二维波动方程的有限差分法讲课稿
二维波动方程地有限差分法
实用文案
学生实验报告
实验课程名称偏微分方程数值解
开课实验室数统学院
学院数统年级2013 专业班信计02班
学生姓名学号
开课时间2015 至2016学年第 2 学期
数学与统计学院制
开课学院、实验室:数统学院实验时间:2016年6月20日
五.实验结果及实例分析
1、0.10.51.01.4
t 、、、时刻的数值解与精确解图
图1 t=0.1、0.5时刻的数值解、精确解
图2 t=1.0、1.4时刻的数值解、精确解
注:上两图为四个时刻的数值解与精确解,()1
0.12r p p h
p
τ
=
=<
=代表维数,本文 ,三层显格式达二阶收敛,不难看出,收敛效果很好,符合理论。
下图是四个时刻的绝对误差图像,从图中看出,绝对误差较小,且经过计算得到,收敛阶近似于2,正好符合理论值。
2、0.10.51.01.4t =、、、时刻的绝对误差图。
第五章 有限差分法 知识讲解课件
的 m=4,即此表对应差商的精度是四阶的。从这些表可以看出,一般地说,随着
差分阶数的增大和对应差商精度的提高,差分表达式所包含的项数将增多。
表 5-1
j
n0 1 2 34
1 -1
aj 1
2 1 -2 1
3 -1 3 -3 1
4 1 -4 6 -4 1
表 5-3 j
n0 1 2345 aj
1 -3 4 -1 2 2 -5 4 -1 3 -5 18 -24 14 -3 4 3 -14 26 -24 11 -2
依此类推,任何阶差分都可由其低一阶的差分再作一阶差分得到。例如 n 阶前差
分为
∆n y = ∆(∆n−1 y) = ∆[∆(∆n−2 y)]
⋯⋯ = ∆{∆⋯[∆(∆y)]} = ∆{∆⋯[∆( f (x + ∆x) − f (x)]}
n 阶的向后差分、中心差分的型式类似。
(5-6)
函数的差分与自变量的差分之比,即为函数对自变量的差商。如一阶向前差
二阶差商多取中心式,即
∆2 y ∆x 2
=
f (x + ∆x) − 2 f (x) + (∆x) 2
f (x − ∆x) 。
(5-9) (5-10) (后的二阶差商。 以上是一元函数的差分与差商。多元函数 f(x,y,…)的差分与差商也可以类推。
如一阶向前差商为
应地,上式中的 ∆y 、 ∆x 分别称为函数及自变量的差分, dy //#######为函数对 dx
自变量的差商。 在导数的定义中 ∆x 是以任意方式趋近于零的,因而 ∆x 是可正可负的。在差
分方法中, ∆x 总是取某一小的正数。这样一来,与微分对应的差分可以有 3 种
形式: 向前差分 向后差分 中心差分
有限差分法基本原理
有限差分法的应用领域
流体力学
用于模拟流体在固定或变形网格 上的流动,如计算流体动力学 (CFD)中的数值模拟。
热传导
用于求解热传导方程,模拟热 量在物体中的传播和分布。
波动传播
用于求解波动方程,如地震波 、声波和电磁波的传播。
有限差分法基本原理
CONTENTS 目录
• 引言 • 有限差分法的基本原理 • 有限差分法的实现 • 有限差分法的优缺点 • 有限差分法的改进方向
CHAPTER 01
引言
有限差分法的定义
有限差分法是一种数值计算方法,通 过将连续的物理量离散化为有限个离 散点上的数值,并建立代数方程来近 似描述物理量随时间和空间的变化规 律。
缺点
精度问题
由于有限差分法采用的是离散化的方法, 因此其精度受到网格大小的影响,网格越
小精度越高,但同时也会增加计算量。
数值耗散误差
在模拟非线性问题时,有限差分法可能会 产生数值耗散误差,导致能量的损失或者
非物理振荡。
数值色散误差
在模拟波动性问题时,有限差分法可能会 产生数值色散误差,导致波的传播速度发 生变化。
常用的离散化方法包括均匀网格、非均匀网格、有限元法等,
应根据实际问题选择合适的离散化方法。
差分近似
Hale Waihona Puke 01差分近似公式根据微分方程的性质,构造差分 近似公式,将微分方程转化为差 分方程。
精度分析
02
03
稳定性分析
分析差分近似公式的精度,确定 其与微分方程的误差大小和分布。
分析差分近似公式的数值稳定性, 确保计算过程中误差不会累积放 大。
广义有限差分法模拟二维晃荡现象
广义有限差分法模拟二维晃荡现象抽象在本文中,一个无网格数值方法,基于广义有限差分法(GFDM),提出了高效准确地模拟二维数值波浪水槽的晃动现象。
当一个数值波浪罐水平或垂直激发,在罐上的自由表面的干扰和流场称为晃荡。
基于理想流体的定理,晃动问题的数学描述为一个时间相关的边值问题,由二阶偏微分方程和两个非线性自由表面边界条件的制约。
在本文中,GFDM和明确的欧拉法的通过,分别为这运动边界问题的空间和时间离散化。
离散的显式欧拉方法后,自由表面的高程进行更新和边值问题产生在每一个时间步长。
由于GFDM,新开发域型无网格法,才能真正摆脱耗时的网格生成和数值积分,我们采用了GFDM能够有效地分析这个边值问题在每一个时间步长。
使用GFDM的运动最小二乘法可以表达衍生物作为附近函数值的线性组合,使得该GFDM的数值程序也非常简单,高效。
我们提供了四种数值例子来验证的简单性和所提出的无网格方案的精度。
此外,所提出的数值方法的一些因素,通过一系列的数值试验系统研究。
关键词∙晃动 ;∙广义有限差分法 ;∙无网格方法 ;∙显式欧拉法 ;∙数值波浪水槽1.简介而一个罐部分地填充有流体被外力激励时,发生在自由面波并且这种现象被称为晃荡[1]和 [2]。
晃荡现象是最重要的,因为这涉及到各种工程问题,例如在海洋谐振中船舱航行,核燃料存储池振荡与地震等。
因此,全面了解的晃动问题的基本物理对我们来说非常重要,也可以改善我们的工程设计。
在过去,许多研究者[1]和[2]已经通过使用物理数学,数值模拟和实验晃动现象的研究支付重视。
其中一个主要的研究方向是采用潜在流动,这样,在罐中的流体被假定为无粘,无旋和不可压缩的定理。
为了捕捉真实的物理现象,在本文的晃动问题的流场也被认为是潜在的流动。
当处于晃荡问题流场被认为是潜在的流动,控制方程是公知的拉普拉斯方程的速度潜力。
沿自由表面的边界条件是在动态和运动学自由表面的边界条件[1],它们是时间依赖性和非直线的。
2有限差分法及热传导数值计算PPT演示课件
t1
1 a11
(b1
a12t2
a13t3 )
t2
1 a 22
(b2
a 21t1 a 23t3 )
1 t3 a 33 (b3 a 31t1 a 32t2 )
•24
(2)假设一组解(迭代初场),记为: t1(0)、t2(0)并、t代3(0) 入迭代方程求得第一 次解
每次计算t1(1)均、t用2(1)、最t3(1新) 值代入。
(1) 平直边界上的节点
如图所示 边界节点 (m,n) 只能代表半个元体,若边界上有向 该元体传递的热流密度为q ,据能量守恒定律对该元体有:
tm1,n tm,n ytm,n1tm,n x
x
y 2
x
2
tm,n1 tm,n y
Φm,n
2xyyqw
0
Байду номын сангаас
xy tm ,n1 4 2 tm 1 ,n tm ,n 1 tm ,n 1 x2 Φ m ,n 2 x q w
非稳态项 的离散有三种不同的格式。如果将函数在节 点(n,i+1)对点(n,i)作泰勒展开,可有
•30
•31
由式(b)可得在点(n,i)处一阶导数的一种差分表示式 , 的向前差分:
类似地,将t在点(n,i-1)对点(n,i)作泰勒展开,可得 的向后差分的表达式:
如果将t在点(n,i+1)及(n,i-1)处的展开式相加,则可得 一阶导数的中心差分的表达式:
qw
y x
•16
(3) 内部角点
如图所示内部角点代表了 3/4 个元体,在同样的假设条 件下有
tm1,ntm,ny tm,n1tm,nx tm,n1tm,n x
x
二维泊松方程的差分格式有限差分法
有限差分法(Finite Differential Method)是基于差分原理的一种
数值计算法。其基本思想:将场域离散为许多小网格,应用差分原理,将
求解连续函数的泊松方程的问题转换为求解网格节点上 的差分方程组的
问题。
1. 二维泊松方程的差分格式
二维静电场边值问题:
2
x 2
2
y 2
F
(1)
f (s)
(2)
L
通常将场域分成足够小的正方形网格, 网格线之间的距离为h,节点0,1,2,3,4上
的电位分别用0 ,1,和2 ,表3 示。4
设函数 在x0处可微 , 则沿x方向在 x0处的泰勒公式展开为
x
n (K )
Kn )
0
1 4
(1
2
3
4)
若场域离散为矩形网格, 差分格式为:
1•
2
1 h12
(1
2)
1 h2 2
( 2
4
)
(
1 h12
1 h2 2
)20
F
2.边界条件的离散化处理 ⑴第一类边界条件 给边界离散节点直接赋已知电位值。
⑵对称边界条件 合理减小计算场域, 差分格式为
•
0
1 4
(21
2
4
h2F)
⑶第二类边界条件 边界线与网格线相重合的差分格式:
(3)
将 x 和x1 分x别3 代入式(3),得
1
0
h(
x
)0
1 2!
h
2
(
2
x 2
)0
1 3!
h
3
(
3
x3
有限差分法基本原理PPT课件
uin1
uin
a
t x
(uin
un i 1
)
ui0 u (xi )
几种差分格式介绍
u a u 0 t x u(x,0) u(x)
FTFS格式(时间向前差分、空间向前差分)
uin1 uin uin1 uin 0
t
x
ui0 u (xi )
uin 1
uin
a
t x
(uin1
uin )
ui0 u (xi )
几种差分格式介绍
FTBS格式(时间向前差分、空间向后差分)
限差分方程的解是收敛T的(i。, n)
lim
x0,t
0
Ti
t
一般情况下,证明收敛性是非常难的,暂不予以证明。
3.稳定性 稳定性讨论的是差分解的误差在计算过程中的发展问题。
在 数值解中,引进误差是不可避免的,电子计算机也有舍入误差, 因此实际算得的有限差分方程的解是近似解。这种误差是要向其 他方向传播的,如果计算中引入的误差在以后逐层计算过程中影 响逐渐消失或者保持有界,则称差分方程是稳定的。否则就是不 稳定的。
Von Neumann稳定性分析方法简介
分析例题
T n1 i
Ti n
t x 2
(Ti
n 1
2Ti n
Ti
n 1
),
S
t x 2
Ti n1
STi n1
(1
2S )Tin
STi
n 1
上式T中i n 近似数值
应用有限差分法计算二维欧拉方程
基于非结构网格二维Euler方程的Jameson求解方法姓名:王司文学号:sx摘要本文介绍了基于CFD理论的求解二维可压缩流Euler方程的Jameson中心格式方法。
在空间离散上采用的是有限体积法,时间上采用的是四步显式Runge -Kutta迭代求解。
人工耗散项为守恒变量的二阶和四阶差分项。
边界条件采用的是无反射边界条件,并采用当地时间步长进行加速收敛。
最后对NACA0012翼型划分了三角形,并应用本文程序进行数值模拟,结果较为理想。
关键字:CFD,Jameson中心格式,Euler方程,有限体积法AbstractA method for the numerical solution of the two-dimensional Euler equations has been developed. The cell-centred symmetric finite-volume spatial discretisation is applied in a general formulation. The integration in time, to a steady-state solution, is performed using an explicit, four-stage Runge-Kutta procedure. The artificial dissipation is constructed as a blending of second and fourth differences of the conserved variables. And in the boundary, there is none of the outgoing waves are reflected back into the computational domain. An acceleration technique called local time stepping is used. At last, standard test cases for both subsonic and supersonic flows have been used to validate the method.Key words:CFD, Jameson method,Euler equations, finite-volume第一章引言在工程应用的推动下,计算流体力学随着计算机技术的发展和计算格式的不断更新而迅猛发展。
有限差分法基础ppt课件
由(1)得到,
f (x x) f (x) x d f (x) (x)2 d 2 f (x) (x)3 d 3 f (x) (x)4 d 4 f (x)
dx
2! dx2
3! dx3
4! dx4
d f (x) f (x x) f (x) O(x)
dx
x
(3) (4)
9
d f (x) f (x x) f (x) O(x)
如果1更靠近0点则可以用x方向的线性插值给出0点的函数值如果2更靠近0点则可以用x方向的线性插值给出0点的函数值21c双向插值法i1ji1ji1j1i1j1ij1i1j1i1j1i1i1j1变步长二次偏导数222第二类和第三类边界条件对于点o过o点向边界g做垂线pq交边界于q交网线段vr于popahprbhvpch因为p一般不是节点其值应当以点和pr点的插值给出代入第二三类边界条件23图中o与r重合图中v与r点重合2第二类和第三类边界条件2424差分方程对于具体地球物理问题的偏微分方程组利用上述差分格式可以给出偏导数的微商近似进一步得到差分方程组
3. 如何数值求解差分方程组
6
2.2 网格剖分
• 网格剖分就是研究区域和边界的离散化 • 1.矩形分割 • 2.三角形分割 • 3.极网格分割
7
对地球物理问题的连续求解区域通过网格划分离散为空间上得一系 列网格点,接下来需要利用一定的差分格式对偏微分方程组中的导 数用差商进行近似,从而将偏微分方程组离散化为差分方程组。
dx
2x
单侧,一阶精度 单侧,一阶精度 对称,二阶精度
d2 dx2
f (x)
f (x x) 2 f (x) (x)2
f (x-x)
二阶精度
13
• 定解问题的有限差分解法 1.离散
二维声波方程有限差分求解
二维声波方程有限差分求解1. 引言声波方程是描述声波传播的基本方程之一,它在许多领域中都有重要的应用,如声学、地震学和无损检测等。
有限差分法是一种常用的数值求解方法,可以将连续的偏微分方程转化为离散形式进行计算。
本文将介绍二维声波方程的有限差分求解方法,并给出相应的代码实现。
2. 二维声波方程模型二维声波方程可以表示为:)其中,u是声压场强度,t是时间,x和y是空间坐标,c是介质中的声速。
为了进行数值求解,我们需要将上述偏微分方程转化为离散形式。
3. 有限差分离散化为了将二维声波方程离散化,我们可以使用中心差分法。
将时间和空间坐标分别离散化,可以得到如下的差分方程:)其中,是时间步长,和是空间步长。
根据初始条件和边界条件,我们可以使用上述差分方程进行迭代计算,从而得到声波场在不同时间步的数值解。
4. 代码实现下面给出使用Python编写的二维声波方程有限差分求解的代码示例:import numpy as npimport matplotlib.pyplot as plt# 参数设置c = 343 # 声速L = 1 # 空间长度T = 1 # 总时间Nx = 100 # 空间网格数Nt = 1000 # 时间步数dx = L / Nx # 空间步长dt = T / Nt # 时间步长# 初始化声压场矩阵u = np.zeros((Nx+1, Nx+1))u_prev = np.zeros((Nx+1, Nx+1))# 初始条件:声压场在t=0时刻为正弦波形状x = np.linspace(0, L, Nx+1)y = np.linspace(0, L, Nx+1)X, Y = np.meshgrid(x, y)u_prev[:,:] = np.sin(X*np.pi/L) * np.sin(Y*np.pi/L)# 迭代计算声压场的数值解for n in range(1, Nt+1):for i in range(1, Nx):for j in range(1, Nx):u[i,j] = (2*(1-c**2*dt**2/dx**2)*(u_prev[i,j]) - u[i,j]) + (c**2*d t**2/dx**2) * (u_prev[i-1,j] + u_prev[i+1,j] + u_prev[i,j-1] + u_prev[i,j+1])# 边界条件:固定边界上的声压为零(反射边界)u[0,:] = 0u[Nx,:] = 0u[:,0] = 0u[:,Nx] = 0# 更新声压场矩阵u_prev[:,:] = u# 绘制声波场的数值解plt.imshow(u, cmap='hot', origin='lower', extent=[0, L, 0, L])plt.colorbar()plt.xlabel('x')plt.ylabel('y')plt.title('Numerical Solution of 2D Acoustic Wave Equation')plt.show()5. 结果与讨论运行上述代码,我们可以得到二维声波方程的数值解。
有限元有限差分法二维波动逆时偏移初探
0 z ≠0 ,
u( x0 , z , t) =
φ( x0 , t) z 0 z ≠0 ,
= 0in5Ω
;
∫ S
1 0
=
v
v2 +
5v 5x
2
d x < ∞, v (0 , z , t) =
0 , v ( x 0 , z , t)
= 0 ,in5Ω
;
∫ D ( u , v) =
52 u 5 x2
得到 。
偏微分方程组 (5) ~ (7) 和原偏微分方程 (1)
以及式 (2) 等价 。这样对原问题偏微分方程的求解 ,
变成对离散后的等价偏微分方程组的求解 。根据上
面的表达可以得出 , 矩阵 M 、K 、H 均为对称正定
阵 。当速度为常数 c 时 , Mc2 = H , M 、H 可以同时对
角化 ,方程组解耦 ,且特征值为正 ,因此 ,这种情况下
微分描述记为 P1 , 对应的 Galerkin 形式记为 P2 。这个问题的 P2 描述为[7 ,8 ] :
求 u ∈ Sφ1 ,使得下式成立 :
D ( u , v) -
F( v)
= 0,
v
∈
S
1 0
.
(2)
其中
∫ Sφ1 = u
u2 +
5u 5x
2
dx
<
∞,
u(0 , z , t)
=
φ(0 , t) z = 0
+
52 u 5 z2
-
1 52 u a2 ( x , z) 5 t2
vd x ;
x
F( v) = 0.
对 D ( u , v) 进行变换 ,得到如下形式 :
二维波动方程的有限差分法
学生实验报告实验课程名称偏微分方程数值解 _______________________ 开课实验室 _____________ 数统学院 __________________________ 学院数统年级2013 专业班信计02班学生姓名 _____________________ 学号 ___________开课时间2015至2016学年第 ____________________ 2学期(2)(3)数学与统计学院制开课学院、实验室: 数统学院 实验时间:2016年6月20日一.实验目的通过该实验,要求学生掌握求解二维波动方程的有限差分法, 并能通过计算机语言编程 实现。
.实验内容考虑如下的初值问题:网格划分h0.1,0.1h ,故 N 1 h 10, M 口140,人 ih, y jt k k ,k 0,1,||,140 。
在内网点x, y j ,tk ,利用二阶中心差商, 对( k 1_ kk 1k_ kk kkkU i,j2u- 厶i ,ju i,ju i 1,j2u i,jU i 1,ju i,j12u i,ju i,j12h 2h 2整理得到:k 12 kk kkc,2kk 1u i,jr u i 1,j u i 1,ju i,j 1u i,j 124ru i,ju ,j1)建立差分格式:jh, i,j 0,1,|||,10,三.实验原理、方法(算法)、步骤2. 3.2u t 2 2u~~2xu x, y,0 u x, y,t2u—,x,y y20,1 ,tsin xsin y,一u x, y,0 0, x,y ,t 0,1.4在第三部分写出问题(1)三层显格式。
根据你写出的差分格式,编写有限差分法程序。
取 h 0.1,该问题的解析解为u x,y,t示,对数值结果进行简单的讨论。
4. 0,1.40, x, y20,1(1)将所写程序放到第四部分。
0.1h ,分别将t 0.5,1.0,1.4时刻的数值解画图显示。
二维波动方程的有限差分法
.学生实验报告实验课程名称偏微分方程数值解开课实验室数统学院学院数统年级2013 专业班信计02班学生姓名学号开课时间2015 至2016学年第 2 学期数学与统计学院制开课学院、实验室:数统学院实验时间:2016年6月20日五.实验结果及实例分析1、0.10.51.01.4t =、、、时刻的数值解与精确解图图1 t=0.1、0.5时刻的数值解、精确解图2 t=1.0、1.4时刻的数值解、精确解注:上两图为四个时刻的数值解与精确解,()10.12r p p hpτ==<=代表维数,本文,三层显格式达二阶收敛,不难看出,收敛效果很好,符合理论。
下图是四个时刻的绝对误差图像,从图中看出,绝对误差较小,且经过计算得到,收敛阶近似于2,正好符合理论值。
2、0.10.51.01.4t 、、、时刻的绝对误差图图3 四个时刻的绝对误差3、四个时刻(t=0.1、0.5、1.0、1.4)的绝对误差表t=0.1时刻的绝对误差0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000.0000 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.00000.0000 0.0001 0.0003 0.0004 0.0004 0.0005 0.0004 0.0004 0.0003 0.0001 0.00000.0000 0.0002 0.0004 0.0005 0.0006 0.0006 0.0006 0.0005 0.0004 0.0002 0.000011。
二维波动方程的差分法
二维波动方程的差分法 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】
学生实验报告
实验课程名称偏微分方程数值解
开课实验室数统学院
学院数统年级 2013 专业班信计02班
学生姓名学号
开课时间 2015 至 2016学年第 2 学期
数学与统计学院制
开课学院、实验室:数统学院实验时间: 2016年 6月20日
j i j=+
,,
2
0,00,N ,0N u u u u ===,0,1,
j =
时刻的点为内点,则满足差分格式(2),代入上式得到:)20()())0,,,0,1,i j u i j =
五.实验结果及实例分析
1、0.10.51.01.4t =、、、时刻的数值解与精确解图
图1 t=、时刻的数值解、精确解
图2 t=、时刻的数值解、精确解
注:上两图为四个时刻的数值解与精确解,
()1
0.12r p p h
p
τ
=
=<
=代表维数,本文 ,三层显格式达二阶收敛,不难看出,收敛效果很好,符合理论。
下图是四个时刻的绝对误差图像,从图中看出,绝对误差较小,且经过计算得到,收敛阶近似于
2,正好符合理论值。
2、0.10.51.01.4
t 、、、时刻的绝对误差图
图3 四个时刻的绝对误差3、四个时刻(t=、、、)的绝对误差表
t=时刻的绝对误差
t=时刻的绝对误差
t=时刻的绝对误差。
有限差分法基本原理课件
离散网格点
有限差分法基本原理
差分和逼近误差
差分概念:
设有x的解析函数 y f(x) ,函数y 对x 的导
数为:
d yli m ylim f(x x )f(x )
dx x 0 x x 0
x
dy dy 、dx 分别是函数及自变量的微分,dx 是函数 对自变量的导数,又称微商。上式中的y 、x 分别称 为函数及其自变量的差分,y 为函数对自变量的差商。
有限差分法基本原理
模型方程
为了抓住问题的实质,同时又不使讨论的问题过于
复杂,常用一些简单的方程来模拟流体力学方程进行讨 论分析,以阐明关于一些离散方法的概念。这些方程就 叫做模型方程。常用的模型方程:
对流方程:
0
t x
对流-扩散方程:
t
x
2x2
热传导方程:
2
t
x2
有限差分法基本原理
Poisson方程:
*n i
为差分方程的近似数
值
解,之间的误差为 。同样,近似数值解也满足同样的方程:
T i* n 1 S* i n T 1 ( 1 2 S )T * in S* i n T 1
in 1 Sn i 1 ( 1 2 S )n i Sn i 1
上式称为误差传播方程。
有限差分法基本原理
x等价定理
2
x2
2
y2
f
2 2
Laplace方程: x2 y2 0
有限差分法基本原理
差分方程的建立过程
以对流方程说明差分方程的建立过程。
0
t x
(x,0) (x)
有限差分法基本原理
差分方程的建立过程
1.划分网格
二维波动方程地有限差分法
实用文案学生实验报告实验课程名称偏微分方程数值解开课实验室数统学院学院数统年级 2013 专业班信计02班学生姓名学号开课时间 2015 至 2016学年第 2 学期数学与统计学院制开课学院、实验室: 数统学院 实验时间 : 2016年 6月20日1,2k i j u u +-+考虑边界条件()(),,0,,u x y t x y =∈∂Ω,差分格式为:,利用二阶差商近似:时刻的点为内点,则满足差分格式(2),代入上式得到:()(),0,sin sin ,,0,1,N N ih jh i j ππ=0,1,,10j =图1 t=0.1、0.5时刻的数值解、精确解 图2 t=1.0、1.4时刻的数值解、精确解 注:上两图为四个时刻的数值解与精确解,()10.12r p p hpτ==<=代表维数,本文,三层显格式达二阶收敛,不难看出,收敛效果很好,符合理论。
下图是四个时刻的绝对误差图像,从图中看出,绝对误差较小,且经过计算得到,收敛阶近似于2,正好符合理论值。
图3 四个时刻的绝对误差3、四个时刻(t=0.1、0.5、1.0、1.4)的绝对误差表t=0.1时刻的绝对误差0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000.0000 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.00000.0000 0.0001 0.0003 0.0004 0.0004 0.0005 0.0004 0.0004 0.0003 0.0001 0.00000.0000 0.0002 0.0004 0.0005 0.0006 0.0006 0.0006 0.0005 0.0004 0.0002 0.00000.0000 0.0002 0.0004 0.0006 0.0007 0.0007 0.0007 0.0006 0.0004 0.0002 0.00000.0000 0.0002 0.0005 0.0006 0.0007 0.0008 0.0007 0.0006 0.0005 0.0002 0.00000.0000 0.0002 0.0004 0.0006 0.0007 0.0007 0.0007 0.0006 0.0004 0.0002 0.0000。
二维抛物方程的有限差分法
二维抛物方程的有限差分法摘要二维抛物方程是一类有广泛应用的偏微分方程,由于大部分抛物方程都难以求得解析解,故考虑采用数值方法求解。
有限差分法是最简单又极为重要的解微分方程的数值方法。
本文介绍了二维抛物方程的有限差分法。
首先,简单介绍了抛物方程的应用背景,解抛物方程的常见数值方法,有限差分法的产生背景和发展应用。
讨论了抛物方程的有限差分法建立的基础,并介绍了有限差分方法的收敛性和稳定性。
其次,介绍了几种常用的差分格式,有古典显式格式、古典隐式格式、Crank-Nicolson隐式格式、Douglas差分格式、加权六点隐式格式、交替方向隐式格式等,重点介绍了古典显式格式和交替方向隐式格式。
进行了格式的推导,分析了格式的收敛性、稳定性。
并以热传导方程为数值算例,运用差分方法求解。
通过数值算例,得出古典显式格式计算起来较简单,但稳定性条件较苛刻;而交替方向隐式格式无条件稳定。
关键词:二维抛物方程;有限差分法;古典显式格式;交替方向隐式格式FINITE DIFFERENCE METHOD FORTWO-DIMENSIONAL PARABOLICEQUATIONAbstractTwo-dimensional parabolic equation is a widely used class of partial differential equations. Because this kind of equation is so complex, we consider numerical methods instead of obtaining analytical solutions. finite difference method is the most simple and extremely important numerical methods for differential equations. The paper introduces the finite difference method for two-dimensional parabolic equation.Firstly, this paper introduces the background and common numerical methods for Parabolic Equation, Background and development of applications. Discusses the basement for the establishment of the finite difference method for parabolic equation And describes the convergence and stability for finite difference method.Secondly, Introduces some of the more common simple differential format,for example, the classical explicit scheme, the classical implicit scheme, Crank-Nicolson implicit scheme, Douglas difference scheme, weighted six implicit scheme and the alternating direction implicit format. The paper focuses on the classical explicit scheme and the alternating direction implicit format. The paper takes discusses the derivation convergence,and stability of the format . The paper takes And the heat conduction equation for the numerical example, using the differential method to solve. Through numerical examples, the classical explicit scheme is relatively simple for calculation, with more stringent stability conditions; and alternating direction implicit scheme is unconditionally stable.Keywords:Two-dimensional Parabolic Equation; Finite-Difference Method; Eclassical Explicit Scheme; Alternating Direction Implicit Scheme目录摘要 (I)Abstract (II)1绪论 (1)1.1课题背景 (1)1.2发展概况 (1)1.2.1抛物型方程的常见数值解法 (1)1.2.2有限差分方法的发展 (2)1.3差分格式建立的基础 (3)1.3.1区域剖分 (3)1.3.2差商代替微商 (3)1.3.3差商代替微商格式的误差分析 (4)1.4本文主要研究内容 (5)2显式差分格式 (7)2.1常系数热传导方程的古典显式格式 (7)2.1.1古典显式格式格式的推导 (7)2.1.3古典显式格式的算法步骤 (8)3隐式差分格式 (10)3.1古典隐式格式 (10)3.2 Crank-Nicolson隐式格式 (12)3.3 Douglas差分格式 (13)3.4加权六点隐式格式 (14)3.5交替方向隐式格式 (15)3.5.1 Peaceman-Rachford格式 (15)3.5.2 Rachford-Mitchell格式 (15)3.5.3 Mitchell-Fairweather格式 (15)3.5.4交替方向隐式格式的算法步骤 (16)4实例分析与结果分析 (17)4.1算例 (17)4.1.1已知有精确解的热传导问题 (17)4.1.2未知精确解的热传导问题 (19)4.2结果分析 (20)5稳定性探究与分析 (21)5.1稳定性问题的提出 (21)5.2 几种分析稳定性的方法 (21)5.3 r变化对稳定性的探究 (23)5.3.1 古典显式格式的稳定性 (23)5.3.2 P-R格式格式的稳定性 (24)结语 (26)参考文献 (27)附录P-R格式的C++实现代码 (28)致谢 (30)1绪论1.1课题背景抛物方程是一类特殊的偏微分方程,二维抛物方程的一般形式为u Lu t∂=∂ (1-1) 其中1212((,,))((,,))(,,)(,,)(,,)u u u u u u L a x y t a x y t b x y t b x y t C x y t x x y y x y∂∂∂∂∂∂=++++∂∂∂∂∂∂ 120,0,0a a C >>≥。
有限差分法模拟一维(二维)谐振子
目录第1章概述 (1)第2章有限差分方式 (2)有限差分法大体思想 (2)差分方程组的求解 (3)2.2.1高斯-赛德尔迭代法 (3)2.2.2逐次超松弛法 (3)第3章求解谐振子的微分方程 (4)一维谐振子 (4)二维各向同性谐振子 (6)第4章总结 (9)参考文献 (10)附录 (11)附1一维线性谐振子的程序设计 (11)附基态一维线性谐振子 (11)附第一激发态一维线性谐振子 (12)附第二激发态一维线性谐振子 (13)附2二维线性谐振子的程序设计 (13)第1章概述微分方程和积分微分方程数值解的方式。
大体思想是把持续的定解区域用有限个离散点组成的网格来代替,这些离散点称作网格的节点;把持续定解区域上的持续变量的函数用在网格上概念的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以够取得原问题在离散点上的近似解。
然后再利用插值方式即能够从离散解取得定解问题在整个区域上的近似解。
有限差分法可普遍用来求解偏微分方程的近似解,在电磁场中求解点位函数的拉普拉斯方程时,可采用有限差分法的大体思想是:用网格将场域进行分割,再把拉普拉斯方程用以各网格点处的点位作为未知数的差分方程式来进行代换,将求解拉普拉斯方程解得问题变成求联立差分方程组的解得问题]1[,在差分网格超级多和情形下,利用并行计算方式对其进行区域分解,每一个进程负责运算一部份区域,区域边界之间进行必腹地通信可有效提高计算速度,解决更大规模的问题。
往往只讨论它在静态场中的应用,即泊松方程或拉普拉斯方程的有限差分形式,很少涉及到它在时谐场(即亥姆霍兹方程)中的应用。
本文重点讨论亥姆霍兹方程的有限差分形式和它在时谐场中的应用。
同时,有限差分法(finite difference method)是基于差分原理的一种数值计算方式,在求解微分方程定解问题中普遍应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二维波动方程的有限
差分法
学生实验报告
实验课程名称偏微分方程数值解
开课实验室数统学院
学院数统年级 2013 专业班信计02班学生姓名学号
开课时间 2015 至 2016学年第 2 学期
数学与统计学院制
开课学院、实验室:数统学院实验时间: 2016年 6月20日
五.实验结果及实例分析
1、0.10.51.01.4t =、、、时刻的数值解与精确解图
图1 t=0.1、0.5时刻的数值解、精确解
图2 t=1.0、1.4时刻的数值解、精确解
注:上两图为四个时刻的数值解与精确解,()1
0.12r p p h p τ==<=代表维数,本文 ,三层显格式达二阶收敛,不难看出,收敛效果很好,符合理论。
下图是四个时刻的绝对误差图像,从图中看出,绝对误差较小,且经过计算得到,收敛阶近似于2,正好符合理论值。
2、0.10.51.01.4
t 、、、时刻的绝对误差图
图3 四个时刻的绝对误差
3、四个时刻(t=0.1、0.5、1.0、1.4)的绝对误差表
t=0.1时刻的绝对误差
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0000
0.0000 0.0001 0.0003 0.0004 0.0004 0.0005 0.0004 0.0004 0.0003 0.0001 0.0000
0.0000 0.0002 0.0004 0.0005 0.0006 0.0006 0.0006 0.0005 0.0004 0.0002 0.0000
0.0000 0.0002 0.0004 0.0006 0.0007 0.0007 0.0007 0.0006 0.0004 0.0002 0.0000
0.0000 0.0002 0.0005 0.0006 0.0007 0.0008 0.0007 0.0006 0.0005 0.0002 0.0000
0.0000 0.0002 0.0004 0.0006 0.0007 0.0007 0.0007 0.0006 0.0004 0.0002 0.0000
0.0000 0.0002 0.0004 0.0005 0.0006 0.0006 0.0006 0.0005 0.0004 0.0002 0.0000
0.0000 0.0001 0.0003 0.0004 0.0004 0.0005 0.0004 0.0004 0.0003 0.0001 0.0000
0.0000 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
t=0.5时刻的绝对误差
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0007 0.0013 0.0018 0.0021 0.0022 0.0021 0.0018 0.0013 0.0007 0.0000
0.0000 0.0013 0.0025 0.0034 0.0040 0.0042 0.0040 0.0034 0.0025 0.0013 0.0000
0.0000 0.0018 0.0034 0.0047 0.0055 0.0058 0.0055 0.0047 0.0034 0.0018 0.0000
0.0000 0.0021 0.0040 0.0055 0.0065 0.0068 0.0065 0.0055 0.0040 0.0021 0.0000
0.0000 0.0022 0.0042 0.0058 0.0068 0.0071 0.0068 0.0058 0.0042 0.0022 0.0000
0.0000 0.0021 0.0040 0.0055 0.0065 0.0068 0.0065 0.0055 0.0040 0.0021 0.0000
0.0000 0.0018 0.0034 0.0047 0.0055 0.0058 0.0055 0.0047 0.0034 0.0018 0.0000
0.0000 0.0013 0.0025 0.0034 0.0040 0.0042 0.0040 0.0034 0.0025 0.0013 0.0000
0.0000 0.0007 0.0013 0.0018 0.0021 0.0022 0.0021 0.0018 0.0013 0.0007 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
t=1.0时刻的绝对误差
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0016 0.0031 0.0043 0.0051 0.0053 0.0051 0.0043 0.0031 0.0016 0.0000
0.0000 0.0031 0.0059 0.0082 0.0096 0.0101 0.0096 0.0082 0.0059 0.0031 0.0000
0.0000 0.0043 0.0082 0.0113 0.0132 0.0139 0.0132 0.0113 0.0082 0.0043 0.0000
0.0000 0.0051 0.0096 0.0132 0.0156 0.0164 0.0156 0.0132 0.0096 0.0051 0.0000。