B.15C.14D.13【答案】D【分析】设,E F分别为,BC AB的中点结合三角形相似推出43ABC ACEFS S=四边形由题意可得1||,||12AE CF==确定四边形ACEF面积的最大值即可得答案.【详解】设,E F分别为,BC AB的中点连接EF则EF AC∥则BEF△∴BCA故14BEF ABCS S=,则34ABC ACEF S S =四边形 故43ABCACEFSS =四边形 又1,2AB AC CA CB +=+= 则21,22AB AC AE CA CB CF +==+== 故1||,||12AE CF ==当AE CF ⊥时 四边形ACEF 面积最大 最大值为1111224⨯⨯=故ABC 的面积的最大值为411343⨯=故选:D 5.(2024下·全国·高一专题练习)在ABC 中 D 为AC 上一点且满足 12AD DC =,若P 为BD 的中点 且满足 AP AB AC λμ=+,则λμ+的值是 . 【答案】23【分析】根据平面向量的线性运算计算即可. 【详解】如图因为12AD DC = 所以13AD AC =则11111112222326AP AB AD AB AC AB AC =+=+⨯=+ 所以12λ=16μ= 23λμ+=.故答案为:23.6.(2024下·全国·高一专题练习)已知矩形ABCD 中 对角线交于点O 若125,3BC e DC e == 则OC = . 【答案】12 5322e e +【分析】利用向量的线性运算可得OC 的表达形式.【详解】因为ABCD 是矩形 所以1111122222OC AC AB BC DC BC ==+=+ 所以125322OC e e =+.故答案为:125322e e +7.(2022·全国·模拟预测)在平行四边形ABCD 中 点G 在AC 上 且满足3AC AG = 若DG mAB nAD =+ 则m n -= .【答案】1【分析】利用向量线性运算求得1233DG AB AD =- 与题干对照即可求解. 【详解】()11123333DG AG AD AC AD AB AD AD AB AD =-=-=+-=- 则13m = 23n =-所以1m n -=. 故答案为:1 三、解答题8.(2024下·全国·高一专题练习)若向量x y 满足23x y a += 32x y b -= a 、b 为已知向量 求向量x y . 【答案】231313=+x a b 321313=-y a b 【分析】根据23x y a += 32x y b -= 列方程组求解. 【详解】解:由方程组2332x y ax y b +=⎧⎪⎨-=⎪⎩解得231313=+x a b 321313=-y a b .题型四、平面向量共线定理及应用一、单选题1.(2024·陕西安康·陕西省安康中学校联考模拟预测)已知平面向量a 与b 不共线 向量(),32m xa b n a x b =+=+- 若//m n 则实数x 的值为( )A .1B .13-C .1或13-D .1-或13【答案】C【分析】根据平面共线定理 由向量平行 求得x 满足满足的方程 求解即可. 【详解】由//m n 且,m n 均不为零向量 则()32,m n a x b λλλλ==+-∈R可得()132x x λλ=⎧⎨=-⎩ 则()3210x x --= 整理得23210x x 解得1x =或13x . 故选:C .2.(2024上·辽宁·高一校联考期末)已知a 与b 为非零向量,2,OA a b OB a b OC a b λμ=+=-=+ 若,,A B C 三点共线 则2λμ+=( )A .0B .1C .2D .3【答案】D【分析】根据三点共线可得向量共线 由此结合向量的相等列式求解 即得答案. 【详解】由题意知 ,,A B C 三点共线 故2,(2)(1)AB a b BC a b λμ=-=-++, 且,AB BC 共线故不妨设,(0)A k B k BC =≠ 则1(2)2(1)k k λμ=-⎧⎨-=+⎩ 所以122μλ+-=- 解得23λμ+=故选:D3.(2024下·全国·高一专题练习)已知21,e e 为两个不共线的向量 若向量12122,23a e e b e e =+=-+ 则下列向量中与向量2a b +共线的是( ) A .1252e e -+ B .12410e e +C .12104e e +D .122e e +【答案】B【分析】根据向量线性运算表示12225a b e e +=+ 然后利用共线向量基本定理求解即可. 【详解】因为向量122a e e =+ 1223b e e =-+ 所以12225a b e e +=+.又()1212410225e e e e +=+ 所以12410e e +与2a b +共线. 故选:B . 二、填空题4.(2024·全国·高三专题练习)在ABC 中 O 是边BC 的中点 AP t AO = 过点P 的直线l 交直线,AB AC 分别于,M N 两点 且,AM mAB AN nAC == 则11m n+= . 【答案】2t【分析】由三点共线的性质列式求值. 【详解】由题意:().222t t tAP t AO AB AC AB AC ==+=+ 由,,M P N 三点共线知 ()()11AP AM AN mAB nAC λλλλ=+-=+-. ()212t m t n λλ⎧=⎪⎪⎨⎪-=⎪⎩⇒ 212t m t n λλ⎧=⎪⎪⎨⎪-=⎪⎩消去λ 得112m n t+=. 故答案为:2t5.(2022上·河南·高二校联考期末)已知ABC 中 点D 在线段AB (不含端点)上 且满足()R CD xCA yCB x y =+∈, 则12x y+的最小值为 .【答案】322+/223+【分析】根据向量共线可得1x y += 即可利用基本不等式的乘“1”法求解. 【详解】∴(),R CD xCA yCB x y =+∈ 由于D 在线段AB (不含端点)上 故,,A D B 三点共线 所以1x y +=且00,x y >>则()121223322y xx y x y x y x y ⎛⎫+=++=++≥+ ⎪⎝⎭ 当且仅当2y x xy=时 即21,22x y =-=-时取等号 故12x y+有最小值322+. 故答案为:322+.6.(2024下·全国·高一专题练习)如图所示 在ABC 中 14AN NC =P 是BN 上的一点 若611AP AB mAC =+ 则实数m 的值为 .【答案】111【分析】借助共线定理的推论即可得. 【详解】因为14AN NC = 所以5AC AN = 所以6651111AP AB mAC AB mAN =+=+ 因为P B N 三点共线 所以65111m += 解得111m =.故答案为:111. 7.(2023·吉林长春·东北师大附中校考模拟预测)在ABC 中 M N 分别是边AB AC 上的点 且23AN AC =13AM AB = 点O 是线段MN 上异于端点的一点 且满足340(0)OA OB OC λλ++=≠ 则λ= .【答案】8【分析】用OA 、AN 表示出OC 、OB 从而得到6977AO AN AM λλ=+++ 再根据M O N 三点共线 得到69177λλ+=++ 解得即可. 【详解】解:因为23AN AC =13AM AB =所以()23AN OC OA =- ()13AM OB OA =- 即32OC AN OA =+ 3OB AM OA =+因为340OA OB OC λ++= 所以()333402OA AM OA AN OA λ⎛⎫++++= ⎪⎝⎭即()769AO AN AM λ+=+ 即6977AO AN AM λλ=+++ 因为M O N 三点共线 故69177λλ+=++ 解得8λ=. 故答案为:8 8.(2022下·陕西西安·高一统考期中)设,a b 是不共线的两个向量. (1)若2OA a b =- 3OB a b =+ 3OC a b =- 求证:A B C 三点共线; (2)若8a kb +与2ka b +共线 求实数k 的值. 【答案】(1)证明见解析; (2)±4.【分析】(1)要证明三点共线 即证明三点组成的两个向量共线即可. (2)由共线性质求出参数即可.【详解】(1)由2OA a b =- 3OB a b =+ 3OC a b =- 得3(2)2AB OB OA a b a b a b =-=+--=+ 3(3)242BC OC OB a b a b a b AB =-=--+=--=-因此//AB BC 且有公共点B 所以A B C 三点共线.(2)由于8a kb +与2ka b +共线 则存在实数λ 使得8(2)a kb ka b λ+=+ 即(8)(2)0k a k b λλ-+-= 而,a b 是不共线因此8020k k λλ-=⎧⎨-=⎩解得2,4k λ==或2,4k λ=-=- 所以实数k 的值是4±.9.(2024上·辽宁·高一校联考期末)如图 在ABC 中 D 是BC 上一点 G 是AD 上一点 且2AG BD DG CD== 过点G 作直线分别交,AB AC 于点,E F .(1)用向量AB 与AC 表示AD ; (2)若54AB AE = 求ACAF 和EG EF的值.【答案】(1)1233AD AB AC =+ (2)138AC AF = 1318EG EF =.【分析】(1)利用向量的线性运算求解;(2)设AC AF μ= 利用向量的线性运算和平面向量基本定理求解. 【详解】(1)2221233333AD AB BD AB BC AB BA AC AB AC =+=+=++=+.(2)因为54AB AE = 所以54AB AE =.设AC AF μ= 22122454333399189AG AD AB AC AB AC AE AF μ⎛⎫==+=+=+ ⎪⎝⎭ 因为,,G E F 三点共线 所以541189μ+= 解得138μ= 所以138AC AF =.因为48513EF EA AF AB AC =+=-+424264134859945918513EG EA AG AB AB AC AB AC AB AC ⎛⎫=+=-++=-+=-+ ⎪⎝⎭所以1318EG EF =即1318EG EF =. 10.(2024下·全国·高一专题练习)如图 在平行四边形ABCD 中 ,,AB a AD b M ==为AB 中点 N 为BD 上靠近点B 的三等分点 求证:,,M N C 三点共线.【答案】证明见解析【分析】根据三点共线要求证明//CM CN即可.【详解】∴,AB a AD b==∴BD AD AB b a=-=-.∴N是BD上靠近点B的三等分点∴11()33BN BD b a==-.∴在平行四边形中BC AD b==∴112()333CN BN BC b a b a b =-=--=--.①∴M为AB的中点∴111,()222MB a CM MC MB BC a b a b⎛⎫=∴=-=-+=-+=--⎪⎝⎭.②由①②可得32CM CN=.由向量共线定理知//CM CN.又∴CM与CN有公共点C ∴,,M N C三点共线.。

平面向量表示方法脉络图

平面向量表示方法脉络图

平面向量表示方法脉络图在数学的学习中,平面向量是一个重要的概念。

为了更好地理解和掌握平面向量的表示方法,我们可以通过绘制脉络图来帮助我们整理思路和总结知识。

本文将根据平面向量的不同表示方法,用脉络图的形式呈现,以便更好地理解和记忆。

一、平面向量的坐标表示法平面向量的坐标表示法是最为常见和直观的一种表示方法。

通过给出向量的两个坐标,我们可以唯一地确定一个向量。

在二维笛卡尔坐标系中,向量通常用符号(a,b)表示,其中a、b分别是向量在x轴和y轴上的投影。

在脉络图中,我们可以绘制一个坐标系,并在坐标系中画出向量的起点和终点,然后用箭头表示向量的方向。

在箭头上方用向量的坐标(a,b)进行配注,以确保读者准确理解向量的含义。

二、平面向量的数量积表示法平面向量的数量积表示法是描述平面向量之间夹角关系的重要方法。

数量积通常用符号A·B表示,其中A、B分别是两个向量,A·B的值等于A和B的模长乘积与它们的夹角的余弦值。

在脉络图中,我们可以绘制两个向量A和B,并在它们之间画出夹角的弧度,然后用A·B的值进行配注,以帮助读者理解数量积的含义。

此外,还可以在脉络图中画出两个向量的模长,以更加直观地了解向量之间的关系。

三、平面向量的线性运算表示法平面向量的线性运算包括向量的加法和标量与向量的乘法。

向量的加法表示为A + B,其中A和B是两个向量。

标量与向量的乘法表示为kA,其中k是一个实数,A是一个向量。

在脉络图中,我们可以绘制两个向量A和B,并使用平行四边形法则画出它们的和向量。

同时,可以通过乘以一个实数k,改变向量的长度,并在脉络图中进行相应的标注。

四、平面向量的基底表示法平面向量的基底表示法是一种将向量分解为基底向量的线性组合的表示方法。

常用的基底向量包括单位向量i和j,分别沿着x轴和y轴方向。

在脉络图中,我们可以绘制一个坐标系,并以单位向量i和j为基底,画出一个向量A的分解。

通过将向量A分别在x轴和y轴上的投影相加,得到向量的坐标表示(a,b),并在脉络图中进行配注。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思维导图——平面向量
知识点默写——平面向量
1、平面向量:
2、向量的模:,记作
3、(1)零向量:;(2)单位向量:
;(3)相反向量(负向量):;
4、相等向量:
,记作
5、平行向量(共线向量):
6、
向量的加法(

向量的减法(

7、数乘向量:实数λ与向量a
的积是一个向量,记作
.数乘向量的含义:
8、
(1)||a λ=
(2)当0λ>时,a λ 的方向与a
的方向,长度为a

倍;当0λ<时,
a λ 的方向与a
的方向,长度为a
的倍;当0λ=或0a =
时,
a λ=
.
a
b
a 2a 12
a a - 2a
-
12
a -
9、向量运算满足的运算律(1)加法交换律:;(2)加法结合律:

(3)数乘向量运算律:()a λμ=
,()a λμ+=

()a b λ+=

10、(1)平面向量的坐标表示
在平面直角坐标系中,分别取与x 轴,y 轴方向相同的两个单位向量i ,j
,根据平行四边形法则,对平面上任一向量a ,有且只有一对实数x ,y ,使得a xi y j =+
,我们把(,)x y 叫做向量a
在平面直角坐标系xOy 中的坐标,记作
.
(2)设点11(,)A x y ,点22(,)B x y ,则向量AB
的坐标为
,记作AB =
.
(3)向量(,)a x y = ,则向量的模||a =
.(3)若原点(0,0)O ,(,)A x y ,则OA =
.
(4)设向量11(,)a x y = ,向量22(,)b x y = ,则a b +=
,a b -=
.
(5)若11(,)a x y = ,λ为实数,则a λ=
.
11、若1122(,),(,)a x y b x y == ,则//a b ⇔ ;若1122(,),(,)a x y b x y == ,则a b ⊥⇔ ;
12、化简:BD AB AC +-=
.。

相关文档
最新文档