人教A版 单调性与最大(小)值 教案

合集下载

高中数学 函数的最大(小)值教案 新人教A版 教案

高中数学 函数的最大(小)值教案 新人教A版 教案

高中数学人教A 版精品教案集:函数的最大(小)值教学目的:(1)理解函数的最大(小)值及其几何意义;(2)学会运用函数图象理解和研究函数的性质; 教学重点:函数的最大(小)值及其几何意义. 教学难点:利用函数的单调性求函数的最大(小)值.教学过程:一、引入课题画出下列函数的图象,并根据图象解答下列问题:○1 说出y=f(x)的单调区间,以及在各单调区间上的单调性; ○2 指出图象的最高点或最低点,并说明它能体现函数的什么特征? (1)32)(+-=x x f(2)32)(+-=x x f ]2,1[-∈x(3)12)(2++=x x x f(4)12)(2++=x x x f ]2,2[-∈x二、新课教学(一)函数最大(小)值定义1.最大值 一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足: (1)对于任意的x ∈I ,都有f(x)≤M ; (2)存在x 0∈I ,使得f(x 0) = M那么,称M 是函数y=f(x)的最大值(Maximum Value ).思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(Minimum Value )的定义.(学生活动) 注意:○1 函数最大(小)首先应该是某一个函数值,即存在x 0∈I ,使得f(x 0) = M ; ○2 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f(x)≤M (f(x)≥M ). 2.利用函数单调性的判断函数的最大(小)值的方法 ○1 利用二次函数的性质(配方法)求函数的最大(小)值○2 利用图象求函数的最大(小)值 ○3 利用函数单调性的判断函数的最大(小)值如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b); 如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b);(二)典型例题例1.(教材P 36例3)利用二次函数的性质确定函数的最大(小)值. 解:(略)说明:对于具有实际背景的问题,首先要仔细审清题意,适当设出变量,建立适当的函数模型,然后利用二次函数的性质或利用图象确定函数的最大(小)值.巩固练习:如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形一边长为x ,面积为y试将y 表示成x 的函数,并画出函数的大致图象,并判断怎样锯 才能使得截面面积最大? 例2.(新题讲解) 旅 馆 定 价一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如下:欲使每天的的营业额最高,应如何定价?解:根据已知数据,可假设该客房的最高价为160元,并假设在各价位之间,房价与住房率之间存在线性关系.设y 为旅馆一天的客房总收入,x 为与房价160相比降低的房价,因此当房价为)160(x -元时,住25房率为)%102055(⋅+x,于是得 y =150·)160(x -·)%102055(⋅+x.由于)%102055(⋅+x≤1,可知0≤x ≤90.因此问题转化为:当0≤x ≤90时,求y 的最大值的问题. 将y 的两边同除以一个常数0.75,得y 1=-x 2+50x +17600.由于二次函数y 1在x =25时取得最大值,可知y 也在x =25时取得最大值,此时房价定位应是160-25=135(元),相应的住房率为67.5%,最大住房总收入为13668.75(元).所以该客房定价应为135元.(当然为了便于管理,定价140元也是比较合理的) 例3.(教材P 37例4)求函数12-=x y 在区间[2,6]上的最大值和最小值. 解:(略)注意:利用函数的单调性求函数的最大(小)值的方法与格式. 巩固练习:(教材P 38练习4) 三、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取 值 → 作 差 → 变 形 → 定 号 → 下结论 四、作业布置1. 书面作业:课本P 45 习题1.3(A 组) 第6、7、8题.提高作业:快艇和轮船分别从A 地和C 地同时开出,如下图,各沿箭头方向航行,快艇和轮船的速度分别是45 km/h 和15 km/h ,已知AC=150km ,经过多少时间后,快艇和轮船之间的距离最短?BC。

全国优质课-单调性与最大(小)值

全国优质课-单调性与最大(小)值

《函数单调性与最值第一课时》教学设计一、教学内容解析(1)教学内容的内涵、数学思想方法、教学重点。

本节课选自人教A 版《普通高中课程标准实验教科书数学必修1》第一章第1.3节第一课时。

教材研究的函数的单调性是严格单调,是研究“函数值y 随自变量值x 的增大而增大(或减小)”的性质。

这一性质的直观反映了函数从左向右是持续上升还是持续下降的;它反映了的是函数图像的变化趋势。

函数的单调性不同于函数的奇偶性,单调性研究的是函数的局部性质,而奇偶性研究的是函数的整体对称性。

函数单调性的研究过程体现了一些重要的数学思想方法:1.“数形结合”的思想:先借助函数图像直观观察,再借助表格列举计算分析归纳发现增减函数的数字特征,再进一步用符号语言刻画。

2.从特殊到一般的思想:先通过学生比较熟悉的一次函数,二次函数的探究发现“函数值y 随自变量值x 的增大而增大(或减小)”的一般规律,再用符号语言抽象出函数单调性的定义。

3.类比的方法:得出增函数的定义后只需要类比探究就可以得出减函数的定义。

4.体现了研究概念(定义)问题的一般思路:经历情景化—去情景化—情境再现 经历情景化:先通过生活实例让学生体会到单调性在实际生活中的背景。

去情境化:通过两个具体函数的探究发现“函数值y 随自变量值x 的增大而增大(或减小)”这一现象,再通过探究分析这一现象的本质,从而抽象出函数单调性的定义。

情境再现:利用定义去分析问题、解决问题。

同时这一研究过程也体现了“发现问题”—“提出问题”—“分析问题”—“解决问题”这一研究问题的一般思路。

教学重点是:通过活动探究引导学生发现如何用符号化的语言:在定义域I 的某个区间D 上任意取的两个数21,x x ,当21x x <时,都有)()(21x f x f <(或)()(21x f x f >)则称函数为区间D 上的增函数(或减函数)来刻画“函数值y 随自变量值x 的增大而增大(或减小)”这一特征。

高中数学人教A版 必修1《3.2.1函数的单调性与最大(小)值》教案 Word

高中数学人教A版 必修1《3.2.1函数的单调性与最大(小)值》教案 Word

四、教学过程
教学
环节
教学内容设计意图
情境引入
课堂探究通过观察生活中熟悉的事物,引入本节新课。

提高学生概括、推理的能力。

通过思考,观察函数的图象,从特殊到一般,归纳总结最值的定义,提高学生的解决问题、分析问题的能力。

得出定义
类比定义类比得出最小值定义
函数最值的几何意义
常见题型
通过实际问题让学生明白怎样求二次函数在整个定义域上的最值以及利用函数的单调性求函数的最值,提高学生解决问题的能力,进一步掌握单调性与最值的关系。

课堂
小结
通过总结,
让学生进
一步巩固
本节所学
内容,提高
概括能力,
板书设计
课后练习

课后提高学生的数学运算能力和逻辑推理能力。

通过练习。

函数的单调性第一课时学案-高一上学期数学人教A版

函数的单调性第一课时学案-高一上学期数学人教A版

3.2.1 单调性与最大(小)值 第一课时 函数的单调性【学习目标】1. 借助函数图象,会用符号语言表达函数的单调性,理解它们的作用和实际意义.2. 会用定义法证明(或判断)函数的单调性。

【重难点】重点:函数单调性的定义难点:增(减)函数的定义,利用增(减)函数的定义判断函数的单调性 【学习过程】导:初中利用图象,研究过函数值随自变量的增大而增大(或减小)的性质,这一性质叫做函数的单调性。

如何用符号语言描述这一性质?思:认真阅读课本7677页内容,思考并回答下列问题: 1. 增、减函数的概念 前提条件设函数()x f 的定义域为I ,区间I D ⊆条件2121,,x x D x x <∈∀都有()1x f ()2x f都有()1x f ()2x f图示结论()x f 在区间D 上单调递增()x f 在区间D 上单调递减特殊情况当函数()x f 在它的定义域上单调递增时,我们就称它为 函数当函数()x f 在它的定义域上单调递减时,我们就称它为 函数【问题1】(1)若I x x ∈21,,当21x x <时,()()21x f x f <,可以说()x f y =在I 上是增函数吗?这反应了21,x x 的什么特征?(2)21,x x 可以在不同区间上取值吗?(3)若()f x 在区间D 上是增函数,且()()12f x f x >,1x 与2x 的大小关系是否确定?若确定,请说出12,x x 的大小关系。

例1、若函数()f x 在R 上为增函数,且()(3)f a f <,求实数a 的取值范围. 一题多变:(1)若本例中条件不变,把“()(3)f a f <”改为“()(23)f a f a >+”求实数a 的取值范围.(2)若把本例中条件“R ”改为“[]1,5-”,其余不变,求实数a 的取值范围 . 认真阅读课本7879页内容,思考并回答下列问题如果函数()x f y =在区间D 上 或 ,那么就说函数()x f 在这一区间上具有(严格的)单调性,区间D 叫做()x f y =的 .【问题2】:设A 是区间D 上某些自变量值组成的集合,而且,,21A x x ∈∀当21x x <时,都有()()21x f x f <,我们能说函数()x f 在区间D 上单调递增吗?你能举个例子吗?例2.用定义法证明函数()()kf x k x=为正常数在),(∞+0上单调递减。

高中必修第一册《3.2 函数的基本性质》优质课教案教学设计

高中必修第一册《3.2 函数的基本性质》优质课教案教学设计

3.2.1 单调性与最大(小)值《函数的单调性与最大(小)值}》系人教A版高中数学必修第一册第三章第二节的内容,本节包括函数的单调性的定义与判断及其证明、函数最大(小)值的求法。

在初中学习函数时,借助图像的直观性研究了一些函数的增减性,这节内容是初中有关内容的深化、延伸和提高函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的救开结合思想将贯穿于我们整个高中数学教学。

A.理解增函数、减函数、单调区间、单调性概念;B.掌握增(减)函数的证明与判断;C.能利用单调性求函数的最大(小)值;D.学会运用函数图象理解和研究函数的性质;1.教学重点:函数单调性的概念,函数的最值;2.教学难点:证明函数的单调性,求函数的最值。

多媒体教学过程教学设计意图 核心素养目标 一、情景引入1. 观察这些函数图像,你能说说他们分别反映了相应函数的哪些特征吗?2、它们分别反映了相应函数有什么变化规律?二、探索新知 探究一 单调性1、思考:如何利用函数解析式2)(x x f =描述“随着x 的增大,相应的f(x)随着增大?”【答案】图象在区间 )+∞,0(上 逐渐上升, 在)+∞,0(内随着x 的增大,y 也增大。

对于区间)+∞,0(内任意21,x x ,当21x x <时,都有)()(21x f x f <。

这是,就说函数2)(x x f =在区间 )+∞,0(上是增函数.2、你能类似地描述2)(x x f =在区间)0,(-∞上是减函数吗? 【答案】在区间)0,(-∞内任取21,x x ,得到211)(x x f =,222)(x x f =,当21x x <时,都有)()(21x f x f >。

3.2.1单调性与最大(小)值(第2课时)教学设计 - 高一数学 人教A版2019 必修第一册

3.2.1单调性与最大(小)值(第2课时)教学设计 - 高一数学 人教A版2019 必修第一册

《3.2.1单调性与最大(小)值》教学设计第2课时函数的最值教材内容:函数的最大、最小值与函数的单调性有着密切的关系。

通常要想求出函数的最大、最小值,首先要求出函数的单调性。

本节课是对函数的单调性内容的进一步深化,也是对值域这一函数性质的进一步学习。

同时,本节课所展现出的极限的数学思想对于接下来学习幂函数、函数的实际应用也有着不可替代的作用。

教学目标:1.理解函数的最大(最小)值及几何意义,培养学生数学抽象的核心素养;2.利用图象、单调性求最值,提升直观想象和数学运算的核心素养;3.会利用单调性解决比较大小、解不等式等问题,提升逻辑推理的核心素养。

教学重点与难点:1.重点:函数最值的定义;函数最值的求法。

2.难点:单调性求最值;讨论二次函数的最值问题.教学过程设计:(一)新知导入1. 创设情境,生成问题科考队对沙漠气候进行科学考察,下图是某天气温随时间的变化曲线.请你根据曲线图说说气温的变化情况?【提示】气温从0时逐渐降底,6时气温达到最低,从6时到17时,气温逐渐升高,17时气温达到最高,从17时到24时,气温逐渐降低。

2.探索交流,解决问题【探究1】观察下列两个函数的图象,回答有关问题:【问题1】比较两个函数的图象,它们是否都有最高点?【提示】图①中函数y=−x2的图象上有一个最高点;图②中函数y=-x的图象上没有最高点.【问题2】通过观察图①你能发现什么?【提示】对任意x∈R,都有f(x)≤f(0),f(0)是最大值。

【探究2】观察下列两个函数的图象,回答有关问题.【问题3】比较两个函数的图象,它们是否都有最低点?【提示】图①中函数y=x2的图象有一个最低点.图②中函数y=x的图象没有最低点.【问题4】通过观察图①你能发现什么?【提示】对任意x∈R都有f(x)≥f(0),f(0)是最小值。

【设计意图】通过探究,引导学生直观感受函数的最大值是函数图象的最高点纵坐标,最小值是函数图象最低点的纵坐标,并尝试用数学语言表示函数的最值,提高学生用数形结合的思维方式思考并解决问题的能力。

函数的单调性与最大(小)值 高中数学获奖教案

函数的单调性与最大(小)值 高中数学获奖教案

、3.2.1单调性与最大(小)值(第一课时)(人教A 版普通高中教科书数学必修第一册第三章)一、教学目标1.借助函数图像,会用符号语言表达函数的单调性、最大(小)值,理解它们的作用与实际意义;2.会用定义简单证明函数的单调性;3.通过函数的单调性可以画出函数图像;4.在探究抽象函数单调性的过程中感受数学概念的抽象过程及符号表示的作用.二、教学重难点1.函数的单调性精确定义;2.利用函数定义判断函数单调性.三、教学过程1.研究函数单调性的过程1.1创设情境,引发思考【实际情境】 前面我们学习了函数的定义、表示方法,知道函数是描述客观世界中变量之间的一种对应关系,这样可以通过研究函数性质来把握世界的一般规律.什么是函数性质呢?比如随着自变量的增大函数值是增大还是减小的,或者有没有最大值?总的来说函数的性质就是”变化中的规律,变化中的不变性”.今天我们来研究一下函数的一个很重要的性质—函数的单调性.2019新型冠状病毒爆发(2019-nCoV ,世卫组织2020年1月命名;SARS-CoV-2,国际病毒分类委员会2020年2月11日命名 ).面对疫情政府采取了积极、高效、公开、透明的举措,不仅全力维护人民群众生命安全和身体健康,也为维护全球和地区公共卫生安全做出重大贡献,给世界带来信心.我们要为我们生在中国而自豪.要为我们是中国人而自豪!下面函数图像是截取4月16日-6月10日的数据,图1是全国现有确诊趋势;图2本土新增确诊趋势,从这两幅函数图像中我们可以直观的感受疫情的变化.全国现有确诊趋势本土新增确诊趋势问题1:(1)请看这两幅函数图像,从中你发现了图像的哪些特征?你觉得他们反映了函数哪方面的性质?【预设的答案】第一幅函数图像是上升的趋势,也就是函数值随自变量的增大而增大,但是第二幅图有上升有下降.总的来说这两幅图体现函数变化趋势比如上升下降,我们把这种性质叫做函数的单调性.【设计意图】让学生从直观的图像上感知函数的单调性.问题2:下面我们进一步用符号语言刻画函数的单调性.我们先来看一个简单的例子:f(x) =x2,在初中的时候我们就学习了这函数图像,你能现在画出这个图像吗?请在草稿纸上画出来.我们一般都用的是五点作图,在(0,+∞]上我们取的两个点满足随自变量的增大而增大,你能能否证明在(0,+∞]上所有点变化趋势也是这样的吗?也就是说明我们还有必要用代数的方法证明一下.请大家思考一下如何证明.【活动预设】我们不可能把所有的点取一遍,因为区间上的点是有无穷多个,那我们怎么把”无限”的问题转化为一种”有限”的问题?(让学是感受数学符号语言的作用)那我们可以用x1, x2来表示,请大家看一下几何画板我们发现只要x1<x2时,都有f(x1)<f(x2).(这里可以让学生用之前学习的不等式的性质证明一下f(x1)<f(x2))【设计意图】主要是引导学生如何定量的刻画函数的单调性,这个过程要让学知道定量刻画函数单调性的必要性.体会形少数时难入微.同时感受符号语言巨大的作用.1.2探究典例,形成概念活动1:通过以上活动,请同学们用符号语言总结一下上面函数的性质.【活动预设】∀x1,x2∈(0,+∞),当x1<x2时,都有f(x1)<f(x2),这时我们就说函数在区间(0,∞)上是单调递增的.【设计意图】让学生更加熟悉符号语言的表示方法.问题3:通过上述例子给出函数f(x)在区间D上单调性的符号表述.【活动预设】一般的,设函数f(x)的定义域为I,区间D⊆I:如果∀x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),那么就称函数f(x)在区间D上单调递增.如果∀x1,x2∈D,当x1<x2时,都有f(x1)>f(x2),那么就称函数f(x)在区间D上单调递减. 活动2:请同学们判断下列命题知否正确(1) 设A是区间D上某些自变量的值组成的集合,而且∀x1,x2∈A,当x1<x2时,都有f(x1)<f(x2),我们能说函数f(x)在区间D上单调递增吗?你能说明理由吗?(2) 如果∀x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),那么就称函数f(x)在区间D上单调递增.这种说法正确吗?(3) 如果∀x,x+1∈D, 都有f(x)<f(x+1),那么就称函数f(x)在区间D上单调递增.这种说法正确吗?(4) 函数的单调性是对定义域的某个区间而言,您能举出在整个定义域内单调递增的函数例子吗?你能举出在定义域内的某些区间上单调递增但在另一些区间上单调递减的例子吗?【活动预设】(1)第一问构造了函数f(x)=xsinx+2x,取整函数就可以说明(2)和(3)不正确.(4)让学进一步感知“增函数”、“单调递增”的概念,以及在不同区间上单调递增时,它们的并集不一定保证单调递增,递减同理.【设计意图】(1)引导学生辨析概念中“任意”两个字;(2)在不同区间上单调递增时,它们的并集不一定保证单调递增,递减同理.2.初步应用,理解概念例1 根据定义证明函数y=1在区间(0,+∞)上是单调递减的.x【预设的答案】略【设计意图】(1)进一步的熟悉定义,通过定义画出图像(2)单调区间不能并.练1 根据定义证明函数y=x+1在区间(1,+∞)上单调递增.x【预设的答案】略【设计意图】(1)让学生自己动手练习;(2)进一步熟悉定义.例2 根据定义,研究f(x)=kx+b(k≠0)的单调性.【预设的答案】略【设计意图】体会如何求解含参函数的单调性.3.归纳小结,文化渗透1. 什么叫函数的单调性?你能举出一些具体例子吗?2. 你认为在理解函数单调性的时候应把握好哪些关键问题?3. 结合本节课学习过程你对函数性质的研究内容和方法有什么体会?【设计意图】(1)进一步让学生强化对单调性定义的准确把握;(2)进行数学文化渗透,鼓励学生积极攀登知识高峰,进一步体会函数性质的研究方法,体会数学语言的强大,体会数形结合的重要.四、课外作业。

人教A版必修一第一章1.3.1 第1课时单调性与最大(小)值

人教A版必修一第一章1.3.1 第1课时单调性与最大(小)值

k≠0)与一次函数(y= kx+b,k≠0)
k<0

R
反比例函数 (y=kx,k≠0)
k>0

k<0 (-∞,0)和 (0,+∞)
(-∞,0)和 (0,+∞)

二次函数 (y=ax2+bx+c,
a≠0)
a>0 a<0
[-2ba,+∞) (-∞,-2ba]
(-∞,-2ba] [-2ba,+∞)
• 1.函数y=f(x)在区间(a,b)上是减函数,x1,x2∈(a,b),
• 『规律方法』 利用函数的单调性解函数值的不等式就是 利用函数在某个区间内的单调性,去掉对应关系“f”,转
化为自变量的不等式,此时一定要注意自变量的限制条件, 以防出错.
• 〔跟踪练习3〕 • 已知函数g(x)是定义在R上为增函数,且g(t)>g(1-2t),求
实数t的取值范围.
[解析] ∵g(x)在R上为增函数,且g(t)>g(1-2t), ∴t>1-2t,∴t>13,即所求t的取值范围为(13,+∞).
• 『规律方法』 1.函数单调性的证明方法——定义法 • 利用定义法证明或判断函数单调性的步骤是:
• 2.用定义证明函数单调性时,作差f(x1)-f(x2)后,若f(x)为 多项式函数,则“合并同类项”,再因式分解;若f(x)是 分式函数,则“先通分”,再因式分解;若f(x)解析式是 根式,则先“分子有理化”再分解因式.
(2)设x1>x2>-1, 则x1-x2>0,x1+1>0, x2+1>0, y1-y2=x12+x11-x22+x21 =x12+x11-xx2+2 1>0, ∴y1>y2, ∴函数y=x+2x1在(-1,+∞)上为增函数.

高中数学单调性与最大(小)值教案(第二课时)新课标 人教版 必修1(A)

高中数学单调性与最大(小)值教案(第二课时)新课标 人教版 必修1(A)

..专业. 单调性与最大〔小〕值(第二课时)教学目标:1.使学生理解函数最大〔小〕值及其几何意义;2.使学生掌握函数最值与函数单调性的关系;3.使学生掌握一些单调函数在给定区间上的最值的求法;4.培养学生数形结合、辩证思维的能力;5.养成细心观察、认真分析、严谨论证的良好思维习惯。

教学重点:函数最值的含义教学难点:单调函数最值的求法教学方法:讲授法教学过程:〔I 〕复习回顾1.函数单调性的概念;2.函数单调性的判定。

〔II 〕讲授新课通过观察二次函数2y x =和2y x =-的最高点和最低点引出函数最值的概念〔板书课题〕1.函数最大值与最小值的含义一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:〔1〕对于任意的x I ∈,都有()f x M ≤;〔2〕存在0x I ∈,使得0()f x M =。

那么,我们称M 是函数()y f x =的最大值〔maximum value 〕.思考:你能仿照函数最大值的定义,给出函数()y f x =的最小值〔minimum value 〕吗?2.二次函数在给定区间上的最值对二次函数2(0)y ax bx c a =++≠来说,假设给定区间是(,)-∞+∞,那么当0a >时,函数有最小值是244ac b a -,当0a <时,函数有最大值是244ac b a-;假设给定区间是[,]a b ,那么必须先判断函数在这个区间上的单调性,然后再求最值〔见以下例题〕。

3.例题分析例1.教材第36页例题3。

例2.求函数21y x =-在区间[2,6]上的最大值和最小值〔教材第37页例4〕。

分析:先判定函数在区间[2,6]上的单调性,然后再求最大值和最小值。

变式:假设区间为[6,2]--呢?例3.求函数21y x =+在以下各区间上的最值:〔1〕(,)-∞+∞ 〔2〕[1,4] 〔3〕[6,2]-- 〔4〕[2,2]- 〔5〕[2,4]-练习:教材第38页练习4及第二教材相关题目。

高中数学 单调性 增函数、减函数、最大值与最小值学案 新人教A版 学案

高中数学 单调性 增函数、减函数、最大值与最小值学案 新人教A版 学案

单调性(增函数、减函数、最大值与最小值)例1:证明函数xx f 1)(=在),0(+∞上是减函数。

证明:设21,x x 是),0(+∞上的任意两个实数,且21x x <,则021<-=∆x x x 2112212111)()(x x x x x x x f x f y -=-=-=∆ 由),0(,21+∞∈x x ,得021>x x ,且012>∆-=-x x x 于是0>∆y 所以,xx f 1)(=在),0(+∞上是减函数。

方法:利用定义证明函数单调性的步骤:(1) 取值(2) 计算x ∆、y ∆ (3) 对比符号 (4) 结论例二:最值:在课本P31、例四 方法:最值在单调区间的两端奇偶性函数奇偶性的几个性质:(1)奇偶函数的定义域关于原点对称;(2)奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立; (3))()()(x f x f x f ⇔=-是偶函数,)()()(x f x f x f ⇔-=-是奇函数; (4)0)()()()(=--⇔=-x f x f x f x f ,0)()()()(=-+⇔-=-x f x f x f x f ;(5)奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;(6)根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。

讲练: 类型一:1.函数2()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数a 的取值X 围是( )A .3a ≥-B .3a ≤-C .5a ≤D .3a ≥2.函数c bx x y ++=2))1,((-∞∈x 是单调函数时,b 的取值X 围() A .2-≥b B .2-≤b C .2->b D . 2-<b类型二:1.若函数f(x)在定义域R 上是偶函数,得表达式.时求)(0,)(,02x f x x x x f x >+=< 2.函数()f x 是定义在R 上的奇函数,当0>x 时,1)(+-=x x f ,则当0<x 时,()f x 等于( )A .1+-xB .1--xC .1+xD .1-x 3.如果偶函数在],[b a 具有最大值,那么该函数在],[a b --有() A .最大值 B .最小值 C .没有最大值 D . 没有最小值4.函数)(x f 在R 上为奇函数,且0,1)(>+=x x x f ,则当0<x ,=)(x f .类型三:1.函数)(x f 在区间]3,2[-是增函数,则)5(+=x f y 的递增区间是()A .]8,3[B . ]2,7[--C .]5,0[D .]3,2[-2.已知]3,1[,)2()(2-∈-=x x x f ,求函数)1(+x f 得单调递减区间. 类型四:1.在区间)0,(-∞上为增函数的是()A .1=yB .21+-=xxy C .122---=x x y D .21x y +=类型五:1.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数,则( )A .(10)(13)(15)f f f <<B .(13)(10)(15)f f f <<C .(15)(10)(13)f f f <<D .(15)(13)(10)f f f << 2.定义在R 上的偶函数)(x f ,满足)()1(x f x f -=+,且在区间]0,1[-上为递增,则() A .)2()2()3(f f f << B .)2()3()2(f f f << C .)2()2()3(f f f <<D .)3()2()2(f f f <<3.已知)(x f 在实数集上是减函数,若0≤+b a ,则下列正确的是() A .)]()([)()(b f a f b f a f +-≤+B . )()()()(b f a f b f a f -+-≤+ C .)]()([)()(b f a f b f a f +-≥+D .)()()()(b f a f b f a f -+-≥+类型六:1.函数||2x x y +-=,单调递减区间为,最大值和最小值的情况为.2.定义在R 上的函数)(x s (已知)可用)(),(x g x f 的=和来表示,且)(x f 为奇函数,)(x g 为偶函数,则)(x f =. 提高题:1.(执信期中考)探究函数2216()(0)f x x x x=+>的最小值,并确定取得最小值时x 的值. 列表如下, 请观察表中y 值随x 值变化的特点,完成以下的问题.x …1 2 3 4 7 … y …17817…已知:函数2216()(0)f x x x x =+>在区间(0,2)上递减,问:(1)函数2216()(0)f x x x x=+>在区间上递增.当=x 时,=最小y .(2)证明:函数2216()(0)f x x x x=+>在区间(0,2)递减;(3)思考:函数2216()(0)f x x x x =+<有最大值或最小值吗?如有,是多少?此时x 为何值?(直接回答结果,不需证明)2.(本题满分10分)设()f x 是定义在R 上的函数,对任意,x y R ∈,恒有()()()f x y f x f y +=⋅, 当0x >时,有0()1f x <<.⑴ 求证:(0)1f =,且当0x <时,()1f x >;⑵ 证明:()f x 在R 上单调递减. 3.已知8)(32005--+=xbax x x f ,10)2(=-f ,求)2(f .4.在经济学中,函数)(x f 的边际函数为)(x Mf ,定义为)()1()(x f x f x Mf -+=,某公司每月最多生产100台报警系统装置。

3.2.1 单调性与最大(小)值(第1课时 函数的单调性) -高一人教A版2019必修一)

3.2.1 单调性与最大(小)值(第1课时 函数的单调性) -高一人教A版2019必修一)
函数f(x)在它的定义域上单调递减时,我们称它是减函数.
思考
(1)设A是区间D上某些自变量的值组成的集合,而且∀x1,x2 ∈A,当x1<x2时
都有f (x1)<f (x2),我们能说函数f (x)在区间D上单调递增吗?
你能举例说明吗?
【解析】不能,如图,取A={1,2,3,4},D=[1,4],
2
2 2( x1 x2 )
则f ( x1 ) f ( x2 )

,
x1 x2
x1 x2
x1 x2 0, x1 x2 0, x1 x2 0, f ( x1 ) f ( x2 ) 0,
f ( x1 ) f ( x2 ),
2
所以函数f ( x ) 在区间( , 0)上单调递增.
4.会用函数的单调性解答有关问题.
情景导入
前面我们学习了函数的定义和表示法,知道函数y=f(x),x∈A是
描述了客观世界中变量之间的一种对应关系,也就是事物运动变化
规律的数学模.这样,我们就可以通过研究函数的变化规律来把握
客观世界中相应事物的变化规律.
因此,研究函数的性质,如随着自变量的增大函数值增大还是
这时我们就说函数f (x)=x2在区间(-∞,0]上是单调递减的.
任意取x1,x2∈[0,+∞),得到f (x1)=x12,f (x2)=x22,当x1<x2时,有f (x1)<f (x2).
这时我们就说函数f (x)=x2在区间[0,+∞)上是单调递增的.
思考
函数f (x) =|x|,f (x) = -x2各有怎样的单调性?
【典例】 若函数y=|x-2a|在区间(-∞,6]上单调递减,求实数a的取值范围.

人教A版高中数学必修一1.3.1+函数的单调性和最大小值+教案

人教A版高中数学必修一1.3.1+函数的单调性和最大小值+教案

函数单调性与最大(小)值(第一课时)一、二、教材分析:《函数单调性》是高中数学新教材必修一第二章第三节的内容。

在此之前,学生已经学习了函数的概念、定义域、值域、表示法以及在初中学习了一次函数、二次函数、反比例函数等常见函数,也了解了一些函数的增减性,只是当时的研究较为粗略,未明确给出有关函数单调性的定义,对于函数单调性的判断也主要根据图像观察得到,而本小节内容,正是对初中有关内容的一个深化和提高,给出了具体的函数在某个区间上是增函数还是减函数的定义,并明确指出函数的单调性是相对于那个区间的,还介绍了判断函数单调性的两种方法,做到将图像与定义证明结合在一起的思想。

函数的单调性是体现了函数研究的一般方法。

这就是加强“数”与“形”的结合,由直观到抽象;由特殊到一般。

首先借助对函数图像的观察、分析和归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数学特征,从而进一步用数学语言刻画。

这对研究函数的其他性质,如奇偶性等有借鉴作用。

二、学情分析:学生已经学习了函数的概念、定义域和值域,因此他们具有了一定的抽象概括、类比归纳,符号表达的能力,在此基础上进一步研究函数的性质,对于他们来说不是太难。

但由于函数的图像是发现函数性质的直观载体,因此,在本次教学时,要充分使用信息技术创设教学情境,这样有利于学生更好地观察和探究函数的单调性、最值等性质,同时还要特别注意让学生经历这些概念形成的过程。

三、教学目标:1、知识与技能:理解增减函数、单调性、单调区间四个概念:能用自己的语言说出定义,并认识它们是如何得出来的。

掌握函数增减性的证明:掌握判断简单函数的单调区间及证明简单函数在给定区间上的单调性的方法和步骤。

2、过程与方法:能从具体实例中得出增函数、减函数的定义,培养观察能力和抽象概括能力。

通过知识的获得提高和发展学生自我学习和自我学习和自我发展能力。

3、情感态度与价值观:借助开放探究的教学方式,张扬学生个性,培养学生科学严谨乐于研究的作风。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021届一轮复习人教A 版 单调性与最大(小)值 教案一、教学目标设置1.通过学生画出两个特殊的一次函数、二次函数的图像能直观地判断函数的变化趋势,并 能用文字语言描述函数的变化趋势。

2.通过老师几何画板动画演示和学生的类比探究让学生体会并理解“任意……都……”的含义。

3.通过例题1和定义辨析进一步让学生理解单调性的定义.4.在两个特殊函数探究中归纳抽象出单调性的定义,从而培养学生“数学抽象”这一素养。

5.在类比增函数的探究方法探究减函数定义过程中,让学生体会“类比方法”。

6.通过生活实例引入,让学生感受数学来源于生活高于生活,体会数学的应用价值。

7.通过活动设计,问题串联,让学生经历过程探究、经历从直观到抽象、从特殊到一般、类 比研究的过程,形成理性数学思维,体会事物互相联系互相影响的辩证主义唯物观。

二、学生学情分析(1)学生已有的认知基础学生通过初中阶段对一次函数、二次函数、反比例函数的学习,以及高中阶段对函数概念的学习和函数表示方法的学习,已经明确了研究函数的一些基本思路和基本方法。

初中阶段学生也接触过“单调性”它是用描述性的语言即“y 随x 的增大而增大(或减小)”来描述变量之间的依赖关系,而一次函数、二次函数、反比例函数都可以很好地呈现这一规律,这位我们抽象函数单调性的定义提供了认知基础。

此外通过学生小学初中阶段的学习,学生具备了一定的数学素养:如抽象概括、类比推理、数据处理等,为新知学习提供了一定的保障。

(2)达成教学目标所需要认知基础本节课目标的达成需要学生有一定的“数学抽象”能力和“有限”与“无限”的观点,需要 学生有一定的“数形结合”的思想。

(3)“已有基础”与“需要基础”之间的差异学生对两个具体数据的比较应该是清楚的,但要将具体的数据比较转化为“任意”两个数据大小的比较存在一定认知差异;学生用文字语言描述“y 随x 的增大而增大(或减小)也是没有问题的,但要将“文字语言”的描述抽象为为“符号语言”的描述还存在一定差异。

(4)教学难点及突破策略难点1:如何用符号语言刻画“y 随x 的增大而增大(或减小)”。

突破策略:通过回顾2)(x x f =图像直观感受“y 随x 的增大而增大(或减小)”;再通过“列 表法”由形入数在表中任选两对数据比较其大小第一次发现“y 随x 的增大而增大(或减小)”在解析式上的体现:如当21<时,有)2()1(f f <;再通过几何画板动画演示在x 轴上任取两个数及图像上对应的函数值12(),()f x f x ,比较其函数值的大小,引导学生体会数字表示与字母表示的区别;从而实现对“y 随x 的增大而增大(或减小)”的符号化描述。

难点2:如何理解“任意……都……” 突破策略:1. 结合学生熟悉的问题举例说明“任意……都……”的含义:如:“我班任意一位同学都是好人”,帮助学生理解其含义。

2. 在增函数定义探究中老师通过几何画板动画演示在x 轴上任取两个数及图像上对应的函数值12(),()f x f x ,比较其函数值的大小让学生观察、体会“任意……都……”的含义。

在学生类比探究减函数的定义过程中让学生自己动手用几何画板操作再次体会“任意……都……”的含义。

3. 通过概念辨析中设计的三个思考问题,帮助学生理解“任意……都……”的含义。

思考1:若定义在某区间D 上的函数f(x)满足f(2)>f(1),则函数在区间上D 上一定是增函数吗? 通过思考1让学生举出反例体会特殊数据的比较不能代表所有数据的比较,体会“任意”的含义。

思考2:函数在区间(1,3) 和[3,5]都是增函数,则函数在区间 (1,5]上一定也是增函数吗? 通过思考2设计的问题让学生再次体会“任意……都……”的含义,结合分段函数的反例让学生一方面体会“任意……都……”的含义另一方面体会正因为单调性强调“任意……都……”从而导致了单调性是函数的局部性质这一特征。

思考3:反比例函数xx f 1)(=在整个定义域上是减函数吗? 通过思考3的设计让学生结合思考2和自己比较熟悉的反比例函数对比再次体会“任意……都……”的含义 三、教学策略分析(1)教学材料分析首先从学生身边实例(最高气温随时间变化曲线图)出发,让学生通过自身对温度变化的体验和数据统计曲线图直观感受两个变量之间的变化关系。

再从学生非常熟悉的一次函数、二次函数入手通过图像语言、文字语言描述函数变化趋势;提出问题:如何用符号语言描述函数变化趋势?而在后续的“分析问题—解决问题”的过程中,以学生熟悉的二次函数2)(x x f =为载体探究其内在规律,通过几何画板动画演示如何任取两点比较自变量和函数值的大小,实现学生对“任意……都……”的理解,实现由“形”到“数”的过度。

通过三个思考的辨析加强学生对定义的理解和认识,通过例题1和学生练习让学生理解定义掌握定义,也体现了数学的应用价值。

(2)教学方法分析本节课活动设计较多,所以采用“导学案”的形式让学生开展探究式学习,同时通过幻灯片 及动画展示、学生活动展示等手段采用观察发现、启发引导、合作探究的教学方式开展教学。

(3)设计“问题串”引导学生数学思维活动分析 以学生对函数已有的认知基础为主线展开问题设计。

通过11个关键问题串联引导学生开展探究。

同时在定义辨析、示范证明过程中通过对细节的一些追问加深学生的问题的认识和理解。

(4)缩小认知差距分析通过3个探究活动、三个定义辨析、1个例题、1个练习和学生小结交流,让学生充分参与活 动体验,在老师问题设计下实施探究,体会知识的生成过程,逐步缩小认知差距。

(5)学习反馈分析通过类比探究反馈学生对“任意……都……”的理解是否清晰,通过例题1反馈学生对单调性定义的理解,通过三个思考问题的辨析反馈学生对概念的理解是否深刻,通过小结反馈学生对本节课涉及的数学知识、方法、思想的认识。

四、教学流程(一)问题1:你能结合天气预报给我的好朋友一些建议吗?生:抽1学生回答、其他学生补充。

问题2:如果把时间设为x,最高气温设为y,y是x的函数吗?生:一起回答。

问题3:若果y是x的函数,那么函数图像反应了哪些变化规律?生:抽1学生回答、其他学生补充。

师:那么如何研究函数这种变化趋势呢?这就是今天我们要学习的函数的单调性。

(二)问题4:画图基本步骤是:1. ,2. ,3.生:一起回顾画图基本步骤后、再学案上画图研究。

师:巡视课堂根据学生完成情况随机抽取一个学生上台展示其研究成果。

(三)师:问题5:函数的表示方法有?生:图像法、列表法、解析法。

师:问题6:我们已经用图像法研究过了函数的变化趋势,那我们可否再从列表法、解析法的角度去研究函数的变化趋势呢?探究方向1:列表探究在下表中任取一些自变量的值,比较它们的函数值大小,你能发现什么结论?xf(x),0(+∞内的所有的数都比较完吗?问题7:列表法能把),0(+∞内的所有的数都比较完呢?问题8:如何才能把)师:停顿30秒让学生思考、引导学生发现要在函数上任取两个点作比较,然后用几何画板演示为怎么任取两个点,为什么任取两,0(+∞内的所有的数都比较完。

个点就可以把)探究方向2:解析法(利用解析式研究):师:几何画板演示探究过程.问题9:你能用符号语言描述2)(x x f =在),0(+∞y 随x 的增大而增大这一规律了吗?学生总结如何用符号语言描述y 随x 的增大而增大:问题10:对任一函数而言,如果满足:在定义域I 的某个区间D 上任意取的两个数21,x x ,当21x x <时,都有)()(21x f x f <,能说明函数是上升的吗? 抽象增函数的定义:问题11:我们应该如何类比探究呢? 生:只需要在函数图像上任取两个点比较它们自变量和函数值的大小即可。

师:下面请大家通过几何画板上在函数图像上任取两个点比较它们自变量和函数值的大小它们有何关系? 探究完成后老师引导学生完成下列问题:1.学生用符号语言描述y 随x 的增大而减小:2.学生类比增函数定义得出减函数的定义: 师:学生叙述减函数的定义时,老师在PPT 上同步播放定义。

辨析1:若定义在区间[-2,3]的函数f(x)满足f(-2)<f(3),则函数在该(五)例1 下图是定义在[-5,5]上的函数y=f(x),根据图像说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?师生共答。

(六)第九届全国高中青年数学教师观摩与评比活动优秀课《函数单调性与最值》授课教师:贵阳市第三实验中学秦孟彬点评教师:贵阳市第十中学葛磊本节课教师有效采用了探究式教学,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试、体验活动,有效达成了本节课的教学目标,教学环节处理恰当,亮点纷呈。

一、情境引入,注重学生核心素养的培育。

秦老师通过贵阳市2018年国庆期间的天气情况的实际问题作为引入,引导学生将实际问题抽象成数学问题,接着去掉实际背景,从函数的角度来描述时间和气温的变化规律,让学生直观认识到函数的增减性,这是完成数学建模的一个过程,反映教师重视学生数学建模及数学抽象等数学核心素养的培育。

二、新知探究,符合新课程重视过程与方法的理念。

本节“概念教学课”,教师把重点放在概念的形成和探究上,在教师的启发引导下,以学生独立自主和合作交流为前提,以问题为导向设计教学情境,以“函数单调性”为基本探究内容,符合新课程标准重视过程与方法的理念,克服了传统教学只注重结论的倾向。

三、概念形成,重视观察实验与学生体验。

概念的探究与形成,是本节课的重点和难点,教师让学生画出函数(),=2f x xf=的图象,又让学x)(x生直观感受函数图象“上升(下降)”的趋势,引导学生用文字语言描述“y 随x 的增大而增大(或减小)”。

然后教师选择大家都熟悉的二次函数2)(x x f =图象为切入点,让学生体验了“观察—实验—归纳—猜想—类比”的数学思想方法,形成了“函数单调性”这一概念,这是本节课的亮点。

四、目标达成,反映教师教学基本功扎实。

教学过程中,教师充分利用现代教育技术手段:如手机拍照等展示,使得教学过程更为流畅,在知识的形成、发展过程中展开思维和反馈,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。

《函数单调性与最值第一课时》学案(一)创设情境、引入新课问题1:你能结合天气预报给我的好朋友一些建议吗?问题2:如果把时间设为x ,最高气温设为y ,y 是x 的函数吗? 问题3:若果y 是x 的函数,那么函数图像反应了哪些变化规律?(二)由形入数、提出问题探究1:画出下列函数x x f =)(,2)(x x f =图像,并描述函数有何变化趋势。

问题4:画图基本步骤:1. ,2. ,3.f(x)=x 的变化趋势 f(x)=x 2的变化趋势1. 图像从左至右 。

相关文档
最新文档