抛物线专题复习讲义及练习
抛物线 标准方程、几何性质、经典大题归纳总结
一、 第一讲: 抛物线标准方程 二、 考点、热点回顾一、定义: 在平面内,及一个定点F 和一条定直线l(l 不经过点F)的距离相等的点的轨迹叫抛物线.即:的轨迹是抛物线。
则点若M MNMF,1 三、 (定点F 叫做抛物线的焦点, 定直线l 叫做抛物线的准线。
)标准方程:设定点F 到定直线l 的距离为p(p 为已知数且大于0).取过焦点F 且垂直于准线l 的直线为x 轴, x 轴及l 交于K, 以线段KF 的垂直平分线为y 轴, 建立直角坐标系抛物线上的点M(x, y)到l的距离为d, 抛物线是集合p={M||MF|=d}.化简后得: y2=2px(p>0).由于焦点和准线在坐标系下的不同分布情况, 抛物线的标准方程有四种情形(列表如下):二、典型例题(2)例1.(1)已知抛物线的标准方程是y2=6x, 求它的焦点坐标和准线方程;已知抛物线的焦点坐标是F(0, -2), 求它的标准方程.方程是x2=-8y.例2.根据下列所给条件, 写出抛物线的标准方程:(1)焦点是F(3, 0);(3)焦点到准线的距离是2.答案是:(1)y2=12x;(2)y2=-x;(3)y2=4x, y2=-4x, x2=4y, x2=-4y.三、课堂练习1.抛物线y2=4x的焦点到准线的距离是________答案:2解析: 解析: 抛物线y2=4x的焦点F(1,0), 准线x=-1.∴焦点到准线的距离为2.2.分别求适合下列条件的抛物线的标准方程:(1)过点(-3,2);(2)焦点在直线x-2y-4=0上.答案:解析: 解: (1)设抛物线方程为y2=-2px或x2=2py(p>0), 则将点(-3,2)代入方程得2p=或2p=, 故抛物线方程为y2=-x或x2=y.(2)①令x=0, 由方程x-2y-4=0, 得y=-2.∴抛物线的焦点为F(0, -2).设抛物线方程为x2=-2py(p>0), 则由=2, 得2p=8. ∴所求抛物线方程为x2=-8y.②令y=0,由方程x-2y-4=0,得x=4.∴抛物线的焦点为F(4,0).设抛物线方程为y2=2px(p>0), 则由=4, 得2p=16.∴所求抛物线方程为y2=16x.综上, 所求抛物线方程为y2=16x或x2=-8y.3.已知抛物线的顶点在原点, 对称轴是x轴, 抛物线上的点M(-3, m)到焦点的距离等于5, 求抛物线的方程和m的值解法一: 由焦半径关系, 设抛物线方程为y2=-2px(p>0), 则准线方因为抛物线上的点M(-3, m)到焦点的距离|MF|及到准线的距离得p=4.因此, 所求抛物线方程为y2=-8x.又点M(-3, m)在此抛物线上, 故m2=-8(-3).解法二: 由题设列两个方程, 可求得p和m. 由学生演板. 由题意在抛物线上且|MF|=5, 故四、课后作业1.分别求适合下列条件的抛物线的标准方程:(1)过点(-3,2);(2)焦点在直线x-2y-4=0上.答案:解析: (1)设抛物线方程为y2=-2px或x2=2py(p>0), 则将点(-3,2)代入方程得2p=或2p=, 故抛物线方程为y2=-x或x2=y.(2)①令x=0, 由方程x-2y-4=0, 得y=-2.∴抛物线的焦点为F(0, -2).设抛物线方程为x2=-2py(p>0), 则由=2, 得2p=8. ∴所求抛物线方程为x2=-8y.②令y=0,由方程x-2y-4=0,得x=4.∴抛物线的焦点为F(4,0).设抛物线方程为y2=2px(p>0), 则由=4, 得2p=16.∴所求抛物线方程为y2=16x.综上, 所求抛物线方程为y2=16x或x2=-8y.2.若抛物线y2=-2px(p>0)上有一点M, 其横坐标为-9, 它到焦点的距离为10, 求抛物线方程和M点的坐标.解析: 解: 由抛物线的定义, 设焦点F(-, 0). 则准线为x=.设M到准线的距离为|MN|,则|MN|=|MF|=10, 即-(-9)=10, ∴p=2. 故抛物线方程为y2=-4x.将M(-9,y),代入抛物线方程得y=±6. 故M(-9,6)或M(-9,-6).3.已知抛物线C的焦点F在x轴的正半轴上, 点A(2, )在抛物线内. 若抛物线上一动点P到A.F两点距离之和的最小值为4, 求抛物线C的方程.解析: 解: 设抛物线方程为y2=2px(p>0), 其准线为x=-, 过P点作抛物线准线的垂线, 垂足为H(图略), 由定义知, |PH|=|PF|.∴|PA|+|PF|=|PA|+|PH|, 故当H、P、A三点共线时, |PA|+|PF|最小. ∴|PA|+|PF|的最小值为+2=4, p=4, 即抛物线C的方程为y2=8x.4.动圆M经过点A(3,0)且及直线l: x=-3相切, 求动圆圆心M的轨迹方程.解:设圆M及直线l相切于点N. ∵|MA|=|MN|, ∴圆心M到定点A(3,0)和定直线x=-3的距离相等.根据抛物线的定义, M在以A为焦点, l为准线的抛物线上.∵=3,∴p=6. ∴圆心M的轨迹方程为y2=12x.第二讲: 抛物线简单几何性质一、考点、热点回顾定义: 在平面内,及一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫抛物线.补充:1.通径: 通过焦点且垂直对称轴的直线, 及抛物线相交于两点, 连接这两点的线段叫做抛物线的通径。
抛物线标准化讲义(知识点,类型题)
抛物线标准化讲义一.知识点总结1.抛物线的定义抛物线需要满足以下三个条件:(1)在平面内;(2)动点到定点F的距离与到定直线l的距离__相等___;(3)定点F与定直线l的关系为__点F∉l___.2.抛物线的标准方程与几何性质抛物线焦点弦的处理规律直线AB过抛物线y2=2px(p>0)的焦点F,交抛物线于A(x1,y1),B(x2,y2)两点,如图.(1)y 1y 2=-p 2,x 1x 2=p 24. (2)|AB |=x 1+x 2+p ,x 1+x 2≥2x 1x 2=p ,即当x 1=x 2时,弦长最短为2p . (3)1|AF |+1|BF |为定值2p. (4)弦长AB =2psin 2α(α为AB 的倾斜角).(5)以AB 为直径的圆与准线相切.(6)焦点F 对A ,B 在准线上射影的张角为90°.二.类型题讲解考点一:抛物线的定义1..设圆C 与圆()1322=-+y x 外切,与直线y=0相切,则C 的轨迹为( )A. 抛物线B.双曲线C.椭圆D.圆[解析]A 设C 的坐标为(x ,y),圆C 的半径为r ,圆()1322=-+y x 的圆心为A ,∵圆C 与圆()1322=-+y x 外切,与直线y=0相切,∵|CA|=r+1,C 到直线y=0的距离d=r ,∵|CA|=d+1,即动点C 到定点A 的距离等于到定直线y=-1的距离, 由抛物线的定义知:C 的轨迹为抛物线.2.已知点M 与点F (4,0)的距离比它到直线05:=+x l 的距离小1,求点M 满足的方程。
[解析]依题意可知:点M 与点F (4,0)的距离比它到直线l :x +5=0的距离小1, 转化为点M 与点F (4,0)的距离与它到直线l :x +4=0的距离相等, 满足抛物线的定义,所以P =8,点M 的轨迹方程是x y 162= 故答案为:x y 162= 考点二:抛物线的方程与性质 3.抛物线y =2x 2的焦点坐标是( C )A .(18,0)B .(12,0)C .(0,18)D .(0,12)[解析]由抛物线的标准方程为x 2=12y ,可知p 2=18,所以焦点坐标是(0,18).故选C .4.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( A )A .1B .2C .4D .8[解析] 由题意知抛物线的准线为x =-14.因为|AF |=54x 0,根据抛物线的定义可得x 0+14=|AF |=54x 0,解得x 0=1,故选A .5(2019·宁夏二模)已知抛物线的顶点在原点,焦点在y 轴上,抛物线上的点P (m ,-2)到焦点的距离为4,则m 的值为__±4___.[解析] 由题意可设抛物线的标准方程为x 2=-2py (p >0).由定义知P 到准线的距离为4,故p2+2=4,得p =4,所以抛物线的方程为x 2=-8y ,代入点P 的坐标得m =±4.6.若抛物线y 2=2px 上一点P (2,y 0)到其准线的距离为4,则抛物线的标准方程为( C )A .y 2=4xB .y 2=6xC .y 2=8xD .y 2=10x[解析] (1)∵抛物线y 2=2px ,∴准线为x =-p2.∵点P (2,y 0)到其准线的距离 4,∴|-p2-2|=4,∴p =4.∴抛物线的标准方程为y 2=8x . 7.设抛物线x y 82=上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ) A.4 B.6 C.8 D.12[解析]B∵点P 到y 轴的距离是4,延长使得和准线相交于点Q ,则|PQ|等于点P 到焦点的距离,而|PQ|=6,所以点P 到该抛物线焦点的距离为6.8.已知抛物线y x 162=上的点M 到焦点的距离等于8,求M 的坐标. [解析]M (-8,4)或M (8,4)由题意得:2p=16,42=p ,所以焦点坐标为(0,4),设M (4,2x x ),则()222284160=⎪⎪⎭⎫ ⎝⎛-+-x x 解得8±=x ,所以M (-8,4)或M (8,4)。
抛物线知识点汇总及考点例题
抛物线姓名:___________ 班级:________________ 得分:________________知识点回顾:1、定义:把平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做 ,点F 叫做抛物线的 ,直线l 叫做抛物线的 。
2、椭圆的简单几何性质3、抛物线焦点弦性质直线过抛物线px y 22=的焦点与抛物线交于()()2211,,,y x B y x A 两点(1)221221,4p y y p x x -== (2))(sin 2221的倾斜角为直线AB p p x x AB αα=++= (3)PFB FA 211=+ (4)以弦AB 为直径的圆与准线相切 考点一: 定义和标准方程[例1]设P 是抛物线y 2=4x 上的一个动点.(1) 求点P 到点A (-1,1) 的距离与点P 到直线x =-1的距离之和的最小值; (2) 若B (3,2),求 |PB |+|PF | 的最小值.练习1:已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离等于5,求抛物线的方程和m 的值.归纳:运用抛物线的定义解决此类问题,应灵活地进行抛物线上的点到焦点的距离与到准线距离的等价转化.“看到准线想到焦点,看到焦点想到准线”。
考点二: 抛物线性质[例2] (2013·四川高考)抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是_____________.练习1:抛物线214y x =-的焦点坐标是( ). A 1016⎛⎫ ⎪⎝⎭, B 1016⎛⎫-⎪⎝⎭, C (01)-,D (10)-, 练习2:抛物线上一点到直线的距离最短的点的坐标是 ( )A (1,1)B .() C . D .(2,4)归纳(1)关键:利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化成标准方程.(2)技巧:要结合图形分析,灵活运用平面几何的性质以图助解. 考点三: 抛物线与直线[例3] (2012·福建高考)如图,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py ( p >0)上. (1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线y =-1相交于点Q .证明以PQ 为直径的圆恒过y 轴上某定点.2x y =042=--y x 41,21)49,23(练习1:已知过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B ,C 两点.当直线l 的斜率是12时, =4 . (1)求抛物线G 的方程;(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值范围.课后练习:一、选择题(本大题共10小题,每小题5分,共50分) 1、如果抛物线y 2=ax 的准线是直线x =-1,那么它的焦点坐标为( )A .(1, 0)B .(2, 0)C .(3, 0)D .(-1, 0)2、圆心在抛物线y 2=2x 上,且与x 轴和该抛物线的准线都相切的一个圆的方程是 ( )A .x 2+ y 2-x -2 y -=0 B .x 2+ y 2+x -2 y +1=0 C .x 2+ y 2-x -2 y +1=0D .x 2+ y 2-x -2 y +=0 3、一抛物线形拱桥,当水面离桥顶2m 时,水面宽4m ,若水面下降1m ,则水面宽为( )A .mB . 2mC .4.5mD .9m4、平面内过点A (-2,0),且与直线x =2相切的动圆圆心的轨迹方程是( )A . y 2=-2xB . y 2=-4xC .y 2=-8xD .y 2=-16x5、抛物线的顶点在原点,对称轴是x 轴,抛物线上点(-5,m )到焦点距离是6,则抛物线的方程是 ( ) A . y 2=-2x B . y 2=-4x C . y 2=2x D . y 2=-4x 或y 2=-36x6、过抛物线y 2=4x 的焦点作直线,交抛物线于A(x 1, y 1) ,B(x 2, y 2)两点,如果x 1+ x 2=6,那么|AB|=( ) A .8B .10C .6D .47、把与抛物线y 2=4x 关于原点对称的曲线按向量a 平移,所得的曲线的方程是( )A .B .C .D .8、过点M (2,4)作与抛物线y 2=8x 只有一个公共点的直线l 有 ( ) A .0条 B .1条 C .2条 D .3条9、过抛物线y =ax 2(a >0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则等于( ) A .2aB .C .4aD .414166)3,2(-=)2(4)3(2--=-x y )2(4)3(2+-=-x y )2(4)3(2--=+x y )2(4)3(2+-=+x y qp 11+a21a4二、解答题10、过抛物线E :x 2=2py (p >0)的焦点F 作斜率分别为k 1,k 2的两条不同直线l 1,l 2,且k 1+k 2=2,l 1与E 相交于点A ,B ,l 2与E 相交于点C ,D ,以AB ,CD 为直径的圆M ,圆N (M ,N 为圆心)的公共弦所在直线记为l .(1)若k 1>0,k 2>0,证明: ·<2p 2; (2)若点M 到直线l 的距离的最小值为755,求抛物线E 的方程.11、(2013·广东高考)已知抛物线C 的顶点为原点,其焦点F (0,c )(c >0)到直线l :x -y -2=0的距离为322,设P 为直线l 上的点,过点P 作抛物线C 的两条切线P A ,PB ,其中A ,B 为切点.(1)求抛物线C 的方程;(2)当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF |·|BF |的最小值.12、已知直线y =-2上有一个动点Q ,过点Q 作直线l 1垂直于x 轴,动点P 在l 1上,且满足OP ⊥OQ (O 为坐标原点),记点P 的轨迹为C .(1)求曲线C 的方程;(2)若直线l 2是曲线C 的一条切线,当点(0,2)到直线l 2的距离最短时,求直线l 2的方程.。
根据抛物线知识点梳理及练习
根据抛物线知识点梳理及练习抛物线是数学中的一个重要概念,广泛应用于物理、工程和其他领域。
本文将对抛物线的知识点进行梳理,并提供一些练题供研究和巩固。
1. 抛物线的定义和特点抛物线可以通过以下定义来进行描述:抛物线是平面上一种曲线,其点到焦点的距离等于该点到准线的距离。
主要特点包括:- 顶点:抛物线的最高或最低点称为顶点,记为(V)。
- 焦点:抛物线的焦点是准线与对称轴的交点。
- 准线:平行于对称轴,且与焦点的距离等于对称轴的曲线。
- 对称轴:通过顶点和焦点的一条直线为对称轴,对称轴上各点到焦点的距离相等。
2. 抛物线的方程和表示方法抛物线的方程可以使用以下形式表示:- 标准形式:y = ax^2 + bx + c- 顶点形式:y = a(x - h)^2 + k- 描述形式:(x - h)^2 = 4p(y - k)其中,a是抛物线的开口方向和形状因子,h和k分别是顶点的横坐标和纵坐标,p是焦点到对称轴的距离。
3. 抛物线的性质和运动学应用抛物线具有一些重要的性质和运动学应用:- 对称性:关于对称轴具有对称性,即抛物线上的任意一点到对称轴的距离相等。
- 最值点:顶点是抛物线的最高或最低点,根据抛物线的开口方向可确定是极大值还是极小值。
- 轨迹:抛物线的轨迹可以描述物体自由落体运动的路径。
- 抛物线方程应用:抛物线方程可以应用于弹道学、反射面天线和卫星轨迹等计算中。
练题1. 写出以下抛物线的方程形式:- 顶点在(2, 3),开口向上的抛物线。
- 焦点在(-1, 4),准线为y = 3,开口向下的抛物线。
2. 抛物线的准线为x = -1,焦点在(2, 5),开口向上,请写出抛物线的标准形式方程。
3. 抛物线的焦点在(3, 4),顶点在(1, 2),请写出抛物线的顶点形式方程。
参考答案1.- y = a(x - 2)^2 + 3- (x + 1)^2 = -8(y - 4)2. y = (1/4)(x + 1)^2 + 53. y = (1/2)(x - 1)^2 + 2以上是对抛物线知识点的梳理和一些练习题的提供,希望能对学习和理解抛物线有所帮助。
高中数学复习专题讲解与练习-----抛物线定义的应用
2. 直线 y = k(x−1)与抛物线 y2 = 4x 交于 A, B 两点,若 AB = 16 ,则 k = __________. 3
【答案】:± 3
3. 已知点 是抛物线 的对称轴与准线的交点,点 为抛物线的焦点,点 在抛物线上且满足 ,若 取最大值时,点 恰好在以 为焦点的双曲线上,则双曲线的离心率为( )
证明: 是 的等差中项.
【分析】:先化简
得到
,再根据线段 的中垂线的性质得到
,
把这两个式子结合起来即可证明 是 的等差中项.
【解析】:设
,由抛物线定义知
又 中垂线交 轴于 ,故
,
因为 ,所以
,
,
故
即 , 是 的等差中项.学-科网 【点评】:由抛物线定义将 m 转化为 AB 的横坐标的表达式,再利用垂直平分线的性质得到另外一组表达式, 化简后即可得到所证目标. 【规律总结】: 与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点 到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物
所以最小值为4 + 2 −1 = 5 .
6. 设 , 分别为曲线 上不同的两点, ,若
,且
,则
__________. 【答案】:8
7.
过抛物线C : y2
= 4x 的焦点 F
的直线l 与抛物线C
交于P,Q 两点,与其准线交于点M
,且 uuuuv FM
=
uuuv 3FP
,
则
uuuv FP
抛物线的方程与性质(知识讲解与巩固练习)
zh要点一、抛物线的定义定义:平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.要点二、抛物线的标准方程 标准方程的推导如图,以过F 且垂直于 l 的直线为x 轴,垂足为K.以F,K 的中点O 为坐标原点建立直角坐标系xoy. 设|KF|=p(p >0),那么焦点F 的坐标为(,0)2p ,准线l 的方程为2p x =-. 设点M (x,y )是抛物线上任意一点,点M 到l 的距离为d.由抛物线的定义,抛物线就是集合.将上式两边平方并化简,得22(0)y px p =>. ①方程①叫抛物线的标准方程,它表示的抛物线的焦点在x 轴的正半轴上,坐标是(,0)2p它的准线方程是2p x =-. 抛物线标准方程的四种形式: 一般情况归纳:方程图象的开口方向焦点准线2y kx =0k >时开口向右 (,0)4k4k x =-0k <时开口向左2x ky =0k >时开口向上 (0,)4k 4k y =-0k <时开口向下要点三、抛物线的简单几何性质:抛物线标准方程22(0)y px p =>的几何性质 范围:{0}x x ≥,{}y y R ∈,抛物线y 2=2px (p >0)在y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标(x ,y )的横坐标满足不等式x ≥0;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸。
抛物线是无界曲线。
对称性:关于x 轴对称抛物线y 2=2px (p >0)关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴。
抛物线只有一条对称轴。
}|||{d MF M P ==.|2|)2(|,2|,)2(||2222p x y p x px d y p x MF +=+-∴+=+-=顶点:坐标原点抛物线y 2=2px (p >0)和它的轴的交点叫做抛物线的顶点。
高考数学复习考点知识讲解与专题练习61---抛物线
高考数学复习考点知识讲解与专题练习抛物线考试要求 1.了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用;2.掌握抛物线的定义、几何图形、标准方程及简单几何性质.知识梳理1.抛物线的定义(1)平面内与一个定点F和一条定直线l(F∉l)的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(2)其数学表达式:{M||MF|=d}(d为点M到准线l的距离).2.抛物线的标准方程与几何性质图形标准方程y2=2px(p>0) y2=-2px(p>0) x2=2py(p>0) x2=-2py(p>0)p的几何意义:焦点F到准线l的距离性质顶点O(0,0)对称轴y=0 x=0焦点F⎝⎛⎭⎪⎫p2,0F⎝⎛⎭⎪⎫-p2,0F⎝⎛⎭⎪⎫0,p2F⎝⎛⎭⎪⎫0,-p2离心率e=1准线方程 x =-p 2 x =p 2 y =-p 2 y =p 2 范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R开口方向向右向左向上向下[常用结论与微点提醒]1.通径:过焦点且垂直于对称轴的弦长等于2p ,通径是过焦点最短的弦.2.抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝ ⎛⎭⎪⎫p 2,0的距离|PF |=x 0+p 2,也称为抛物线的焦半径.诊 断 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( ) (2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫a 4,0,准线方程是x =-a4.( )(3)抛物线既是中心对称图形,又是轴对称图形.( )(4)若直线与抛物线只有一个交点,则直线与抛物线一定相切.( )(5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( )解析 (1)当定点在定直线上时,轨迹为过定点F 与定直线l 垂直的一条直线,而非抛物线.(2)方程y =ax 2(a ≠0)可化为x 2=1a y ,是焦点在y 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫0,14a ,准线方程是y =-14a .(3)抛物线是只有一条对称轴的轴对称图形.(4)一条直线平行抛物线的对称轴,此时与抛物线只有一个交点,但不相切. 答案 (1)× (2)× (3)× (4)× (5)√2.(老教材选修2-1P72A1改编)顶点在原点,且过点P (-2,3)的抛物线的标准方程是________________.解析 设抛物线的标准方程是y 2=kx 或x 2=my ,代入点P (-2,3),解得k =-92,m =43,所以y 2=-92x 或x 2=43y . 答案 y 2=-92x 或x 2=43y3. (老教材选修2-1P67A3改编)抛物线y 2=8x 上到其焦点F 距离为5的点的个数为________.解析 设P (x 1,y 1),则|PF |=x 1+2=5,得x 1=3,y 1=±2 6.故满足条件的点的个数为2. 答案 24.(2019·全国Ⅱ卷)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p =1的一个焦点,则p =( )A.2B.3C.4D.8解析 由题意知,抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p 2,0,椭圆的焦点坐标为()±2p ,0, 所以p2=2p ,解得p =0(舍去)或p =8. 答案 D5.(2020·山东名校联考)已知F 是抛物线y 2=x 的焦点,A ,B 是抛物线上的两点,且|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( ) A.34 B.1 C.54 D.74解析 如图所示,设抛物线的准线为l ,AB 的中点为M ,作AA 1⊥l 于点A 1,BB 1⊥l 于点B 1,MM 1⊥l 于点M 1,由抛物线的方程知p =12,由抛物线定义知|AA 1|+|BB 1|=|AF |+|BF |=3,所以点M 到y 轴的距离为|MM 1|-p 2=12(|AA 1|+|BB 1|)-p 2=12×3-14=54,故选C. 答案 C6.(2019·昆明诊断)已知抛物线方程为y 2=8x ,若过点Q (-2,0)的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是________.解析 由题意知,直线l 的斜率存在,设直线l 的方程为y =k (x +2),代入抛物线方程,消去y 整理得k 2x 2+(4k 2-8)x +4k 2=0,当k =0时,显然满足题意;当k ≠0时,Δ=(4k 2-8)2-4k2·4k2=64(1-k2)≥0,解得-1≤k<0或0<k≤1,因此k的取值范围是[-1,1]. 答案[-1,1]考点一抛物线的定义、标准方程及其性质【例1】(1)已知抛物线C与双曲线x2-y2=1有相同的焦点,且顶点在原点,则抛物线C的方程是()A.y2=±22xB.y2=±2xC.y2=±4xD.y2=±42x(2)(多选题)过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,且|AF|=3|BF|,则直线AB的斜率为()A.2B.3C.- 2D.- 3(3)动圆过点(1,0),且与直线x=-1相切,则动圆的圆心的轨迹方程为__________.解析(1)由已知可知双曲线的焦点为(-2,0),(2,0).=2,设抛物线方程为y2=±2px(p>0),则p2所以p=22,所以抛物线方程为y2=±42x.故选D.(2)如图所示,当点A在第一象限时,过A,B分别向抛物线的准线作垂线,垂足分别为D,E,过A作x轴的垂线,与EB交于点C,则四边形ADEC为矩形.由抛物线定义可知|AD|=|AF|,|BE|=|BF|,设|AF|=3|BF|=3m,所以|AD|=|CE|=3m,|AB|=4m,在Rt△ABC中,|BC|=2m,所以∠ABC=60°,所以直线l的斜率为3;当点B在第一象限时,同理可知直线l 的斜率为- 3.(3)设动圆的圆心坐标为(x,y),则圆心到点(1,0)的距离与到直线x=-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y2=4x.答案(1)D(2)BD(3)y2=4x规律方法 1.应用抛物线定义的两个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)抛物线焦点到准线的距离为p.2.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.3.在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.【训练1】(1)设抛物线y2=2px的焦点在直线2x+3y-8=0上,则该抛物线的准线方程为()A.x=-4B.x=-3C.x=-2D.x=-1(2)(2020·佛山模拟)已知抛物线x 2=2py (p >0)的焦点为F ,准线为l ,点P (4,y 0)在抛物线上,K 为l 与y 轴的交点,且|PK |=2|PF |,则y 0=________.解析 (1)直线2x +3y -8=0与x 轴的交点为(4,0),∴抛物线y 2=2px 的焦点为(4,0),∴准线方程为x =-4.(2)作PM ⊥l ,垂足为M ,由抛物线定义知|PM |=|PF |,又知|PK |=2|PF |,∴在直角三角形PKM 中,sin ∠PKM =|PM ||PK |=|PF ||PK |=22,∴∠PKM =45°,∴△PMK 为等腰直角三角形,∴|PM |=|MK |=4,又知点P 在抛物线x 2=2py (p >0)上,∴⎩⎨⎧py 0=8,y 0+p2=4,解得⎩⎪⎨⎪⎧p =4,y 0=2. 答案 (1)A (2)2考点二 与抛物线有关的最值问题多维探究角度1 到焦点与定点距离之和(差)最值问题【例2-1】 点P 为抛物线y 2=4x 上的动点,点A (2,1)为平面内定点,F 为抛物线焦点,则:(1)|PA |+|PF |的最小值为________;(2)(多填题)|PA |-|PF |的最小值为________,最大值为________.解析 (1)如图1,由抛物线定义可知,|PF |=|PH |,|PA |+|PF |=|PA |+|PH |,从而最小值为A 到准线的距离为3.(2)如图2,当P,A,F三点共线,且P在FA延长线上时,|PA|-|PF|有最小值为-|AF|=- 2.当P,A,F三点共线,且P在AF延长线上时,|PA|-|PF|有最大值为|AF|= 2.故|PA|-|PF|最小值为-2,最大值为 2.答案(1)3(2)-2 2规律方法 1.解决到焦点与定点距离之和最小问题,先将抛物线上的点到焦点的距离转化为到准线的距离,再结合图形解决问题.2.到两定点距离之差的最值问题,当且仅当三点共线时取最值.角度2到点与准线的距离之和最值问题【例2-2】设P是抛物线y2=4x上的一个动点,则点P到点A(-1,1)的距离与点P 到直线x=-1的距离之和的最小值为________.解析如图,易知抛物线的焦点为F(1,0),准线是x=-1,由抛物线的定义知点P到直线x=-1的距离等于点P到F的距离.于是,问题转化为在抛物线上求一点P,使点P到点A(-1,1)的距离与点P到F(1,0)的距离之和最小,显然,连接AF与抛物线相交的点即为满足题意的点,此时最小值为[1-(-1)]2+(0-1)2= 5.答案 5规律方法 解决到点与准线的距离之和最值问题,先将抛物线上的点到准线的距离转化为到焦点的距离,再构造出“两点之间线段最短”,使问题得解. 角度3 动弦中点到坐标轴距离最短问题【例2-3】 已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为( ) A.34B.32C.1 D.2解析 由题意知,抛物线的准线l :y =-1,过点A 作AA 1⊥l 交l 于点A 1,过点B 作BB 1⊥l 交l 于点B 1,设弦AB 的中点为M ,过点M 作MM 1⊥l 交l 于点M 1,则|MM 1|=|AA 1|+|BB 1|2.因为|AB |≤|AF |+|BF |(F 为抛物线的焦点),即|AF |+|BF |≥6,所以|AA 1|+|BB 1|≥6,2|MM 1|≥6,|MM 1|≥3,故点M 到x 轴的距离d ≥2,故选D. 答案 D规律方法 解决动弦中点到坐标轴距离最短问题将定长线段的中点到准线的距离转化为线段端点到准线距离之和的一半,再根据三角形中两边之和大于第三边得出不等式求解. 角度4 焦点弦中距离之和最小问题【例2-4】 已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作y 轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析 由题意知F (1,0),|AC |+|BD |=|AF |+|FB |-2=|AB |-2,即|AC |+|BD |取得最小值时当且仅当|AB |取得最小值.依抛物线定义知,当|AB |为通径,即|AB |=2p =4时为最小值,所以|AC |+|BD |的最小值为2. 答案 2规律方法 过抛物线的焦点且与抛物线的对称轴垂直的弦称为抛物线的通径,通径是抛物线所有过焦点的弦中最短的,若能将问题转化为与通径有关的问题,则可以用通径最短求最值.角度5 到定直线的距离最小问题【例2-5】(一题多解)抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是________.解析 法一如图,设与直线4x +3y -8=0平行且与抛物线y =-x 2相切的直线为4x +3y +b =0,切线方程与抛物线方程联立得⎩⎪⎨⎪⎧y =-x 2,4x +3y +b =0消去y 整理得3x 2-4x -b =0,则Δ=16+12b =0,解得b =-43,故切线方程为4x +3y -43=0,抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是这两条平行线间的距离d =⎪⎪⎪⎪⎪⎪8-435=43.法二对y =-x 2,有y ′=-2x ,如图,设与直线4x +3y -8=0平行且与抛物线y =-x 2相切的直线与抛物线的切点是T (m ,-m 2),则切线斜率k =y ′|x =m =-2m =-43,所以m =23,即切点T ⎝ ⎛⎭⎪⎫23,-49,点T 到直线4x +3y -8=0的距离d =⎪⎪⎪⎪⎪⎪83-43-816+9=43,由图知抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是43. 答案 43规律方法 抛物线上的动点到定直线的距离,可以转化为平行线间的距离,也可以利用单变量设点利用函数思想求最值.【训练2】 (1)若在抛物线y 2=-4x 上存在一点P ,使其到焦点F 的距离与到 A (-2,1)的距离之和最小,则该点的坐标为( ) A.⎝ ⎛⎭⎪⎫-14,1B.⎝ ⎛⎭⎪⎫14,1 C.(-2,-22) D.(-2,22)(2)已知P 为抛物线y 2=4x 上一个动点,Q 为圆C :x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线准线的距离之和的最小值是________. 解析 (1)如图,∵y 2=-4x ,∴p =2,焦点坐标为(-1,0).依题意可知当A ,P 及P 到准线的垂足三点共线时,点P 与点F 、点P 与点A 的距离之和最小,故点P 的纵坐标为1.将y =1代入抛物线方程求得x =-14,则点P 的坐标为⎝ ⎛⎭⎪⎫-14,1.故选A.(2)由题意知,圆C :x 2+(y -4)2=1的圆心为C (0,4),半径为1,抛物线的焦点为F (1,0).根据抛物线的定义,点P 到点Q 的距离与点P 到抛物线准线的距离之和即点P 到点Q 的距离与点P 到抛物线焦点的距离之和,因此|PQ |+|PF |≥|PC |+|PF |-1≥|CF |-1=17-1.答案 (1)A (2)17-1考点三 直线与抛物线的综合问题【例3】(2019·全国Ⅰ卷)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若|AF |+|BF |=4,求直线l 的方程; (2)若AP→=3PB →,求|AB |. 解 设直线l 的方程为:y =32x +t ,A (x 1,y 1),B (x 2,y 2). (1)由题设得F ⎝ ⎛⎭⎪⎫34,0,故|AF |+|BF |=x 1+x 2+32.又|AF |+|BF |=4,所以x 1+x 2=52.由⎩⎪⎨⎪⎧y =32x +t ,y 2=3x 可得9x 2+12(t -1)x +4t 2=0, 其中Δ=144(1-2t )>0, 则x 1+x 2=-12(t -1)9.从而-12(t -1)9=52,得t =-78(满足Δ>0). 所以l 的方程为y =32x -78.(2)由AP →=3PB →可得y 1=-3y 2.由⎩⎪⎨⎪⎧y =32x +t ,y 2=3x 可得y 2-2y +2t =0,其中Δ=4-8t >0, 所以y 1+y 2=2,从而-3y 2+y 2=2,故y 2=-1,y 1=3. 代入C 的方程得x 1=3,x 2=13. 所以A (3,3),B ⎝ ⎛⎭⎪⎫13,-1,故|AB |=4133.规律方法1.直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.2.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.3.涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.提醒 涉及弦的中点、斜率时一般用“点差法”求解.【训练3】 如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上. (1)写出该抛物线的方程及其准线方程;(2)当PA 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率. 解 (1)由已知条件,可设抛物线的方程为y 2=2px (p >0).∵点P (1,2)在抛物线上,∴22=2p ×1,解得p =2. 故所求抛物线的方程是y 2=4x ,准线方程是x =-1. (2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB , 则k PA =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 2-1(x 2≠1),∵PA 与PB 的斜率存在且倾斜角互补,∴k PA =-k PB . 由A (x 1,y 1),B (x 2,y 2)均在抛物线上,得y 21=4x 1,①y 22=4x 2,②∴y 1-214y 21-1=-y 2-214y 22-1,∴y 1+2=-(y 2+2).∴y 1+y 2=-4.由①-②得,y 21-y 22=4(x 1-x 2),∴k AB =y 1-y 2x 1-x 2=4y 1+y 2=-1(x 1≠x 2).数学抽象——活用抛物线焦点弦的四个结论1.数学抽象素养水平表现为能够在得到的数学结论的基础上形成新命题,能够针对具体的问题运用数学方法解决问题.本课时抛物线的焦点弦问题的四个常用结论即为具体表现之一.2.设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则 (1)x 1·x 2=p 24. (2)y 1·y 2=-p 2.(3)|AB |=x 1+x 2+p =2psin 2α(α是直线AB 的倾斜角). (4)1|AF |+1|BF |=2p 为定值(F 是抛物线的焦点).【例1】 过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若|AF |=2|BF |,则|AB |等于( ) A.4 B.92C.5 D.6[一般解法]易知直线l 的斜率存在,设为k ,则其方程为 y =k (x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0,得x A ·x B =1,①因为|AF |=2|BF |,由抛物线的定义得x A +1=2(x B +1), 即x A =2x B +1,②由①②解得x A =2,x B =12, 所以|AB |=|AF |+|BF |=x A +x B +p =92.[应用结论]法一 由对称性不妨设点A 在x 轴的上方,如图设A ,B 在准线上的射影分别为D ,C ,作BE ⊥AD 于E , 设|BF |=m ,直线l 的倾斜角为θ,则|AB |=3m , 由抛物线的定义知|AD |=|AF |=2m ,|BC |=|BF |=m ,所以cos θ=|AE ||AB |=13,所以tan θ=2 2.则sin 2θ=8cos 2θ,∴sin 2θ=89.又y 2=4x ,知2p =4,故利用弦长公式|AB |=2p sin 2θ=92. 法二 因为|AF |=2|BF |,所以1|AF |+1|BF |=12|BF |+1|BF |=32|BF |=2p =1,解得|BF |=32,|AF |=3,故|AB |=|AF |+|BF |=92. 答案 B【例2】 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334 B.938 C.6332 D.94[一般解法]由已知得焦点坐标为F ⎝ ⎛⎭⎪⎫34,0,因此直线AB 的方程为y =33⎝ ⎛⎭⎪⎫x -34,即4x -43y -3=0.与抛物线方程联立,化简得4y 2-123y -9=0, 故|y A -y B |=(y A +y B )2-4y A y B =6.因此S △OAB =12|OF ||y A -y B |=12×34×6=94. [应用结论]由2p =3,及|AB |=2psin 2α 得|AB |=2p sin 2α=3sin 230°=12.原点到直线AB 的距离d =|OF |·sin 30°=38, 故S △AOB =12|AB |·d =12×12×38=94. 答案 D【例3】 如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若F 是AC 的中点,且|AF |=4,则线段AB 的长为( ) A.5 B.6 C.163D.203[一般解法]如图,设l 与x 轴交于点M ,过点A 作AD ⊥l 交l 于点D ,由抛物线的定义知,|AD |=|AF |=4,由F 是AC 的中点,知|AD |=2|MF |=2p ,所以2p =4,解得p =2,所以抛物线的方程为y 2=4x .设A (x 1,y 1),B (x 2,y 2),则|AF |=x 1+p2=x 1+1=4,所以x 1=3,可得y 1=23,所以A (3,23),又F (1,0),所以直线AF 的斜率k =233-1=3,所以直线AF 的方程为y =3(x -1),代入抛物线方程y 2=4x 得3x 2-10x +3=0,所以x 1+x 2=103,|AB |=x 1+x 2+p =163.故选C.[应用结论]法一 设A (x 1,y 1),B (x 2,y 2),则|AF |=x 1+p2=x 1+1=4,所以x 1=3,又x 1x 2=p 24=1,所以x 2=13,所以|AB |=x 1+x 2+p =3+13+2=163.法二 因为1|AF |+1|BF |=2p ,|AF |=4,所以|BF |=43,所以|AB |=|AF |+|BF |=4+43=163. 答案 CA 级 基础巩固一、选择题1.抛物线y =4x 2的焦点到准线的距离为( ) A.2 B.1 C.14 D.18解析 由y =4x 2得x 2=14y ,所以2p =14,p =18,则抛物线的焦点到准线的距离为18. 答案 D2.(2019·福州调研)设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ) A.4 B.6 C.8 D.12解析 如图所示,抛物线的准线l 的方程为x =-2,F 是抛物线的焦点,过点P 作PA ⊥y 轴,垂足是A ,延长PA 交直线l 于点B ,则|AB |=2.由于点P 到y 轴的距离为4,则点P 到准线l 的距离|PB |=4+2=6,所以点P 到焦点的距离|PF |=|PB |=6.故选B. 答案 B3.(2020·烟台调研)已知抛物线y 2=2px (p >0),点C (-4,0),过抛物线的焦点作垂直于x 轴的直线,与抛物线交于A ,B 两点,若△CAB 的面积为24,则以直线AB 为准线的抛物线的标准方程是( ) A.y 2=4x B.y 2=-4x C.y 2=8x D.y 2=-8x解析 因为AB ⊥x 轴,且AB 过焦点F ,所以线段AB 是焦点弦,且|AB |=2p ,所以S △CAB =12×2p ×⎝ ⎛⎭⎪⎫p 2+4=24,解得p =4或-12(舍),所以抛物线方程为y 2=8x ,所以直线AB的方程为x =2,所以以直线AB 为准线的抛物线的标准方程为y 2=-8x ,故选D. 答案 D4.设抛物线C :y 2=3x 的焦点为F ,点A 为C 上一点,若|FA |=3,则直线FA 的倾斜角为( ) A.π3B.π4 C.π3或2π3D.π4或3π4解析 如图,作AH ⊥l 于H ,则|AH |=|FA |=3,作FE ⊥AH 于E ,则|AE |=3-32=32,在Rt △AEF 中,cos ∠EAF =|AE ||AF |=12,∴∠EAF =π3,即直线FA 的倾斜角为π3,同理点A 在x 轴下方时,直线FA 的倾斜角为2π3.答案 C5.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( ) A.355 B.2 C.115 D.3解析 由题可知l 2:x =-1是抛物线y 2=4x 的准线,设抛物线的焦点为F (1,0),则动点P 到l 2的距离等于|PF |,则动点P 到直线l 1和直线l 2的距离之和的最小值,即焦点F 到直线l 1:4x -3y +6=0的距离,所以最小值是|4-0+6|5=2.答案 B二、填空题6.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.解析 建立如图平面直角坐标系,设抛物线方程为x 2= -2py (p >0).由题意将点A (2,-2)代入x 2=-2py ,得p =1,故x 2=-2y .设B (x ,-3),代入x 2=-2y 中,得x =6,故水面宽为26米. 答案 2 67.(2020·昆明诊断)设F 为抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若F 为△ABC 的重心,则|FA→|+|FB →|+|FC →|的值为________. 解析 依题意,设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),又焦点F ⎝ ⎛⎭⎪⎫12,0,所以x 1+x 2+x 3=3×12=32,则|FA →|+|FB →|+|FC →|=⎝ ⎛⎭⎪⎫x 1+12+⎝ ⎛⎭⎪⎫x 2+12+⎝ ⎛⎭⎪⎫x 3+12=(x 1+x 2+x 3)+32=32+32=3. 答案 38.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为________.解析 因为双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,所以2=c a =1+b 2a 2,所以b a=3,所以渐近线方程为3x ±y =0,因为抛物线C 2:x 2=2py (p >0)的焦点为F ⎝ ⎛⎭⎪⎫0,p 2,所以F 到双曲线C 1的渐近线的距离为⎪⎪⎪⎪⎪⎪p 23+1=2,由于p >0,所以p =8,所以抛物线C 2的方程为x 2=16y .答案 x 2=16y 三、解答题9.设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.解 (1)设A (x 1,y 1),B (x 2,y 2),则x 1≠x 2,y 1=x 214,y 2=x 224,x 1+x 2=4.于是直线AB 的斜率k =y 1-y 2x 1-x 2=x 1+x 24=1. (2)由y =x 24,得y ′=x 2.设M (x 3,y 3),由题设知x 32=1,解得x 3=2,于是M (2,1).设直线AB 的方程为y =x +m ,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|.将y =x +m 代入y =x 24得x 2-4x -4m =0.当Δ=16(m +1)>0,即m >-1时,x 1,2=2±2m +1.从而|AB |=2|x 1-x 2|=42(m +1).由题设知|AB |=2|MN |,即42(m +1)=2(m +1),解得m =7.所以直线AB 的方程为x -y +7=0.10.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC→=OA →+λOB →,求λ的值. 解 (1)抛物线y 2=2px 的焦点为⎝ ⎛⎭⎪⎫p 2,0, 所以直线AB 的方程为y =22⎝ ⎛⎭⎪⎫x -p 2, 由⎩⎪⎨⎪⎧y =22⎝ ⎛⎭⎪⎫x -p 2,y 2=2px ,消去y 得4x 2-5px +p 2=0,所以x 1+x 2=5p 4,由抛物线定义得|AB |=x 1+x 2+p =9,即5p 4+p =9,所以p =4.所以抛物线的方程为y 2=8x .(2)由p =4知,方程4x 2-5px +p 2=0,可化为x 2-5x +4=0,解得x 1=1,x 2=4,故y 1=-22,y 2=4 2.所以A (1,-22),B (4,42).则OC→=OA →+λOB →=(1,-22)+λ(4,42)=(1+4λ,-22+42λ). 因为C 为抛物线上一点,所以(-22+42λ)2=8(1+4λ),整理得λ2-2λ=0,所以λ=0或λ=2.B 级 能力提升11.(2020·石家庄模拟)已知抛物线y 2=4x 的焦点为F ,过点F 和抛物线上一点M (2,22)的直线l 交抛物线于另一点N ,则|NF |∶|FM |等于( )A.1∶2B.1∶3C.1∶ 2D.1∶ 3解析 抛物线y 2=4x 的焦点F 的坐标为(1,0),∵直线l 过点F 和点M (2,22),∴直线l 的方程为y =22(x -1).由⎩⎪⎨⎪⎧y 2=4x ,y =22(x -1)得2x 2-5x +2=0,解得x =2或x =12,∴点N 的横坐标为12.∵抛物线y 2=4x 的准线方程为x =-1,∴|NF |=32,|MF |=3,∴|NF |∶|MF |=1∶2,故选A.答案 A12.(2020·长沙调研)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,且l 过点(-2,3),M 在抛物线C 上,若点N (1,2),则|MN |+|MF |的最小值为( )A.2B.3C.4D.5解析 由题意知p 2=2,即p =4.过点N 作准线l 的垂线,垂足为N ′,交抛物线于点M ′,则|M ′N ′|=|M ′F |,则有|MN |+|MF |=|MN |+|MT |≥|M ′N ′|+|M ′N |=|NN ′|=1-(-2)=3.答案 B13.(2020·湖南名校大联考)已知P 为抛物线C :y =x 2上一动点,直线l :y =2x -4与x轴、 y 轴交于M ,N 两点,点A (2,-4)且AP→=λAM →+μAN →,则λ+μ的最小值为________.解析 由题意得M (2,0),N (0,-4),设P (x ,y ),由AP→=λAM →+μAN →得(x -2,y +4)=λ(0,4)+μ(-2,0),∴x -2=-2μ,y +4=4λ.因此λ+μ=y +44-x -22=x 24-x 2+2=⎝ ⎛⎭⎪⎫x 2-122+74≥74,故λ+μ的最小值为74.答案 7414.(2019·全国Ⅲ卷)已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点;(2)若以E ⎝ ⎛⎭⎪⎫0,52为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.(1)证明 设D ⎝ ⎛⎭⎪⎫t ,-12,A (x 1,y 1),则x 21=2y 1. 因为y ′=x ,所以切线DA 的斜率为x 1,故y 1+12x 1-t =x 1.整理得2tx 1-2y 1+1=0.设B (x 2,y 2),同理可得2tx 2-2y 2+1=0.故直线AB 的方程为2tx -2y +1=0.所以直线AB 过定点⎝ ⎛⎭⎪⎫0,12. (2)解 由(1)得直线AB 的方程为y =tx +12.由⎩⎪⎨⎪⎧y =tx +12,y =x 22可得x 2-2tx -1=0. 于是x 1+x 2=2t ,x 1x 2=-1,y 1+y 2=t (x 1+x 2)+1=2t 2+1,|AB |=1+t 2|x 1-x 2|=1+t 2×(x 1+x 2)2-4x 1x 2=2(t 2+1).设d 1,d 2分别为点D ,E 到直线AB 的距离,则d 1=t 2+1,d 2=2t 2+1.因此,四边形ADBE 的面积S =12|AB |(d 1+d 2)=(t 2+3)t 2+1.设M 为线段AB 的中点,则M ⎝ ⎛⎭⎪⎫t ,t 2+12.因为EM →⊥AB →,而EM →=(t ,t 2-2),AB →与向量(1,t )平行,所以t +(t 2-2)t =0,解得t =0或t =±1.当t =0时,S =3;当t =±1时,S =4 2.因此,四边形ADBE 的面积为3或4 2.C 级 创新猜想15.(多选题)如图所示,抛物线y =14x 2,AB 为过焦点F 的弦,过A ,B 分别作抛物线的切线,两切线交于点M ,设A (x A ,y A ),B (x B ,y B ),M (x M ,y M ),则下列结论正确的有( )A.若AB 的斜率为1,则|AB |=8B.|AB |min =4C.若AB 的斜率为1,则x M =2D.x A ·x B =-4解析 由题意得,焦点F (0,1),对于A ,l AB 的方程为y =x +1,与抛物线的方程联立, 得⎩⎨⎧y =x +1,y =14x 2,消去x ,得y 2-6y +1=0, 所以y A +y B =6,则|AB |=y A +y B +p =8,则A 正确;对于B ,|AB |min =2p =4,则B 正确;对于C ,当AB 的斜率为1时,因为y ′=x 2,则x M 2=1,∴x M =2,则C 正确;设l AB 的方程为y =kx +1,与抛物线的方程联立,得⎩⎨⎧y =kx +1,y =14x 2,消去y ,得x 2-4kx -4=0, 所以x A +x B =4k ,x A ·x B =-4,则D 正确;答案 ABCD16.(多填题)已知抛物线C :y 2=2px (p >0)的焦点为F (2,0),则抛物线C 的方程是________;若M 是C 上一点,FM 的延长线交y 轴于点N ,且M 为FN 的中点,则|FN |=________.解析 抛物线C :y 2=2px (p >0)的焦点为F (2,0),可得p =4,则抛物线C 的方程是y 2=8x .由M 为FN 的中点,得M 的横坐标为1,代入抛物线方程得y =±22,则M (1,±22),则|FN |=2(1+2)=6. 答案 y 2=8x 6。
(完整word)抛物线专题复习讲义和练习
抛物线专题复习讲义及练习★知识梳理★1.抛物线的标准方程、类型及其几何性质 (0>p ):2.①)0(22≠=p px y 的焦半径=PF 2P x +;)0(22≠=p py x 的焦半径=PF 2P y +;② 过焦点的所有弦中最短的弦,也被称做通径。
其长度为2p.③ AB 为抛物线px y 22=的焦点弦,则=B A x x 42p,=B A y y 2p -,||AB =p x x B A ++3。
px y 22=的参数方程为⎩⎨⎧==pt y pt x 222(t 为参数),py x 22=的参数方程为⎩⎨⎧==222pt y ptx (t 为参数)。
★重难点突破★重点:掌握抛物线的定义和标准方程,会运用定义和会求抛物线的标准方程,能通过方程研究抛物线的几何性质难点: 与焦点有关的计算与论证重难点:围绕焦半径、焦点弦,运用数形结合和代数方法研究抛物线的性质 1.要有用定义的意识问题1:抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A.1617B. 1615C.87 D 。
02。
求标准方程要注意焦点位置和开口方向问题2:顶点在原点、焦点在坐标轴上且经过点(3,2)的抛物线的条数有 3。
研究几何性质,要具备数形结合思想,“两条腿走路" 问题3:证明:以抛物线焦点弦为直径的圆与抛物线的准线相切★热点考点题型探析★考点1 抛物线的定义题型 利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换[例1 ]已知点P 在抛物线y 2= 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和的最小值为 【新题导练】1.已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且||1F P 、||2F P 、||3F P 成等差数列, 则有 ( )A .321x x x =+B . 321y y y =+C .2312x x x =+ D. 2312y y y =+2。
抛物线课件及练习题含详解
为 y k(x p).
2
又因为A,B两点是直线AB与抛物线的交点,则
y k(x y2 2px
p ), 2
x2
(
2p k2
p)x
p2 4
0,
所以x1·x2=p2 .
4
由|AF|·|BF|=
x1
x2
p 2
x1
x
2
p2 4
1. 3
得 p2 p (4 p) 1 ,
2 23
3
即 2p 所1 ,以 p 1 ,
2p y21p2y1y1y1 y2
x
x1
,
= 2p x y1y2 2p (x y1y2 ),
y1 y2 y1 y2 y1 y2
2p
将y1·y2=-4p2代入上式得y 2p x 2p,
y1 y2
故直线AB恒过定点(2p,0).
【方法技巧】利用抛物线的性质可以解决的问题 (1)对称性:解决抛物线的内接三角形问题. (2)焦点、准线:解决与抛物线的定义有关的问题. (3)范围:解决与抛物线有关的最值问题. (4)焦点:解决焦点弦问题.
|AF|=1,|BF|= 1,求抛物线及直线AB的方程.
3
【解题指南】设出A,B两点的坐标,根据抛物线定义可分别表
示出|AF|和|BF|,进而可求得|AF|+|BF|,求得x1+x2的表达
式,表示出|AF|·|BF|,建立等式求得p,则抛物线方程可得.
再由|AB|=
2p sin 2
得4, sin2θ=
(2)y2=2px(p>0)的焦点为( p,0),由题意得
2
( p 2)2 解9 得 5p,=4或p=-12(舍去).
2
抛物线基础讲义
抛物线专题复习讲义及练习一、知识梳理1.抛物线的标准方程、类型及其几何性质 ():【例1】 抛物线24y x =的准线方程是( )A .2x =-B .1x =-C .2y =-D .1y =-【例2】 抛物线214y x =的焦点坐标是( ).A . (0,1)B .(0,1)-C . (1,0)-D .(1,0) 【例3】 抛物线24x y =上一点A 的纵坐标是4,则点A 与抛物线焦点的距离为( )A .5B .4C .3D .22(0)y px p =>的准线与圆670x y x +--=相切,则p 的值为A .12B .1C .2D .4【例5】 若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( )A .2-B .2C .4-D .4【例6】 若双曲线2221613x y p-=的左焦点在抛物线22y px =的准线上,则p 的值为( )A .2B .3C .4D .【例7】 若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( )A .2-B .2C .4-D .40>p 典例分析【例8】 以坐标轴为对称轴,以原点为顶点且过圆222690x y x y +-++=的圆心的抛物线的方程是( )A .23y x =或23y x =-B .23y x =C .29y x =-或23y x =D .23y x =-或29y x =【例9】 已知点(10)M ,,直线:1l x =-,点B 是l 上的动点, 过点B 垂直于y 轴的直线与线段BM 的垂直平分线交于点P ,则点P 的轨迹是( ) A .抛物线 B .椭圆 C .双曲线的一支 D .直线【例10】 若点P 到直线1x =-的距离比它到点(20),的距离小1,则点P 的轨迹为( ) A .圆 B .椭圆 C .双曲线 D .抛物线【例11】 已知抛物线的顶点在原点,焦点在y 轴上,其上的点(3)P m -,到焦点的距离为5,则抛物线方程为__________.【例12】 ⑴以双曲线221169x y -=的右焦点为焦点,且以原点为顶点的抛物线的标准方程为_______.⑵双曲线221x y m n-=的离心率为2,有一个焦点与抛物线24x y =的焦点重合,则mn 的值为 .【例13】 经过点(24)P --,的抛物线的标准方程为________.。
抛物线讲义(含知识点、例题、变式及答案)
第七节 抛 物 线 2019考纲考题考情1.抛物线的概念平面内与一个定点F 和一条定直线l (F ∉l )的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线。
2.抛物线的标准方程与几何性质 标准 方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F ⎝ ⎛⎭⎪⎫p 2,0 F ⎝ ⎛⎭⎪⎫-p 2,0 F ⎝ ⎛⎭⎪⎫0,p 2 F ⎝ ⎛⎭⎪⎫0,-p 2 离心率e =100抛物线焦点弦的6个常用结论设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=p24,y1y2=-p2。
(2)弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角)。
(3)以弦AB为直径的圆与准线相切。
(4)过焦点垂直于对称轴的弦长等于2p(通径)。
(5)S△AOB=p22sinθ(θ为AB的倾斜角).(6)1|AF|+1|BF|为定值2p.考点一抛物线的定义及应用【例1】(1)已知抛物线x2=4y上一点A纵坐标为4,则点A到抛物线焦点的距离为()A.10B.4C.5D.15(2)已知抛物线C:y2=4x的焦点为F,准线为l,P为C上一点,PQ垂直l 于点Q,M,N分别为PQ,PF的中点,MN与x轴相交于点R,若∠NRF=60°,则|FR|等于()A.12B.1C.2 D.4解析(1)抛物线x2=4y的准线方程为y=-1,点A到准线的距离为5,根据抛物线定义可知点A到焦点的距离为5。
故选C。
(2)因为M,N分别是PQ,PF的中点,所以MN∥FQ,且PQ∥x轴。
又∠NRF=60°,所以∠FQP=60°。
由抛物线定义知|PQ|=|PF|,所以△FQP为正三角形。
高中抛物线的知识点归纳与练习题及答案
看;Come up with different attitudes 有不同的看法 )
As society develops, people are attaching much importance to.... 随着社会的发展,人们开始关注 ............
People are attaching more and more importance to the interview during job
m
2 y2 ,整理得:
2
221 11 Nhomakorabea1
,2
my1
1
,
my2
1
2
2 m y1 y2
2 2 y1 y2 m y1 y2
2 4m
2
0.
m4
赠送以下资料
英语万能作文 (模板型)
Along with the advance of the society more and more problems are brought to our
( 2)过点 F 的直线交轨迹 C 于 A,B 两点, 交直线 l 于点 M ,已知 MA 1 AF , 1 MB 2 BF ,求 1 2
的值;
解:( 1)设点 P(x, y) ,则 Q( 1, y) ,由 QP QF FP FQ 得:
( x 1,0) (2, y) ( x 1, y) ( 2, y) ,化简得 C : y2 4 x . ( 2)设直线 AB 的方程为 x my 1(m 0) .
故线段 AB 是圆 C 的直径
x
(2)解 : 设圆 C 的圆心为 C(x,y), 则
y
x1 x2 2
y1 y2 2
圆心 C 到直线 x-2y=0 的距离为 d,则 d
抛物线专题辅导完整版(非常好)
1抛物线专题复习一:知识总结1、抛物线的定义:平面内点到定点的距离等于点到定直线的距离:即:PF d = 其中点F 为抛物线的焦点。
2、抛物线的标准方程、几何性质标准方程图形顶点对称轴焦点准线离心率焦半径焦点弦公式()022>=p pxyxyO Fl()0,0x 轴⎪⎭⎫ ⎝⎛0,2p 2px -=1=e02x p PF +=)(21x x p AB ++=PFQOxy23、抛物线的焦半径 ①()022>=p px y焦半径:x pPQ PF +==2; ②()022>-=p px y焦半径:x p PQ PF -==2③()022>=p py x焦半径:y pPQ PF +==2;④()022>-=p py x焦半径:y pPQ PF -==24、直线与抛物线的位置关系(1)当直线与对称轴平行时⇒有一个交点⇒相交(2)当直线与对称轴不平行时,则有① ② ③ ①当0∆>⇒两个焦点⇒相交; ②当0∆=⇒一个焦点⇒相切; ③当0∆<⇒没有焦点⇒相离;题型一:抛物线的定义应用1、抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A. 1617 B. 1615C.87D. 02、已知点P 在抛物线x y 42=上,那么点P 到点)1,2(-Q 的距离与点P 到抛物线焦点距离之和的最小值为 。
()022>-=p pxyxyO F l()0,0x 轴⎪⎭⎫ ⎝⎛-0,2p2p x =1=e 02x pPF -=)(21x x p AB +-=()022>=p pyx()0,0y 轴⎪⎭⎫ ⎝⎛2,0p 2py -=1=e02y p PF +=)(21y y p AB ++=()022>-=p pyx()0,0y 轴⎪⎭⎫ ⎝⎛-2,0p2p y =1=e 02y pPF -=)(21y y p AB +-=PF OQxyPFQO xy PFOQxyOxyFFOxyOxy FOxyFOxyF33、已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且||1F P 、||2F P 、||3F P成等差数列, 则有 ( ) A .321x x x =+ B .321y y y =+ C .2312x x x =+ D. 2312y y y =+4、已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛 物线上的动点,当MF MA +最小时,M 点坐标是A. )0,0(B. )62,3(C. )4,2(D. )62,3(-题型二:利用抛物线定义求轨迹方程1、一动点P 到y 轴距离比到点)0,2(M 的距离小2,则此动点P 的轨迹方程;2、求与圆C :22(2)1x y ++=外切,且与直线1x =相切的动圆圆心M 的轨迹方程;3、已知动圆M 经过点)0,3(M 且与直线3:-=x l 相切,求动圆圆心M 的轨迹方程是;4、已知抛物线的焦点是(11)F ,,准线是20x y ++=,求抛物线的方程以及顶点坐标和对称轴方程; (参考:222880x y xy x y +---=;y x =;(00),)题型三:距离问题1、已知F 是抛物线24y x =的焦点,点Q(2,2),在抛物线上找一点P 使PQ PF +最小,求点P 的坐标;2、抛物线28y x =的焦点为F ,(4,2)A -为一定点,在抛物线上找一点M ;(1)当||||MA MF + 为最小时,求M 点的坐标; (2)当||||||MA MF -为最大时,求M 点的坐标;43、定长为4的线段AB 的端点A B 、在抛物线22y x =上移动,求线段AB 的中点M 到y 轴的距离的最小值,并求出此时AB 的中点M 坐标;4、求抛物线22y x =上到直线03=+-y x 距离最短距离,且求出此时的点的坐标;5、在抛物线24y x =上求一点,使该点到直线45y x =-的距离为最短,求该点的坐标;(),(121)6、已知抛物线2:ax y C =(a 为非零常数)的焦点为F ,点P 为抛物线c 上一个动点,过点P 且与抛物线c 相切的直线记为l . (1)求F 的坐标;(2)当点P 在何处时,点F 到直线l 的距离最小;题型四:焦半径和焦点弦 (一)焦半径公式①()022>=p px y 焦半径:x pPQ PF +==2; ②()022>-=p px y 焦半径:x p PQ PF -==2③()022>=p py x 焦半径:y pPQ PF +==2; ④()022>-=p py xPF OQxyPF QO x y PFQ O xyPFOQxy5焦半径:y pPQ PF -==2(二)焦点弦公式(1)若AB 是过抛物线22(0)y px p =>的焦点F 的弦,且直线AB 的倾斜角为a ,则apAB 2sin 2= (2)若AB 是过抛物线22(0)y px p =>的焦点F 的弦,且点()()1122,,,A x y B x y ,则有 ①12AB x x p =++ ②pBF AF 211=+ ③2124p x x =④221p y y -=(3)通径(过焦点且垂直于抛物线对称轴)最短;当90α= ,2sin 1α=,p ap AB 2sin 22==最小1、已知抛物线2y x =上一点M 到焦点F 的距离为2,求点M 的坐标;(参考:77(,)24±) 2、过抛物线x y 42=的焦点作直线交抛物线于()11,y x A ,()22,y x B 两点,且621=+x x ,求||AB A 、10 B 、8 C 、6 D 、43、如果1P ,2P ,…,8P 是抛物线24y x =上的点,它们的横坐标依次为1x ,2x ,…,8x ,F 是抛物线的焦点,若)(,,,21*∈N n x x x n 成等差数列且45921=+++x x x ,则||5F P =( )A 、5B 、6C 、7D 、94、过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于)(422R a a a ∈++,则这样的直线 ( ) A 、有且仅有一条 B 、有且仅有两条 C 、1条或2条 D 、不存在5、过抛物线()02>=a axy 的焦点F 作直线交抛物线于P 、Q 两点,若线段PF 、QF 的长分别是p 、q ,则qp 11+ ( ) A 、a 2 B 、a 21 C 、a 4 D 、a46、已知过抛物线29y x =的焦点的弦AB 长为12,则直线AB 倾斜角为 。
抛物线知识点全面总结及经典例题
x(p>0)
2
y p 2
y≤0 x∈R
y轴
例1:已知抛物线关于x轴对称,它的顶点 在坐标原点,并且经过点M2(22, ),求
它的标准方程。
变式:顶点在坐标原点,对称轴为坐标 轴,并且经过点M(2,2 2 ),抛物 线的标准方程。
例2:已知抛物线的方程为y2=4x,直线 l 经过点P(-2,1),斜率为k.当k为何值 时,直线与抛物线:只有一个公共点;有
1 FA
|
|
1 FB
|
是否为定值?
y
A ( x1, y1 )
这一结论非常奇妙, 变中有不变,动中有不动.
F
O
x
B ( x2, y2 )
例9、正三角形的一个顶点位于坐标原点,另外两个
顶点在抛物线 y2 2 px( p 0)上,求这个三角形的边长。
解:如图,设正三角形OAB的顶点A、
y
A (x1,y1)
(2)已知抛物线的方程是 y 6x2,求它的焦点坐标和准
线方程;
(3)已知抛物线的焦点坐标是F(0,-2),求它的标准方程.
解:(1)因为焦点在x轴的正半轴上,p=3,所以焦点坐
标是
(3 2
,
0)
,准线方程是
x
3 2
.
(2)因为抛物线的标准方程 x2 1 y,焦点在y轴的正
半轴上,p 是y 1
X1=X2. 由此可得|y1|=|y2|,,即线段AB关于x轴对称。
(x2,y2)
B
因为x轴垂直于AB,且 AOX 30,所以 y1 tan 30 3
x1
y12 2p
,
x1
抛物线知识点及基础训练题
1图形几何意义参数p 表示焦点到准线的距离,p 越大,开口越阔. 开口方向标准方程焦 点准线方程范 围对 称轴 离心率 通 径焦半径12p AF x =+12p AF x =-+12p AF y =+12p AF y =-+方程及性质1、顶点是原点,对称轴是x 轴,抛物线过点(5-,25),抛物线的标准方程是2、22(0)y px p =>焦点为F ,(0,2)A .FA 中点B 在抛物线上,B 到准线的距离为3、F 为x y 42=的焦点,A 是上一点,4-=⋅AF OA ,点A 的坐标4、过y 2=4x 的焦点作直线,交抛物线于A(x 1, y 1) ,B(x 2, y 2),x 1+ x 2=6,|AB|= 抛物线曲线几何意义4、动点P 到点(2,0)F 的距离与它到直线20x +=的距离相等,则P 的轨迹方程为5、22(0)y px p =>的准线与圆22670x y x +--=相切,则p 的值为6、点M 与点()0,4F 的距离比它到直线05=+x 的距离小1,求点M 的轨迹方程7、28y x =上点M 与定点(6,0)A 为端点的线段MA 的中点为P ,P 点的轨迹方程.8.到点(1,1)和直线x +2y =3距离相等的点的轨迹是9.x,y=则(),P x y 的轨迹焦半径10、从x y 42=上一点P 引准线垂线,垂足M,|PM|=5,焦点F,△MPF 面积为 11、A,B,C 为22(0)y px p =>上的三点,F 为焦点,0FA FB FC ++=,求||||||FA FB FC ++=12、顶点在原点,焦点在x 轴的正半轴上,F 为焦点,,,A B C 为抛物线上的三点.满足0FA FB FC ++=,FA +FB +6FC =,抛物线的方程为13、y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是14、2:8C y x =焦点为F ,准线与x 轴的交点为K ,点A 在C 上且AK =,则AFK ∆的面积为过焦点弦15.过抛物线x y =2焦点作一条直线与抛物线交于A 、B 两点,它们横坐标之和等于3,直线有 条16.点),4,3(A F1.过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于)(422R a a a ∈++,则这样的直线最值问题17.,42x y =焦点为F,)2,2(A ,P 为抛物线上的点,则PF PA +的最小值为 18、点P 在24y x =上,点P 到点(21)Q -,的距离与点P 到抛物线焦点距离之和取得最小值时,点P=19在24y x =上求一点,使该点到直线45y x =-的距离为最短,求该点的坐标 20.P 是抛物线上的一个动点1)求点P 到点A (-1,1)的距离与点P 到直线的距离之和的最小值2)若B (3,2),求的最小值21.P 为抛物线px y 22=上任一点,F 为焦点,则以PF 为直径的圆与y 轴 22.过抛物线()022>=p px y 的焦点F 作直线交抛物线于()()1122,,,A x y B x y 两点,求证: 1)12AB x x p =++ 2)pBF AF 211=+ 三、定点与定值23.一动圆的圆心在抛物线x y 82=上,且动圆恒与直线02=+x 相切,则此动圆必过定点24.设抛物线22y px =过焦点的弦两端分别为()()1122,,,A x y B x y ,那么:212y y p =- 25.求证:以抛物线过焦点的弦为直径的圆,必与此抛物线准线相切26.抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且||1F P 、||2F P 、||3F P 成等差数列,则有2312x x x =+.27.抛物线D :y 2=4x 的焦点与椭圆Q :)0(12222>>=+b a by a x 的右焦点F 1重合,且点)26,2(P 在椭圆Q 上. (Ⅰ)求椭圆Q 的方程及其离心率; (Ⅱ)若倾斜角为45°的直线l 过椭圆Q 的左焦点F 2,且与椭圆相交于A ,B两点,求△ABF1的面积.。
专题70:抛物线基础知识和典型例题(解析版)
专题70:抛物线基础知识和典型例题(解析版)抛物线1、定义:平面内与一个定点和一条定直线的距离相等的点的轨迹称为抛物线.定点称为抛物线的焦点,定直线称为抛物线的准线.2、抛物线的几何性质:标准方程范围顶点对称轴轴轴焦点准线方程离心率,越大,抛物线的开口越大焦半径通径过抛物线的焦点且垂直于对称轴的弦称为通径:焦点弦长公式3、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即.4、关于抛物线焦点弦的几个结论:设为过抛物线焦点的弦,,直线的倾斜角为,则⑴⑵⑶以为直径的圆与准线相切;⑷焦点对在准线上射影的张角为⑸四、直线与圆锥曲线的位置关系2.直线与圆锥曲线的位置关系:⑴.从几何角度看:(特别注意)要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。
⑵.从代数角度看:设直线L的方程与圆锥曲线的方程联立得到。
①.若=0,当圆锥曲线是双曲线时,直线L与双曲线的渐进线平行或重合;当圆锥曲线是抛物线时,直线L与抛物线的对称轴平行或重合。
②.若,设。
③..时,直线和圆锥曲线相交于不同两点,相交。
b.时,直线和圆锥曲线相切于一点,相切。
c.时,直线和圆锥曲线没有公共点,相离。
五、弦长问题:直线与圆锥曲线相交时的弦长问题是一个难点,化解这个难点的方法是:设而不求,根据根与系数的关系,进行整体代入。
即当直线与圆锥曲线交于点,时,则====题型一:求抛物线的解析式例1求适合下列条件的抛物线的标准方程: (1)顶点在原点,焦点是(0,5)F ; (2)顶点在原点,准线是4x =; (3)焦点是8(0,)F -,准线是8y =;(4)顶点在原点,关于x 轴对称,顶点与焦点的距离等于6.例1(1)220x y =;(2)216y x =-;(3)232x y =-;(4)224y x =±. 【解析】 【分析】(1)判断焦点位置,设出抛物线方程,根据焦点求解出抛物线的标准方程;(2)根据准线判断焦点位置,设出抛物线方程,根据准线方程求解出抛物线的标准方程; (3)根据焦点和准线设出抛物线方程,根据焦点坐标即可求解出抛物线的标准方程; (4)先判断出顶点位置,然后设出抛物线的标准方程,利用已知条件求解出抛物线的标准方程. 【详解】(1)因为焦点在y 轴正半轴,设抛物线方程22x py =,所以52p=,所以10p =, 所以抛物线的标准方程为220x y =;(2)因为准线4x =,所以焦点在x 轴负半轴,设22y px =-,所以42p=,所以8p =, 所以抛物线的标准方程为216y x =-;(3)由条件可知抛物线的焦准距被坐标原点平分,所以抛物线的顶点在坐标原点,设抛物线方程22x py =-, 所以82p=,所以16p =,所以抛物线的标准方程为232x y =-;(4)设抛物线的标准方程为22y px =,所以62p=,所以12p =±, 所以抛物线的标准方程为:224y x =±. 【点睛】本题考查根据已知条件求解抛物线的标准方程,主要考查学生的分析与计算能力,难度较易. 例2:已知抛物线2:4C x y =的焦点为F ,椭圆E 的中心在原点,焦点在x 轴上,点F 是它的一个顶点,且其离心率2e =求椭圆E 的方程. 例3:2214x y +=.【解析】 【分析】由点抛物线焦点F 是椭圆的一个顶点可得1b =,由椭圆离心率e =c a =椭圆方程可求. 【详解】设椭圆E 的方程为22221x y a b+=,半焦距为c .由已知条件,()0,1F ,1b ∴=,c a =222a b c =+, 解得2a =,1b =.所以椭圆E 的方程为2214x y +=.【点睛】本题考查了利用待定系数法求椭圆方程,属于基础题.题型二:求抛物线的轨迹例3:已知曲线()2C :2y x =+上有一点A ,定点()B 2,0,求线段AB 中点P 的轨迹方程。
专题12 抛物线及其性质(知识梳理+专题过关)(解析版)
专题12抛物线及其性质【考点预测】知识点一、抛物线的定义平面内与一个定点F 和一条定直线()l F l ∉的距离相等的点的轨迹叫做抛物线,定点F 叫抛物线的焦点,定直线l 叫做抛物线的准线.注:若在定义中有F l ∈,则动点的轨迹为l 的垂线,垂足为点F .知识点二、抛物线的方程、图形及性质抛物线的标准方程有4种形式:22y px =,22y px =-,22x py =,22(0)x py p =->,其中一次项与对称轴一致,一次项系数的符号决定开口方向图形标准方程22(0)y px p =>22(0)y px p =->22(0)x py p =>22(0)x py p =->顶点(00)O ,范围0x ≥,y R ∈0x ≤,y R∈0y ≥,x R ∈0y ≤,x R∈对称轴x 轴y 轴焦点(0)2pF ,(0)2p F -,(0)2p F ,(0)2pF -,离心率1e =准线方程2p x =-2p x =2p y =-2p y =焦半径11()A x y ,12pAF x =+12p AF x =-+12p AF y =+12p AF y =-+【方法技巧与总结】1、点00(,)P x y 与抛物线22(0)y px p =>的关系(1)P 在抛物线内(含焦点)2002y px ⇔<.(2)P 在抛物线上2002y px ⇔=.(3)P 在抛物线外2002y px ⇔>.2、焦半径抛物线上的点00(,)P x y 与焦点F 的距离称为焦半径,若22(0)y px p =>,则焦半径02pPF x =+,max2p PF =.3、(0)p p >的几何意义p 为焦点F 到准线l 的距离,即焦准距,p 越大,抛物线开口越大.4、焦点弦若AB 为抛物线22(0)y px p =>的焦点弦,11(,)A x y ,22(,)B x y ,则有以下结论:(1)2124p x x =.(2)212y y p =-.(3)焦点弦长公式1:12AB x x p =++,12x x p +≥=,当12x x =时,焦点弦取最小值2p ,即所有焦点弦中通径最短,其长度为2p .焦点弦长公式2:22sin pAB α=(α为直线AB 与对称轴的夹角).(4)AOB ∆的面积公式:22sin AOB p S α∆=(α为直线AB 与对称轴的夹角).5、抛物线的弦若AB 为抛物线22(p 0)y px =>的任意一条弦,1122(,),(,)A x y B x y ,弦的中点为000(,)(0)M x y y ≠,则(1)弦长公式:1212(0)AB AB x y k k =-=-=≠(2)0AB p k y =(3)直线AB 的方程为000()py y x x y -=-(4)线段AB 的垂直平分线方程为000()y y y x x p-=--6、求抛物线标准方程的焦点和准线的快速方法(4A法)(1)2(0)y Ax A =≠焦点为(,0)4A ,准线为4Ax =-(2)2(0)x Ay A =≠焦点为(0,)4A ,准线为4Ay =-如24y x =,即24y x =,焦点为1(0,)16,准线方程为116y =-7、参数方程22(0)y px p =>的参数方程为222x pt y pt ⎧=⎨=⎩(参数t R ∈)8、切线方程和切点弦方程抛物线22(0)y px p =>的切线方程为00()y y p x x =+,00(,)x y 为切点切点弦方程为00()y y p x x =+,点00(,)x y 在抛物线外与中点弦平行的直线为00()y y p x x =+,此直线与抛物线相离,点00(,)x y (含焦点)是弦AB 的中点,中点弦AB 的斜率与这条直线的斜率相等,用点差法也可以得到同样的结果.9、抛物线的通径过焦点且垂直于抛物线对称轴的弦叫做抛物线的通径.对于抛物线22(0)y px p =>,由()2p A p ,,()2p B p -,,可得||2AB p =,故抛物线的通径长为2p .10、弦的中点坐标与弦所在直线的斜率的关系:0py k=11、焦点弦的常考性质已知11()A x y ,、22()B x y ,是过抛物线22(0)y px p =>焦点F 的弦,M 是AB 的中点,l 是抛物线的准线,MN l ⊥,N 为垂足.(1)以AB 为直径的圆必与准线l 相切,以AF (或BF )为直径的圆与y 轴相切;(2)FN AB ⊥,FC FD⊥(3)2124p x x =;212y y p =-(4)设BD l ⊥,D 为垂足,则A 、O 、D 三点在一条直线上【专题过关】【考点目录】考点一:抛物线的定义与方程考点二:抛物线的轨迹方程考点三:与抛物线有关的距离和最值问题考点四:抛物线中三角形,四边形的面积问题考点五:焦半径问题考点六:抛物线的性质【典型考题】考点一:抛物线的定义与方程1.(2022·江苏·高二)已知抛物线的顶点在原点,对称轴为y 轴,其上一点(),4A m -到焦点F 的距离为6.求抛物线的方程及点A 的坐标.【解析】由题意,设抛物线方程为()220x py p =->,则其准线方程为2p y =,∴462p+=,得p =4,故抛物线方程为28x y =-;又∵点(),4A m -在抛物线上,∴232m =,∴m =±即点A 的坐标为()4-或()4--.2.(多选题)(2022·全国·高二单元测试)下列方程的图形为抛物线的是()A .10x +=B .2y -=C D .2230x x y --+=【答案】ACD【解析】对于A ,方程10x +=化为1x +=(,)x y 到定点(0,0)的距离与到定直线1x =-的距离相等,且定点(0,0)不在定直线1x =-上,原方程表示的图形是抛物线,A 是;对于B ,方程2y -=(,)x y 到定点(1,2)-的距离与到定直线2y =的距离相等,而定点(1,2)-在定直线2y =上,原方程表示的图形不是抛物线,B 不是;对于C (,)x y 到定点(2,3)的距离与到定直线3410x y +-=的距离相等,且定点(2,3)不在定直线3410x y +-=上,原方程表示的图形是抛物线,C 是;对于D ,方程2230x x y --+=化为223y x x =-+,方程表示的图形是抛物线,D 是.故选:ACD3.(多选题)(2022·广东清远·高二期末)已知0mn ≠,则方程221mx ny +=与2ny mx =在同一坐标系内对应的图形可能是()A .B .C .D .【答案】BC【解析】将对应方程化为标准方程得22111x ym n+=,2m y x n=,所以抛物线2my x n=的焦点在x 轴上,故排除D 选项,对于A 选项,由图可知0mn>,0m <,0n >,矛盾,故A 错误;对于B 选项,由图可知0mn<,0m <,0n >,满足,故B 正确;对于C 选项,由图可知,0mn>,0m >,0n >,满足,故C 正确;故选:BC.4.(2022·江西吉安·高二期末(理))已知抛物线C :()220y px p =>的焦点为F ,准线l 上有两点A ,B ,若FAB 为等腰直角三角形且面积为8,则抛物线C 的标准方程是()A .2y =B .28y x =C .2y =或28y x =D .24y x=【答案】C【解析】由题意得,当2AFB π∠=时,1282AFB S p p =⨯⨯=△,解得p =;当2FAB π∠=或2FBA π∠=时,2182AFB S p ==△,解得4p =,所以抛物线的方程是2y =或28y x =.故选:C.5.(2022·全国·高二课时练习)下列条件中,一定能得到抛物线的标准方程为28y x =的是______(填序号)(写出一个正确答案即可).①焦点在x 轴上;②焦点在y 轴上;③抛物线上横坐标为1的点到焦点的距离为3;④焦点到准线的距离为4;⑤由原点向过焦点的某直线作垂线,垂足坐标为()1,1-.【答案】①③(答案不唯一)【解析】若要得到抛物线的方程为28y x =,则焦点一定在x 轴上,故①必选,②不选.若选①③,由抛物线的定义可知132p+=,得4p =,则抛物线的方程为28y x =.若选①⑤,设焦点,02p F ⎛⎫⎪⎝⎭()0p >,()1,1A -,112AF k p =-,1OA k =-,由1AF OA k k ⋅=-,得1112p =-,解得4p =,故抛物线的方程为28y x =.由④可知4p =,故还可选择①④.故答案可为①③或①⑤或①④.故答案为:①③(答案不唯一)6.(2022·全国·高二课时练习)位于德国东部萨克森州的莱科勃克桥(如图所示)有“仙境之桥”之称,它的桥形可以近似地看成抛物线,该桥的高度为5m ,跨径为12m ,则桥形对应的抛物线的焦点到准线的距离为______m .【答案】185【解析】以抛物线的最高点O 为坐标原点,建立如图所示的平面直角坐标系,设抛物线的解析式为22x py =-,0p >,因为抛物线过点()6,5-,所以3610p =,可得185p =,所以抛物线的焦点到准线的距离为18m 5.故答案为:1857.(2022·全国·高二课时练习)设抛物线C 的顶点在坐标原点,焦点F 在坐标轴上,点P 在抛物线C 上,52PF =,若以线段PF 为直径的圆过坐标轴上距离原点为1的点,试写出一个满足题意的抛物线C 的方程为______.【答案】22x y =(答案不唯一)【解析】由题意,若抛物线的焦点F 在y 轴正半轴上,则可设抛物线方程为22x py =(0p >),()00,P x y ,0,2p F ⎛⎫ ⎪⎝⎭,由焦半径公式可知0522p y +=,圆的半径为54,得052p y -=,并且线段PF 中点的纵坐标是05224py +=,所以以线段PF 为直径的圆与x 轴相切,切点坐标为()1,0-或()1,0,所以02x =±,即点P 的坐标为52,2p -⎛⎫± ⎝⎭,代入抛物线方程22x py =(0p >)得5422p p -=⋅,解得1p =或4p =,即当点F 在y 轴正半轴上时,抛物线方程是22x y =或28x y =.同理,当点F 在y 轴负半轴时,抛物线方程为22x x =-或28x y =-,当点F 在x 轴正半轴时,抛物线方程为22y x =或28y x =,当点F 在x 轴负半轴时,抛物线方程为22y x =-或28y x =-.故答案为:22x y =(答案不唯一).8.(2022·山西·怀仁市第一中学校高二期中(理))设抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,A 为C 上一点,以F 为圆心,FA 为半径的圆交l 于B ,D 两点.若90ABD ∠=︒,且ABF的面积为C 的方程为()A .22y x =B .24y x =C .28y x =D .216y =【答案】B【解析】∵以F 为圆心,FA 为半径的圆交l 于B ,D 两点,90ABD ∠=︒,结合抛物线的定义可得:AB AF BF==ABF ∴是等边三角形,30FBD ∴∠=︒.ABF2=4BF ∴=.又点F 到准线的距离为sin 302BF p ︒==,则该抛物线的方程为24y x =.故选:B .9.(2022·全国·高二课时练习)如图,过抛物线()220y px p =>的焦点F 的直线交抛物线于点,A B ,交其准线l 于点C ,若2BC BF =,且3AF =,则此抛物线的方程为()A .29y x =B .26y x =C .23y x =D .212y x=【答案】C【解析】作AD l ⊥,BE l ⊥,垂足分别为,D E ,设l 与x 轴交于点G ,由抛物线定义知:BE BF =,3AD AF ==,设BF a =,则BE a =,2BC a =,1sin 22a BCE a ∴∠==,则6BCE π∠=,26AC AD ∴==,又33AC AF BF BC a =++=+,1a \=,1BE ∴=,23BE BC FGCF==,32FG ∴=,即32p =,∴抛物线方程为:23y x =.故选:C.10.(2022·全国·高二课时练习)已知抛物线y 2=2px (p >0)经过点M (x 0,),若点M 到准线l 的距离为3,则该抛物线的方程为()A .y 2=4xB .y 2=2x 或y 2=4xC .y 2=8xD .y 2=4x 或y 2=8x【答案】D【解析】∵抛物线y 2=2px (p >0)经过点M (x 0,),∴202px =,可得04x p=.又点M 到准线l 的距离为3,∴432pp +=,解得p =2或p =4.则该抛物线的方程为y 2=4x 或y 2=8x .故选:D.11.(2022·全国·高二课时练习)苏州市“东方之门”是由两栋超高层建筑组成的双塔连体建筑(如图1所示),“门”的内侧曲线呈抛物线形.图2是“东方之门”的示意图,已知30m CD =,60m AB =,点D 到直线AB 的距离为150m ,则此抛物线顶端O 到AB 的距离为()A .180mB .200mC .220mD .240m【答案】B【解析】以O 为坐标原点,建立如图所示的平面直角坐标系,设抛物线的方程为()220x py p =->,由题意设()15,D h ,0h <,()30,150B h -,则()22152302150php h ⎧=-⎪⎨=--⎪⎩,解得502.25h p =-⎧⎨=⎩,所以此抛物线顶端O 到AB 的距离为()50150200m +=.故选:B .考点二:抛物线的轨迹方程12.(2022·全国·高二课时练习)点()1,0A ,点B 是x 轴上的动点,线段PB 的中点E 在y 轴上,且AE 垂直PB ,则点P 的轨迹方程为______.【答案】24y x =()0x ≠【解析】设(),P x y ,(),0B m ,则,22x m y E +⎛⎫⎪⎝⎭.由点E 在y 轴上,得02x m +=,则m x =-,即0,2y E ⎛⎫⎪⎝⎭.又AE PB ⊥,若0x ≠,则21012AE PB yy k k x⋅=⨯=--,即24y x =.若0x =,则0m =,此时点P ,B 重合,直线PB 不存在.所以点P 的轨迹方程是24y x =()0x ≠.故答案为:24y x =()0x ≠.13.(2022·全国·高二课时练习)若动点(,)M x y 满足()()225123412x y x y -+-=-+,则点M 的轨迹是()A .圆B .椭圆C .双曲线D .抛物线【答案】D【解析】由题意,动点(,)M x y 满足()()225123412x y x y -+-=-+,()()223412125x y x y -+-+-=,即动点(,)M x y 到定点(1,2)的距离等于动点(,)M x y 到定直线34120x y -+=的距离,又由点(1,2)不在直线34120x y -+=上,根据抛物线的定义,可得动点M 的轨迹为以(1,2)为焦点,以34120x y -+=的抛物线.故选:D.14.(2022·江西·赣州市赣县第三中学高二开学考试(理))已知动圆⊙M 经过定点(1,0)A ,且和直线1x =-相切,则点M 的轨迹方程为()A .22y x=B .24y x=C .22y x=-D .24y x=-【答案】B【解析】因为动圆⊙M 经过定点(1,0)A ,且和直线1x =-相切,所以点M 到点(1,0)A 的距离等于它到直线1x =-的距离,即M 的轨迹为以点(1,0)A 为焦点,直线1x =-为准线的抛物线,所以12p=,解得2p =,轨迹方程为24y x =.故选:B .15.(2022·全国·高二课时练习)若动圆M 经过双曲线2213y x -=的左焦点且与直线x =2相切,则圆心M 的坐标满足的方程是______.【答案】28y x=-【解析】双曲线2213y x -=的左焦点为F (-2,0),动圆M 经过F 且与直线x =2相切,则圆心M 到点F 的距离和到直线x =2的距离相等,由抛物线的定义知圆心的轨迹是焦点为F ,准线为x =2的抛物线,其方程为28y x =-.故答案为:28y x =-.16.(2022·全国·高二课时练习)若点(),P x y 满足方程3412x y =++,则点P 的轨迹是______.【答案】抛物线【解析】由|3412|x y =++|3412|5x y ++=,等式左边表示点(),x y 和点()1,2的距离,等式的右边表示点(),x y 到直线34120x y ++=的距离.整个等式表示的意义是点(),x y 到点()1,2的距离和到直线34120x y ++=的距离相等,其轨迹为抛物线.故答案为:抛物线17.(2022·全国·高二课时练习)与点()0,3F -和直线30y -=的距离相等的点的轨迹方程是______.【答案】212x y=-【解析】由抛物线的定义可得平面内与点()0,3F -和直线30y -=的距离相等的点的轨迹为抛物线,且()0,3F -为焦点,直线3y =为准线,设抛物线的方程为22(0)x py p =->,可知32p=,解得6p =,所以该抛物线方程是212x y =-,故答案为:212x y=-18.(2022·河北唐山·高二期中(理))已知动点(,)P x y 满足341x y =+-,则点P 的轨迹为()A .直线B .抛物线C .双曲线D .椭圆【答案】B【解析】把341x y =+-3415x y +-,3415x y +-可看做(,)x y 与(1,2)的距离等于(,)x y 到直线3410x y +-=的距离,由于点(1,2)不在直线3410x y +-=上,满足抛物线的定义,则点P 的轨迹为抛物线,故选:B19.(2022·全国·高二课时练习)平面上动点M 到定点()3,0F 的距离比M 到直线l :10x +=的距离大2,求动点M 满足的方程.【解析】因为动点M 到定点()3,0F 的距离比M 到直线l :10x +=的距离大2,所以动点M 到定点()3,0F 的距离与M 到直线l :30x +=的距离相等,所以M 的轨迹是以()3,0F 为焦点,直线l :3x =-为准线的抛物线,此时6p =,故所求的点M 满足的方程是212y x =.20.(2022·全国·高二课时练习)已知点M 与点(4,0)F 的距离比它到直线:60l x +=的距离小2,求点M 的轨迹方程.【解析】由题意知动点M 到(4,0)的距离比它到直线:6l x =-的距离小2,即动点M 到(4,0)的距离与它到直线4x =-的距离相等,由抛物线定义可知动点M 的轨迹为以(4,0)为焦点的抛物线,则点M 的轨迹方程为216y x =.21.(2022·全国·高二课时练习)已知圆A :(x +2)2+y 2=1与定直线l :x =1,且动圆P 和圆A 外切并与直线l 相切,求动圆的圆心P 的轨迹方程.【解析】由题意知:点P 到圆心A (-2,0)的距离和到定直线x =2的距离相等,所以点P 的轨迹为抛物线,且焦点为A ,准线为x =2,故点P 的轨迹方程为y 2=-8x .22.(2022·全国·高二课时练习)已知点()1,0A ,直线:1l x =-,两个动圆均过A 且与l 相切,若圆心分别为1C 、2C ,则1C 的轨迹方程为___________;若动点M 满足22122C M C C C A =+,则M 的轨迹方程为___________.【答案】24y x =221y x =-【解析】由抛物线的定义得动圆的圆心轨迹是以()1,0A 为焦点,直线l :1x =-为准线的抛物线,所以1C 的轨迹方程为24y x =,设()1,C a b ,()2,C m n ,(),M x y ,因为动点M 满足22122C M C C C A =+,所以()()()2,,1,x m y n a m b n m n --=--+--,即21x a =+,2y b =,所以21a x =-,2b y =,因为24b a =,所以()()22421y x =-,所以221y x =-,即M 的轨迹方程为221y x =-.故答案为:24y x =;221y x =-.考点三:与抛物线有关的距离和最值问题23.(2022·全国·高二课时练习)已知点()2,0P ,点Q 在曲线2:2C y x =上.(1)若点Q 在第一象限内,且2PQ =,求点Q 的坐标;(2)求PQ 的最小值.【解析】(1)设()(),0,0Q x y x y >>,则22y x =,由已知条件得2PQ ==,将22y x =代入上式,并变形得,220,x x -=解得x=0(舍去)或x =2.当x =2时,2y =±,只有x =2,y =2满足条件,所以()2,2Q ;(2)PQ ,其中22y x =,所以()()()22222224130PQ x x x x x x =-+=-+=-+≥,所以当x =1时,min PQ =24.(2022·全国·高二课时练习)若M 是抛物线22y x =上一动点,点103,3P ⎛⎫⎪⎝⎭,设d 是点M 到准线的距离,要使d MP +最小,求点M 的坐标.【解析】由题意,可知抛物线的焦点1(,0)2F ,由抛物线的定义有||||d MP MF MP PF +=+≥,所以d MP +最小值为||PF ,此时点M 为直线PF 与抛物线的交点,而直线PF 的方程求得为:4233y x =-,所以有242332y x y x ⎧=-⎪⎨⎪=⎩,解得4143x y =⎧⎪⎨=⎪⎩或1413x y ⎧=⎪⎪⎨⎪=-⎪⎩(舍),所以14(4,)3M 25.(2022·全国·高二课时练习)已知抛物线22y x =的焦点是F ,点P 是抛物线上的动点,若()3,2A ,则PA PF +的最小值为______,此时点P 的坐标为______.【答案】72【解析】易知点A 在抛物线内部,设抛物线的准线为l ,则l 的方程为12x =-,过点P 作PQ l ⊥于点Q ,则PA PF PA PQ +=+,当PA l ⊥,即A ,P ,Q 三点共线时,PA PF +最小,最小值为17322+=,此时点P 的纵坐标为2,代入22y x =,得2x =,所以此时点P 的坐标为()2,2.故答案为:72;()2,2.26.(2022·全国·高二课时练习)设P 是抛物线24y x =上的一个动点,点F 是焦点.(1)求点P 到点()1,1A -的距离与点P 到直线1x =-的距离之和的最小值;(2)若()3,2B ,求PB PF +的最小值.【解析】(1)抛物线24y x =的焦点为()1,0F ,准线是1x =-.由抛物线的定义,知点P 到直线1x =-的距离等于点P 到焦点F 的距离,所以问题转化为求抛物线上一点P 到点()1,1A -的距离与其到点()1,0F 的距离之和的最小值,如图,当A ,P ,F 共线时上述距离之和最小,连接AF 交抛物线于点P ,此时所求的最小值为||AF =(2)由题意()3,2B ,可知2243<⨯,故点B 在抛物线内部(焦点所在一侧),如图,作BQ 垂直准线于点Q ,交抛物线于点1P ,连接1PF ,此时11PQ PF =,当点P 与点1P 重合时,PB PF +的值最小,此时3(1)4PB PF BQ +==--=,即PB PF +的最小值为4.27.(多选题)(2022·全国·高二单元测试)已知F 是抛物线24y x =的焦点,P 是抛物线24y x =上一动点,Q 是()()22:411C x y -+-=上一动点,则下列说法正确的有()A .PF 的最小值为1B .QFC .PF PQ +的最小值为4D .PF PQ +1+【答案】AC【解析】抛物线焦点为()1,0F ,准线为1x =-,作出图象,对选项A :由抛物线的性质可知:PF 的最小值为1OF =,选项A 正确;对选项B :注意到F 是定点,由圆的性质可知:QF 的最小值为1CF r -=,选项B 错误;对选项CD :过点P 作抛物线准线的垂线,垂足为M ,由抛物线定义可知PF PM =,故PF PQ PM PQ +=+,PM PQ +的最小值为点Q 到准线1x =-的距离,故最小值为4,从而选项C 正确,选项D 错误.故选:AC.28.(2022·河南·襄城县实验高级中学高二阶段练习(文))已知P 为抛物线()2:20C y px p =>上的动点,C 的准线l 与x 轴的交点为A ,当点P 的横坐标为1时,2PF =,则PF PA的取值范围是()A .⎤⎥⎣⎦B .⎤⎥⎣⎦C .⎣⎦D .22⎡⎢⎣⎦【答案】B【解析】因为抛物线C 的方程为()22 0y px p =>,所以其准线方程为2p x =-.因为当点P 的横坐标为1时,2PF =,所以122p+=,所以 2p =,故拋物线C 的方程为24y x =.设直线PA 的倾斜角为θ,PP l '⊥垂足为P ',()1,0A -,由抛物线的性质可得PP PF '=,所以cos PF PP PAPAθ'==,所以当直线PA 与抛物线C 相切时,cos θ最小.设直线PA 的方程为1x my =-,联立方程组214x my y x=-⎧⎨=⎩,得2440y my -+=,由216160m ∆=-=,得1m =±,2tan 1,cos 2θθ==,所以cos 12θ≤≤,故PF PA ⎤∈⎥⎣⎦.故选:B29.(2022·四川·阆中中学高二阶段练习(理))已知抛物线21:8C y x =的焦点为F ,P 为C 上的动点,直线PF 与C 的另一交点为Q ,P 关于点(4,12)N 的对称点为M .当PQ QM +的值最小时,直线PQ 的方程为________.【答案】20x y -+=【解析】设A 为PQ 的中点,连接NA ,设抛物线C 的准线为l ,作QD l ⊥,AG l ⊥,PE l ⊥,垂足分别为D ,G ,E .则2MQ NA =,2PQ PF QF PE QD AG =+=+=,()2PQ QM AG NA ∴+=+,又点N 到直线l 的距离为13,13AG NA ∴+≥,当G ,N ,A 三点共线且A 在G ,N 之间时,13AN AG NG +==,此时,点A 的横坐标为4A x =.PQ ∵过点()0,2F ,故设PQ 方程为2y kx =+,代入218y x =,得28160x kx --=()11,P x y ,()22,Q x y ,则128x x k +=.当G ,N ,A 三点共线时,12288A x x x k +===,解得1k =,直线AM 的方程为2y x =+,此时()4,6A 点A 在G ,N 之间,13AN AG NG +==成立.所以当PQ QM +的值最小时,直线PQ 的方程为20x y -+=故答案为:20x y -+=30.(2022·天津一中高二期中)已知抛物线C :22y px =的准线为1x =-,若M 为C 上的一个动点,设点N 的坐标为()3,0,则MN 的最小值为___________.【答案】【解析】由题意知,2p =,∴抛物线C :24y x =.设()()000,0M x y x ≥,由题意知2004y x =,则()()()2222200000334188x y x x MN x =-+=-+=-+≥,当01x =时,2MN 取得最小值8,∴MN 的最小值为.故答案为:31.(2022·河南·濮阳一高高二期中(文))抛物线y 2=4x 的焦点为F ,点A (2,1),M 为抛物线上一点,且M 不在直线AF 上,则△MAF 周长的最小值为____.【答案】3【解析】如图所示,过M 作MN 垂直于抛物线的准线l ,垂足为N .易知F (1,0),因为△MAF 的周长为|AF |+|MF |+|AM |,|AF ||MF |+|AM |=|AM |+|MN |,所以当A 、M 、N 三点共线时,△MAF 的周长最小,最小值为2+13=.故答案为:332.(2022·上海市长征中学高二期中)抛物线2y x =,其上一点P 到A (3,-1)与到焦点距离之和为最小,则P 点坐标为________【答案】(1,1)-【解析】因为点(3,1)A -在抛物线内部,如图所示,设抛物线的准线为l ,过抛物线上一点P ,作PQ l ⊥于Q ,过A 作AB l ⊥于B .||||||||||PA PF PA PQ AB +=+≥,故当且仅当,,P A B 共线时,||||PA PF +的值最小.此时点P 坐标为0(,1)P x -,代入2y x =,得01x =.故点P 的坐标为(1,1)-.故答案为:(1,1)-33.(2022·河南·高二期中(文))如图所示,已知P 为抛物线()2:20C y px p =>上的一个动点,点()1,1Q ,F 为抛物线C 的焦点,若PF PQ +的最小值为3,则抛物线C 的标准方程为______.【答案】28y x=【解析】过点P 、Q 分别作准线的垂线,垂直分别为M 、N ,由抛物线定义可知PF PQ PM PQ NQ +=+≥,当P ,M ,Q 三点共线时等号成立所以132pNQ =+=,解得4p =所以抛物线C 的标准方程为28y x =.故答案为:28y x=34.(2022·上海·华东师范大学附属东昌中学高二期中)已知点()6,0A ,点P 在抛物线216y x=上运动,点B 在曲线()2241x y -+=上运动,则2PAPB的最小值是___________.【答案】6【解析】抛物线216y x =的焦点为(4,0)F ,设P 点坐标(,)x y ,则||4PF x =+22222||(6)(6)16436PA x y x x x x =-+=-+=++,由题意当||||15PB PF x =+=+时,225436P P x B x Ax +=++,令5x t +=,则5x t =-,222(5)4(5)36466141PAt t t PB t t t tt -++=+=+--=-,由基本不等式知41t t+≥t =时等号成立故2PA PB的最小值为6.故答案为:635.(多选题)(2022·福建泉州·高二期中)在平面直角坐标系xOy 中,(3,2)M -,F 为抛物线2:2(0)C x py p =->的焦点,点P 在C 上,PA x ⊥轴于A ,则()A .当2p =时,||||PF PM +的最小值为3B .当4p =时,||||PF PM +的最小值为4C .当4p =时,||||PA PM -的最大值为1D .当PF x ∥轴时,cos OPF ∠为定值【答案】BCD【解析】对于A :2p =时抛物线2:4C x y =-,焦点()0,1F -,点(3,2)M -在抛物线外,所以||||PF PM FM +≥当且仅当M 、P 、F 三点共线且P 在MF 之间时取等号(如下图所示),故A 错误;对于B 、C :当4p =时抛物线2:8C x y =-,焦点()0,2F -,准线方程为2y =,点(3,2)M -在抛物线内,设PA 与准线交于点N ,则||||PF PN =,所以()||||||||224PF PM PN PM MN +=+≥=--=,当且仅当M 、P 、N 三点共线且P 在MN 之间时取等号(如下图所示),故B 正确;||||||2||||||2||21PA PM PN PM PF PM FM -=--=--≤-=,当且仅当M 、P 、F 三点共线且F 在MP 之间时取等号(如下图所示),故C 正确;对于D :抛物线2:2C x py =-,焦点0,2p F ⎛⎫- ⎪⎝⎭,准线方程为2p y =,当//PF x ,此时2P p y =-,则222p x p ⎛⎫=-⨯- ⎪⎝⎭,解得p x p =±,即,2p P p ⎛⎫-- ⎪⎝⎭或,2p P p ⎛⎫- ⎪⎝⎭,如图取,2p P p ⎛⎫-- ⎪⎝⎭,则PF p =,()2252p OP p ⎛⎫=-+- ⎪⎝⎭,所以25cos 552PFp OPF OPp ∠==D 正确;故选:BCD36.(2022·江西赣州·高二期中(理))已知抛物线216y x =的焦点为F ,P 点在抛物线上,Q 点在圆()()22:624C x y -+-=上,则PQ PF +的最小值为()A .4B .6C .8D .10【答案】C【解析】如图,过点P 向准线作垂线,垂足为A ,则PF PA =,当CP 垂直于抛物线的准线时,CP PA +最小,此时线段CP 与圆C 的交点为Q ,因为准线方程为4x =-,()6,2C ,半径为2,所以PQ PF +的最小值为21028AQ CA =-=-=.故选:C37.(2022·新疆维吾尔自治区喀什第二中学高二期中(理))已知A ()4,2-,F 为抛物线28y x =的焦点,点M 在抛物线上移动,当MA MF +取最小值时,点M 的坐标为()A .()0,0B .(1,-C .()2,2-D .1,22⎛⎫- ⎪⎝⎭【答案】D【解析】如图所示,过M 点作准线l 的垂线,垂足为E ,由抛物线定义,知MF .ME =当M 在抛物线上移动时,ME MA +的值在变化,显然M 移动到M '时,,,A M E 三点共线,ME MA +最小,此时//AM Ox ',把2y =-代入28y x =,得12x =,所以当MA MF +取最小值时,点M 的坐标为1,22⎛⎫- ⎪⎝⎭.故选:D.38.(2022·黑龙江·哈师大附中高二期中(文))若点P 为抛物线2:2C y x =上的动点,F 为抛物线C 的焦点,则PF 的最小值为()A .1B .12C .14D .18【答案】D【解析】由22y x =,得212x y =,∴122p =,则128p =,所以焦点10,8F ⎛⎫⎪⎝⎭,由抛物线上所有点中,顶点到焦点的距离最小,得PF 的最小值为18.故选:D .39.(2022·黑龙江·大兴安岭实验中学高二期中)已知抛物线28y x =,定点A (4,2),F 为焦点,P 为抛物线上的动点,则PF PA +的最小值为()A .5B .6C .7D .8【答案】B【解析】如图,作,PQ AN 与准线2x =-垂直,垂足分别为,Q N ,则PQ PF =,6PF PA PQ PA AN +=+≥=,当且仅当,,Q P A 三点共线即P 到M 重合时等号成立.故选:B .40.(2022·四川省资阳中学高二开学考试(理))已知点P 是抛物线2:8C y x =上的动点,过点P 作圆()22:21M x y -+=的切线,切点为Q ,则PQ 的最小值为()A .1B 2C 3D .32【答案】C【解析】设点P 的坐标为(),m n ,有28n m =,由圆M 的圆心坐标为()2,0,是抛物线C 的焦点坐标,有22PM m =+≥,由圆的几何性质可得PQ QM ⊥,又由22221213PM P P M Q QM=-=-≥-=PQ 3故选:C.41.(2022·全国·高二期中)已知抛物线的方程为24y x =,焦点为F ,点A 的坐标为()3,4,若点P 在此抛物线上移动,记P 到其准线的距离为d ,则d PA +的最小值为______,此时P 的坐标为______.【答案】5355+⎝【解析】过点P 作抛物线准线的垂线,垂足为H ,连接PF ,作图如下:根据抛物线的定义,d PH PF ==,数形结合可知,当且仅当,,A P F 三点共线,且P 在,A F 之间时取得最小值;即d PA +的最小值为AF ,又()()3,4,1,0A F ,故()2231425AF =-+=此时直线AF 的方程为:()21y x =-,联立抛物线方程24y x =,可得:2310x x -+=,解得35x -=35x +=15y =即此时点P 的坐标为355+⎝.故答案为:253552⎛ ⎝.考点四:抛物线中三角形,四边形的面积问题42.(2022·河南洛阳·高二期末(理))已知点()1,0A ,点B 为直线1x =-上的动点,过B 作直线1x =-的垂线1l ,线段AB 的中垂线与1l 交于点P .(1)求点P 的轨迹C 的方程;(2)若过点()2,0E 的直线l 与曲线C 交于M ,N 两点,求MOE △与NAE 面积之和的最小值.(O 为坐标原点)【解析】(1)如图所示,由已知得点P 为线段AB 中垂线上一点,即PA PB =,即动点P 到点()1,0A 的距离与点P 到直线1x =-的距离相等,所以点P 的轨迹为抛物线,其焦点为()1,0A ,准线为直线1x =-,所以点P 的轨迹方程为24y x =,(2)如图所示:设2x ty =+,点()11,M x y ,()11N x y ,,联立直线与抛物线方程242y x x ty ⎧=⎨=+⎩,得2480y ty --=,()()2244816320t t ∆=--⨯-=+>,124y y t +=,128y y ⋅=-,1112MOE S OE y y =×=V ,21122NAE N S AE y y =×=V ,所以1212112422MOE ANE S S y y y y +=+³=V V ,当且仅当1212y y =,即12y =,24y =-时取等号,此时1224y y t +=-=,即12t =-,所以当直线直线1:22l x y =-+,时MOE ANE S S +V V 取得最小值为4.43.(2022·陕西西安·高二期末(文))已知抛物线C :()220y px p =>上的点()()4,0A m m >到其准线的距离为5.(1)求抛物线C 的方程;(2)已知O 为原点,点B 在抛物线C 上,若AOB 的面积为6,求点B 的坐标.【解析】(1)由抛物线C 的方程可得其准线方程2p x =-,依抛物线的性质得452p+=,解得2p =.∴抛物线C 的方程为24y x =.(2)将()4,A m 代入24y x =,得4m =.所以()4,4A ,直线OA 的方程为y x =,即0x y -=.设()2,2B t t ,则点B 到直线OA 的距离222t t d -=,又42OA =由题意得22142622t t -⨯=,解得1t =-或3t =.∴点B 的坐标是()1,2-或()9,6.44.(2022·新疆石河子一中高二阶段练习(理))已知抛物线()2:20C y px p =>的焦点为F ,点M 为C 上一点,点N 为x 轴上一点,若FMN 是边长为2的正三角形,则抛物线的方程为___________.【答案】22y x =或26y x=【解析】抛物线()2:20C y px p =>的焦点为,02p F ⎛⎫ ⎪⎝⎭,由抛物线的对称性,不妨设点M 为第一象限的点,因为点M 为C 上一点,点N 为x 轴上一点,FMN 是边长为2的正三角形,所以当N 在,02p F ⎛⎫ ⎪⎝⎭的右边时,点M 的坐标为2p M ⎛+ ⎝,所以2212p p ⎛⎫=+ ⎪⎝⎭,化简得2230p p +-=,解得1p =或3p =-(舍去),所以抛物线的方程为22y x =,当N 在,02p F ⎛⎫ ⎪⎝⎭的左边时,点M 的坐标为2p M ⎛- ⎝,所以2212p p ⎛⎫=- ⎪⎝⎭,化简得2230p p --=,解得1p =-或3p =,所以抛物线的方程为26y x =,综上,所求的抛物线方程为22y x =或26y x =故答案为:22y x =或26y x=45.(2022·全国·高二单元测试)抛物线()220y px p =>的焦点为F ,过抛物线上一点P 作x轴的平行线交y 轴于M 点,抛物线的准线交x 轴于点N ,四边形PMNF 为平行四边形,则点P 到x 轴的距离为___________.(用含P 的代数式表示)【解析】由題意可知,,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,,02p N ⎛⎫- ⎪⎝⎭,不妨设(P x ,四边形PMNF 为平行四边形,||||,PM NF ∴=∴,x p =∴点P 到x .46.(2022·陕西咸阳·高二期末(理))已知双曲线2222:1(0,0)x y C a b a b -=>>的离心率54e =,且双曲线C 的两条渐近线与抛物线22(0)y px p =>的准线围成的三角形的面积为3,则p 的值为()A .1B .2C .22D .4【答案】D【解析】根据题意,2514c b e a a ⎛⎫==+= ⎪⎝⎭,可得2916b a ⎛⎫= ⎪⎝⎭,所以双曲线的渐近线方程为34y x =±,抛物线的准线方程为2p x =-,设准线与抛物线的交点分别为M ,N ,则,23,4p x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,可解得3,28p p M ⎛⎫- ⎪⎝⎭,同理3,28p p N ⎛⎫-- ⎪⎝⎭,所以2133322416OMNp p Sp =⨯-⨯==,解得4p =.故选:D .47.(2022·四川师范大学附属中学高二阶段练习(理))已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)y px p =>的准线分别交于点A 、B ,O 为坐标原点,若双曲线的离心率为2,三角形AOB 3p =()A .1B .32C .2D .3【答案】C【解析】由双曲线的离心率为2知,3ba=3y x =,又抛物线的准线方程为2p x =-,则设渐近线与准线的交点为3(,22p A --,3(,)22p B -,三角形AOB 的面积为133(322p p p⨯⨯=(0p >)解得2p =,故选:C48.(2022·湖北咸宁·高二期末)已知O 是坐标原点,F 是抛物线C :()220y px p =>的焦点,()0,4P x 是C 上一点,且4=PF ,则POF 的面积为()A .8B .6C .4D .2【答案】C【解析】由题可知0042162p x px ⎧+=⎪⎨⎪=⎩,解得024x p =⎧⎨=⎩,所以POF 的面积为12442⨯⨯=,故选:C49.(2022·黑龙江·哈师大附中高二开学考试)已知点()0,1F ,点()(),0A x y y ≥为曲线C 上的动点,过A 作x 轴的垂线,垂足为B ,满足1AF AB +=.(1)曲线C 的方程(2)若,G H 为曲线C 上异于原点的两点,且满足0FG FH ⋅=,延长,GF HF 分别交曲线C 于点,M N ,求四边形GHMN 面积的最小值.【解析】(1)1AF AB +=,∴点A 到直线1y =-的距离等于其到点()0,1F 的距离,∴点A 轨迹是以F 为焦点的抛物线,∴曲线C 方程为:24x y =.(2)由题意知:直线,GM HN 斜率都存在,不妨设直线:1GM y kx =+,()11,G x y ,()22,M x y ,由214y kx x y =+⎧⎨=⎩得:2440x kx --=,则121244x x k x x +=⎧⎨=-⎩,()241GM k ∴==+;设直线1:1HN y x k =-+,同理可得:2141HN k ⎛⎫=+ ⎪⎝⎭,∴四边形GHMN 面积()2222111811822S GM HN k k k k ⎛⎫⎛⎫=⋅=++=++ ⎪ ⎪⎝⎭⎝⎭,又2212k k +≥(当且仅当221k k =,即1k =±时取等号),()82232S ∴≥⨯+=,即四边形GHMN 面积的最小值为32.50.(2022·黑龙江·大庆实验中学高二期中(理))设点30,2F ⎛⎫⎪⎝⎭,动圆P 经过点F 且和直线32y =-相切,记动圆的圆心P 的轨迹为曲线w .(1)求曲线w 的方程;(2)过点F 作互相垂直的直线1l 、2l ,分别交曲线w 于A 、C 和B 、D 两个点,求四边形ABCD 面积的最小值.【解析】(1)由抛物线的定义知点P 的轨迹为以F 为焦点的抛物线,322p =,即3p =,∴2:6w x y =.(2)设3:2AC y kx =+,由223,069026y kx k x kx x y⎧=+≠⎪⇒--=⎨⎪=⎩.设()11,A x y ,()22,C x y ,236360k ∆=+>121269x x kx x +=⎧⎨=-⎩()261AC k ==+,∵1l 与2l 互相垂直,∴以1k -换k 得2161BD k ⎛⎫=+ ⎪⎝⎭,()22111616122ABCD S AC BD k k ⎛⎫==⨯+⨯+ ⎪⎝⎭()221182182272k k ⎛⎫=++⨯+= ⎪⎝⎭≥,当1k =±时取等号,∴四边形ABCD 面积的最小值为72.51.(2022·全国·高二期中)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点:(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE的面积.【解析】(1)证明:设1(,2D t -,11(,)A x y ,则21112y x =.又因为212y x =,所以y'x =.则切线DA 的斜率为1x ,故1111()2y x x t +=-,整理得112210tx y -+=.设22(,)B x y ,同理得222210tx y -+=.11(,)A x y ,22(,)B x y 都满足直线方程2210tx y -+=.于是直线2210tx y -+=过点,A B ,而两个不同的点确定一条直线,所以直线AB 方程为2210tx y -+=.即2(21)0tx y +-+=,当20,210x y =-+=时等式恒成立.所以直线AB 恒过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+.。
《抛物线》全章复习与巩固—重点题型巩固练习
《抛物线》全章复习与巩固—重点题型巩
固练习
抛物线全章复与巩固—重点题型巩固练
第一章:抛物线的基础知识
本章主要讲解抛物线的定义、性质、一般式及相关公式等内容,是理解抛物线的基础。
在备考时,需要掌握以下一些知识点:
- 抛物线的概念与性质;
- 求解抛物线的方程;
- 抛物线上的点及其坐标;
- 抛物线的判别式。
第二章:抛物线的图像与方程
通过研究本章的内容,可以让学生掌握抛物线的图像特征、在
平面直角坐标系中的位置与方程的求解方法。
考生需要重点掌握以
下知识点:
- 抛物线的焦点与准线;
- 抛物线的离心率;
- 抛物线方程的求解方法。
第三章:抛物线的性质与应用
本章主要讲解抛物线的性质、应用和相关题。
在备考时,考生需重点掌握以下知识点:
- 抛物线在生活中的应用;
- 抛物线的极性;
- 抛物线的演化史;
- 抛物线的相关定理。
练
每章结束后都有大量的题,供学生巩固所学知识,增强自己的应试能力。
另外,模拟试卷也是为考生进行自我测试的好方法。
总结
通过学习抛物线这一知识点,可以让学生加深对数学概念和知识的理解,提高数学应用能力,为日后进行更深入的学习打下坚实的基础。
高考一轮复习 抛物线 知识点+例题+练习
自主梳理1.抛物线的概念平面内到一个定点F 和一条定直线l (F 不在l 上)的距离________的点的轨迹叫做抛物线.点F 叫做抛物线的________,直线l 叫做抛物线的________.2.抛物线的标准方程与几何性质标准方程y 2=2px (p >0) y 2=-2px (p >0) x 2=2py (p >0) x 2=-2py (p >0) p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F (p2,0) F (-p2,0)F (0,p 2)F (0,-p2)离心率 e =1准线 方程 x =-p 2x =p 2 y =-p 2y =p 2 范围 x ≥0, y ∈R x ≤0, y ∈R y ≥0, x ∈R y ≤0, x ∈R 开口 方向向右向左向上向下自我检测1.抛物线y 2=8x 的焦点到准线的距离是________.2.若抛物线y 2=2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为________.3.设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程是________.4.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若F A →+FB →+FC →=0,则|F A →|+|FB →|+|FC →|=________.5.已知抛物线方程为y 2=2px (p >0),过该抛物线焦点F 且不与x 轴垂直的直线AB 交抛物线于A 、B 两点,过点A 、点B 分别作AM 、BN 垂直于抛物线的准线,分别交准线于M 、N 两点,那么∠MFN =________.学生姓名 教师姓名班主任 日期时间段年级课时教学内容 抛物线复习教学目标 1.掌握抛物线的定义、几何图形和标准方程,知道它们的简单几何性质. 2.理解数形结合的思想. 重点 同上 难点同上探究点一抛物线的定义及应用例1已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求P A +PF的最小值,并求出取最小值时P点的坐标.变式迁移1已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为________.探究点二求抛物线的标准方程例2已知抛物线的顶点在原点,焦点在y轴上,抛物线上一点M(m,-3)到焦点的距离为5,求m的值、抛物线方程和准线方程.变式迁移2 根据下列条件求抛物线的标准方程:(1)抛物线的焦点F 是双曲线16x 2-9y 2=144的左顶点; (2)过点P (2,-4).探究点三 抛物线的几何性质例3 过抛物线y 2=2px 的焦点F 的直线和抛物线相交于A ,B 两点,如图所示.(1)若A ,B 的纵坐标分别为y 1,y 2,求证:y 1y 2=-p 2;(2)若直线AO 与抛物线的准线相交于点C ,求证:BC ∥x 轴.变式迁移3 已知AB 是抛物线y 2=2px (p >0)的焦点弦,F 为抛物线的焦点,A (x 1,y 1),B (x 2,y 2).求证:(1)x 1x 2=p 24;(2)1AF +1BF为定值.一、填空题1.已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB 等于________.2.将两个顶点在抛物线y 2=2px (p >0)上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则n =________.3.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是________.4.抛物线y 2=x 上到其准线和顶点距离相等的点的坐标为________.5.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若OA →·AF →=-4,则点A 的坐标为________.6.设圆C 位于抛物线y 2=2x 与直线x =3所围成的封闭区域(包含边界)内,则圆C 的半径能取到的最大值为________.7.已知A 、B 是抛物线x 2=4y 上的两点,线段AB 的中点为M (2,2),则AB =________.8.设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段F A 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.二、解答题9.已知顶点在原点,焦点在x 轴上的抛物线截直线y =2x +1所得的弦长为15,求抛物线方程.10.已知抛物线C:x2=8y.AB是抛物线C的动弦,且AB过F(0,2),分别以A、B为切点作轨迹C的切线,设两切线交点为Q,证明:AQ⊥BQ.轨迹方程自主梳理1.曲线的方程与方程的曲线如果曲线C 上点的坐标(x ,y )都是方程f (x ,y )=0的解,且以方程f (x ,y )=0的解(x ,y )为坐标的点都在曲线C 上,那么,方程f (x ,y )=0叫做曲线C 的方程.曲线C 叫做方程f (x ,y )=0的曲线.2.求曲线方程的一般方法(五步法)求曲线(图形)的方程,一般有下面几个步骤:(1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合P ={M |p (M )}; (3)用坐标表示条件p (M ),列出方程f (x ,y )=0; (4)化方程f (x ,y )=0为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上.3.求曲线方程的常用方法:(1)直接法;(2)定义法;(3)代入法;(4)参数法.自我检测1.已知动点P 在曲线2x 2-y =0上移动,则点A (0,-1)与点P 连线中点的轨迹方程为______________.2.一动圆与圆O :x 2+y 2=1外切,而与圆C :x 2+y 2-6x +8=0内切,那么动圆的圆心P 的轨迹是__________________________________________________________________.3.已知A (0,7)、B (0,-7)、C (12,2),以C 为一个焦点作过A 、B 的椭圆,椭圆的另一个焦点F 的轨迹方程是______________________.4.若M 、N 为两个定点且MN =6,动点P 满足PM →·PN →=0,则P 点的轨迹方程为________.5.若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值范围是__________________.探究点一 直接法求轨迹方程例1 动点P 与两定点A (a,0),B (-a,0)连线的斜率的乘积为k ,试求点P 的轨迹方程,并讨论轨迹是什么曲线.变式迁移1 已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN →||MP →|+MN →·NP →=0,则动点P (x ,y )的轨迹方程为______________.探究点二 定义法求轨迹方程例2 已知两个定圆O 1和O 2,它们的半径分别是1和2,且O 1O 2=4.动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线.变式迁移2 在△ABC 中,A 为动点,B 、C 为定点,B ⎝⎛⎭⎫-a 2,0,C ⎝⎛⎭⎫a2,0,且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程为____________________________________.探究点三 相关点法(代入法)求轨迹方程例3 如图所示,从双曲线x 2-y 2=1上一点Q 引直线x +y =2的垂线,垂足为N . 求线段QN 的中点P 的轨迹方程.变式迁移3 已知长为1+2的线段AB 的两个端点A 、B 分别在x 轴、y 轴上滑动,P是AB 上一点,且AP →=22PB →.求点P 的轨迹C 的方程.一、填空题1.已知椭圆的焦点是F 1、F 2,P 是椭圆的一个动点,如果M 是线段F 1P 的中点,则动点M 的轨迹是_________________________________________________________________.2.已知A 、B 是两个定点,且AB =3,CB -CA =2,则点C 的轨迹方程为______________.3.长为3的线段AB 的端点A 、B 分别在x 轴、y 轴上移动,AC →=2CB →,则点C 的轨迹方程为____________.4.如图,圆O :x 2+y 2=16,A (-2,0),B (2,0)为两个定点.直线l 是圆O 的一条切线,若经过A 、B 两点的抛物线以直线l 为准线,则抛物线焦点所在的轨迹是________.5.P 是椭圆x 216+y 29=1上的动点,作PD ⊥y 轴,D 为垂足,则PD 中点的轨迹方程为____________.6.已知两定点A (-2,0),B (1,0),如果动点P 满足P A =2PB ,则点P 的轨迹所包围的图形的面积等于______.7.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长CD =3,则顶点A 的轨迹方程为______________.8.平面上有三点A (-2,y ),B ⎝⎛⎭⎫0,y 2,C (x ,y ),若AB →⊥BC →,则动点C 的轨迹方程为__________.二、解答题9.已知抛物线y2=4px (p>0),O为顶点,A,B为抛物线上的两动点,且满足OA⊥OB,如果OM⊥AB于点M,求点M的轨迹方程.10.已知椭圆C的中心为平面直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1.(1)求椭圆C的方程;(2)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的一点,OPOM=λ,求点M 的轨迹方程,并说明轨迹是什么曲线.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线专题复习讲义及练习★知识梳理★1.抛物线的标准方程、类型及其几何性质 (0>p ):①)0(22≠=p px y 的焦半径PF )0(22≠=p py x 的焦半径PF② 过焦点的所有弦中最短的弦,也被称做通径.其长度为2p.③ AB 为抛物线px y 22=的焦点弦,则=B A x x 42p ,=B A y y 2p -,||AB =p x x B A ++★重难点突破★重点:掌握抛物线的定义和标准方程,会运用定义和会求抛物线的标准方程,能通过方程研究抛物线的几何性质难点: 与焦点有关的计算与论证重难点:围绕焦半径、焦点弦,运用数形结合和代数方法研究抛物线的性质 1.要有用定义的意识问题1:抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A.1617 B. 1615C.87D. 0点拨:抛物线的标准方程为y x 412=,准线方程为161-=y ,由定义知,点M 到准线的距离为1,所以点M 的纵坐标是1615 2.求标准方程要注意焦点位置和开口方向问题2:顶点在原点、焦点在坐标轴上且经过点(3,2)的抛物线的条数有 点拨:抛物线的类型一共有4种,经过第一象限的抛物线有2种,故满足条件的抛物线有2条3.研究几何性质,要具备数形结合思想,“两条腿走路” 问题3:证明:以抛物线焦点弦为直径的圆与抛物线的准线相切点拨:设AB 为抛物线的焦点弦,F 为抛物线的焦点,点''、B A 分别是点B A 、在准线上的射影,弦AB 的中点为M ,则''BB AA BF AF AB +=+=,点M 到准线的距离为AB BB AA 21)''(21=+,∴以抛物线焦点弦为直径的圆总与抛物线的准线相切 ★热点考点题型探析★考点1 抛物线的定义题型 利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换[例1 ]已知点P 在抛物线y 2= 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和的最小值为【解题思路】将点P 到焦点的距离转化为点P 到准线的距离[解析]过点P 作准线的垂线l 交准线于点R ,由抛物线的定义知,PR PQ PF PQ +=+,当P 点为抛物线与垂线l 的交点时,PR PQ +取得最小值,最小值为点Q 到准线的距离 ,因准线方程为x=-1,故最小值为3【名师指引】灵活利用抛物线的定义,就是实现抛物线上的点到焦点的距离与到准线的距离之间的转换,一般来说,用定义问题都与焦半径问题相关 【新题导练】1.已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且||1F P 、||2F P 、||3F P 成等差数列, 则有 ( ) A .321x x x =+B . 321y y y =+C .2312x x x =+ D. 2312y y y =+[解析]C 由抛物线定义,2132()()(),222p p px x x +=+++即:2312x x x =+. 2. 已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当MF MA +最小时, M 点坐标是 ( )A. )0,0(B. )62,3(C. )4,2(D. )62,3(-[解析] 设M 到准线的距离为MK ,则MK MA MF MA +=+|||,当MK MA +最小时,M 点坐标是)4,2(,选C 考点2 抛物线的标准方程 题型:求抛物线的标准方程[例2 ] 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点(-3,2) (2)焦点在直线240x y --=上 【解题思路】以方程的观点看待问题,并注意开口方向的讨论. [解析] (1)设所求的抛物线的方程为22y px =-或22(0)x py p =>, ∵过点(-3,2) ∴229)3(24⋅=--=p p 或 ∴2934p p ==或 ∴抛物线方程为243y x =-或292x y =, 前者的准线方程是1,3x =后者的准线方程为98y =- (2)令0x =得2y =-,令0y =得4x =,∴抛物线的焦点为(4,0)或(0,-2),当焦点为(4,0)时,42p=, ∴8p =,此时抛物线方程216y x =;焦点为(0,-2)时22p= ∴4p =,此时抛物线方程28x y =-.∴所求抛物线方程为216y x =或28x y =-,对应的准线方程分别是4,2x y =-=. 【名师指引】对开口方向要特别小心,考虑问题要全面 【新题导练】3.若抛物线22y px =的焦点与双曲线2213x y -=的右焦点重合,则p 的值 [解析]4132=⇒+=p p4. 对于顶点在原点的抛物线,给出下列条件: ①焦点在y 轴上; ②焦点在x 轴上; ③抛物线上横坐标为1的点到焦点的距离等于6;④抛物线的通径的长为5; ⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1). 能使这抛物线方程为y 2=10x 的条件是____________.(要求填写合适条件的序号)[解析] 用排除法,由抛物线方程y 2=10x 可排除①③④,从而②⑤满足条件.5. 若抛物线的顶点在原点,开口向上,F 为焦点,M 为准线与Y 轴的交点,A 为抛物线上一点,且3||,17||==AF AM ,求此抛物线的方程[解析] 设点'A 是点A 在准线上的射影,则3|'|=AA ,由勾股定理知22|'|=MA ,点A 的横坐标为)23,22(p-,代入方程py x 22=得2=p 或4,抛物线的方程y x 42=或y x 82= 考点3 抛物线的几何性质题型:有关焦半径和焦点弦的计算与论证 [例3 ]设A 、B 为抛物线px y 22=上的点,且ο90=∠AOB (O 为原点),则直线AB 必过的定点坐标为__________.【解题思路】由特殊入手,先探求定点位置[解析]设直线OA 方程为kx y =,由⎩⎨⎧==pxy kx y 22解出A 点坐标为)2,2(2k pk p ⎪⎩⎪⎨⎧=-=pxy x k y 212解出B 点坐标为)2,2(2pk pk -,直线AB 方程为221)2(2k pk x k pk y ---=+,令0=y 得p x 2=,直线AB 必过的定点)0,2(p【名师指引】(1)由于是填空题,可取两特殊直线AB, 求交点即可;(2)B 点坐标可由A 点坐标用k1-换k 而得。
【新题导练】6. 若直线10ax y -+=经过抛物线24y x =的焦点,则实数a = [解析]-17.过抛物线焦点F 的直线与抛物线交于两点A 、B,若A 、B 在抛物线准线上的射影为11,B A ,则=∠11FB A ( ) A. ο45 B. ο60 C. ο90 D. ο120 [解析]C 基础巩固训练1.过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于)(422R a a a ∈++,则这样的直线( )A.有且仅有一条B.有且仅有两条C.1条或2条D.不存在 [解析]C 44)1(52||22≥++=++=++=a a a p x x AB B A ,而通径的长为4.2.在平面直角坐标系xOy 中,若抛物线24x y =上的点P 到该抛物线焦点的距离为5,则点P 的纵坐标为 ( )A. 3B. 4C. 5D. 6[解析] B 利用抛物线的定义,点P 到准线1-=y 的距离为5,故点P 的纵坐标为4.3.两个正数a 、b 的等差中项是92,一个等比中项是,b a >则抛物线2()y b a x =-的焦点坐标为( )A .1(0,)4-B .1(0,)4C .1(,0)2-D .1(,0)4- [解析] D. 1,4,5-=-==a b b a4. 如果1P ,2P ,…,8P 是抛物线24y x =上的点,它们的横坐标依次为1x ,2x ,…,8x ,F 是抛物线的焦点,若)(,,,21*∈N n x x x n Λ成等差数列且45921=+++x x x Λ,则||5F P =( ).A .5B .6C . 7D .9[解析]B 根据抛物线的定义,可知12ii i pPF x x =+=+(1i =,2,……,n ),)(,,,21*∈N n x x x n ΛΘ成等差数列且45921=+++x x x Λ,55=x ,||5F P =65、抛物线,42F x y 的焦点为=准线为l ,l 与x 轴相交于点E ,过F 且倾斜角等于60°的直线与抛物线在x 轴上方的部分相交于点A ,AB ⊥l ,垂足为B ,则四边形ABEF 的面积等于( )A .33B .34C .36D .38[解析] C. 过A 作x 轴的垂线交x 轴于点H ,设),(n m A ,则1,1-=-=+==m OF OH FH m AB AF ,32,3)1(21==∴-=+∴n m m m四边形ABEF 的面积==⨯++32)]13(2[21366、设O 是坐标原点,F 是抛物线24y x =的焦点,A 是抛物线上的一点,FA uu u r与x 轴正向的夹角为60o,则OA u u u r 为 .[解析]21.过A 作AD x ⊥轴于D ,令FD m =,则m FA 2=即m m 22=+,解得2=m .)32,3(A ∴21)32(322=+=∴OA综合提高训练7.在抛物线24y x =上求一点,使该点到直线45y x =-的距离为最短,求该点的坐标 [解析]解法1:设抛物线上的点)4,(2x x P ,点P 到直线的距离17|544|2+-=x x d 1717417|4)21(4|2≥+-=x , 当且仅当21=x 时取等号,故所求的点为),(121解法2:当平行于直线45y x =-且与抛物线相切的直线与抛物线的公共点为所求,设该直线方程为b x y +=4,代入抛物线方程得0442=--b x x , 由01616=+=∆b 得21,1=-=x b ,故所求的点为),(1219. 设抛物线22y px =(0p >)的焦点为 F ,经过点 F 的直线交抛物线于A 、B 两点.点 C 在抛物线的准线上,且BC ∥X 轴.证明直线AC 经过原点O . 证明:因为抛物线22y px =(0p >)的焦点为,02p F ⎛⎫⎪⎝⎭,所以经过点F 的直线AB 的方程可设为2p x my =+,代人抛物线方程得2220y pmy p --=. 若记()11,A x y ,()22,B x y ,则21,y y 是该方程的两个根,所以212y y p =-.因为BC ∥X 轴,且点C 在准线2p x =-上,所以点C 的坐标为2,2p y ⎛⎫- ⎪⎝⎭, 故直线CO 的斜率为21112.2y y p k p y x ===- 即k 也是直线OA 的斜率,所以直线AC 经过原点O .10.椭圆12222=+by a x 上有一点M (-4,59)在抛物线px y 22=(p>0)的准线l 上,抛物线的焦点也是椭圆焦点. (1)求椭圆方程;(2)若点N 在抛物线上,过N 作准线l 的垂线,垂足为Q 距离,求|MN|+|NQ|的最小值.解:(1)∵12222=+by a x 上的点M 在抛物线pxy 22=(p>0)的准线l 上,抛物线的焦点也是椭圆焦点.∴c=-4,p=8……① ∵M (-4,59)在椭圆上 ∴125811622=+ba ……② ∵222c b a +=……③ ∴由①②③解得:a=5、b=3∴椭圆为192522=+y x 由p=8得抛物线为x y 162= 设椭圆焦点为F (4,0), 由椭圆定义得|NQ|=|NF| ∴|MN|+|NQ|≥|MN|+|NF|=|MF|=541)059()44(22=-+--,即为所求的最小值. 参考例题:1、已知抛物线C 的一个焦点为F (21,0),对应于这个焦点的准线方程为x =-21. (1)写出抛物线C 的方程;(2)过F 点的直线与曲线C 交于A 、B 两点,O 点为坐标原点,求△AOB 重心G 的轨迹方程;解:(1)抛物线方程为:y 2=2x . (4分) (2)①当直线不垂直于x 轴时,设方程为y =k (x -21),代入y 2=2x , 得:k 2x 2-(k 2+2)x +042=k . 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=222kk +,y 1+y 2=k (x 1+x 2-1)=k 2.设△AOB 的重心为G (x ,y )则⎪⎪⎩⎪⎪⎨⎧=++=+=++=k y y y k k x x x 32303230212221, 消去k 得y 2=9232-x 为所求, (6分)②当直线垂直于x 轴时,A (21,1),B (21,-1), (8分)△AOB 的重心G (31,0)也满足上述方程.综合①②得,所求的轨迹方程为y 2=9232-x , (9分)抛物线专题练习一、选择题(本大题共10小题,每小题5分,共50分) 1.如果抛物线y 2=ax 的准线是直线x =-1,那么它的焦点坐标为( )A .(1, 0)B .(2, 0)C .(3, 0)D .(-1, 0)2.圆心在抛物线y 2=2x 上,且与x 轴和该抛物线的准线都相切的一个圆的方程是 ( )A .x 2+ y 2-x -2 y -41=0 B .x 2+ y 2+x -2 y +1=0 C .x 2+ y 2-x -2 y +1=0 D .x 2+ y 2-x -2 y +41=03.抛物线2x y =上一点到直线042=--y x 的距离最短的点的坐标是 ( )A .(1,1)B .(41,21) C .)49,23( D .(2,4)4.一抛物线形拱桥,当水面离桥顶2m 时,水面宽4m ,若水面下降1m ,则水面宽为( )A .6mB . 26mC .4.5mD .9m5.平面内过点A (-2,0),且与直线x =2相切的动圆圆心的轨迹方程是 ( )A . y 2=-2xB . y 2=-4xC .y 2=-8xD .y 2=-16x6.抛物线的顶点在原点,对称轴是x 轴,抛物线上点(-5,m )到焦点距离是6,则抛物线的方程是( )A . y 2=-2xB . y 2=-4xC . y 2=2xD . y 2=-4x 或y 2=-36x7.过抛物线y 2=4x 的焦点作直线,交抛物线于A(x 1, y 1) ,B(x 2, y 2)两点,如果x 1+ x 2=6,那么|AB|=( )A .8B .10C .6D .48.把与抛物线y 2=4x 关于原点对称的曲线按向量a )3,2(-=平移,所得的曲线的方程是( )A .)2(4)3(2--=-x y B .)2(4)3(2+-=-x y C .)2(4)3(2--=+x y D . )2(4)3(2+-=+x y9.过点M (2,4)作与抛物线y 2=8x 只有一个公共点的直线l 有 ( )A .0条B .1条C .2条D .3条10.过抛物线y =ax 2(a >0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则qp 11+等于 ( )A .2aB .a 21 C .4a D . a4 二、填空题11.抛物线y 2=4x 的弦AB 垂直于x 轴,若AB 的长为43,则焦点到AB 的距离为 .12.抛物线y =2x 2的一组斜率为k 的平行弦的中点的轨迹方程是 . 13.P 是抛物线y 2=4x 上一动点,以P 为圆心,作与抛物线准线相切的圆,则这个圆一定经过一个定点Q ,点Q 的坐标是 .14.抛物线的焦点为椭圆14922=+y x 的左焦点,顶点在椭圆中心,则抛物线方程为 .一.选择题(本大题共10小题,每小题5分,共50分)二.填空题(本大题共4小题,每小题6分,共24分) 11.2 12.4kx = 13.(1,0) 14.x y 542-= 三、解答题15.已知动圆M 与直线y =2相切,且与定圆C :1)3(22=++y x 外切,求动圆圆心M 的轨迹方程.[解析]:设动圆圆心为M (x ,y ),半径为r ,则由题意可得M 到C (0,-3)的距离与到直线y =3的距离相等,由抛物线的定义可知:动圆圆心的轨迹是以C (0,-3)为焦点,以y =3为准线的一条抛物线,其方程为y x 122-=.16.已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离等于5,求抛物线的方程和m 的值.(12分)[解析]:设抛物线方程为)0(22>-=p py x ,则焦点F (0,2p-),由题意可得 ⎪⎩⎪⎨⎧=-+=5)23(6222p m p m ,解之得⎩⎨⎧==462p m 或⎩⎨⎧=-=462p m , 故所求的抛物线方程为y x 82-=,62±的值为m17.动直线y =a ,与抛物线x y 212=相交于A 点,动点B 的坐标是)3,0(a ,求线段AB 中点M 的轨迹的方程.(12分)[解析]:设M 的坐标为(x ,y ),A (22a ,a ),又B )3,0(a 得 ⎩⎨⎧==a y a x 22消去a ,得轨迹方程为42y x =,即x y 42=19.如图,直线l 1和l 2相交于点M ,l 1⊥l 2,点N ∈l 1.以A 、B 为端点的曲线段C 上的任一点到l 2的距离与到点N 的距离相等.若△AMN 为锐角三角形,|AM|=,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C 的方程.(14分)[解析]:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点.由题意可知:曲线C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A 、B 分别为C 的端点.设曲线段C 的方程为)0,(),0(22>≤≤>=y x x x p px y B A ,其中B A x x ,分别为A 、B 的横坐标,MN p =. 所以,)0,2(),0,2(pN p M -. 由17=AM ,3=AN 得 172)2(2=++A A px px ①92)2(2=+-A A px px ②联立①②解得p x A 4=.将其代入①式并由p>0解得⎩⎨⎧==14A x p ,或⎩⎨⎧==22Ax p .因为△AMN 为锐角三角形,所以A x p>2,故舍去⎩⎨⎧==22A x p . ∴p=4,1=A x .11 / 11 由点B 在曲线段C 上,得42=-=p BN x B .综上得曲线段C 的方程为)0,41(82>≤≤=y x x y .20.已知抛物线)0(22>=p px y .过动点M (a ,0)且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,p AB 2||≤.(Ⅰ)求a 的取值范围;(Ⅱ)若线段AB 的垂直平分线交x 轴于点N ,求NAB Rt ∆面积的最大值.(14分)[解析]:(Ⅰ)直线l 的方程为a x y -=,将px y a x y 22=-=代入,得 0)(222=++-a x p a x . 设直线l 与抛物线两个不同交点的坐标为),(11y x A 、),(22y x B , 则 ⎪⎩⎪⎨⎧=+=+>-+.),(2,04)(42212122a x x p a x x a p a 又a x y a x y -=-=2211,, ∴221221)()(||y y x x AB -+-= ]4)[(221221x x x x -+=)2(8a p p +=. ∵0)2(8,2||0>+≤<a p p p AB , ∴ p a p p 2)2(80≤+<. 解得 42p a p -≤<-. (Ⅱ)设AB 的垂直平分线交AB 于点Q ,令坐标为),(33y x ,则由中点坐标公式,得 p a x x x +=+=2213, p a x a x y y y =-+-=+=2)()(221213.∴ 22222)0()(||p p a p a QM =-+-+=. 又 MNQ ∆为等腰直角三角形,∴ p QM QN 2||||==, ∴||||21QN AB S NAB ⋅=∆||22AB p = p p 222⋅≤ 22p =即NAB ∆面积最大值为22p。