2019衡水名师原创文科数学专题卷:专题五《导数及其应用》
2019衡水名师原创理科数学专题卷:专题五《导数及其应用》
2019届高三一轮复习理科数学专题卷专题五 导数及其应用考点13:导数的概念及运算(1,2题)考点14:导数的应用(3-11题,13-15题,17-22题) 考点15:定积分的计算(12题,16题)考试时间:120分钟 满分:150分说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上第I 卷(选择题)一、选择题(本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是最符合题目要求的。
)1.【来源】2017-2018年河北武邑中学高二理周考 考点13 易 函数()2sin f x x =的导数是( )A.2sin xB.22sin xC.2cos xD.sin 2x 2.【来源】2017-2018年河北武邑中学高二理周考 考点13 易 已知()21cos 4f x x x =+,()'f x 为()f x 的导函数,则()'f x 的图像是( )3.【2017课标II ,理11】 考点14 易若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e - D.1 4.【来源】2017届湖北孝感市高三理上学期第一次统考 考点14 中难 若曲线()ln y x a =+的一条切线为y ex b =+,其中,a b 为正实数,则2ea b ++的取值范围是( ) A.2,2e e ⎛⎫++∞⎪⎝⎭B.[),e +∞C.[)2,+∞D.[)2,e 5.【来源】2017届福建闽侯县三中高三上期中 考点14 难已知函数2x y =的图象在点),(200x x 处的切线为l ,若l 也与函数x y ln =,)1,0(∈x 的图象相切,则0x 必满足( )A .2100<<xB .1210<<x C .2220<<x D .320<<x 6.【来源】2017届河北磁县一中高三11月月考 考点14 易已知函数()f x 的导数为()f x ′,且()()()10x f x xf x ++>′对x R ∈恒成立,则下列函数在实数集内一定是增函数的为( )A.()f xB.()xf xC.()x e f xD.()x xe f x7.【来源】2017届江西抚州市七校高三上学期联考 考点14 易 已知函数()f x 与()'f x 的图象如图所示,则函数()()x f x g x e=的递减区间为( )A.()0,4B.()4,1,,43⎛⎫-∞ ⎪⎝⎭C.40,3⎛⎫⎪⎝⎭D.()()0,1,4,+∞ 8.【来源】2017届山东省青州市高三10月段测 考点14中难定义在R 上的函数()f x 满足:'()1()f x f x >-,(0)6f =,'()f x 是()f x 的导函数,则不等式()5xxe f x e >+(其中e 为自然对数的底数)的解集为( ) A .(0,)+∞ B .(,0)(3,)-∞+∞C .(,0)(1,)-∞+∞ D .(3,)+∞9.【2017课标3,理11】考点14 难已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =( )A .12-B .13C .12D .110.【来源】2017届河南中原名校高三理上质检三 考点14 难 已知函数()f x 的定义域为R ,()'fx 为函数()f x 的导函数,当[)0,x ∈+∞时,()'2sin cos 0x x f x ->且x R ∀∈,()()cos21f x f x x -++=.则下列说法一定正确的是( ) A.15324643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭B.15344643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭C3134324f f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭D.1332443f f ππ⎛⎫⎛⎫-->- ⎪ ⎪⎝⎭⎝⎭11.【来源】2017届辽宁沈阳二中高三理上学期期中 考点14 中难 已知函数 ()()()()2325ln ,26,2f x x ax a x a Rg x x x x g x =--∈=-++-在[]1,4上的最大值为 b ,当[)1,x ∈+∞时,()f x b ≥恒成立,则a 的取值范围是( ) A.2a ≤ B.1a ≤ C.1a ≤- D.0a ≤ 12.【来源】2017届辽宁盘锦高级中学高三11月月考 考点15 中难 已知0a >,0b >,'()f x 为()f x 的导函数,若()ln2xf x =,且31112'()12bb dx f a b x =+-⎰,则a b +的最小值为( )A .B ..92 D .92+第Ⅱ卷(非选择题)二.填空题(每题5分,共20分) 13.【来源】2017届广东省仲元中学高三9月月考 考点14易 已知函数ln 4()x f x x+=,求曲线)(x f 在点(1,(1))f 处的切线方程____________14.【来源】2017届广西陆川县中学高三8月月考 考点14 中难若函数2()xf x x e ax =--在R 上存在单调递增区间,则实数a 的取值范围是 . 15.【来源】2017届湖北襄阳四中高三七月周考二 考点14 中难若函数21()ln 12f x x x =-+在其定义域内的一个子区间(1,1)a a -+内存在极值,则实数a 的取值范围 . 16.【来源】2015-2016新疆哈密地区二中高二下期末考试 考点15易如图,阴影部分的面积是_________.三.解答题(共70分) 17.(本题满分10分)【来源】2017届四川遂宁等四市高三一诊联考 考点14 易已知函数()()x f x ae x a R =-∈,其中e 为自然对数的底数, 2.71828e =…. (Ⅰ)判断函数()f x 的单调性,并说明理由;(Ⅱ)若[]1,2x ∈,不等式()x f x e -≥恒成立,求a 的取值范围. 18.(本题满分12分)【来源】2017届河南百校联盟高三文11月质监 考点14 中难 已知函数()xf x e ax =-,(0a >).(Ⅰ)记()f x 的极小值为()g a ,求()g a 的最大值;(Ⅱ)若对任意实数x 恒有()0f x ≥,求()f a 的取值范围. 19.(本题满分12分)【来源】2017届河北唐山市高三理上学期期末 考点14中难 已知函数()()ln ,ln 12x ax f x g x x x x ⎛⎫==-- ⎪⎝⎭. (1)求()y f x =的最大值;(2)当10,a e ⎡⎤∈⎢⎥⎣⎦时,函数()(](),0,y g x x e =∈有最小值. 记()g x 的最小值为()h a ,求函数()h a 的值域.20.(本题满分12分)【来源】2017-2018学年江苏南通海安县实验中学高二上学期期中 考点14中难 已知函数22()()xf x x x cec R -=-+∈.(1)若()f x 是在定义域内的增函数,求c 的取值范围;(2)若函数5()()'()2F x f x f x =+-(其中'()f x 为()f x 的导函数)存在三个零点,求c 的取值范围. 21.(本题满分12分)【来源】2017届四川自贡市高三一诊考试 考点14中难已知函数()()()()()121'10'2x f x f e f x x f x -=-+是()f x 的导数,e 为自然对数的底数),()()212g x x ax b a R b R =++∈∈,.(Ⅰ)求()f x 的解析式及极值;(Ⅱ)若()()f x g x ≥,求()12b a +的最大值.22.(本题满分12分)【2017课标1,理21】已知函数2()(2)x xf x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x有两个零点,求a的取值范围.参考答案1.D 【解析】由题意得,函数的导数为()2(sin )2sin (sin )2sin cos sin 2f x x x x x x x '''==⋅==.2.A【解析】由题意得,()1sin 2f x xx '=-, 所以()11()sin()[sin ]()22f x x x x x f x ''-=---=--=-,所以函数()f x '为奇函数,即函数的图象关于原点对称,当2x π=时,1()1024f ππ'=-<,当2x >时,()0f x '>恒成立,故选A.3.【答案】A 【解析】4.C【解析】设切点为),(00y x ,则有2)ln(1000-=⇒⎪⎩⎪⎨⎧+=+=+ae b bex a x e e x ,e a b 2,0>∴> ,212≥+=++aa b e a ,故选C. 5.D【解析】函数2y x =的导数y'2x =,2y x =在点200(,)x x 处的切线斜率为02k x =,切线方程为()20002y x x x x -=-,设切线与ln y x =相交的切点为(),ln m m ,(01m <<),由ln y x =的导数为1'y x =可得012x m =,切线方程为()1ln y m x m m-=-,令0x =,可得20ln 1y m x =-=-,由01m <<可得012x >,且201x >,解得01x >由012m x =,可得()200,ln 210x x --=,令()()2ln 21,f x x x =--()()11,'20,x f x x f x x>=->在1x >递增,且2ln 10,3ln 10ff =-<=->,则有()200ln 210x x --=的根x ∈,故选D.6.D 【解析】设()()x F x xe f x =,则()()()()()()()11x x x F x x e f x xe f x e x f x xf x =++=++⎡⎤⎣⎦′′′. ()()()10x f x xf x ++>′对R x ∈恒成立,且0x e >.()()0,F x F x >∴′∴在R 上递增. 7.D【解析】()()()()()()xx xx ex f x f e e x f e x f x g -'=-'='2,令()0<'x g 即()()0<-'x f x f ,由图可得()()+∞∈,41,0 x ,故函数单调减区间为()()0,1,4,+∞,故选D. 8.A【解析】设x xg x e f x e x R =-∈()(),(),[]1'1x x x x g x e f x e f x e e f x f x f x f x '=+'-=+'--()()()()(),()>(),100f x f x g x y g x ∴+'-∴'∴=()()>,()>,()在定义域上单调递增, 55x x e f x e g x +∴()>,()>,又000061500g e f e g x g x =-=-=∴∴()(),()>(),>,∴不等式的解集为0+∞(,). 9.【答案】C【解析】函数的零点满足()2112x x xx a e e --+-=-+,设()11x x gx ee--+=+,则()()211111111x x x x x x e g x eeee e---+----'=-=-=, 当()0g x '=时,1x =,当1x <时,()0g x '<,函数()g x 单调递减,当1x >时,()0g x '>,函数()g x 单调递增,当1x =时,函数取得最小值()12g=,设()22h x x x =- ,当1x =时,函数取得最小值1- ,10.B【解析】令()()2sin F x x f x =-,则()()''sin 2F x x f x =-.因为当[)0,x ∈+∞时,()'2sin cos 0x x f x ->,即()'sin 2x f x >,所以()()''sin 20F x x f x =->,所以()()2sin F x x f x =-在[)0,x ∈+∞上单调递增.又x R ∀∈,()()cos21f x f x x -++=,所以()()22sin f x f x x -+=, 所以,,故()()2sin F x x f x =-为奇函数,所以()()2sin F x x f x =-在R 上单调递增,所以5463F F ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭.即15344643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭,故选B. 11.B【解析】)13)(2(253)(2'+--=++-=x x x x x g ,所以)(x g 在]2,1[上是增函数,]4,2[上是减函数0)(,0)2()(≥==x f g x g 在),1[+∞∈x 上恒成立, 由),1[+∞∈x 知,0ln >+x x ,所以0)(≥x f 恒成立等价于xx x a ln 2+≤在),1[+∞∈x ,时恒成立,令),1[,ln )(2+∞∈+=x x x x x h ,有0)ln (ln 2)1()(2'>++-=x x xx x x h ,所以)(x h 在),1[+∞上是增函数,有1)1()(=≥h x h ,所以1≤a . 12.C【解析】∵()x x f 1=',∴()a a f 1=',∵2212111213b b x b dx x b bb +-=⎪⎭⎫ ⎝⎛-=⎰,()1212113-+'=⎰b a f dx x b b,∴1212221-+=+-b a b b ,∴1212=+ba ,∵0a >,0b >,∴()()29222252225212=⋅+≥++=⎪⎭⎫ ⎝⎛++=+a b b a a b b a b a b a b a ,当a b b a 22=且1212=+b a ,即23,3==b a 时等号成立,故选C. 13.370x y +-= 【解析】()23ln xx xf +-=',所以(1)3,(1)4k f f '==-=,切线方程为43(1),y x -=--即370x y +-=14.2ln 22a ≤-【解析】因为函数2()xf x x e ax =--,所以()2xf x x e a '=--,因为2()xf x x e ax =--在R 上存在单调递增区间,所以()20xf x x e a '=-->,即2x a x e <-有解,令()2x g x x e =-,则()2x g x e '=-,则()20ln 2x g x e x '=-=⇒=,所以当ln 2x <时,()20x g x e '=->;当ln 2x >时,()20x g x e '=-<,当ln 2x =时,()max 2ln 22g x =-,所以2ln 22a <-. 15.)23,1[【解析】函数的定义域为),0(+∞,令0214212)(2=-=-='x x x x x f ,解得21=x 或21-=x (不在定义域内舍),所以要使函数在子区间)1,1(+-a a 内存在极值等价于),0()1,1(21+∞⊂+-∈a a ,即⎪⎪⎪⎩⎪⎪⎪⎨⎧>+<-≥-21121101a a a ,解得231<≤a ,答案为)23,1[.16.323【解析】由题意得,直线2y x =与抛物线23y x =-,解得交点分别为(3,6)--和(1,2),抛物线23y x =-与x 轴负半轴交点(,设阴影部分的面积为S ,则10220(32))S x x dx x dx =--+-⎰⎰2332)xdx x dx ---+-⎰532933=+-=. 17.(Ⅰ)理由见解析;(Ⅱ)⎪⎪⎭⎫⎢⎣⎡+∞+,112e e【解析】(Ⅰ)由题可知,()x f x ae x =-,则()1x f x ae '=-, (i )当0a ≤时,()0f x '<,函数()x f x ae x =-为R 上的减函数, (ii )当0a >时,令10x ae -=,得ln x a =-,② (),ln x a ∈-∞-,则()0f x '<,此时函数()f x 为单调递减函数;②若()ln ,x a ∈-+∞,则()0f x '>,此时函数()f x 为单调递增函数.………………(4分) (Ⅱ)由题意,问题等价于[]1,2x ∈,不等式x x ae x e --≥恒成立, 即[]1,2x ∈,21xx xe a e+≥恒成立,令()21xx xe g x e+=,则问题等价于a 不小于函数()g x 在[]1,2上的最大值.………………(6分)由()()()()221214212x xx xxe exe e x e xxx e g x e '+-+--'==,当[]1,2x ∈时,()0g x '<,所以函数()g x 在[]1,2上单调递减,……………………………(8分)所以函数()g x 在[]1,2x ∈的最大值为()2111g e e=+, 故[]1,2x ∈,不等式()x f x e -≥恒成立,实数a 的取值范围为⎪⎪⎭⎫⎢⎣⎡+∞+,112e e.…………(10分)18.(Ⅰ)()max 1g a =(Ⅱ)()f a 的取值范围是(21,e e e ⎤-⎦.【解析】(Ⅰ)函数()f x 的定义域是(),-∞+∞,()'xf x e a =-.在定义域上单调递增。
衡水中学名师原创《函数的图象、函数的应用》
2019衡水名师原创文科数学专题卷考试时间:120分钟 满分:150分说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上第I 卷(选择题)一、选择题(本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是最符合题目要求的。
) 1. 已知函数()f x 对任意的x ∈R 有()()0f x f x +-=,且当0x >时,()ln(1)f x x =+,则函数()f x 的大致图象为( )2. 已知函数)1(x f y -=的图象如下,则)2(+=x f y 的图象是( )3.函数()21cos 1e xf x x ⎛⎫=-⎪+⎝⎭的图象的大致形状是( ) A . B .C .D .4. 已知当[]0,1x ∈时,函数()21y mx =-的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是 (A )(])0,123,⎡+∞⎣(B )(][)0,13,+∞(C )()23,⎡+∞⎣(D )([)3,+∞5.如图,周长为1的圆的圆心C 在y 轴上,顶点(0,1)A ,一动点M 从A 开始逆时针绕圆运动一周,记走过的弧长AB x =,直线AM 与x 轴交于点(,0)N t ,则函数()t f x =的图像大致为( )6. 函数()41log 4x f x x =-的零点所在的区间是( ) A .10,2⎛⎫ ⎪⎝⎭B .1,12⎛⎫⎪⎝⎭C .()1,2D .()2,4 7. 已知0x 是函数()123x f x x =--的一个零点,若()()10203,,,x x x x ∈∈+∞,则( ) A.()()12f x f x < B.()()12f x f x > C.()()120,0f x f x << D.()()120,0f x f x >> 8. 已知方程sin x k x=在()0,+∞有且仅有两个不同的解α、()βαβ<,则下面结论正确的是( ) A. 1tan 41πααα+⎛⎫+= ⎪-⎝⎭ B. 1tan 41πααα-⎛⎫+= ⎪+⎝⎭ C. 1tan 41πβββ+⎛⎫+= ⎪-⎝⎭ D. 1tan 41πβββ-⎛⎫+= ⎪+⎝⎭9. 设函数[]2(2),(1,),()1||,1,1,f x x f x x x -∈+∞⎧⎪=⎨-∈-⎪⎩若关于x 的方程()log (1)0a f x x -+=(0a >且1a ≠)在区间[]0,5内恰有5个不同的根,则实数a 的取值范围是( )A .(B .)+∞C .)+∞D .10. 已知()()23,xf x xg x me =-=,若方程()()f x g x =有三个不同的实根, 则m 的取值范围是( ) A .360,e ⎛⎫ ⎪⎝⎭ B .363,e ⎛⎫- ⎪⎝⎭ C .362,e e ⎛⎫- ⎪⎝⎭ D .()0,2e 11. 某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.己知在过滤过程中废气中的污染物数量尸P (单位:毫克/升)与过滤时间t (单位:小时)之间的函数关系为:P=P 0e-kt,(k ,P 0均为正的常数,p0为原污染物数量).若在前5个小时的过滤过程中污染物被排除了90%.那么,至少还需( )时间过滤才可以排放. A .12小时 B .59小时 C .5小时 D .10小时 12. 某校要召开学生代表大会,规定各班每10人推选一名代表,当班人数除以10的余数大于6时,再增选一名代表,则各班推选代表人数y 与该班人数x 之间的函数关系用取整函数[]y x =([]x 表示不大于x 的最大整数,如[][]3,44π==)可表示为( ) A .10x y ⎡⎤=⎢⎥⎣⎦ B .310x y +⎡⎤=⎢⎥⎣⎦ C .410x y +⎡⎤=⎢⎥⎣⎦ D .510x y +⎡⎤=⎢⎥⎣⎦第Ⅱ卷(非选择题)二.填空题(每题5分,共20分)13.若直线2y a =与函数|1|(0xy a a =->且1)a ≠的图象有两个公共点,则a 的取值范围是14.某同学在借助计算器求“方程的近似解(精确)”时,设,算得,;在以下过程中,他用“二分法”又取了4个x 的值,计算了其函数值的正负,并得出判断:方程的近似解是.那么他所取的x 的4个值中最后一个值是 .15.设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,,(),,x x D f x x x D ⎧∈⎪=⎨∉⎪⎩ 其中集合1,*n D x x n n -⎧⎫==∈⎨⎬⎩⎭N ,则方程()lg 0f x x -=的解的个数是 ▲ .16. 已知函数()()()ln 02ln x x e f x x x e ⎧<≤⎪=⎨->⎪⎩,若a b c ,,互不相等,且()()()f a f b f c ==则a b c ++的取值范围为 .三.解答题(共70分) 17.(本题满分10分)已知函数2()21f x x x =--.(1)证明函数()f x 是偶函数;(2)在如图所示的平面直角坐标系中作出函数()f x 的图象. 18. (本题满分12分) 函数2()21(0,1)xx f x aa a a =+->≠且(1)若2a =,求()y f x =的值域(2)若()y f x =在区间[1,1]-上有最大值14。
高考专题--导数与应用-备战2019年高考数学(文)之衡水中学---精校解析Word版
数学试卷一、选择题1. 【河北省衡水中学2018届高三第十六次模拟考试】已知函数2y x =的图象在点()200,x x 处的切线为l ,若l 也与函数ln y x =, ()0,1x ∈的图象相切,则0x 必满足( )A .0102x <<B .0112x << C . D .【答案】D2. 【河北省衡水中学2019届高三上学期三调考试】已知函数满足,且存在实数使得不等式成立,则的取值范围为( ) A .B .C .D .【答案】D 【解析】∵,∴, ∴,解得,,解得,∴,∴,∴在递增,而,5. 【河北省衡水中学2019届高三上学期二调考试】已知函数,,若成立,则的最小值是()A.B.C.D.【答案】A【解析】设,则,,,∴,令,则,,∴是上的增函数,又,∴当时,,当时,,即在上单调递减,在上单调递增,是极小值也是最小值,3. 【河北省衡水中学2019届高三上学期二调考试】已知函数其中为自然对数的底数,若函数与的图象恰有一个公共点,则实数的取值范围是____________.【答案】【解析】因为,所以函数在区间上单调递增,且所以当时,与有一个公共点;当时,令,即有一个解即可.设,则得.因为当时,当时,所以当时,有唯一的极小值,即有最小值,所以当时,有一个公共点.综上,实数的取值范围是.1当1k e≥时,,又在()1,+∞上单调递减,所以()'0h x ≤在()1,+∞上恒成立,则()h x 在()1,+∞上单调递减,又()10h =,所以()0h x ≤在()1,+∞上恒成立.2当10k e<<时,,,又在()1,+∞上单调递减,所以存在()01,x ∈+∞,使得()0'0h x =,所以在()01,x 上()'0h x >,在()0,x +∞上()'0h x <, 所以()h x 在()01,x 上单调递增,在()0,x +∞上单调递减, 又()10h =,所以()0h x >在()01,x 上恒成立, 所以()0h x ≤在()1,+∞上恒成立不可能. 综上所述, 1k e≥. 3. 【河北省衡水中学2019届高三上学期六调】已知函数.(1)讨论的导函数的零点的个数;(2)证明:当时,.【答案】(1),没有零点,,存在唯一的零点;(2)证明见解析.【解析】(1)定义域为,的零点个数与的交点个数,①时,无交点,②时,有1个交点,③时,无交点(2)由(1)时,存在唯一,使,即,且时,单调递减,时,单调递增,∴,∴当时,4. 【河北省衡水中学2018届高三第十六次模拟考试】已知函数(),.(1)当在处的切线与直线垂直时,方程有两相异实数根,求的取值范围;(2)若幂函数的图象关于轴对称,求使不等式在上恒成立的的取值范围.【答案】(1);(2)【解析】(1)由题设可得,令()则令得.∵,,,且有两个不等实根,∴,即∴又,①,即时,.所以在内单调递增,,所以②,即时,由在内单调递增,且∵,.∴使得.所以的最小值为.又,所以.因此,要使当时,恒成立,只需,即即可.解得,此时,可得,以下求出的取值范围.∴在上单调递增,∴,从而,不符合题意.②若,当时,,在上单调递增,∴,∴在上单调递增,∴,从而在上,不符合题意;③若,则在上恒成立,∴在上单调递减,∴,∴在上单调递减,∴,∴即在区间上单调递增,在区间上单调递减.且当时,,当时,,要使有两个不同的根,必有,解得∴实数的取值范围是.②∵,∴又,∴,∴令,则,9. 【河北省衡水中学2019届高三上学期三调考试】已知函数(其中,是自然对数的底数).(1)若,当时,试比较与2的大小;(2)若函数有两个极值点,求的取值范围,并证明:.【答案】(1)(2)见解析(2)函数有两个极值点,则是的两个根,即方程有两个根,设,则,当时,,函数单调递增且;当时,,函数单调递增且;当时,,函数单调递增且;要使方程有两个根,只需,如图所示故实数的取值范围是又由上可知函数的两个极值点满足,由得.由于,故,所以10. 【河北省衡水中学2019届高三上学期二调考试】已知函数(1)求曲线在点处的切线方程;(2)若函数恰有2个零点,求实数的取值范围.【答案】(1)(2)(2)由题意得,,所以.由,解得,故当时,,在上单调递减;当时,,在上单调递增.所以.又,,结合函数的图象可得,若函数恰有两个零点,则解得.所以实数的取值范围为.11. 【河北省衡水中学2019届高三上学期二调考试】已知函数.(1)当时,若在上恒成立,求的取值范围;(2)当时,证明:.【答案】(1)(2)见解析(2)因为,所以,. 令,则.当时,,单调递减;当时,,单调递增.所以,即当时,,所以在上单调递减.又因为所以当时,当时,于是对恒成立.12. 【河北省衡水中学2019届高三上学期二调考试】已知函数,,R m ∈令.(Ⅰ)当12m =时,求函数()f x 的单调递增区间; (Ⅱ)若关于x 的不等式恒成立,求整数m 的最小值.【答案】(1)()0,1;(2)2.当0m >时,.令()0G x '=得1x m =,所以当10,x m ⎛⎫∈ ⎪⎝⎭时, ()0G x '>;当时, ()0G x '<.因此函数()G x 在10,x m ⎛⎫∈ ⎪⎝⎭是增函数,在是减函数.故函数()G x 的最大值为.令,因为,.又因为()h m 在()0,m ∈+∞上是减函数,所以当2m ≥时, ()0h m <. 所以整数m 的最小值为2.13. 【河北省衡水中学2019届高三上学期二调考试】已知函数.(1)若函数在上为增函数,求的取值范围;(2)若函数有两个不同的极值点,记作,且,证明:.【答案】(1)(2)见解析(2)由题得,则因为有两个极值点, 所以欲证等价于证,即,所以因为,所以原不等式等价于 .由可得,则②.由①②可知,原不等式等价于,即设,则,则上式等价于.令,则因为,所以,所以在区间上单调递增,所以当时,,即,所以原不等式成立,即.14. 【河北省衡水中学2019届高三第一次摸底考试】已知函数,其中为自然对数的底数.讨论函数的极值;若,证明:当,时,.【答案】(1)时,时,函数取得极小值;时,函数取得极大值;时,无极值;(2)证明见解析.证明:当,时,,只要证明即可,由可知:在内单调递减,.,令,,函数在上单调递减,,因此结论成立.15. 【河北省衡水中学2018年高考押题(一)】已知函数,(,为自然对数的底数)(1)试讨论函数的极值情况;(2)当且时,总有【答案】(1) 当时, 无极值; 当时, 极大值为,无极小值.(2)见解析.(2)当时,设函数,则,记,则当变化时,的变化情况如下表:由上表可知而由,知所以所以,即所以在内为单调递增函数.所以当时,即当且时,所以当且时,总有.16. 【河北省衡水中学2018年高考押题(三)】已知函数(,).(1)如果曲线在点处的切线方程为,求、值;(2)若,,关于的不等式的整数解有且只有一个,求的取值范围.【答案】(1)(2).(2)当时,,关于的不等式的整数解有且只有一个.等价于关于的不等式的整数解有且只要一个,构造函数,所以.①当时,因为,所以,又,所以,所以在内单调递增. 因为,所以在上存在唯一的整数使得,即.②当时,为满足题意,函数在内不存在整数使,即在上不存在整数使. 因为,所以.当时,函数,所以在内为单调递减函数,所以,即;当时,,不符合题意.综上所述,的取值范围为.17. 【河北省衡水中学2018年高考押题(二)】设函数.(1)试讨论函数的单调性;(2)如果且关于的方程有两解,,证明.【答案】(1)见解析;(2)见解析.(2)要证,只需证.设,因为,所以为单调递增函数.所以只需证,即证,只需证.(*)又,,所以两式相减,并整理,得.把代入(*)式,得只需证,可化为.令,得只需证.令(),则,所以在其定义域上为增函数,所以.综上得原不等式成立.18. 【河北省衡水中学2018年高考押题(二)】在直角坐标系中,曲线:(为参数,),在以坐标原点为极点,轴的非负半轴为极轴的极坐标系中,曲线:.(1)试将曲线与化为直角坐标系中的普通方程,并指出两曲线有公共点时的取值范围;(2)当时,两曲线相交于,两点,求.【答案】(1)的取值范围为;(2).(2)当时,曲线:,两曲线交点,所在直线方程为.曲线的圆心到直线的距离为,所以.19. 【河北省衡水中学2018年高考押题(二)】已知函数.(1)在下面给出的直角坐标系中作出函数的图象,并由图象找出满足不等式的解集;(2)若函数的最小值记为,设,且有,试证明:. 【答案】(1)解集为;(2)见解析见解析.(2)证明:由图可知函数的最小值为,即.所以,从而,从而.当且仅当时,等号成立,即,时,有最小值,所以得证.20. 【河北省衡水中学2018届高三十五模试题】已知函数.(1)当01a <≤时,求函数()f x 的单调区间;(2)是否存在实数a ,使得至少有一个()00,x ∈+∞,使()00f x x >成立,若存在,求出实数a 的取值范围;若不存在,说明理由.(2)先考虑“至少有一个()00,x ∈+∞,使()00f x x >成立”的否定“, ()f x x ≤恒成立”. 即可转化为恒成立.令,则只需()0x ϕ≥在()0,x ∈+∞恒成立即可,,当10a +>时,在10,e x ⎛⎫∈ ⎪⎝⎭时,()0x ϕ'<,在时,()0x ϕ'>()x ϕ的最小值为1e ϕ⎛⎫⎪⎝⎭,由10eϕ⎛⎫≥ ⎪⎝⎭得1e 1a ≥-,故当1e 1a ≥-时, ()f x x ≤恒成立, 当10a +=时, ()1x ϕ=-, ()0x ϕ≥在()0,x ∈+∞不能恒成立,当10a +<时,取1x =,有, ()0x ϕ≥在()0,x ∈+∞不能恒成立, 综上所述,即1e 1a <-时,至少有一个()00,x ∈+∞,使()00f x x >成立.21. 【河北省衡水中学2018届高三上学期七调考试】已知函数的最大值为1e,的图像关于y 轴对称.(1)求实数a , b 的值.(2)设,则是否存在区间,使得函数()F x 在区间[],m n 上的值域为?若存在,求实数k 的取值范围;若不存在,请说明理由.【答案】(1)0a =, 0b =.(2)见解析.(2)由(1)知,,则,所以,令,则对恒成立,所以()'F x 在区间()1,+∞内单调递增,所以恒成立, 所以函数()F x 在区间()1,+∞内单调递增.假设存在区间,使得函数()F x 在区间[],m n 上的值域是, 则, 问题转化为关于x 的方程在区间()1,+∞内是否存在两个不相等的实根, 即方程在区间()1,+∞内是否存在两个不相等的实根,令, ()1,x ∈+∞,则,设, ()1,x ∈+∞,则对恒成立,所以函数()p x 在区间()1,+∞内单调递增,故恒成立,所以()'0h x >,所以函数()h x 在区间()1,+∞内单调递增,所以方程在区间()1,+∞内不存在两个不相等的实根. 综上所述,不存在区间,使得函数()F x 在区间[],m n 上的值域是.22. 【河北省衡水中学2018届高三高考押题(一)】已知函数,(,为自然对数的底数).(1)试讨论函数的极值情况; (2)证明:当且时,总有. 【答案】(1) 在处取得极大值,且极大值为,无极小值.(2)见解析.故在处取得极大值,且极大值为,无极小值.当变化时,,的变化情况如下表:由上表可知,而,由,知,所以,所以,即.所以在内为单调递增函数.所以当时,.即当且时,.所以当且时,总有.证法二:当时,.因为且,故只需证.当时,成立;。
河北省衡水市2019年高考数学各类考试分项汇编专题05平面向量文
专题05 平面向量一、选择题1. 【河北衡水金卷2019届高三12月第三次联合质量测评】已知向量的夹角为,则的值为A.0 B. C. D.【答案】C2. 【河北省衡水中学2019届高三上学期六调】已知向量在向量方向上的投影为,且,则()A. B. C. D.【答案】D【解析】∵,又,∴故选:D4. 【【衡水金卷】2018届四省名校高三第三次大联考】如图,在中,已知,为上一点,且满足,若的面积为,,则的最小值为()A. B. C. D.【答案】D5. 【河北省衡水中学2019届高三上学期三调考试】已知是正方形的中心,若,其中,,则( )A. B. C. D.【答案】A【解析】∵,∴,,∴,故选A.则4. 【河北省衡水中学2018届高三第十六次模拟考试】已知平面向量与的夹角为,且,则____.【答案】【解析】:由,将的两边同时平方可得,,即,解得.5. 【河北省衡水中学2019届高三上学期四调】已知向量夹角为,且,则__________.【答案】6. 【河北省衡水中学2019届高三上学期三调考试】平面向量与的夹角为,,,则等于____________.【答案】.【解析】7. 【河北省衡水中学2019届高三第一次摸底考试】已知向量,,若,则______.【答案】-30【解析】因为向量,,,,,,故答案为8. 【河北省衡水中学2018年高考押题(一)】已知,若向量2a b +与()8,6c =共线,则a 和b 方向上的投影为__________.【答案】59. 【河北省衡水中学2018年高考押题(二)】向量,,若向量,共线,且,则的值为__________. 【答案】-8【解析】由题意可得: 或,则:或.10. 【河北省衡水中学2018年高考押题(二)】已知点,,若圆上存在点使,则的最小值为__________.【答案】16【解析】圆的方程即:,设圆上的点P 的坐标为,则:,计算可得:,,由正弦函数的性质有:,求解关于实数的不等式可得:,则的最小值为16.11. 【河北省衡水中学2018届高三十五模试题】已知(),2a λλ=, ()3,2b λ=,如果a 与b 的夹角为直角,则a b +=__________.【答案】162,33⎛⎫--⎪⎝⎭。
高考数学最新真题专题解析—导数及其应用(新高考卷)
高考数学最新真题专题解析—导数及其应用(新高考卷)【母题来源】2022年新高考I 卷【母题题文】已知函数f(x)=x 3−x +1,则( ) A. f(x)有两个极值点 B. f(x)有三个零点C. 点(0,1)是曲线y =f(x)的对称中心D. 直线y =2x 是曲线y =f(x)的切线 【答案】AC 【分析】本题考查利用导数研究函数的极值与零点以及曲线上一点的切线问题,函数的对称性,考查了运算能力以及数形结合思想,属于中档题. 【解答】解: f(x)=x 3−x +1⇒f′(x)=3x 2−1 ,令 f′(x)=0 得: x =±√33,f′(x)>0⇒x <−√33 或 x >√33 ; f′(x)<0⇒−√33<x <√33,所以 f(x) 在 (−∞,−√33) 上单调递增,在 (−√33,√33) 上单调递减,在 (√33,+∞)上单调递增,所以 f(x) 有两个极值点 (x =−√33 为极大值点, x =√33为极小值点 ) ,故 A正确 ;又 f(−√33)=−√39−(−√33)+1=1+2√39>0 , f(√33)=√39−√33+1=1−2√39>0 ,所以 f(x) 仅有 1 个零点 ( 如图所示 ) ,故 B 错 ;又 f(−x)=−x 3+x +1⇒f(−x)+f(x)=2 ,所以 f(x) 关于 (0,1) 对称,故 C 正确 ;对于 D 选项,设切点 P(x 0,y 0) ,在 P 处的切线为 y −(x 03−x 0+1)=(3x 02−1)(x −x 0) ,即 y =(3x 02−1)x −2x 03+1 ,若 y =2x 是其切线,则 {3x 02−1=2−2x 03+1=0,方程组无解,所以 D 错. 【母题来源】2022年新高考II 卷【母题题文】曲线y =ln|x|经过坐标原点的两条切线方程分别为 , . 【答案】y =x e y =−xe 【分析】本题考查函数切线问题,设切点坐标,表示出切线方程,带入坐标原点,求出切点的横坐标,即可求出切线方程,为一般题. 【解答】解:当 x >0 时,点 (x 1,lnx 1)(x 1>0) 上的切线为 y −lnx 1=1x 1(x −x 1).若该切线经过原点,则 lnx 1−1=0 ,解得 x =e , 此的切线方程为 y =xe .当 x <0 时,点 (x 2,ln(−x 2))(x 2<0) 上的切线为 y −ln (−x 2)=1x 2(x −x 2) .若该切线经过原点,则 ln(−x 2)−1=0 ,解得 x =−e , 此时切线方程为 y =−xe . 【命题意图】考察导数的概念,考察导数的几何意义,考察导数求导法则求导公式,导数的应用,考察数学运算和逻辑推导素养,考察分类讨论思想,函数和方程思想,化归与转化的数学思想,分析问题与解决问题的能力。
专题04导数及其应用选择填空题(解析版)
大数据之十年高考真题(2013-2022)与优质模拟题(新课标文科卷)专题04导数及其应用选择填空题1.【2022年全国甲卷文科08】当x=1时,函数f(x)=alnx+bx取得最大值−2,则f′(2)=()A.−1B.−12C.12D.1【答案】B【解析】因为函数f(x)定义域为(0,+∞),所以依题可知,f(1)=−2,f′(1)=0,而f′(x)=ax−bx2,所以b=−2,a−b=0,即a=−2,b=−2,所以f′(x)=−2x+2x2,因此函数f(x)在(0,1)上递增,在(1,+∞)上递减,x=1时取最大值,满足题意,即有f′(2)=−1+12=−12.故选:B.2.【2021年全国乙卷文科12】设a≠0,若x=a为函数f(x)=a(x−a)2(x−b)的极大值点,则()A.a<b B.a>b C.ab<a2D.ab>a2【答案】D若a=b,则f(x)=a(x−a)3为单调函数,无极值点,不符合题意,故a≠b.依题意,x=a为函数f(x)=a(x−a)2(x−b)的极大值点,当a<0时,由x>b,f(x)≤0,画出f(x)的图象如下图所示:由图可知b<a,a<0,故ab>a2.真题汇总当a>0时,由x>b时,f(x)>0,画出f(x)的图象如下图所示:由图可知b>a,a>0,故ab>a2.综上所述,ab>a2成立.故选:D3.【2019年新课标3文科07】已知曲线y=ae x+xlnx在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=﹣1B.a=e,b=1C.a=e﹣1,b=1D.a=e﹣1,b=﹣1【答案】解:y=ae x+xlnx的导数为y′=ae x+lnx+1,由在点(1,ae)处的切线方程为y=2x+b,可得ae+1+0=2,解得a=e﹣1,又切点为(1,1),可得1=2+b,即b=﹣1,故选:D.4.【2019年新课标2文科10】曲线y=2sin x+cos x在点(π,﹣1)处的切线方程为()A.x﹣y﹣π﹣1=0B.2x﹣y﹣2π﹣1=0C.2x+y﹣2π+1=0D.x+y﹣π+1=0【答案】解:由y=2sin x+cos x,得y′=2cos x﹣sin x,∴y′|x=π=2cosπ﹣sinπ=﹣2,∴曲线y=2sin x+cos x在点(π,﹣1)处的切线方程为y+1=﹣2(x﹣π),即2x+y﹣2π+1=0.故选:C.5.【2019年新课标1文科05】函数f(x)=sinx+x在[﹣π,π]的图象大致为()cosx+x2A.B.C.D.【答案】解:∵f(x)=sinx+xcosx+x2,x∈[﹣π,π],∴f(﹣x)=−sinx−xcos(−x)+x2=−sinx+xcosx+x2=−f(x),∴f(x)为[﹣π,π]上的奇函数,因此排除A;又f(π)=sinπ+πcosπ+π2=π−1+π2>0,因此排除B,C;故选:D.6.【2018年新课标1文科06】设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x【答案】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.7.【2018年新课标2文科03】函数f(x)=e x−e−xx2的图象大致为()A.B.C.D.【答案】解:函数f(﹣x)=e −x−e x(−x)2=−e x−e−xx2=−f(x),则函数f(x)为奇函数,图象关于原点对称,排除A,当x=1时,f(1)=e−1e>0,排除D.当x→+∞时,f(x)→+∞,排除C,故选:B.8.【2018年新课标3文科09】函数y=﹣x4+x2+2的图象大致为()A.B.C .D .【答案】解:函数过定点(0,2),排除A ,B . 函数的导数f ′(x )=﹣4x 3+2x =﹣2x (2x 2﹣1), 由f ′(x )>0得2x (2x 2﹣1)<0, 得x <−√22或0<x <√22,此时函数单调递增, 由f ′(x )<0得2x (2x 2﹣1)>0, 得x >√22或−√22<x <0,此时函数单调递减,排除C ,也可以利用f (1)=﹣1+1+2=2>0,排除A ,B , 故选:D .9.【2017年新课标1文科08】函数y =sin2x1−cosx 的部分图象大致为( )A .B.C.D.【答案】解:函数y=sin2x1−cosx,可知函数是奇函数,排除选项B,当x=π3时,f(π3)=√321−12=√3,排除A,x=π时,f(π)=0,排除D.故选:C.10.【2017年新课标1文科09】已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称【答案】解:∵函数f(x)=lnx+ln(2﹣x),∴f(2﹣x)=ln(2﹣x)+lnx,即f(x)=f(2﹣x),即y=f(x)的图象关于直线x=1对称,故选:C.11.【2017年新课标2文科08】函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)【答案】解:由x2﹣2x﹣8>0得:x∈(﹣∞,﹣2)∪(4,+∞),令t=x2﹣2x﹣8,则y=lnt,∵x∈(﹣∞,﹣2)时,t=x2﹣2x﹣8为减函数;x∈(4,+∞)时,t=x2﹣2x﹣8为增函数;y=lnt为增函数,故函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是(4,+∞),故选:D.12.【2017年新课标3文科07】函数y=1+x+sinx的部分图象大致为()x2A.B.C.D.【答案】解:函数y=1+x+sinxx2,可知:f(x)=x+sinxx2是奇函数,所以函数的图象关于原点对称,则函数y=1+x+sinxx2的图象关于(0,1)对称,当x→0+,f(x)>0,排除A、C,当x=π时,y=1+π,排除B.故选:D.13.【2017年新课标3文科12】已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.−12B.13C.12D.1【答案】解:因为f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)=﹣1+(x﹣1)2+a(e x﹣1+1e x−1)=0,所以函数f(x)有唯一零点等价于方程1﹣(x﹣1)2=a(e x﹣1+1e x−1)有唯一解,等价于函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1+1e x−1)的图象只有一个交点.①当a=0时,f(x)=x2﹣2x≥﹣1,此时有两个零点,矛盾;②当a<0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(e x﹣1+1e x−1)在(﹣∞,1)上递增、在(1,+∞)上递减,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1+1e x−1)的图象的最高点为B(1,2a),由于2a<0<1,此时函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1+1)的图象有两个交点,矛盾;e x−1③当a>0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,)在(﹣∞,1)上递减、在(1,+∞)上递增,且y=a(e x﹣1+1e x−1所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1+1)的图象的最低点为B(1,2a),e x−1由题可知点A与点B重合时满足条件,即2a=1,即a=1,符合条件;2,综上所述,a=12故选:C.14.【2016年新课标1文科09】函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【答案】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.15.【2016年新课标1文科12】若函数f(x)=x−1sin2x+a sin x在(﹣∞,+∞)单调递增,则a的取值范3围是()A .[﹣1,1]B .[﹣1,13]C .[−13,13]D .[﹣1,−13]【答案】解:函数f (x )=x −13sin2x +a sin x 的导数为f ′(x )=1−23cos2x +a cos x ,由题意可得f ′(x )≥0恒成立, 即为1−23cos2x +a cos x ≥0, 即有53−43cos 2x +a cos x ≥0,设t =cos x (﹣1≤t ≤1),即有5﹣4t 2+3at ≥0, 当t =0时,不等式显然成立; 当0<t ≤1时,3a ≥4t −5t ,由4t −5t 在(0,1]递增,可得t =1时,取得最大值﹣1, 可得3a ≥﹣1,即a ≥−13; 当﹣1≤t <0时,3a ≤4t −5t ,由4t −5t 在[﹣1,0)递增,可得t =﹣1时,取得最小值1, 可得3a ≤1,即a ≤13.综上可得a 的范围是[−13,13].另解:设t =cos x (﹣1≤t ≤1),即有5﹣4t 2+3at ≥0, 由题意可得5﹣4+3a ≥0,且5﹣4﹣3a ≥0, 解得a 的范围是[−13,13]. 故选:C .16.【2014年新课标1文科12】已知函数f (x )=ax 3﹣3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是( ) A .(1,+∞)B .(2,+∞)C .(﹣∞,﹣1)D .(﹣∞,﹣2)【答案】解:∵f (x )=ax 3﹣3x 2+1,∴f ′(x )=3ax 2﹣6x =3x (ax ﹣2),f (0)=1; ①当a =0时,f (x )=﹣3x 2+1有两个零点,不成立;②当a >0时,f (x )=ax 3﹣3x 2+1在(﹣∞,0)上有零点,故不成立; ③当a <0时,f (x )=ax 3﹣3x 2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=2a时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f(2a )=8a2−3•4a2+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.17.【2014年新课标2文科03】函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件【答案】解:函数f(x)=x3的导数为f'(x)=3x2,由f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.根据极值的定义和性质,若x=x0是f(x)的极值点,则f′(x0)=0成立,即必要性成立,故p是q的必要条件,但不是q的充分条件,故选:C.18.【2014年新课标2文科11】若函数f(x)=kx﹣ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)【答案】解:f′(x)=k−1x,∵函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,∴f′(x)≥0在区间(1,+∞)上恒成立.∴k≥1x,而y=1x在区间(1,+∞)上单调递减,∴k≥1.∴k的取值范围是:[1,+∞).故选:D.19.【2013年新课标1文科09】函数f(x)=(1﹣cos x)sin x在[﹣π,π]的图象大致为()A.B.C.D.【答案】解:由题意可知:f(﹣x)=(1﹣cos x)sin(﹣x)=﹣f(x),故函数f(x)为奇函数,故可排除B,又因为当x∈(0,π)时,1﹣cos x>0,sin x>0,故f(x)>0,可排除A,又f′(x)=(1﹣cos x)′sin x+(1﹣cos x)(sin x)′=sin2x+cos x﹣cos2x=cos x﹣cos2x,故可得f′(0)=0,可排除D,故选:C.20.【2013年新课标2文科11】已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)上单调递减D.若x0是f(x)的极值点,则f′(x0)=0【答案】解:A 、对于三次函数f (x )=x 3+ax 2+bx +c ,A :由于当x →﹣∞时,y →﹣∞,当x →+∞时,y →+∞, 故∃x 0∈R ,f (x 0)=0,故A 正确;B 、∵f (−2a 3−x )+f (x )=(−2a 3−x )3+a (−2a3−x )2+b (−2a3−x )+c +x 3+ax 2+bx +c =4a 327−2ab 3+2c ,f (−a3)=(−a3)3+a (−a3)2+b (−a3)+c =2a 327−ab 3+c ,∵f (−2a 3−x )+f (x )=2f (−a3),∴点P (−a3,f (−a3))为对称中心,故B 正确. C 、若取a =﹣1,b =﹣1,c =0,则f (x )=x 3﹣x 2﹣x , 对于f (x )=x 3﹣x 2﹣x ,∵f ′(x )=3x 2﹣2x ﹣1∴由f ′(x )=3x 2﹣2x ﹣1>0得x ∈(﹣∞,−13)∪(1,+∞) 由f ′(x )=3x 2﹣2x ﹣1<0得x ∈(−13,1)∴函数f (x )的单调增区间为:(﹣∞,−13),(1,+∞),减区间为:(−13,1),故1是f (x )的极小值点,但f (x )在区间(﹣∞,1)不是单调递减,故C 错误; D :若x 0是f (x )的极值点,根据导数的意义,则f ′(x 0 )=0,故D 正确. 由于该题选择错误的,故选:C .21.【2020年全国1卷文科15】曲线y =lnx +x +1的一条切线的斜率为2,则该切线的方程为______________. 【答案】y =2x【解析】设切线的切点坐标为(x0,y0),y=lnx+x+1,y′=1x+1,y′|x=x0=1x0+1=2,x0=1,y0=2,所以切点坐标为(1,2),所求的切线方程为y−2=2(x−1),即y=2x.故答案为:y=2x.22.【2020年全国3卷文科15】设函数f(x)=e xx+a .若f′(1)=e4,则a=_________.【答案】1【解析】由函数的解析式可得:f′(x)=e x(x+a)−e x(x+a)2=e x(x+a−1)(x+a)2,则:f′(1)=e1×(1+a−1)(1+a)2=ae(a+1)2,据此可得:ae(a+1)2=e4,整理可得:a2−2a+1=0,解得:a=1.故答案为:1.23.【2019年新课标1文科13】曲线y=3(x2+x)e x在点(0,0)处的切线方程为.【答案】解:∵y=3(x2+x)e x,∴y'=3e x(x2+3x+1),∴当x=0时,y'=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为:y=3x.24.【2018年新课标2文科13】曲线y=2lnx在点(1,0)处的切线方程为.【答案】解:∵y=2lnx,∴y′=2x,当x=1时,y′=2∴曲线y=2lnx在点(1,0)处的切线方程为y=2x﹣2.故答案为:y=2x﹣2.25.【2017年新课标1文科14】曲线y=x2+1x在点(1,2)处的切线方程为.【答案】解:曲线y=x2+1x ,可得y′=2x−1x2,切线的斜率为:k=2﹣1=1.切线方程为:y﹣2=x﹣1,即:x﹣y+1=0.故答案为:x﹣y+1=0.26.【2016年新课标3文科16】已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,则曲线y=f(x)在点(1,2)处的切线方程是.【答案】解:已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,设x>0,则﹣x<0,∴f(x)=f(﹣x)=e x﹣1+x,则f′(x)=e x﹣1+1,f′(1)=e0+1=2.∴曲线y=f(x)在点(1,2)处的切线方程是y﹣2=2(x﹣1).即y=2x.故答案为:y=2x.27.【2015年新课标1文科14】已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=.【答案】解:函数f(x)=ax3+x+1的导数为:f′(x)=3ax2+1,f′(1)=3a+1,而f(1)=a+2,切线方程为:y﹣a﹣2=(3a+1)(x﹣1),因为切线方程经过(2,7),所以7﹣a﹣2=(3a+1)(2﹣1),解得a=1.故答案为:1.28.【2015年新课标2文科16】已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.,【答案】解:y=x+lnx的导数为y′=1+1x曲线y=x+lnx在x=1处的切线斜率为k=2,则曲线y=x+lnx在x=1处的切线方程为y﹣1=2x﹣2,即y=2x﹣1.由于切线与曲线y=ax2+(a+2)x+1相切,故y=ax2+(a+2)x+1可联立y=2x﹣1,得ax2+ax+2=0,又a≠0,两线相切有一切点,所以有△=a 2﹣8a =0, 解得a =8. 故答案为:8.1.已知函数f (x )=a e x +b (a,b ∈R )在点(0,f (0))处的切线方程为y =3x +2,则2a +b =( )A .1B .2C .4D .5【答案】D 【解析】由f (x )=a e x +b ,则f ′(x )=a e x ,所以{f (0)=2=a +b,f ′(0)=3=a,解得:a =3,b =−1,所以2a +b =5 .故选:D.2.已知函数f (x )=−xln2−x 3,则不等式f (3−x 2)>f (2x −5)的解集为( ) A .(−4,2)B .(−2,2)C .(−∞,−2)∪(2,+∞)D .(−∞,−4)∪(2,+∞)【答案】D 【解析】f(x)的定义域为(−∞,+∞),因为f ′(x)=−ln2−3x 2 <0,所以f(x)在(−∞,+∞)上单调递减,所以不等式f (3−x 2)>f (2x −5)等价于3−x 2<2x −5,解得x <−4或x >2, 所以不等式f (3−x 2)>f (2x −5)的解集为(−∞,−4)∪(2,+∞). 故选:D3.已知x 0是函数f(x)=13x −2sin x cos x 的一个极值点,则tan 2x 0的值是( )A .1B .12C .37D .57【答案】D 【解析】f ′(x)=13−2cos 2x,∴cos 2x 0=16∴2cos 2x 0−1=16, ∴cos 2x 0=712,∴sin 2x 0=1−cos 2x 0=512,模拟好题∴tan2x0=sin2x0cos2x0=57故选:D4.已知函数f(x)=e x−e2lnx,则曲线y=f(x)在点(1,f(1))处的切线方程为()A.e x+2y−e=0B.e x−2y+e=0C.e x−2y−e=0D.e x+2y+e=0【答案】B【解析】∵f′(x)=e x−e2x ,∴f′(1)=e−e2=e2.又f(1)=e1−e2×ln1=e,切点为(1,e)所以曲线y=f(x)在点(1,f(1))处的切线的斜率为k=f′(1)=e2,所以曲线y=f(x)在点(1,f(1))处的切线方程为y−e=e2(x−1),即e x−2y+e=0.故选:B.5.已知函数g(x)=lnx+34x −14x−1,f(x)=x2−2tx+4,若对任意的x1∈(0,2)存在x2∈[1,2],使g(x1)≥f(x2),则实数t的取值范围是()A.[2,178]B.[178,+∞)C.[114,+∞)D.[3√22,+∞)【答案】B【解析】因为对任意的x1∈(0,2)存在x2∈[1,2],使g(x1)≥f(x2)成立,即g(x)min≥f(x)min,由函数g(x)=lnx+34x −14x−1,可得g′(x)=1x−34x2−14=−(x−1)(x−3)4x2,0<x<2,当x∈(0,1)时,g′(x)<0,g(x)单调递减;当x∈(1,2)时,g′(x)>0,g(x)单调递增,所以当x=1时,函数g(x)取得最小值,最小值为g(1)=−12,又由函数f(x)=x2−2tx+4=(x−t)2+4−t2,x∈[1,2],当t<1时,函数f(x)在[1,2]上单调递增,f(x)min=f(1)=5−2t,即5−2t≤−12,解得t≥114,不成立,舍去;当1≤t ≤2时,函数f (x )在[1,t]上单调递减,[t,2]上单调递增,f (x )min =f (t )=4−t 2,即4−t 2≤−12,解得t ≥3√22或t ≤−3√22,不成立,舍去;当t >2时,函数f (x )在[1,2]上单调递减,f (x )min =f (2)=8−4t , 即8−4t ≤−12,解得t ≥178,综上可得,实数t 的取值范围是[178,+∞). 故选:B.6.设直线x =t 与函数f(x)=2x 2,g(x)=lnx 的图像分别交于点M,N ,则|MN |的最小值为( ) A .12+ln2B .3ln2−1C .e2−1D .12【答案】A 【解析】由题意M(t,2t 2),N(t,lnt),所以|MN |=|2t 2−lnt |,令ℎ(t)=2t 2−lnt ,则ℎ′(t)=4t −1t=4t 2−1t ,当0<t <12时,ℎ′(t)<0,当t >12时,ℎ′(t)>0,所以ℎ(t)min =ℎ(12)=12+ln2, 即|MN|的最小值为12+ln2, 故选:A.7.已知函数f (x )=e x +ax 2+2ax 在x ∈(0,+∞)上有最小值,则实数a 的取值范围为( ) A .(12,+∞)B .(−e 2,−12)C .(−1,0)D .(−∞,−12)【答案】D 【解析】解:∵f(x)=e x +ax 2+2ax , ∴f ′(x)=e x +2ax +2a ,若函数f(x)在x ∈(0,+∞)上有最小值, 即f(x)在(0,+∞)先递减再递增, 即f ′(x)在(0,+∞)先小于0,再大于0, 令f ′(x)<0,得e x <−2a(x +1), 令g(x)=e x ,ℎ(x)=−2a(x +1),只需ℎ(x)的斜率−2a 大于过(−1,0)的g(x)的切线的斜率即可,设切点是(x 0,e x 0),则切线方程是:y −e x 0=e x 0(x −a), 将(−1,0)代入切线方程得:x 0=0, 故切点是(0,1),切线的斜率是1,只需−2a >1即可,解得a <−12,即a ∈(−∞,−12), 故选:D .8.已知函数f(x)为定义在R 上的增函数,且对∀x ∈R,f(x)+f(−x)=1,若不等式f(ax)+f(−lnx)≥1对∀x ∈(0,+∞)恒成立,则实数a 的取值范围是( ) A .(0,e ] B .(−∞,e ]C .(0,1e]D .[1e,+∞)【答案】D 【解析】∵∀x ∈R ,f(x)+f(−x)=1,∴f(−lnx)=1−f(lnx), ∵不等式f(ax)+f(−lnx)≥1对∀x ∈(0,+∞)恒成立, ∴f(ax)≥f(lnx)对∀x ∈(0,+∞)恒成立,∵函数f(x)为定义在R 上的增函数,∴ax ≥lnx ,化为:a ≥lnx x,令g(x)=lnx x,x ∈(0,+∞),则g ′(x)=1−lnx x 2,x ∈(0,e)时,g ′(x)>0,此时函数g(x)单调递增;x ∈(e,+∞)时,g ′(x)<0,此时函数g(x)单调递减. ∴x =e 时,函数g(x)取得极大值. g(x)max =g(e )=1e .∴a ≥1e.则实数a 的取值范围是[1e,+∞).故选:D.9.已知函数f (x )=−e x +ax −e 2有两个零点,则实数a 的取值范围为( ) A .(0,e 2) B .(0,e ) C .(e ,+∞) D .(e 2,+∞)【答案】D 【解析】f′(x)=−e x+a,当a≤0时,f′(x)<0,则f(x)单调递减,此时f(x)至多一个零点,不符合题意;当a>0时,令f′(x)=0,则x=lna,当x∈(−∞,lna)时,f′(x)>0,f(x)单调递增,当x∈(lna,+∞)时,f′(x)<0,f(x)单调递减,因为f(x)有两个零点,所以f(lna)=alna−a−e2>0,令g(a)=alna−a−e2,a>0,则g′(a)=lna,令g′(a)<0解得0<a<1,令g′(a)>0,解得a>1,所以g(a)在(0,1)单调递减,在(1,+∞)单调递增,且当0<a<1时,g(a)<0,g(1)=−1−e2<0,g(e2)=0,所以a>e2.故选:D.10.已知x∈(0,π2),且ax<sinx<bx恒成立,则b−a的最小值为()A.1B.π2C.π2−1D.1−2π【答案】D 【解析】由ax<sinx,x∈(0,π2)得:a<sinxx;令f(x)=sinxx (0<x<π2),∴f′(x)=xcosx−sinxx2,令g(x)=xcosx−sinx(0<x<π2),则g′(x)=−xsinx<0,∴g(x)在(0,π2)上单调递减,∴g(x)<g(0)=0,则f′(x)<0,∴f(x)在(0,π2)上单调递减,∴f(x)>f(π2)=2π,∴a≤2π;令ℎ(x)=sinx−bx(0<x<π2),则ℎ′(x)=cosx−b,∵0<x<π2,∴0<cosx<1;当b≤0时,ℎ′(x)>0,∴ℎ(x)在(0,π2)上单调递增,∴ℎ(x)>ℎ(0)=0,不合题意;当b≥1时,ℎ′(x)<0,∴ℎ(x)在(0,π2)上单调递减,∴ℎ(x)<ℎ(0)=0,满足题意;当0<b<1时,∃x0∈(0,π2),使得ℎ′(x0)=0,又ℎ′(x)在(0,π2)上单调递减,∴当x∈(0,x0)时,ℎ′(x)>0,∴ℎ(x )在(0,x 0)上单调递增,则ℎ(x )>ℎ(0)=0,不合题意; 综上所述:b ≥1;∴(b −a )min =b min −a max =1−2π.故选:D.11.若曲线y =−√x +1在点(0,−1)处的切线与曲线y =lnx 在点 P 处的切线垂直,则点 P 的坐标为( ) A .(e ,1) B .(1,0) C .(2,ln2)D .(12,−ln2)【答案】D 【解析】y =−√x +1的导数为y ′=2√x+1,所以曲线y =−√x +1在点(0,−1)处的切线的斜率为k 1=−12. 因为曲线y =−√x +1在点(0,−1)处的切线与曲线y=ln x 在点P 处的切线垂直, 所以曲线y=ln x 在点P 处的切线的斜率k 2=2.而y=ln x 的导数y ′=1x ,所以切点的横坐标为12,所以切点P(12,−ln2). 故选:D12.定义:设函数f (x )的定义域为D ,如果[m,n ]⊆D ,使得f (x )在[m,n ]上的值域为[m,n ],则称函数f (x )在[m,n ]上为“等域函数”,若定义域为[1e ,e 2]的函数g (x )=a x (a >0,a ≠1)在定义域的某个闭区间上为“等域函数”,则a 的取值范围为( ) A .[2e2,1e )B .[2e2,1e]C .[e 2e 2,e 1e )D .[e 2e 2,e 1e ]【答案】C 【解析】当0<a <1时,函数g(x)=a x 在[1e ,e 2]上为减函数,若在其定义域的某个闭区间上为“等域函数”,则存在m ,n ∈[1e,e 2](m <n )使得{a m =n a n =m ,所以{m ln a =ln nn ln a =ln m ,消去lna ,得mlnm =nlnn ,令k(x)=xlnx ,则k ′(x)=lnx +1,当x ∈[1e ,e 2]时,k ′(x)≥0,所以k(x)在[1e ,e 2]上是单调增函数,所以符合条件的m ,n 不存在.当a>1时,函数g(x)=a x在[1e,e2]上为增函数,若在其定义域的某个闭区间上为“等域函数”,则存在m,n∈[1e ,e2](m<n)使得a m=m,a n=n,即方程a x=x在[1e,e2]上有两个不等实根,即lna=lnxx 在[1e,e2]上有两个不等实根,设函数ℎ(x)=lnxx (1e≤x≤e2),则ℎ′(x)=1−lnxx2,当1e≤x<e时,ℎ′(x)>0;当e<x≤e2时,ℎ′(x)<0,所以ℎ(x)在[1e,e)上单调递增,在(e,e2]上单调递减,所以ℎ(x)在x=e处取得极大值,也是最大值,所以ℎ(x)max=ℎ(e)=1e ,又ℎ(1e)=−e,ℎ(e2)=2e2,故2e2≤lna<1e,即e2e2≤a<e1e.故选:C.【点睛】解题的关键是讨论g(x)的单调性,根据题意,整理化简得到新的函数,利用导数求得新函数的单调性和最值,分析即可得答案,考查分析理解,计算求值的能力,属中档题.13.已知x1>x2>0,若不等式e2x1−e2x2x1−x2>m e x1+x2恒成立,则m的取值范围为()A.(−∞,2)B.(−∞,2]C.(−∞,0)D.(−∞,0]【答案】B【解析】解:因为x1>x2>0,不等式e2x1−e2x2x1−x2>m e x1+x2恒成立,等价于e x1−x2−e x2−x1−m(x1−x2)>0恒成立,令t=x1−x2>0,则不等式转化为e t−e−t−mt>0恒成立,令f(t)=e t−e−t−mt(t>0),则f′(t)=e t+e−t−m,显然e t+e−t≥2√e t⋅e−t=2,当且仅当e t=e−t,即t=0时取等号,所以当m≤2时f′(t)>0,即f(t)在(0,+∞)上单调递增,所以f(t)>f(0)=0,符合题意;当m>2时,令g(t)=f′(t)=e t+e−t−m,则g′(t)=e t−e−t>0,故f′(t)在(0,+∞)上单调递增,所以存在t0∈(0,+∞)满足f′(t0)=0,且当0<t<t0时f′(t)<0,当t>t0时f′(t)>0,所以f (t )在(0,t 0)上单调递减,此时f (t )<f (0)=0,与题意矛盾,综上可得m ∈(−∞,2]; 故选:B14.已知奇函数f (x )的导函数为f ′(x ),且f (x )在(0,π2)上恒有f (x )sinx<f ′(x )cosx成立,则下列不等式成立的( )A .√2f (π6)>f (π4)B .f (−π3)<√3f (−π6)C .√3f (−π4)<√2f (−π3)D .√22f (π3)<√3f (π4)【答案】B 【解析】 构造函数F (x )=f (x )sin x,由f (x )在(0,π2)上恒有f(x )sinx<f ′(x )cosx成立,即f ′(x )sin x −f (x )cos x >0,∴F ′(x )=f ′(x )sin x−f (x )cos x(sinx)2>0,∴F (x )在(0,π2)上为增函数,又由F (−x )=f (−x )sin (−x )=−f (x )−sin x=F (x ),∴F (x )为偶函数,∵π6<π4,∴F (π6)<F (π4),∴f(π6)sin π6<f(π4)sin π4,∴√2f (π6)<f (π4),故A 错误.∵偶函数F (x )在(0,π2)上为增函数,∴F (x )在(−π2,0)上为减函数,∵−π3<−π6,∴F (−π3)>F (−π6),∴f (−π3)sin (−π3)>f (−π6)sin (−π6),∴−f (−π3)>−√3f (−π6), ∴f (−π3)<√3f (−π6),故B 正确;F (−π4)<F (−π3),∴f(−π4)sin (−π4)<f(π3)sin (−π),∴−√3f (−π4)<−√2f (−π3),∴√3f (−π4)>√2f (−π3),故C 错误;∵π3>π4,∴F (π3)>F (π4),∴f(π3)sin π3>f(π4)sin π4,∴√2f (π3)>√3f (π4),故D 错误.故选:B15.已知f ′(x )是定义在R 上的函数f (x )的导数,且f (x )−f ′(x )<0,则下列不等式一定成立的是( ) A .e 3f (−2)>f (1) B .f (−2)<e 3f (1) C .e f (1)<f (2) D .f (1)<e f (2)【答案】C 【解析】 设g (x )=f (x )ex,则g ′(x )=f ′(x )−f (x )ex.因为f (x )−f ′(x )<0,所以g ′(x )>0,则g (x )在R 上单调递增. 因为−2<1,所以g (−2)<g (1),即f (−2)e−2<f (1)e,所以3f (−2)<f (1),则A 错误;因为f (−2),f (1)的大小不能确定,所以f (−2),e 3f (1)的大小不能确定,则B 错误; 因为1<2,所以g (1)<g (2),则f (1)e<f (2)e2,所以e f (1)<f (2),则C 正确;因为f (1),f (2)的大小不能确定,所以f (1),e f (2)不能确定,则D 错误. 故选:C16.曲线y =x 3+lnx 在x =1处的切线方程为 _____________ . 【答案】4x −y −3=0 【解析】解:y ′=3x 2+1x , 当x =1时,y ′=4,y =1,所以曲线y =x 3+lnx 在x =1处的切线方程为y −1=4(x −1), 即4x −y −3=0. 故答案为:4x −y −3=0.17.已知函数f (x )=2e −x ,则曲线y =f (x )在点(−2,f (−2))(e ≈2.71828⋅⋅⋅)处的切线方程为______. 【答案】2e 2x +y +2e 2=0 【解析】f ′(x)=−2e −x ,f ′(−2)=−2e 2,f(−2)=2e 2,所以所求切线方程为y −2e 2=−2e 2(x +2),即2e 2x +y +2e 2=0. 故答案为:2e 2x +y +2e 2=0.18.若直线l 与曲线y =x 2和x 2+y 2=49都相切,则l 的斜率为______.【答案】±2√2 【解析】设y =x 2的切点为(m,m 2),f ′(x )=2x ,故f ′(m )=2m , 则切线方程为:y −m 2=2m (x −m ),即2mx −y −m 2=0 圆心到圆的距离为23,即2√1+4m 2=23,解得:m 2=2或−29(舍去)所以m =±√2,则l 的斜率为2m =±2√2 故答案为:±2√2 19.已知函数f (x )=e x +e xe a,g (x )=x −e ae x ,若存在实数x 0,使f (x 0)−g (x 0)=3成立,则实数a =______.【答案】0 【解析】令f(x)−g(x)=e x +e xe a −x +e ae x =e x−a +e a−x +e x −x ,令ℎ(x)=e x −x ,则ℎ′(x)=e x −1, 由ℎ′(x)>0⇒x >0,ℎ′(x)<0⇒x <0,所以函数ℎ(x)在(−∞,0)上单调递减,在(0,+∞)上单调递增, 所以ℎ(x)min =ℎ(0)=1,所以e x−a +e a−x ≥2, 当且仅当e x−a =e a−x 即x =a 时等号成立,即f(x)−g(x)≥3,当且仅当等号同时成立时,等号成立, 故x =a =0,即a =0. 故答案为:0.20.已知函数f(x)=x 2+2x e x −1,则函数f(x)在点(0,f(0))处的切线方程为_____________. 【答案】2x −y −1=0 【解析】由已知f ′(x)=2x +2e x +2x e x ,f ′(0)=2,又f(0)=−1, 所以切线方程为y +1=2x ,即2x −y −1=0. 故答案为:2x −y −1=0.21.已知定义在(0,+∞)上的函数f (x )满足:f(x)={xlnx,0<x ≤12f(x −1),x >1 ,若方程f (x )=kx −12在(0,2]上恰有三个根,则实数k 的取值范围是___________. 【答案】(1−ln2,12) 【解析】方程f (x )=kx −12在(0,2]上恰有三个根,即直线y =kx −12与函数y =f (x )的图像有三个交点, 当0<x ≤1时,f (x )=xlnx ,则f ′(x)=lnx +1, 当0<x <1e时,f ′(x)<0;当1e<x ≤1时,f ′(x )>0,所以f (x )在(0,1e)上单调递减,f (x )在(1e,1]上单调递增.结合函数的“周期现象”得f (x )在(0,2]上的图像如下:由于直线l ;y =kx −12过定点A (0,−12).如图连接A ,B (1,0)两点作直线l 1:y =12x −12,过点A 作f (x )=xlnx (0<x ≤1)的切线l 2,设切点P (x 0,y 0),其中y 0=x 0lnx 0,f ′(x)=lnx +1,则斜率k l 2=lnx 0+1 切线l 2:y −x 0lnx 0=(lnx 0+1)(x −x 0)过点A (0,−12).则−12−x 0lnx 0=(lnx 0+1)(0−x 0),即x 0=12,则k l 2=ln 12+1=1−ln2, 当直线l:y =kx −12绕点A (0,−12)在l 1与l 2之间旋转时.直线l:y =kx −12与函数y =f (x )在[-1,2]上的图像有三个交点,故k ∈(1−ln2,12) 故答案为:(1−ln2,12)22.若曲线y =e x 过点(−2,0)的切线恒在函数f(x)=a e x −x 2+(1e−3)x +2e −1的图象的上方,则实数a的取值范围是__________. 【答案】(−∞,−e 2) 【解析】设曲线y =e x 过点(−2,0)的切线的切点为(x 0,y 0),则切线的斜率k =e x 0=y 0−0x 0−(−2)=e x 0x 0+2, 所以x 0=−1,k =1e,切线方程为y =1e(x +2),所以1e(x +2)>a e x −x 2+(1e−3)x +2e−1恒成立,所以a <x 2+3x+1ex恒成立, 令g(x)=x 2+3x+1ex,则g ′(x)=−(x−1)(x+2)ex因为当x <−2,g ′(x)<0,x >−2,g ′(x)>0,所以x=−2为g(x)的极小值点,又因为x→+∞时,g(x)→0+,g(−2)=−e2<0所以gmin(x)=g(−2)=−e2,所以a<−e2.故答案为:(−∞,−e2).23.若直线y=kx+m是曲线y=ln(x−1)的切线,也是曲线y=e x−3的切线,则k=__________.【答案】1或1e【解析】设y=kx+m与y=e x−3和y=ln(x−1)的切点分别为(x1,e x1−3)、(x2,ln(x2−1));由导数的几何意义可得k=e x1−3=1x2−1,即y=e x1−3⋅x+(1−x1)e x1−3,y=1x2−1x+ln(x2−1)−x2x2−1,∴{e x1−3=1x2−1(1−x1)e x1−3=ln(x2−1)−x2x2−1,∴{x1−3=−ln(x2−1)(1−x1)⋅1x2−1=ln(x2−1)−x2x2−1=3−x1−x2x2−1=2−x1−1x2−1∴2−x1x2−1=2−x1当x2=2时,k=1,当x1=2时,k=1e∴k=1或1e.故答案为:1或1e.24.若存在实数a>0,使得函数f(x)=alnx+x与g(x)=2x2−2x−b的图象有相同的切线,且相同切线的斜率为2,则实数b的最大值为_________.【答案】−1.【解析】设函数f(x)=alnx+x的切点为(x1,y1),函数g(x)=2x2−2x−b的切点为(x2,y2)分别对函数进行求导,f′(x)=ax+1,g′(x)=4x−2由相同切线的斜率为2,得g′(x2)=4x2−2=2⇒x2=1,g(1)=−b故切线方程为y=2x−2−bf′(x1)=ax1+1=2⇒a=x1,f(x1)=x1lnx1+x1故函数f(x)=alnx+x的切点为(x1,x1lnx1+x1).把切点(x 1,x 1lnx 1+x 1)代入y =2x −2−b 中得x 1lnx 1+x 1=2x 1−2−b ⇒b =−x 1lnx 1+x 1−2令ℎ(x)=−xlnx +x −2,ℎ′(x)=−lnx −1+1=−lnx 当x ∈(0,1)时,ℎ′(x)>0,函数ℎ(x)单调递增 当x ∈(1,+∞)时,ℎ′(x)<0,函数ℎ(x)单调递减 故ℎ(x)≤ℎ(1)=−1 故实数b 的最大值为−1 故答案为:−1.25.已知函数f (x )={xe x +1e ,x ≤0,x 2−2x,x >0,则方程f (x )=0的根___________. 【答案】−1或2##2或-1 【解析】当x ≤0时,f (x )=xe x +1e ,所以f ′(x )=e x +xe x =(x +1)e x , 令f ′(x )=0,得x =−1, 当x <−1时,f ′(x )<0, 当−1<x ≤0时,f ′(x )>0,所以函数f (x )在(−∞,−1)上单调递减,在(−1,0)上单调递增, 所以f(x)min =f (−1)=0,故当x ≤0时,f (x )=0有唯一根−1, 当x >0时,f (x )=x 2−2x , 令f (x )=0,解得x =0(舍去)或2, 故当x >0时,f (x )=0的根为2, 综上,f (x )=0根为−1或2. 故答案为:−1或2.。
2019衡水名师原创理科数学专题卷:专题五《导数及其应用》
2019衡水名师原创理科数学专题卷专题五 导数及其应用考点13:导数的概念及运算(1,2题)考点14:导数的应用(3-11题,13-15题,17-22题) 考点15:定积分的计算(12题,16题)考试时间:120分钟 满分:150分说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上第I 卷(选择题)一、选择题1.函数2cos y x x =的导数为( ) A. 2'2cos sin ?y x x x x =- B. 2'2cos sin y x x x x =+ C. 2'cos 2sin y x x x x =- D. 2'cos sin y x x x x =-2.设'()f x 是函数()f x 的导函数, '()y f x =的图象如图所示,则()y f x =的图象最有可能的是( )A.B.C.D.3.设函数()23ln 2f x x ax x =+-,若1x =是函数()f x 的极大值点,则函数()f x 的极小值为( ) A. ln 22- B. ln 21- C. ln 32- D. ln 31-4.若曲线()ln y x a =+的一条切线为y ex b =+,其中a , b 为正实数,则2ea b ++的取值范围是( ) A. 2,2e e ⎛⎫++∞⎪⎝⎭B. [e,)+∞C. [)2,+∞D. [)2,e5.已知函数2?y x =的图象在点()200,x x 处的切线为l ,若l 也与函数ln y x =,()0,1x ∈的图象相切,则0x 必满足( ) A. 0102x << B.0112x <<C.0x <<D.0x <<6.已知函数()f x 的导数为()'f x ,且()()()10x f x xf x +'+>对x R ∈恒成立,则下列函数在实数集内一定是增函数的为( ) A. ()f x B. ()xf x C. ()xe f xD. ()xxe f x7.如图是导函数'()y f x =的图象,那么函数()y f x =在下面哪个区间是减函数( )A. ()13,x xB. ()24,x xC. 46(,)x xD. 56(,)x x8.定义在R 上的函数()f x 满足:()()'1?f x f x >-,()06f =,()'f x 是()f x 的导函数,则不等式()5xxe f x e >+(其中e 为自然对数的底数)的解集为( )A.()0,?+∞B.()(),03,?-∞⋃+∞C.(,0)(1,)-∞⋃+∞D.()3,+∞9.已知函数()xf x xe t =-有三个零点,则实数t 的取值范围为( )A. 10,e ⎛⎫ ⎪⎝⎭B. ()0,1C. 1,1e ⎛⎫ ⎪⎝⎭D. 10,e⎛⎤ ⎥⎝⎦10.已知函数f ()x 的定义域为R ,()'f x 为函数f ()x 的导函数,当[)0,x ∈+∞时,()2sin cos 0x x f x -'>且x R ∀∈,()()cos21f x f x x -++=.则下列说法一定正确的是( ) A.15324643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭ B.15344643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭C.3134324f f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭D.1332443f f ππ⎛⎫⎛⎫-->- ⎪ ⎪⎝⎭⎝⎭11.已知函数()()2ln f x x ax a x a R =--∈,()325262g x x x x =-++-,()g x 在[]1,4上的最大值为b ,当[1,)x ∈+∞时, ()f x b ≥恒成立,则a 的取值范围是( ) A. 2a ≤ B. 1a ≤ C. 1a ≤- D.0a ≤12.已知0a >,0b >,'()f x 为f ()x 的导函数,若()ln2x f x =,且31112'()12bb dx f a b x =+-⎰,则a b +的最小值为( )A.B. C. 92D. 92+二、填空题13.函数()2xf x e =的图象在点()()0,0f 处的切线方程为__________14.已知函数()2122f x x ax lnx =+-,若()f x 在区间1,23⎡⎤⎢⎥⎣⎦上是增函数,则实数a 的取值范围为__________15.函数()2xf x x e =在区间(),1a a +上存在极值点,则实数a 的取值范围为__________16.在同一坐标系中作出曲线1xy =和直线y x =以及直线3y =的图象如图所示,曲线1xy =与直线y x =和3y =所围成的平面图形的面积为__________.三、解答题17.已知函数32()f x x ax bx c =+++在1x =-与2x =处都取得极值. 1.求,a b 的值及函数()f x 的单调区间; 2.若对[]1,3x ∈-,不等式23()2f x c c +<恒成立,求c 的取值范围. 18.已知函数()xf x e ax =-,(0a >).1.记f ()x 的极小值为()g a ,求()g a 的最大值;2.若对任意实数 x 恒有()0f x ≥,求()f a 的取值范围. 19.已知函数()ln x f x x =,()g ln 12ax x x x ⎛⎫=-- ⎪⎝⎭.1.求()y f x =的最大值;2.当10,a e ⎡⎤∈⎢⎥⎣⎦时,函数()y g x =,((0,]x e ∈)有最小值.记()g x 的最小值为() h a ,求函数() h a 的值域. 20.已知函数()ln mxf x x=,曲线()y f x =在点22(,())e f e 处的切线与直线20x y +=垂直(其中e 为自然对数的底数)1.求()f x 的解析式及单调递减区间;2.若函数2()()1kx g x f x x =--无零点,求k 的取值范围21.已知函数()()()()()121'10'2x f x f e f x x f x -=-+是()f x 的导数, e 为自然对数的底数), ()212g x x ax b =++ (a R ∈,b R ∈).1.求()f x 的解析式及极值;2.若()()f x g x ≥,求()12b a +的最大值. 22.设函数()()2xf x e x x m m R =+--∈ 1.判断函数()f x 的单调性;2.若方程()2f x x =在区间[]1,2-上恰有两个不同的实根,求实数m 的取值范围参考答案一、选择题 1.答案:A 解析:因为2cos y xx =,所以,()()222''cos cos '2cos sin y x x x x x x x x =+=-,故选A 。
2020衡水名师原创文科数学专题卷专题五《导数及其应用》
2019衡水名师原创文科数学专题卷专题五 导数及其应用考点13:导数的概念及运算(1,2题)考点14:导数的应用(3-11题,13-15题,17-22题) 考点15:定积分的计算(12题,16题)考试时间:120分钟 满分:150分说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上第I 卷(选择题)一、选择题(本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是最符合题目要求的。
) 1.函数()2sin f x x =的导数是( )A.2sin xB.22sin xC.2cos xD.sin 2x 2.已知()21cos 4f x x x =+,()'f x 为()f x 的导函数,则()'f x 的图像是( ) 3. 若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e - D.1 4. 若曲线()ln y x a =+的一条切线为y ex b =+,其中,a b 为正实数,则2ea b ++的取值范围是( ) A.2,2e e ⎛⎫++∞⎪⎝⎭B.[),e +∞C.[)2,+∞D.[)2,e 5. 已知函数2x y =的图象在点),(200x x 处的切线为l ,若l 也与函数x y ln =,)1,0(∈x 的图象相切,则0x 必满足( )A .2100<<x B .1210<<x C .2220<<x D .320<<x 6. 已知函数()f x 的导数为()f x ′,且()()()10x f x xf x ++>′对x R ∈恒成立,则下列函数在实数集内一定是增函数的为( )A.()f xB.()xf xC.()xe f xD.()xxe f x7. 已知函数()f x 与()'f x 的图象如图所示,则函数()()xf xg x e =的递减区间为( )A.()0,4B.()4,1,,43⎛⎫-∞ ⎪⎝⎭C.40,3⎛⎫⎪⎝⎭D.()()0,1,4,+∞ 8.定义在R 上的函数()f x 满足:'()1()f x f x >-,(0)6f =,'()f x 是()f x 的导函数,则不等式()5xxe f x e >+(其中e 为自然对数的底数)的解集为( ) A .(0,)+∞ B .(,0)(3,)-∞+∞C .(,0)(1,)-∞+∞ D .(3,)+∞9. 已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =( ) A .12-B .13C .12D .110. 已知函数()f x 的定义域为R ,()'f x 为函数()f x 的导函数,当[)0,x ∈+∞时,()'2sin cos 0x x f x ->且x R ∀∈,()()cos21f x f x x -++=.则下列说法一定正确的是( ) A.15324643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭B.15344643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭C3134324f f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭D.1332443f f ππ⎛⎫⎛⎫-->- ⎪ ⎪⎝⎭⎝⎭11. 已知函数 ()()()()2325ln ,26,2f x x ax a x a Rg x x x x g x =--∈=-++-在[]1,4上的最大值为 b ,当[)1,x ∈+∞时,()f x b ≥恒成立,则a 的取值范围是( ) A.2a ≤ B.1a ≤ C.1a ≤- D.0a ≤12. 已知0a >,0b >,'()f x 为()f x 的导函数,若()ln2xf x =,且31112'()12bb dx f a b x =+-⎰,则a b +的最小值为( )A .B ..92 D .92+第Ⅱ卷(非选择题)二.填空题(每题5分,共20分) 13. 已知函数ln 4()x f x x+=,求曲线)(x f 在点(1,(1))f 处的切线方程____________14. 若函数2()xf x x e ax =--在R 上存在单调递增区间,则实数a 的取值范围是 .15. 若函数21()ln 12f x x x =-+在其定义域内的一个子区间(1,1)a a -+内存在极值,则实数a 的取值范围 . 16.如图,阴影部分的面积是_________. 三.解答题(共70分) 17.(本题满分10分)已知函数()()x f x ae x a R =-∈,其中e 为自然对数的底数, 2.71828e =…. (Ⅰ)判断函数()f x 的单调性,并说明理由;(Ⅱ)若[]1,2x ∈,不等式()x f x e -≥恒成立,求a 的取值范围. 18.(本题满分12分)已知函数()xf x e ax =-,(0a >).(Ⅰ)记()f x 的极小值为()g a ,求()g a 的最大值; (Ⅱ)若对任意实数x 恒有()0f x ≥,求()f a 的取值范围. 19.(本题满分12分) 已知函数()()ln ,ln 12x ax f x g x x x x ⎛⎫==-- ⎪⎝⎭. (1)求()y f x =的最大值;(2)当10,a e ⎡⎤∈⎢⎥⎣⎦时,函数()(](),0,y g x x e =∈有最小值. 记()g x 的最小值为()h a ,求函数()h a 的值域. 20.(本题满分12分) 已知函数22()()xf x x x cec R -=-+∈.(1)若()f x 是在定义域内的增函数,求c 的取值范围; (2)若函数5()()'()2F x f x f x =+-(其中'()f x 为()f x 的导函数)存在三个零点,求c 的取值范围. 21.(本题满分12分)已知函数()()()()()121'10'2x f x f e f x x f x -=-+是()f x 的导数,e 为自然对数的底数),()()212g x x ax b a R b R =++∈∈,.(Ⅰ)求()f x 的解析式及极值; (Ⅱ)若()()f x g x ≥,求()12b a +的最大值.22.(本题满分12分)已知函数2()(2)x xf x ae a e x =+--. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.参考答案1.D 【解析】由题意得,函数的导数为()2(sin )2sin (sin )2sin cos sin 2f x x x x x x x '''==⋅==.2.A【解析】由题意得,()1sin 2f x x x '=-, 所以()11()sin()[sin ]()22f x x x x x f x ''-=---=--=-,所以函数()f x '为奇函数,即函数的图象关于原点对称,当2x π=时,1()1024f ππ'=-<,当2x >时,()0f x '>恒成立,故选A.3.【答案】A 【解析】4.C【解析】设切点为),(00y x ,则有2)ln(1000-=⇒⎪⎩⎪⎨⎧+=+=+ae b bex a x e e x ,e a b 2,0>∴> ,212≥+=++aa b e a ,故选C. 5.D【解析】函数2y x =的导数y'2x =,2y x =在点200(,)x x 处的切线斜率为02k x =,切线方程为()20002y x x x x -=-,设切线与ln y x =相交的切点为(),ln m m ,(01m <<),由ln y x =的导数为1'y x =可得012x m =,切线方程为()1ln y m x m m-=-,令0x =,可得20ln 1y m x =-=-,由01m <<可得012x >,且201x >,解得01x >由012m x =,可得()200,ln 210x x --=,令()()2ln 21,f x x x =--()()11,'20,x f x x f x x>=->在1x >递增,且2ln 10,3ln 10ff =-<=->,则有()200ln 210x x --=的根x ∈,故选D.6.D 【解析】设()()x F x xe f x =,则()()()()()()()11x x x F x x e f x xe f x e x f x xf x =++=++⎡⎤⎣⎦′′′. ()()()10x f x xf x ++>′对R x ∈恒成立,且0x e >.()()0,F x F x >∴′∴在R 上递增. 7.D【解析】()()()()()()xx xx ex f x f e e x f e x f x g -'=-'='2,令()0<'x g 即()()0<-'x f x f ,由图可得()()+∞∈,41,0 x ,故函数单调减区间为()()0,1,4,+∞,故选D. 8.A【解析】设x xg x e f x e x R =-∈()(),(),[]1'1x x x x g x e f x e f x e e f x f x f x f x '=+'-=+'--()()()()(),()>(),100f x f x g x y g x ∴+'-∴'∴=()()>,()>,()在定义域上单调递增, 又000061500g e f e g x g x =-=-=∴∴()(),()>(),>,∴不等式的解集为0+∞(,). 9.【答案】C【解析】函数的零点满足()2112x x xx a e e --+-=-+,设()11x x gx ee--+=+,则()()211111111x x x x x x e g x eeee e ---+----'=-=-=,当()0g x '=时,1x =,当1x <时,()0g x '<,函数()g x 单调递减,当1x >时,()0g x '>,函数()g x 单调递增,当1x =时,函数取得最小值()12g=,设()22h x x x =- ,当1x =时,函数取得最小值1- , 10.B【解析】令()()2sin F x x f x =-,则()()''sin 2F x x fx =-.因为当[)0,x ∈+∞时,()'2sin cos 0x x f x ->,即()'sin 2x f x >,所以()()''sin 20F x x f x =->,所以()()2sin F x x f x =-在[)0,x ∈+∞上单调递增.又x R ∀∈,()()cos21f x f x x -++=,所以()()22sin f x f x x -+=,所以,,故()()2sin F x x f x =-为奇函数,所以()()2sin F x x f x =-在R 上单调递增,所以5463F F ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭.即15344643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭,故选B. 11.B【解析】)13)(2(253)(2'+--=++-=x x x x x g ,所以)(x g 在]2,1[上是增函数,]4,2[上是减函数0)(,0)2()(≥==x f g x g 在),1[+∞∈x 上恒成立, 由),1[+∞∈x 知,0ln >+x x ,所以0)(≥x f 恒成立等价于xx x a ln 2+≤在),1[+∞∈x ,时恒成立,令),1[,ln )(2+∞∈+=x x x x x h ,有0)ln (ln 2)1()(2'>++-=x x xx x x h ,所以)(x h 在),1[+∞上是增函数,有1)1()(=≥h x h ,所以1≤a . 12.C【解析】∵()x x f 1=',∴()a a f 1=',∵2212111213b b x b dx x b bb +-=⎪⎭⎫ ⎝⎛-=⎰,()1212113-+'=⎰b a f dx x b b,∴1212221-+=+-b a b b ,∴1212=+ba ,∵0a >,0b >,∴()()29222252225212=⋅+≥++=⎪⎭⎫ ⎝⎛++=+a b b a a b b a b a b a b a ,当a b b a 22=且1212=+b a ,即23,3==b a 时等号成立,故选C. 13.370x y +-= 【解析】()23ln xx xf +-=',所以(1)3,(1)4k f f '==-=,切线方程为43(1),y x -=--即370x y +-=14.2ln 22a ≤-【解析】因为函数2()xf x x e ax =--,所以()2xf x x e a '=--,因为2()xf x x e ax =--在R 上存在单调递增区间,所以()20xf x x e a '=-->,即2x a x e <-有解,令()2x g x x e =-,则()2x g x e '=-,则()20ln 2x g x e x '=-=⇒=,所以当ln 2x <时,()20x g x e '=->;当ln 2x >时,()20x g x e '=-<,当ln 2x =时,()max 2ln 22g x =-,所以2ln 22a <-. 15.)23,1[【解析】函数的定义域为),0(+∞,令0214212)(2=-=-='x x x x x f ,解得21=x 或21-=x (不在定义域内舍),所以要使函数在子区间)1,1(+-a a 内存在极值等价于),0()1,1(21+∞⊂+-∈a a ,即⎪⎪⎪⎩⎪⎪⎪⎨⎧>+<-≥-21121101a a a ,解得231<≤a ,答案为)23,1[.16.323【解析】由题意得,直线2y x =与抛物线23y x =-,解得交点分别为(3,6)--和(1,2),抛物线23y x =-与x 轴负半轴交点(,设阴影部分的面积为S ,则1220(32))S x x dx x dx =--+-⎰⎰2332)xdx x dx ---+-⎰532933=+-=. 17.(Ⅰ)理由见解析;(Ⅱ)⎪⎪⎭⎫⎢⎣⎡+∞+,112e e 【解析】(Ⅰ)由题可知,()x f x ae x =-,则()1x f x ae '=-, (i )当0a ≤时,()0f x '<,函数()x f x ae x =-为R 上的减函数, (ii )当0a >时,令10x ae -=,得ln x a =-,② (),ln x a ∈-∞-,则()0f x '<,此时函数()f x 为单调递减函数;②若()ln ,x a ∈-+∞,则()0f x '>,此时函数()f x 为单调递增函数.………………(4分) (Ⅱ)由题意,问题等价于[]1,2x ∈,不等式x x ae x e --≥恒成立, 即[]1,2x ∈,21xx xe a e+≥恒成立,令()21xx xe g x e+=,则问题等价于a 不小于函数()g x 在[]1,2上的最大值.………………(6分)由()()()()221214212x xx xxe exe e x e xxx e g x e '+-+--'==,当[]1,2x ∈时,()0g x '<,所以函数()g x 在[]1,2上单调递减,……………………………(8分)所以函数()g x 在[]1,2x ∈的最大值为()2111g e e=+, 故[]1,2x ∈,不等式()x f x e -≥恒成立,实数a 的取值范围为⎪⎪⎭⎫⎢⎣⎡+∞+,112e e.…………(10分)18.(Ⅰ)()max 1g a =(Ⅱ)()f a 的取值范围是(21,e e e ⎤-⎦.【解析】(Ⅰ)函数()f x 的定义域是(),-∞+∞,()'x f x e a =-.在定义域上单调递增。
精编新版2019高考数学《导数及其应用》专题考核题(含参考答案)
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设函数)(x f 的定义域为R ,)0(00≠x x 是)(x f 的极大值点,以下结论一定正确的是( )A .)()(,0x f x f R x ≤∈∀B .0x -是)(x f -的极小值点C .0x -是)(x f -的极小值点D .0x -是)(x f --的极小值点(2013年高考福建卷(文))2.32()32f x x x =-+在区间[]1,1-上的最大值是( )(A)-2 (B)0 (C)2 (D)4(2006浙江文)3.若曲线12y x -=在点12,a a -⎛⎫ ⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a =( )(A )64 (B )32 (C )16 (D )8 (2010全国2理10)4.设函数()x f x xe =,则( )A. 1x =为()f x 的极大值点B.1x =为()f x 的极小值点C. 1x =-为()f x 的极大值点D. 1x =-为()f x 的极小值点[学5.已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是( )(2008福建理)二、填空题6.函数x x y cos 2+=在(0,)π上的单调递减区间为 .7.已知函数23221()1(0)()31,()2(3)1(0)x x f x x x g x x x ⎧-+>⎪=-+=⎨⎪-++≤⎩,则方程[()]0g f x a -=(a 为正实数)的实数根最多有 ▲ 个8. 如果函数y =f (x )的导函数的图象如图所示,给出下列判断:①函数y =f (x )在区间⎝⎛⎭⎫-3,-12内单调递增; ②函数y =f (x )在区间⎝⎛⎭⎫-12,3内单调递减; ③函数y =f (x )在区间(4,5)内单调递增;④当x =2时,函数y =f (x )有极小值;⑤当x =-12时,函数y =f (x )有极大值. 则上述判断中正确的是__________.9.曲线x x y C In :=在点)e e,(M 处的切线方程为___________.10.函数ln(1)y x x =-+的单调递减区间为 ▲ .11. 曲边梯形由曲线,0,1,5x y e y x x ====所围成,过曲线,[1,5]x y e x =∈上一点P 作切线,使得此切线从曲边梯形上切出一个面积最大的普通梯形,这时点P 的坐标是____________.12.设函数21()ln(1)3,[,](0)2x f x x e x x t t t =+-+∈->,若函数()f x 的最大值是M ,最小值是m ,则M m +=______13.给出下列图象其中可能为函数f (x )=x 4+ax 3+bx 2+cx +d (a ,b ,c ,d ∈R)的图象的是_____.14.设曲线axy e =在点(01),处的切线与直线210x y ++=垂直,则a = .2(全国二14) 三、解答题15.设常数0a ≥,函数2()ln 2ln 1f x x x a x =-+-((0,))x ∈+∞.(Ⅰ)令()()g x xf x '=(0)x >,求()g x 的最小值,并比较()g x 的最小值与零的大小; (Ⅱ)求证:()f x 在(0,)+∞上是增函数;(Ⅲ)求证:当1x >时,恒有2ln 2ln 1x x a x >-+.16.已知函数.32)(2x x e x f x -+=(I )求曲线))1(,1()(f x f y 在点=处的切线方程;(Ⅱ)求证函数)(x f 在区间[0,1]上存在唯一的极值点,并用二分法求函数取得极值时相应x 的近似值(误差不超过0.2);(参考数据e ≈2.7,e ≈1.6,e 0.3≈1.3) (III )当,1)3(25)(,212恒成立的不等式若关于时+-+≥≥x a x x f x x 试求实数a 的取值范围。
2019衡水名师原创文科数学专题卷:专题五《导数及其应用》
第Ⅱ卷(非选择题)
二.填空题(每题 5 分,共 20 分)
13.
已知函数f ( x )
l
nx
4
,求曲线
f (x) 在点 (1,
f (1)) 处的切线方程____________
x
14 . 若 函 数 f (x) x2 ex ax 在 R 上 存 在 单 调 递 增 区 间 , 则 实 数 a 的 取 值 范 围
设 h x x2 2x ,当 x 1 时,函数取得最小值 1 ,
10.B
【解析】令 F x sin2 x f x ,则 F ' x sin 2x f ' x .因为当 x 0, 时, 2sin x cos x f ' x 0 , 即 sin 2x f ' x , 所 以 F ' x sin 2x f ' x 0 , 所 以 F x sin2 x f x 在 x 0, 上单调递增.又 x R , f x f x cos 2x 1, 所以 f x f x 2sin2 x ,
第 I 卷(选择题) 一、选择题(本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有 一项是最符合题目要求的。)
1.函数 f x sin2 x 的导数是( )
A. 2sin x
B. 2 sin2 x
C. 2 cos x
D. sin 2x
2.已知 f x 1 x2 cos x , f ' x 为 f x 的导函数,则 f ' x 的图像是( )
2
2
函数的图象关于原点对称,当 x 时, f ( ) 1 1 0 ,当 x 2 时, f x 0 恒
2019届高考(文)《导数在研究函数中的应用》专题达标试卷(含答案)(可编辑修改word版)
)(温馨提示:此套题为W o r d版,请按住C t r l,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭W o r d文档返回原板块一、选择题(每小题 5 分,共 40 分)课时提升作业(十四) 导数在研究函数中的应用(45 分钟100 分)1.(2018·天津模拟)若函数f(x)=x3-6b x+3b在(0,1)内有极小值,则实数b的取值范围是()A.(0,1)B.(-∞,1)1C.(0,+∞)D.0,22.(2018·青岛模拟)函数y=l n x-x在x∈(0,e]上的最大值为()A.eB.1C.-1D.-e[:3.(2018·孝感模拟)函数y=(3-x2)e x的单调递增区间是()A.(-∞,0)B.(0,+∞)C.(-∞,3)和(1,+∞)D.(-3,1)4.(2018·嘉兴模拟)对于在R上可导的任意函数f(x),若满足(x-a)f′(x)≥0,则必有()A.f(x)≥f(a)B.f(x)≤f(a)C.f(x)>f(a)D.f(x)<f(a)5.(2018·鄂州模拟)设函数f(x)的导函数为f′(x),对任意x∈R都有f′(x)>f(x)成立,则( )A.3f(l n2)>2f(l n3)B.3f(l n2)=2f(l n3)C.3f(l n2)<2f(l n3)D.3f(l n2)与2f(l n3)的大小不确定1 6.(2018·大纲版全国卷)若函数f(x)=x2+ax+x在12, + ∞是增函数,则a 的取值范围是( )A.[- 1,0] C.[0,3]B.[-1,+∞) D.[3,+∞)7.(2018·成都模拟)函数y=f′(x)是函数y=f(x)的导函数,且函数y=f(x)在点P(x0,f(x0))处的切线为l:y=g(x)=f′(x0)·(x-x0)+f(x0),F(x)=f(x)-g(x),如果函数y=f(x)在区间[a,b]上的图象如图所示,且a<x0<b,那么( )()A.F′(x0)=0,x=x0是F(x)的极大值点B.F′(x0)=0,x=x0是F(x)的极小值点C.F′(x0)≠0,x=x0不是F(x)的极值点D.F′(x0)≠0,x=x0是F(x)的极值点e x e28.(能力挑战题)(2018·辽宁高考)设函数f(x)满足x2f′(x)+2x f(x)=,f(2)=,则x>0时,f(x)()x 8A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值二、填空题(每小题 5 分,共 20 分)9.若函数f(x)=x(x-c)2在x=2处有极大值,则常数c的值为.10.(2018·衡水模拟)已知函数f(x)的定义域为[-1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示,x-1045f(x)1221下列关于函数 f(x)的①函数f(x)的值域为[1,2];②函数f(x)在[0,2]上是减函数;③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;④当 1<a<2 时,函数 y=f(x)-a 有4 个零点.其中真111.已知y=x3+b x2+(b+2)x+3在R上不是增函数,则b的取值范围是.31 a12.(能力挑战题)(2018·厦门模拟)若函数f(x)=|x3|-x2+(3-a)|x|+b有六个不同的单调区间,则实数a的取3 2值范围是.三、解答题(13题12分,14~15题各14分)113.(2018·北京模拟)已知函数f(x)=x2-a l n x(a>0).2(1)若f(x)在 x=2 处的切线与直线 3x-2y+1 =0 平行,求f(x)的单调区间.(2)求f(x)在区间[1,e]上的最小值.114.(2018·广州模拟)已知函数f(x)=l n x-ax2-2x.2(1)若函数 f(x)在x=2 处取得极值,求实数a 的值.(2)若函数 f(x)在定义域内单调递增,求实数 a 的取值范围.4x15.(能力挑战题)(2018·郑州模拟)已知函数f(x)=,x∈[0,2].3x2 + 3(1)求 f(x)的值域.1(2)设a≠0,函数g(x)=ax3-a2x,x∈[0,2].若对任意x1∈[0,2],总存在x0∈[0,2],使f(x1)-g(x0)=0,求实数a3的取值范围.1.【解析】选D.f′(x)=3x2-6b,令f′(x)=0得x2=2b,答案解析由题意知,0<1 2b<1,所以0<b<.22.【解析】选C.函数y=l n x-x的定义域为(0,+∞),1 1 ‒ x又y′=-1=,令y′=0得x=1,x x当x∈(0,1)时,y′>0,函数单调递增;当x∈(1,e)时,y′<0,函数单调递减.当x=1时,函数取得最大值-1,故选C.3.【解析】选D.y′=-2xe x+(3-x2)e x=-(x2+2x-3)e x=-(x-1)(x+3)e x,y′>0⇒-3<x<1,所以函数的递增区间为(-3,1).4.【思路点拨】分x>a 和x<a 两种情况讨论得 f(x)的单调性后求解.【解析】选 A .由(x -a )f ′(x )≥0 知, 当 x >a 时,f ′(x )≥0,所以 f (x )在(a ,+∞)上为增函数;当 x <a 时,f ′(x )≤0,所以 f (x )在(-∞,a )上为减函数,得 f (x )m i n =f (a ),所以 f (x )≥f (a ). f (x) f '(x)e x ‒ f(x)e x f '(x) ‒ f(x)5. 【解析】选 C .令 g (x )= e x ,则 g ′(x )= e 2x = e x,因为对任意 x∈R 都有f (ln2)f (ln3)f ′(x )-f (x )>0,所以g ′(x )>0,即 g (x )在 R 上单调递增,又 l n 2<l n 3,所以 g (l n 2)<g (l n 3),即 eln2 < e ln3 ,所以f (ln2) f (ln3)2 <3 ,即 3f (l n 2)<2f (l n 3),故选 C . (1)6. 【思路点拨】先求出 f (x )的导函数 f ′(x ),利用 x ∈2, + ∞ 时 f ′(x )≥0 确定 a 的取值范围. 1(1) (1)【解析】选 D .f ′(x )=2x +a - ,因为 f (x )在 x ∈ x 2 2, + ∞ 上为增函数,即当 x∈ 2, + ∞ 时,f ′(x )≥0,即1 1 1(1)2x +a - ≥0,则 a ≥ -2x ,令 g (x )= -2x ,而 g (x )在 x ∈ x 2 x 2 x 22, + ∞ 上为减函数,所以 g (x )m ax <3,故 a ≥3.7. 【思路点拨】y =g (x )是函数 y =f (x )在点 P (x 0,f (x 0))处的切线,故 g ′(x )=f ′(x 0),据此判断 F ′(x 0)是否为 0,再进一步判断在 x =x 0 两侧 F ′(x )的符号. 【解析】选 B .F ′(x )=f ′(x )-g ′(x )=f ′(x )-f ′(x 0),所以 F ′(x 0)=f ′(x 0)-f ′(x 0)=0,又当 x <x 0 时,从图象上看,f ′(x )<f ′(x 0),即 F ′(x )<0,此时函数 F (x )=f (x )-g (x )为减函数,同理,当 x>x 0 时,函数 F(x)为增函数.8. 【思路点拨】结合题目条件,观察式子的特点,构造函数,利用导数研究极值问题.e x 2f(x) e x ‒ 2x 2f(x) 【解析】选 D .由题意知f ′(x )= - = ,x3xx3令 g (x )=e x -2x 2f (x ),则 g ′(x )=e x -2x 2f ′(x )-4x f (x ) 2e x =e x -2(x 2f ′(x )+2x f (x ))=e x -x( 2)=e x1 ‒x.由 g ′(x )=0 得 x =2,当 x =2 时,e2g (x )m i n =e 2-2×22× =0.8g(x)即g(x)≥0,则当x>0时,f′(x)=≥0,x3故f(x)在(0,+∞)上单调递增,既无极大值也无极小值.9.【解析】x=2是f(x)的极大值点,f(x)=x(x2-2c x+c2)=x3-2c x2+c2x,所以f′(x)=3x2-4c x+c2,所以f′(2)=3×4-8c+c2=0,解得c=2或c=6,当c=2时,不能取极大值,所以c=6.答案:6【误区警示】本题易出现由f′(2)=0求出c后,不验证是否能够取到极大值这一条件,导致产生增根.10.【解析】由y=f′(x)的图象知,y=f(x)在(-1,0)上递增,在(0,2)上递减,在(2,4)上递增,在(4,5)上递减,故②正确;当x=0与x=4时,y=f(x)取极大值,当x=2时,y=f(x)取极小值,因为f(2)的值不确定,故①④不正确;对于③,t 的最大值为5.答案:②111.【解析】假设y=x3+b x2+(b+2)x+3在R上是增函数,则y′≥0恒成立.即x2+2b x+b+2≥0恒成立,所以Δ=4b2-34(b+2)≤0成立,解得-1≤b≤2,故所求为b<-1或b>2.答案:b<-1或b>2[:12.【思路点拨】根据奇偶性,只需保证f′(x)=0在(0,+∞)上有两个不同实根即可.1 a【解析】因为函数f(x)=|x3|-x2+(3-a)|x|+b,所以f(-x)=f(x),3 2所以 f(x)是偶函数,因为 f(x)有六个不同的单调区间,又因为函数为偶函数,所以当 x>0 时,有三个单调区间,即f′(x)=x2-ax+3-a=0有两个不同的正根,所以23 ‒ a > 0,a2+ 4a ‒ 12 > 0,解得:2<a<3.答案:(2,3)13.【解析】(1)f(x)的定义域为(0,+∞).{ a > 0,2a x 2 ‒ a f ′(x )=x - = .xx4 ‒ a 3 由 f (x )在 x =2 处的切线与直线 3x -2y +1=0 平行,则 f ′(2)== ,a =1.2 21 x2 ‒ 1 此时 f (x )= x 2-l n x ,f ′(x )= .2x令 f ′(x )=0,得 x =1.f (x )与 f ′(x )随 x 的变化情况如下:所以,f (x )的单调递减区间是(0,1),单调递增区间是(1,+∞).a x 2 ‒ a (2)由 f ′(x )=x - = .xx由 a >0 及定义域为(0,+∞), 令 f ′(x )=0,得 x = a .1①若 a ≤1,即 0<a ≤1,在(1,e )上,f ′(x )>0,f (x )在[1,e ]上单调递增,f (x )m i n =f (1)= ;2②若 1< 在(1,a <e ,即 1<a <e 2,a)上,f ′(x )<0,f (x )单调递减; 在( a ,e )上,f ′(x )>0,f (x )单调递增, 1因此在[1,e ]上,f (x )m i n =f ( a ) )= a (1-l n a );2③若 a ≥e ,即 a ≥e 2,在(1,e )上,f ′(x )<0,f (x )在[1,e ]上单调递减, 1f (x )m i n =f (e )= e 2-a .21综上,当 0<a ≤1 时,f (x )m i n = ;1当 1<a <e 2 时,f (x )m i n = a (1-l n a );2x (0,1) 1 (1,+∞) f ′(x ) - 0+ f(x)↘12↗而 f (0)=0,f (1)= ,f (2)=,所以当 x ∈[0,2]时,f (x )的值域是 0, 1当 a ≥e 2 时,f (x )m i n = e2-a .2a x 2 + 2x ‒ 114.【解析】(1)f ′(x )=-(x >0),x因为 x =2 时,f (x )取得极值.3所以 f ′(2)=0,解得 a =- ,经检验符合题意.4(2)函数 f (x )定义域为(0,+∞). 依题意 f ′(x )≥0 在 x >0 时恒成立,即 ax 2+2x-1≤0 在 x>0 时恒成立.1 ‒ 2x 1 2则 a≤x 2=(x‒ 1)-1 在 x>0 时恒成立,[ 1 2]即 a≤(x‒ 1)1‒ 1(x >0),min2当 x =1 时,(x ‒ 1)-1 取最小值-1,所以 a 的取值范围是(-∞,-1].15.【思路点拨】(1)用导数法求 f (x )的最值,进而得f (x )的值域.(2)根据条件得到f (x )在[0,2]上的值域为g (x ) 在[0,2]上的值域的子集,构建不等式求解.4 1 ‒ x 2 【解析】(1)f ′(x )= · ,令 f ′(x )=0,得 x =1 或 x =-1.3 (x 2 + 1)2当 x ∈(0,1)时,f ′(x )>0,f (x )在(0,1)上单调递增; 当 x ∈(1,2)时,f ′(x )<0,f (x )在(1,2)上单调递减, 2 8[ 2]3 15 3(2) 设函数g (x )在[0,2]上的值域是 A ,因为若对任意 x 1∈[0,2],总存在 x 0∈[0,2], 使 f (x 1)-g (x 0)=0,[ 2]所 以 0, 3⊆A .g ′(x )=ax 2-a 2.①当 x ∈(0,2),a <0 时,g ′( x )<0,所以函数 g (x )在(0,2)上单调递减..0, ⊆A ,所以 g (2)= a -2a 2≥ ,解得 ≤a ≤1. ]8[ 2]因为 g (0)=0,g (2)= a -2a 2<0,当 x ∈[0,2]时,不满足30, ⊆A ; 3②当 x ∈(0,2),a >0 时,g ′(x )=a (x - a )(x+ a ),令 g ′(x )=0,得 x = a 或 x=- a (舍去).(i )x ∈[0,2],0]3 3 3 3(ii )当 x ∈[0,2]2 时,g ′(x )<0,所以函数 g (x )在(0,2)上单调递减. [ 2]因为 g (0)=0,g (2)= a -2a 2<0,所以当 x ∈[0,2]时,不满足30, ⊆A .3综上可知,实数 a 的取值范围是1,1 . 3关闭 W o r d 文档返回原板块[ 所以 g (0)=0,g (a )<0.因为。
专题03 导数与应用-备战2019年高考数学(文)之衡水中学各类考试分项汇编(解析版)
7
(2)由(1)
时,存在唯一 ,使
,即
,且
时,
单调递减,
时, 时,
单调递增, ∴
, ∴当
4. 【河北省衡水中学 2018 届高三第十六次模拟考试】已知函数 (1)当 在 处的切线与直线 垂直时,方程 的图象关于 轴对称,求使不等式
(
) ,
.
有两相异实数根,求 的取值范围; 在 上恒成立的 的
(2)若幂函数 取值范围. 【答案】 (1) ; (2)
C.
2 x0 2 2
D. 2 x0 3
2. 【河北省衡水中学 2019 届高三上学期三调考试】已知函数 数 使得不等式 A. 【答案】D 【解析】 B. 成立,则 的取值范围为( C. D. )
满足
,且存在实
∵ ∴
,∴ ,解得 ,
, ,解得 ,
∴ ∴ ∴ ∴ 在
,∴ 在 递增,而 在 , *网 在 递增,∴ 成立,
时,
增区间为
,当
时,递增区间为
,减区间为
; (2)
.
(2)由题意得 ∵当 ∴ 设 则 令 . , 时,函数 在 的图象恒不在 轴的上方, 上恒成立. ,
,
则 ①若 ∴ ∴ ∴ 在 ,则
, ,故 在 上单调递增,
,学*科网 上单调递增, ,
10
从而
,不符合 题意.
②若 ∴
,当 ,
时,
,
在
上单调递增,
一、选择题 1. 【河北省衡水中学 2018 届高三第十六次模拟考试】已知函数 y x 的图象在点 x0 , x0 2 处的切线为 l ,
2
若 l 也与函数 y lnx , x 0,1 的图象相切,则 x0 必满足( A. 0 x0 【答案】D
河北省衡水市高考数学各类考试分项汇编专题05平面向量文(最新整理)
。 【河北省衡水中学 2019 届高三上学期三调考试】平面向量 与 的夹角为 , 则 等于____________。 【答案】 。 【解析】
6 ,,
7。 【河北省衡水中学 2019 届高三第一次摸底考试】已知向量
,
______. 【答案】-30
,若 ,则
4
河北省衡水市 2019 年高考数学 各类考试分项汇编 专题 05 平面向量 文
河北省衡水市 2019 年高考数学 各类考试分项汇编 专题 05 平面向量 文
专题 05 平面向量
一、选择题 1. 【 河 北 衡 水 金 卷 2019 届 高 三 12 月 第 三 次 联 合 质 量 测 评 】 已 知 向 量
的夹角为 ,则 的值为
A.0 B.
C.
D.
【答案】C
2。 【河 北省衡水中学 2019 届高三上学期六调】已知向量 在向量 方向上的投影为 ,且 ,
【解析】因为向量
,
,,
,
, 8. 【河北省衡水中学 2018 年高考押题(一)】已知
2a b 与 c 8,6共线,则 a 和 b 方向上的投影为__________.
,故答案为 ,若向量
【答案】 3 5 5
【河北省衡水中学 2018 年高考押题(二)】向量
,
则 的值为__________.
【答案】—8
则 ()
A.
B.
C. D.
【答案】D
1
河北省衡水市 2019 年高考数学 各类考试分项汇编 专题 0 ,∴
4. 【【衡水金卷】2018 届四省名校高三第三次大联考】如图,在 中,已知
,为 上
一点,且满足
2018衡水名师原创专题卷+理数+专题五《导数及其应用》
当
时,
时,
此时函数
和
有一个交点 ,
即
,
故选 C.
4. 答案: A
解析: 由题可得
因为 故 令 所以 所以
, 所以
, 解得
在
,
极小值为
,
,
,
或
,
单调递增 , 在
,
单调递减 , , 故选 A.
5. 答案: D
解析: 由题意得 , 函数的导数
为:
.
6. 答案: C
解析: 设切点为
, 则有
,
∵
,∴
,
, 故选 C.
绝密★启用前
2018 衡水名师原创专题卷 理数 专题五《导数及其应用》 数学试卷
考试范围: xxx ;考试时间: 100 分钟;命题人: xxx 学校: ___________姓名: ___________班级: ___________考号: ___________
题号
一
二
三
得分
注意事项: 1、答题前填写好自己的姓名、班级、考号等信息 卡上
.
15、如图所示 , 则阴影部分的面积是 _________.
16、已知函数
程
.
, 求曲线
在点
处的切线方
评卷人
得分
三、解答题
17、已知函数
, 其中 为自然对数的底数 ,
...
1. 判断函数
的单调性 , 并说明理由 ;
2. 若
, 不等式
恒成立 , 求 的取值范围。
18、已知函数
.
1. 讨论
的单调性 ;
2. 若
有两个零点 , 求 的取值范围 .
19、已知函数