实验二 离散信号的卷积和

合集下载

实验报告信号卷积实验

实验报告信号卷积实验

一、实验目的1. 理解卷积的概念及其物理意义。

2. 掌握卷积运算的原理和方法。

3. 通过实验加深对卷积运算在实际应用中的理解。

二、实验原理1. 卷积的定义:卷积是一种线性运算,它描述了两个信号在时域上的相互作用。

对于两个连续时间信号f(t)和g(t),它们的卷积定义为:F(t) = ∫f(τ)g(t-τ)dτ其中,F(t)是卷积结果,f(τ)是信号f(t)的任意时刻的值,g(t-τ)是信号g(t)在时刻t-τ的值。

2. 卷积的性质:卷积具有交换律、结合律和分配律等性质。

其中,交换律是指f(t)和g(t)的卷积与g(t)和f(t)的卷积相等;结合律是指三个信号f(t)、g(t)和h(t)的卷积可以分别进行两两卷积后再进行一次卷积;分配律是指一个信号与两个信号的卷积等于该信号分别与两个信号卷积后的和。

三、实验内容1. 实验一:连续时间信号卷积实验(1)选用信号:选取两个连续时间信号f(t)和g(t),其中f(t)为矩形脉冲信号,g(t)为指数衰减信号。

(2)卷积计算:根据卷积的定义,计算f(t)和g(t)的卷积F(t)。

(3)结果分析:观察F(t)的波形,分析卷积结果的物理意义。

2. 实验二:离散时间信号卷积实验(1)选用信号:选取两个离散时间信号f[n]和g[n],其中f[n]为单位阶跃信号,g[n]为矩形脉冲信号。

(2)卷积计算:根据离散时间信号卷积的定义,计算f[n]和g[n]的卷积F[n]。

(3)结果分析:观察F[n]的波形,分析卷积结果的物理意义。

3. 实验三:MATLAB仿真实验(1)选用信号:选取两个连续时间信号f(t)和g(t),其中f(t)为正弦信号,g(t)为余弦信号。

(2)MATLAB编程:利用MATLAB的信号处理工具箱,编写程序实现f(t)和g(t)的卷积运算。

(3)结果分析:观察MATLAB仿真得到的卷积结果,分析其物理意义。

四、实验结果与分析1. 实验一:连续时间信号卷积实验(1)实验结果:通过计算得到f(t)和g(t)的卷积F(t)的波形。

卷积和反卷积的计算公式

卷积和反卷积的计算公式

卷积和反卷积的计算公式一、卷积计算公式。

(一)离散卷积(一维情况)设离散序列x[n]和h[n],它们的卷积y[n]定义为:y[n]=∑_m =-∞^∞x[m]h[n - m](二)离散卷积(二维情况)对于二维离散信号x[m,n]和h[m,n],其卷积y[m,n]为:y[m,n]=∑_k =-∞^∞∑_l=-∞^∞x[k,l]h[m - k,n - l](三)连续卷积(一维情况)对于连续函数x(t)和h(t),它们的卷积y(t)定义为:y(t)=∫_-∞^∞x(τ)h(t-τ)dτ二、反卷积计算公式。

反卷积(也称为去卷积)是卷积的逆运算。

在离散情况下,如果已知y[n](卷积结果)和h[n],求x[n],可以通过求解以下方程(在某些条件下):y[n]=∑_m =-∞^∞x[m]h[n - m]1. 频域方法(离散情况)- 对y[n]、h[n]分别进行离散傅里叶变换(DFT),得到Y[k]和H[k]。

- 根据卷积定理Y[k]=X[k]H[k],则X[k]=(Y[k])/(H[k])(假设H[k]≠0)。

- 再对X[k]进行逆离散傅里叶变换(IDFT)得到x[n]。

2. 迭代算法(离散情况)- 一种简单的迭代算法是假设初始的x^0[n]=y[n]/h[0](当h[0]≠0时)。

- 然后通过迭代公式x^i + 1[n]=x^i[n]+frac{y[n]-∑_m =-∞^∞x^i[m]h[n - m]}{∑_m =-∞^∞h[m]h[n - m]}逐步逼近真实的x[n],其中i表示迭代次数。

在连续情况下,反卷积的求解更加复杂,通常也可以利用频域方法,通过傅里叶变换将问题转换到频域,利用Y(ω)=X(ω)H(ω),得到X(ω)=(Y(ω))/(H(ω))(假设H(ω)≠0),再通过逆傅里叶变换得到x(t),但在实际应用中要考虑到函数的性质、收敛性等诸多问题。

【免费下载】matlab实验二 离散信号的卷积和

【免费下载】matlab实验二 离散信号的卷积和

(数字信号处理)实验报告实验名称 实验二 离散信号的卷积和 实验时间 年 月 日专业班级 学 号 姓 名 成 绩 教师评语: 一、实验目的1、掌握两个离散信号卷积和的计算方法和编程技术。

2、进一步熟悉用MATLAB 描绘二维图像的方法。

二、实验原理与计算方法两个离散序列x(n)与y(n)的卷积和f(n)定义为∑∞-∞=-=*=m m n y m x n y n x n f )()()()()(由于通常信号处理中所碰到的都是有始信号或有限时间信号,因此在实际计算卷积和时,求和是在有限范围内进行的。

计算过程中上下限的选取和所得结果的分布区间取决于参与卷积的两个序列,下面将分别进行讨论:1、两个从n = 0开始的序列和的卷积和)()()(n u n x n x =)()()(n u n y n y = (1)∑∑=∞-∞=-=--=nm m n u m n y m x m n u m n y m u m x n f 0)()]()([)()()()()(上式右边因子u(n)表示卷积和的结果也是一个从n = 0开始的序列。

2、从n =n1开始的序列和从n = n2开始的序列)()()(1n n u n x n x -=的卷积和,其中n1和n2为任意整数。

)()()(2n n u n y n y -= (2)∑∑-=∞-∞=---=----=21)()]()([)()()()()(2121n n n m m n nn u m n y m x n m n u m n y n m u m x n f 上式右边因子u(n-n1-n2)表示卷积和是一个从n = n1+n2开始的序列。

3、从n = n1开始的长度为N1的加窗序列和从n = n2开始的长)()()(1n w n x n x N =度为N2的加窗序列的卷积和,其中)()()(2n w n y n y N = ⎩⎨⎧-+≤≤=otherwise 0 11 )(1111N n n n n w N ⎩⎨⎧-+≤≤=otherwise 0 1 1 )(2222N n n n n w N则 ∑∞-∞=--=m N N m n w m n y m wm x n f )()()()()(21(3)所得卷积和也是一个加窗序列,从n = n1+ n2开始,长度为N1+ N2-1。

两个离散序列的卷积运算

两个离散序列的卷积运算

两个离散序列的卷积运算卷积运算是信号处理中常用的一种运算方式,它可以将两个信号进行合并,得到一个新的信号。

在离散信号处理中,卷积运算同样具有重要的应用。

本文将介绍两个离散序列的卷积运算。

一、离散序列的定义离散序列是指在一定的时间间隔内,取样得到的一组数值序列。

在离散信号处理中,离散序列是信号的离散表示。

离散序列可以用数学公式表示为:x(n) = {x(0), x(1), x(2), ..., x(N-1)}其中,n为序列的下标,x(n)为序列在下标为n时的取值,N为序列的长度。

二、离散序列的卷积运算离散序列的卷积运算是指将两个离散序列进行合并,得到一个新的离散序列。

卷积运算可以用数学公式表示为:y(n) = ∑x(k)h(n-k)其中,x(k)和h(n-k)分别为两个离散序列在下标为k和n-k时的取值,y(n)为卷积运算后得到的新序列在下标为n时的取值。

三、离散序列的卷积运算的应用离散序列的卷积运算在信号处理中有着广泛的应用。

例如,在数字滤波器中,卷积运算可以用来实现滤波器的功能。

在图像处理中,卷积运算可以用来实现图像的模糊、锐化等效果。

在语音处理中,卷积运算可以用来实现语音信号的降噪、增强等功能。

四、离散序列的卷积运算的实现离散序列的卷积运算可以通过直接计算、快速傅里叶变换等方式实现。

其中,直接计算是最简单的实现方式,但是计算量较大,适用于序列长度较短的情况。

快速傅里叶变换是一种高效的实现方式,可以大大减少计算量,适用于序列长度较长的情况。

五、离散序列的卷积运算的注意事项在进行离散序列的卷积运算时,需要注意以下几点:1. 序列长度需要相同,否则需要进行补零操作。

2. 序列的取值范围需要确定,否则可能会导致计算结果不准确。

3. 在使用快速傅里叶变换实现卷积运算时,需要注意变换后的结果需要进行逆变换才能得到正确的卷积结果。

六、结语离散序列的卷积运算是信号处理中常用的一种运算方式,具有广泛的应用。

在实际应用中,需要根据具体情况选择合适的实现方式,并注意相关的注意事项。

信号的卷积实验报告

信号的卷积实验报告

一、实验目的1. 理解信号卷积的概念及其物理意义。

2. 掌握信号卷积的计算方法,包括连续卷积和离散卷积。

3. 分析卷积运算在信号处理中的应用,如信号滤波、信号重构等。

二、实验原理1. 信号卷积的概念信号卷积是指两个信号x(t)和h(t)的乘积在时间域上的积分。

卷积运算可以描述信号之间的相互作用和影响,对于信号处理、通信系统、控制系统等领域具有重要的应用。

2. 卷积的数学表示(1)连续卷积设x(t)和h(t)为两个连续信号,它们的卷积y(t)可以表示为:y(t) = ∫[x(τ)h(t-τ)]dτ(2)离散卷积设x[n]和h[n]为两个离散信号,它们的卷积y[n]可以表示为:y[n] = ∑[x[k]h[n-k]]3. 卷积的性质(1)交换律:x(t) h(t) = h(t) x(t)(2)结合律:(x(t) h(t)) g(t) = x(t) (h(t) g(t))(3)分配律:x(t) (h(t) + g(t)) = x(t) h(t) + x(t) g(t)(4)卷积的导数:d/dt(x(t) h(t)) = x(t) d/dt(h(t))三、实验仪器与设备1. 双踪示波器2. 信号源3. 信号处理模块4. 计算机5. MATLAB软件四、实验内容与步骤1. 连续信号卷积实验(1)选择两个连续信号,如方波信号和三角波信号。

(2)利用示波器观察两个信号的波形。

(3)通过计算机计算两个信号的卷积,并观察卷积结果的波形。

2. 离散信号卷积实验(1)选择两个离散信号,如单位阶跃信号和单位冲激信号。

(2)利用示波器观察两个信号的波形。

(3)通过计算机计算两个信号的卷积,并观察卷积结果的波形。

3. 卷积运算在信号处理中的应用实验(1)信号滤波:选择一个信号,如含噪声的信号,通过卷积运算实现滤波操作,去除噪声。

(2)信号重构:选择一个信号,如被压缩的信号,通过卷积运算实现信号重构,恢复原始信号。

五、实验结果与分析1. 连续信号卷积实验结果通过实验,我们可以观察到连续信号卷积的结果。

离散信号实验报告

离散信号实验报告

一、实验目的1. 理解离散信号的概念及其特点。

2. 掌握离散信号的表示方法。

3. 掌握离散信号的基本运算方法。

4. 熟悉离散系统响应的求解方法。

5. 利用MATLAB进行离散信号分析。

二、实验原理离散信号是指时间上不连续的信号,与连续信号相比,具有以下特点:1. 采样性:离散信号是在时间上等间隔取样的信号。

2. 有限性:离散信号在时间上有限,即在有限的时间内存在。

3. 线性时不变性:离散系统具有线性时不变性,即系统对信号的时延和幅度变换保持不变。

离散信号的表示方法主要有以下几种:1. 序列表示法:用括号括起来的序列表示,如x[n]。

2. 图形表示法:用坐标轴表示,横轴为时间,纵轴为信号幅度。

3. Z变换表示法:用Z变换表示,如X(z)。

离散信号的基本运算方法包括:1. 加法运算:两个离散信号相加,结果为它们的序列对应元素相加。

2. 乘法运算:两个离散信号相乘,结果为它们的序列对应元素相乘。

3. 移位运算:将离散信号沿时间轴左移或右移。

4. 展平运算:将离散信号沿时间轴展平,即将信号序列展开成矩阵形式。

离散系统响应的求解方法主要有以下几种:1. 离散卷积法:用离散卷积运算求解离散系统响应。

2. Z变换法:用Z变换求解离散系统响应。

3. 快速傅里叶变换(FFT)法:用FFT求解离散系统响应。

三、实验内容及步骤1. 实验一:离散信号的表示方法(1)在MATLAB中,创建一个离散信号序列x[n],并绘制其图形表示。

(2)利用Z变换,将离散信号序列转换为Z变换表示。

2. 实验二:离散信号的基本运算(1)在MATLAB中,创建两个离散信号序列x[n]和y[n],并进行加法运算、乘法运算、移位运算和展平运算。

(2)绘制运算结果,并分析运算结果的特点。

3. 实验三:离散系统响应的求解(1)在MATLAB中,创建一个离散信号序列x[n],并设计一个离散系统。

(2)利用离散卷积法、Z变换法和FFT法求解离散系统响应。

数字信号处理实验报告——离散系统的差分方程、冲激响应和卷积分析

数字信号处理实验报告——离散系统的差分方程、冲激响应和卷积分析

实验2 离散系统的差分方程、冲激响应和卷积分析实验目的:加深对离散系统的差分方程、冲激响应和卷积分析方法的理解。

实验原理:离散系统其输入、输出关系可用以下差分方程描述:∑=∑=-=-M k k N k k k n x p k n y d 0][][输入信号分解为冲激信号,∑-=∞-∞=m m n m x n x ][][][δ。

记系统单位冲激响应][][n h n →δ,则系统响应为如下的卷积计算式:∑∞-∞=-=*=m m n h m x n h n x n y ][][][][][当Nk d k ,...2,1,0==时,h[n]是有限长度的(n :[0,M]),称系统为FIR 系统;反之,称系统为IIR 系统。

在MATLAB 中,可以用函数y=Filter(p,d,x) 求解差分方程,也可以用函数 y=Conv(x,h)计算卷积。

实验内容:编制程序求解下列两个系统的单位冲激响应和阶跃响应,并绘出其图形。

[]0.6[1]0.08[2][][1]y n y n y n x n x n +-+-=--[]0.2{[1][2][3][4][5][6]}y n x n x n x n x n x n x n =-+-+-+-+-+-实验要求:给出理论计算结果和程序计算结果并讨论。

实验过程:[]0.6[1]0.08[2][][1] +-+-=--y n y n y n x n x n (1)单位冲激响应:>> a=[1,0.6,0.08];>> b=[1,-1];>> N=20;>> x=[1,zeros(1,N)];>> y=filter(b,a,x);>> stem(y);>> xlabel('时间序列n');>> ylabel('信号幅度');>> title('单位冲激响应h(n)');>>(2)单位阶跃响应:>> a=[1,0.6,0.08];>> b=[1,-1];>> N=20;>> x=[ ones(1,N)];>> y=filter(b,a,x);>> stem(y);>> xlabel('时间序号');>> ylabel('信号幅度');>> title('单位阶跃响应h (n )'); >>理论分析:由差分方程得系统函数为:1121()10.60.08zH z zz----=++利用分部分式法可得:1176()10.410.2H z zz--=-++,z 反变换得:()[7(0.4)6(0.2)nnh n u n =⋅--⋅- h(n)即为单位冲击响应。

信号与系统卷积练习题

信号与系统卷积练习题

信号与系统卷积练习题信号与系统卷积练习题信号与系统是电子工程和通信工程等领域中的重要基础课程,它研究的是信号在系统中的传输、变换和处理等问题。

在学习信号与系统的过程中,卷积是一个重要的概念和运算。

本文将通过一些卷积练习题来加深对信号与系统中卷积的理解。

1. 练习题一:离散信号的卷积假设有两个离散信号x(n)和h(n),其中x(n)的长度为N,h(n)的长度为M。

求x(n)和h(n)的卷积y(n)。

解答:卷积的定义是y(n) = ∑[x(k) * h(n-k)],其中k的取值范围是从0到N-1。

根据定义,我们可以计算出y(n)的每个值。

2. 练习题二:连续信号的卷积假设有两个连续信号x(t)和h(t),其中x(t)的长度为T,h(t)的长度为L。

求x(t)和h(t)的卷积y(t)。

解答:连续信号的卷积可以通过积分来计算。

卷积的定义是y(t) = ∫[x(τ) * h(t-τ)]dτ,其中τ的取值范围是从0到T。

通过积分计算,我们可以得到y(t)的表达式。

3. 练习题三:卷积的性质卷积具有一些重要的性质,包括线性性、时移性和频移性等。

请证明卷积具有时移性。

解答:时移性是指如果x(t)和h(t)的卷积为y(t),那么x(t-t0)和h(t-t0)的卷积为y(t-t0)。

我们可以通过卷积的定义来证明时移性。

假设x(t)和h(t)的卷积为y(t),即y(t) = ∫[x(τ) * h(t-τ)]dτ。

那么x(t-t0)和h(t-t0)的卷积为y(t-t0) = ∫[x(τ-t0) * h(t-t0-τ)]dτ。

通过变量替换,令τ' = τ - t0,那么有y(t-t0) = ∫[x(τ') * h(t-t0-τ')]dτ'。

这与原来的卷积表达式相同,所以卷积具有时移性。

4. 练习题四:卷积的应用卷积在信号与系统中有广泛的应用,例如图像处理、音频处理和通信系统等。

请举一个实际应用的例子,说明卷积在该领域中的作用。

信号与系统-连续信号和离散信号的表示与卷积实验报告

信号与系统-连续信号和离散信号的表示与卷积实验报告

实验一:连续信号和离散信号的表示与卷积一.实验目的1. 学习MATLAB 软件产生信号和实现信号的可视化2. 学习和掌握连续和离散信号的时域表示方法3. 学习和掌握连续信号和离散信号卷积方法二.实验原理1. 信号的表示方法● 常用信号:➢ 连续函数()θω+=t t f sin )(, atAe t f =)(,ttt Sa sin )(=➢ 离散信号()n n f 0sin ][ω=,njw e n f 0][=,][][n u a n f n=● 奇异信号:➢ 连续函数:冲激函数)(t δ,阶跃函数)(t u ,斜坡函数)(t R ➢ 离散信号:冲激函数][n δ,阶跃函数][n u ,斜坡函数][n R2.卷积连续函数的卷积:⎰∞∞--=τττd t f f t g )()()(21离散函数的卷积:∑∞-∞=-=m m n f m f n g ][][][21三.实验内容1. 熟悉matlab 工作环境(1) 运行matlab.exe ,进入matlab 工作环境,如图(1)所示。

图1 matlab工作环境(2)matlab工作环境由Command Window(命令窗口)、Current Direcroty(当前目录)、workspace (工作空间)、command History(历史命令)和Editor(文件编辑器)5部分组成。

其中所有文件的编辑和调试、运行在Editor编辑窗口下进行。

程序的运行也可以在命令窗口进行。

程序调试的信息显示在命令窗口。

(3)程序文件的产生:点击菜单file下的New下的M_files,进入编辑器界面,如图2。

图2 M 文件编辑器(4) 在m 文件编辑器下键入程序代码,保存程序文件(文件命名规则同C 语言)。

如果所定义的是函数文件,则要求函数名为M 文件名。

(5) 程序运行需要给定义的函数参数赋值。

切换到命令窗口下运行例如指数函数定义格式 [t,y]=exp1_exp(t1,t2,dt,A,a)指数函数文件调用方式:[t,y]=exp1_exp(-10,10,0.1,3,-1,1)2 连续和离散信号的时域表示方法(1)单边指数信号 )()(t u Ae t y tα=;function y=exp1_exp(t1,t2,dt,A,a,options)%指数函数,其中t1,t2,dt 分别为起始时间、终止时间和时间间隔 %A,a 为常数 y(t)=Aexp(a*t)%options 参数等于1时为单边指数函数,其他时为双边指数函数 %函数调用的格式 y=exp1_exp(-10,10,0.1,3,-1,1) if options==1t=0:dt:t2;%单边指数函数时间范围 elset=t1:dt:t2;%双边指数函数时间范围endy=A*exp(a*t);%指数函数plot(t,y)%画图grid onxlabel('t')%X轴坐标ylabel('y(t)')%Y轴坐标if options==1title(' 单边指数信号')%标题elsetitle(' 双边指数信号')%标题end实验要求:1)在同一张图上画出a>0,a=0,a<0时指数函数波形,如图3所示. 注意:a的取值范围要适中,不要导致纵坐标相差太大。

信号与系统MATLAB实验

信号与系统MATLAB实验

2016-2017学年第一学期信号与系统实验报告班级:姓名: 学号: 成绩:指导教师:实验一 常见信号的MATLAB 表示及运算一.实验目的1.熟悉常见信号的意义、特性及波形2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法二.实验原理信号一般是随时间而变化的某些物理量。

按照自变量的取值是否连续,信号分为连续时间信号和离散时间信号,一般用()f t 和()f k 来表示。

若对信号进行时域分析,就需要绘制其波形,如果信号比较复杂,则手工绘制波形就变得很困难,且难以精确。

MATLAB 强大的图形处理功能及符号运算功能,为实现信号的可视化及其时域分析提供了强有力的工具。

根据MATLAB 的数值计算功能和符号运算功能,在MATLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法。

在采用适当的MATLAB 语句表示出信号后,就可以利用MATLAB 中的绘图命令绘制出直观的信号波形了。

下面分别介绍连续时间信号和离散时间信号的MATLAB 表示及其波形绘制方法。

1.连续时间信号所谓连续时间信号,是指其自变量的取值是连续的,并且除了若干不连续的点外,对于一切自变量的取值,信号都有确定的值与之对应。

从严格意义上讲,MATLAB 并不能处理连续信号。

在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。

在MATLAB 中连续信号可用向量或符号运算功能来表示。

⑴ 向量表示法对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t 的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。

向量f 为连续信号()f t 在向量t 所定义的时间点上的样值。

武汉工程大学matlab实验二离散时间信号的分析实验【范本模板】

武汉工程大学matlab实验二离散时间信号的分析实验【范本模板】

武汉工程大学数字信号处理实验报告二专业班级:14级通信03班学生姓名:秦重双学号:1404201114实验时间:2017年5月3日实验地点:4B315指导老师: 杨述斌实验一离散时间信号的分析实验一、实验目的①认识常用的各种信号,理解其数学表达式和波形表示。

②掌握在计算机中生成及绘制数值信号波形的方法。

③掌握序列的简单运算及计算机实现与作用。

④理解离散时间傅里叶变换、Z变换及它们的性质和信号的频域特性。

二、实验设备计算机,MATLAB语言环境。

三、实验基础理论1、序列的相关概念离散时间信号用一个称为样本的数字序列来表示。

一般用{x[n]}表示,其中自变量n的取值范围是﹣∞到﹢∞之间的整数。

为了表示方便,序列通常直接用x[n]表示。

离散时间信号可以是一个有限长序列,也可以是一个无限长序列。

有限长(也称为有限时宽)序列仅定义在有限的时间间隔中:﹣∞≤N1 ≤N2 ≤+∝。

有限长序列的长度或时宽为N=N1 -N2+1。

满足x[n+kN]=x[n](对于所有n)的序列称为周期为N的周期序列,其中N取任意正整数;k取任意整数;2、常见序列常见序列有单位取样值信号、单位阶跃序列、矩形序列、斜变序列、单边指数序列、正弦序列、复指数序列等。

3、序列的基本运算序列的基本运算有加法、乘法、倒置(反转)、移位、尺度变换、卷积等。

4、离散傅里叶变换的相关概念5、Z变换的相关概念四.实验内容与步骤1、知识准备认真复习以上基础理论,理解本实验所用到的实验原理。

2、离散时间信号(序列)的产生利用MATLAB语言编程和绘制单位样值信号、单位阶跃序列、指数序列、正弦序列及随机离散信号的波形,以加深对离散信号时域表示的理解。

①单位取样值信号Matlab程序x=0;y=1;stem(x,y);title('单位样值’);axis([—2,2,0,1]);②单位阶跃序列Matlab程序n0=0;n1=—5;n2=5;n=[n1:n2];x=[(n—n0)>=0];stem(n,x);xlabel('n');ylabel(’x(n)’);title(’单位阶跃序列’);③指数序列、正弦序列Matlab程序n=[0:10];x=(1/3)。

实验二 连续时间信号、离散信号卷积运算

实验二  连续时间信号、离散信号卷积运算

实验二 连续时间信号、离散信号卷积运算一、实验目的⑴熟悉卷积的定义和表示;⑵掌握利用计算机进展卷积运算的原理和方法;⑶熟悉连续时间信号、离散信号的相关计算方法;⑷熟悉连续时间信号卷积运算、离散信号卷积运算函数conv 、反卷积deconv 函数等的应用。

二、实验原理1.卷积的定义:卷积是一种特殊函数与函数之间的计算。

连续时间信号卷积积分可以表示为:f(t)=f 1(t)*f 2(t)= τττd t f f )()(21-⎰∞∞-=τττd f t f )()(12⎰∞∞--离散信号卷积积分可以表示为:f 1(k)*f 2(k)=)()(21m k f m f n -∑∞-∞= ∞-<k<∞卷积积分计算从几何上可以分为四个步骤:翻转 → 平移 → 相乘 → 叠加〔积分〕卷积积分是信号与系统时域分析的根本手段,主要应用于求系统零状态响应。

它将输入信号分解为众多的冲激函数之和,利用冲激响应可以很方便求解LTI 系统对任意鼓励的零状态响应。

设一个线性零状态响应系统,系统的单位冲激响应为h1〔t 〕,当系统的鼓励信号为x 〔t 〕时,系统的零状态响应为y zs (t)=τττd t h x t )()(0-⎰=τττd h t x t)()(0⎰- 可以简记为:y zs (t)=x(t)*h(t) 三、程序设计实验①采用函数conv 编程,实现离散时间序列的卷积和运算,完成两序列的卷积和,其中:f1〔k 〕={1,2,1},对应的k1={-1,0,-1};f2〔k 〕={1,1,1,1,1},对应的k2={-2,-1,0,1,2}。

程序代码:k1=[-1,0,1];f1=[1,2,1];subplot(3,1,1)stem(k1,f1);title('f1(k)');k2=[-2,-1,0,1,2];f2=[1,1,1,1,1];subplot(3,1,2)stem(k2,f2);title('f2(k)');k3=k1(1)+k2(1):k1(end)+k2(end);f3=conv(f1,f2);subplot(3,1,3)stem(k3,f3); title('f3(k)');程序运行结果的对应信号波形图:②求f1〔t〕=u〔t〕-u〔t-2〕,f2〔t〕=e^〔-3t〕u〔t〕的卷积。

离散系统卷积求和的方法

离散系统卷积求和的方法

离散系统卷积求和的方法介绍离散系统卷积求和是信号处理中一个重要的概念,可以有效地处理数字信号的卷积运算。

在离散系统中,输入和输出信号可以用离散的数值表示,因此需要用离散的方法来进行卷积运算。

本文将详细探讨离散系统卷积求和的方法以及相关的概念和应用。

一、离散系统卷积的定义离散系统卷积是一个定义在离散域上的运算,它描述了输入信号经过离散系统后产生的输出信号。

离散系统可以用差分方程或差分方程组表示,对于一个离散系统,其输入信号为离散的数值序列x(n),输出信号为离散的数值序列y(n),则离散系统卷积运算可以表示为:∞(k)ℎ(n−k)y(n)=∑xk=−∞其中,ℎ(n)为系统的冲激响应,表示当输入为单位冲激信号时,系统的输出。

二、离散系统卷积求和方法离散系统卷积求和可以通过两种方法来实现:直接求和法和卷积积分法。

2.1 直接求和法直接求和法是离散系统卷积的一种基本方法,它通过对每个样本点进行累加求和来得到卷积的结果。

算法步骤:1.给定输入序列x(n)和冲激响应ℎ(n)。

2.确定输出序列的长度L,即n max=max(n)+max(k)。

3.对于每个输出样本,根据卷积求和公式进行计算:y (n )=∑x ∞k=−∞(k )ℎ(n −k )4. 将计算结果保存到输出序列y (n )。

例子:给定输入序列x (n )=[1,2,3]和冲激响应ℎ(n )=[1,1],我们可以使用直接求和法进行卷积计算。

首先确定输出序列的长度L ,即n max =2+1=3。

然后计算每个输出样本的值: - y (0)=x (0)ℎ(0)=1×1=1 - y (1)=x (0)ℎ(1)+x (1)ℎ(0)=1×1+2×1=3 - y (2)=x (0)ℎ(2)+x (1)ℎ(1)+x (2)ℎ(0)=1×0+2×1+3×1=5 - y (3)=x (1)ℎ(2)+x (2)ℎ(1)+x (3)ℎ(0)=2×0+3×1+0×1=3因此,输出序列y (n )=[1,3,5,3]。

卷积计算的实验报告

卷积计算的实验报告

1. 理解卷积的基本概念和原理;2. 掌握卷积的计算方法;3. 通过MATLAB软件实现卷积运算;4. 分析卷积运算在信号处理中的应用。

二、实验原理卷积是一种线性运算,它描述了两个信号之间的相互作用。

对于两个离散信号x[n]和h[n],它们的卷积y[n]定义为:y[n] = Σx[k]h[n-k]其中,n和k为离散时间变量,Σ表示求和。

卷积运算具有以下性质:1. 交换律:x[n] h[n] = h[n] x[n]2. 结合律:(x[n] h[n]) g[n] = x[n] (h[n] g[n])3. 分配律:x[n] (h[n] + g[n]) = x[n] h[n] + x[n] g[n]卷积运算在信号处理中具有重要的应用,如信号滤波、系统分析、图像处理等。

三、实验内容1. 熟悉MATLAB软件环境;2. 编写MATLAB程序实现卷积运算;3. 分析卷积运算的结果,验证卷积性质;4. 应用卷积运算解决实际问题。

四、实验器材1. 计算机;2. MATLAB软件;3. 离散信号数据。

1. 创建离散信号数据:在MATLAB中创建两个离散信号x[n]和h[n],分别代表输入信号和系统响应。

2. 编写卷积程序:使用MATLAB内置函数conv实现卷积运算,计算y[n] = x[n] h[n]。

3. 分析卷积结果:观察卷积运算的结果,验证卷积性质,如交换律、结合律、分配律等。

4. 应用卷积运算解决实际问题:选择一个实际问题,如信号滤波,使用卷积运算进行求解。

六、实验结果与分析1. 卷积运算结果:运行卷积程序,得到卷积运算结果y[n]。

观察y[n]的波形,分析卷积运算对信号的影响。

2. 验证卷积性质:通过比较x[n] h[n]和h[n] x[n]的卷积结果,验证交换律;通过比较(x[n] h[n]) g[n]和x[n] (h[n] g[n])的卷积结果,验证结合律;通过比较x[n] (h[n] + g[n])和x[n] h[n] + x[n] g[n]的卷积结果,验证分配律。

信号与系统离散信号的卷积公式

信号与系统离散信号的卷积公式

信号与系统离散信号的卷积公式
离散信号的卷积公式是信号与系统理论中的重要概念之一。

卷积运算是将两个序列进行混合操作,以得到新的序列。

在信号处理和系统分析中,离散信号的卷积公式可以通过以下方式表示:
设有两个离散信号序列x[n]和h[n],其中n为整数。

若卷积结果为y[n],则其数学表达式为:
y[n] = Σ(x[k]·h[n-k])
其中,Σ表示求和符号,k为累加范围。

该公式表示在离散时间下,输出序列y[n]的每个元素由输入序列x[n]和h[n]的乘积累加得出。

信号的卷积可用于系统响应的计算、滤波器设计、图像处理等领域。

它可以帮助我们理解信号在系统中的传递和转换过程。

离散信号的卷积公式是信号与系统理论中的基础,为我们研究和分析离散时间系统提供了有效的数学工具。

需要注意的是,在实际应用中,离散信号的卷积计算可以通过离散傅里叶变换(DFT)等方法进行高效计算。

此外,离散信号的卷积还涉及卷积定理、卷积的性质以及快速卷积算法等相关概念。

通过学习和应用离散信号的卷积公式,我们可以更好地理解和分析离散时间系统的行为和特征。

总之,离散信号的卷积公式是信号与系统领域的重要概念,它描述了输入序列之间通过卷积运算生成输出序列的关系。

通过应用该公式,我们可以更好地理解和分析离散时间系统的特性,并在实际应用中进行信号处理和系统设计。

序列的基本运算时域变换离散信号的卷积和实验二

序列的基本运算时域变换离散信号的卷积和实验二

序列的基本运算时域变换离散信号的卷积和实验一、实验目的1、熟悉用MATLAB描绘二维图像的方法。

2、掌握用MATLAB对序列进行基本的运算和时域变换的方法。

二、实验器材MATLAB软件。

三、实验原理1、加法:x1(n)+x2(n)序列的加法运算为对应位置处量值的相加,在MATLAB中可用运算符“+”实现,但要求参与运算的序列的长度必须相等。

如果长度不等或者长度相等但采样位置不同,则不能直接应用该运算符,此时需要先给定参数使序列具有相同的位置向量和长度。

2、乘法:x1(n)·x2(n)序列的乘法运算为对应位置处量值的相乘,在MATLAB中由数组运算符“.*”实现,也受到“+”运算符同样的限制。

3、反折:x(n)→x(-n)序列的反折指序列的每个量值都对n=0做一个对称操作,从而得到一个新序列。

在MATLAB中可由fliplr(x)函数实现,此时序列位置的反折则由-fliplr(n)实现。

4、平移:x(n)→x(n-m)平移操作是将序列的每个量值都移动m个位置,在得到的新序列中,量值和原序列相同,只是位置向量n发生变化,当m>0时,表示序列向右平移,此时新序列的位置向量为n+m;当m<0时,表示序列向左平移,此时新序列的位置向量为n-m。

四、实验内容对x(n)={2,1,2,1,1}和x(n)={1,1,1,1,1}两个序列进行加法、乘法、卷积的运算。

1. 序列1()[2,1,2,1,1],22x n n =-≤≤ 与序列2()[1,1,1,1,1],04x n n =≤≤ 相加,并绘制出图形。

程序代码:主程序:clearclcx1=[2 1 2 1 1];n1=[-2:2];x2=[1 1 1 1 1];n2=[0:4];[y,n] = sigadd(x1,n1,x2,n2);stem(n,y);axis([-3,5,-1,4]);xlabel('时间序列n');ylabel('y(n)');title('y=x1(n)+x2(n)');调用程序:function [y,n] = sigadd(x1,n1,x2,n2)n = min(min(n1),min(n2)):max(max(n1),max(n2));y1 = zeros(1,length(n)); y2 = y1;y1(find((n>=min(n1))&(n<=max(n1))==1))=x1;y2(find((n>=min(n2))&(n<=max(n2))==1))=x2;y = y1+y2;仿真结果:图2.1 序列12x x + 仿真图2. 序列1()[2,1,2,1,1],22x n n =-≤≤ 与序列2()[1,1,1,1,1],04x n n =≤≤ 相乘法,并绘制出图形。

离散信号与系统的频谱分析实验报告

离散信号与系统的频谱分析实验报告

实验二 离散信号与系统的频谱分析一、实验目的1.掌握离散傅里叶变换(DFT )及快速傅里叶变换(FFT )的计算机实现方法。

2.检验序列DFT 的性质。

3.掌握利用DFT (FFT )计算序列线性卷积的方法。

4.学习用DFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差,以便在实际中正确应用DFT 。

5.了解采样频率对谱分析的影响。

6.了解利用FFT 进行语音信号分析的方法。

二、实验设备1.计算机2.Matlab 软件7.0以上版本。

三、实验内容1.对不同序列进行离散傅里叶变换并进行分析;DFT 共轭对称性质的应用(通过1次N 点FFT 计算2个N 点实序列的DFT )。

2.线性卷积及循环卷积的关系,以及利用DFT (FFT )进行线性卷积的方法。

3.比较计算序列的DFT 和FFT 的运算时间。

4.利用FFT 实现带噪信号检测。

5.利用FFT 计算信号频谱及功率谱。

6.扩展部分主要是关于离散系统采样频率、时域持续时间、谱分辨率等参数之间的关系,频谱的内插恢复,对语音信号进行简单分析。

四、实验原理1.序列的离散傅里叶变换及性质离散傅里叶变换的定义:10, )()]([)(102-≤≤==∑-=-N k en x n x DFT k X N n nk Nj π离散傅里叶变换的性质:(1)DFT 的共轭对称性。

若)()()(n x n x n x op ep +=,[])()(n x DFT k X =,则:)()]([k X n x DFT R ep =, )()]([k jX n x DFT I op =。

(2)实序列DFT 的性质。

若)(n x 为实序列,则其离散傅里叶变换)(k X 为共轭对称,即10),()(*-≤≤-=N k k N X k X 。

(3)实偶序列DFT 的性质。

若)(n x 为实偶序列,则其离散傅里叶变换)(k X 为实偶对称,即10),()(-≤≤-=N k k N X k X 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(数字信号处理)实验报告
实验名称 实验二 离散信号的卷积和 实验时间 年 9 月 28 日 专业班级 学 号 姓 名
成 绩 教师评语: 一、 实验目的
1、掌握两个离散信号卷积和的计算方法和编程技术。

2、进一步熟悉用MATLAB 描绘二维图像的方法。

二、 实验原理与计算方法
两个离散序列x(n)与y(n)的卷积和f(n)定义为
∑∞
-∞
=-=
*=m m n y m x n y n x n f )
()()()()(
由于通常信号处理中所碰到的都是有始信号或有限时间信号,因此在实际计算卷积和时,求和是在有限范围内进行的。

计算过程中上下限的选取和所得结果的分布区间取决于参与卷积的两个序列,下面将分别进行讨论: 1、两个从n = 0开始的序列)()()(n u n x n x =和)()()(n u n y n y =的卷积和
∑∑=∞-∞=-=--=
n
m m n u m n y m x m n u m n y m u m x n f 0)
()]()([)()()()()( (1)
上式右边因子u(n)表示卷积和的结果也是一个从n = 0开始的序列。

2、从n = n1开始的序列
)
()()(1n n u n x n x -=和从n = n2开始的序列)
()()(2n n u n y n y -=的卷积和,其中n1和n2为任意整数。

∑∑-=∞
-∞
=---=----=
2
1
)
()]()([)()()()()(2
1
2
1
n n n m m n n n u m n y m x n m n u m n y n m u m x n f (2)
上式右边因子u(n-n1-n2)表示卷积和是一个从n = n1+n2开始的序列。

3、从n = n1开始的长度为N1的加窗序列)
()()(1n w n x n x N =和从n = n2开始的长度
为N2的加窗序列
)
()()(2n w n y n y N =的卷积和,其中
⎩⎨
⎧-+≤≤=otherwise 0 1 1 )(1111N n n n n w N
⎩⎨
⎧-+≤≤=o t h e r w i s e 0 1
1 )(2222N n n n n w N

∑∞
-∞
=--=
m N N m n w m n y m w
m x n f )
()()()()(21
(3)
所得卷积和也是一个加窗序列,从n = n1+ n2开始,长度为N1+ N2-1。

MATLAB 提供了一个内部函数conv(x,h)用来计算两个有限长度序列的卷积,该函数得到的卷积结果默认从n=0开始,因此当参与卷积的两个序列的起始位置不是n=0时,则由该函数得到的计算结果将出现错误,此时需要重新定义结果的位置向量。

由以上卷积运算的原理可知,两有限长序列卷积后仍为有限长序列,长度为两序列长度之和减1,结果的起始位置为两序列起始位置之和,截止位置为两序列截止位置之和。

据此,可以得到卷积结果的位置向量。

实验内容及结果
(1) 根据(1)式计算两个从n = 0开始的序列)()(n u n x =和)()(n u e
A n y an
-=的卷积和,
其中A=40,a = 0.5。

取50个样值点,作出序列)(n x 、)(n y 及卷积和f(n)的图像。

(2) 根据(3)式计算两个有限长序列)
()(1n w n x N =和
)(8)(2n w n
n y N =
的卷积和,其

⎩⎨⎧≤≤=otherwise 0 910- 1 )(1n n w N ⎩⎨
⎧≤≤=o t h e r w i s e 0 24
5 1 )(2n n w N
作出序列x(n)、y(n)及卷积和f(n)的图像。

结果如下:
第一题:首先定义一个样值点为50,从0开始的阶跃信号,具体如下: function x = stepseq(n0,n1,n2) if ((n0 < n1) | (n0 > n2) | (n1 > n2))
error('arguments must satisfy n1 <= n0 <= n2') end
n = [n1:n2];
x = [(n-n0) >= 0];
然后根据题目要的来定义参数和编写代码,具体如下: figure(1) n=0:50;
x=stepseqi(0,0,50) b=40.*exp(-0.5.*n).*x; c=conv(x,b); figure(1); stem(n,x);
title('u(n)序列的图像') figure(2); stem(n,b);
title('y(n)序列的图像') figure(3);
stem(c);
title('卷积和f(n)的图像') 实验结果如下:
第二题:首先定义阶跃函数,具体如下:function [n,x] = stepseq(n0,n1,n2)
if ((n0 < n1) | (n0 > n2) | (n1 > n2))
error('arguments must satisfy n1 <= n0 <= n2')
end
n = [n1:n2];
x = [(n-n0) >= 0];
然后根据题意编写代码,具体如下:figure(1)
[n,x]=stepseq(-10,-10,9)
subplot(3,1,1);
stem(n,x,'.');
title('x(n)图像')
[n,y]=stepseq(5,5,24)
y=(n./8)
subplot(3,1,2);
stem(n,y,'.');
title('y(n)图像')
[n,g]=stepseq(-5,-5,33)
g=conv(x,y)
subplot(3,1,3);
stem(n,g,'.');
title('f(n)图像')
结果如下:。

相关文档
最新文档