实数讲义

合集下载

《实数》 讲义

《实数》 讲义

《实数》讲义一、实数的概念实数,这个在数学世界中极为基础且重要的概念,是我们理解数量关系和解决数学问题的关键。

简单来说,实数就是包括有理数和无理数的数集。

有理数,我们都很熟悉,像整数(正整数、零、负整数)和分数(正分数、负分数)都属于有理数。

而无理数呢,则是那些无限不循环小数,比如大家熟知的圆周率π,还有根号 2 等等。

实数可以直观地理解为在数轴上能找到对应点的数。

也就是说,数轴上的每一个点都代表着一个实数,反之,每一个实数也都能在数轴上找到对应的点。

二、有理数有理数是实数的重要组成部分。

整数,像-3、0、5 这样的数,它们没有小数部分,清晰明了。

分数呢,比如 1/2、3/4 ,可以表示为两个整数的比值。

有理数具有一些很重要的性质。

比如,两个有理数相加、相减、相乘或相除(除数不为 0),结果仍然是有理数。

而且,有理数是可以用有限小数或无限循环小数来表示的。

我们在日常生活中,很多常见的数量关系都可以用有理数来描述。

比如购物时的价格、物品的数量等等。

三、无理数无理数虽然不像有理数那样“规矩”,但在数学中同样不可或缺。

像根号 2 ,它的值约为 141421356……,这个小数无限且不循环。

圆周率π,约为31415926……,也是一个无限不循环小数。

无理数的发现,让人们对数学的认识更加深入和丰富。

虽然它们的数值看起来没有规律,但通过数学方法和计算,我们可以对它们进行近似和研究。

四、实数的运算实数的运算包括加法、减法、乘法、除法和乘方等。

加法和减法:实数的加法和减法遵循相同的规则,即将对应位上的数字相加或相减,并考虑进位和借位。

乘法:两个实数相乘,先将它们按照整数乘法的规则相乘,然后确定积的符号(同号得正,异号得负),最后根据小数位数确定积的小数点位置。

除法:将除数变为倒数,然后与被除数相乘。

乘方:一个实数的 n 次幂,就是将这个实数乘以自身 n 次。

在进行实数运算时,要特别注意运算顺序,先算乘方、开方,再算乘除,最后算加减。

7年级上册数学第三章《实数的运算综合》讲义

7年级上册数学第三章《实数的运算综合》讲义

【3.1 平方根】1、平方根的含义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根。

即a x =2,x 叫做a 的平方根。

2、平方根的性质与表示 ⑴ 表示:正数a 的平方根用a ±表示,a 叫做正平方根,也称为算术平方根,a -叫做a 的负平方根。

⑵ 1、一个正数有两个平方根:a ± (根指数2省略)2、0有一个平方根,为0,记作00=3、负数没有平方根⑶ 平方与开平方互为逆运算 开平方:求一个数a 的平方根的运算。

a a =2=⎩⎨⎧-a a 00<≥a a ()a a =2(0≥a )⑷ a 的双重非负性 0≥a 且0≥a (应用较广) Eg :y x x =-+-44 得知0,4==y x⑸ 如果正数的小数点向右或者向左移动两位,它的正的平方根的小数点就相应地向右或向左移动一位。

拓展:两次根式的运算区分:4的平方根为____ 4的平方根为____ ____4= 4开平方后,得____【典型例题】1、 25的平方根是 ,算术平方根是 .=+412_________ . 2、已知2x =100,则x= . 已知2+x =2,则2)2(+x =______.3、如果一个非负数的平方根是2a-1和a-5,则这个数是________.4、下列说法中,正确的个数是 ( )① ±5是25的平方根 ② 49的平方根是-7 ③ 8是16的算术平方根 ④ -3是9的平方根A .1B .2C .3D .45、已知实数a 、b 、c 满足,2|a-1|+2b c ++2)21(-c =0,,求a+b+c 的值.6、若12112--+-=x x y ,求x ,y 的值。

7、已知325y 2+--=x ,求x 取何值时,y 有最大值。

【学生练习1】1、522y 2++-+-=x x x ,求x y 的平方根和算术平方根。

2、若0|2|1=-++y x ,求x+y 的值。

实数概念分类性质讲义(含答案)

实数概念分类性质讲义(含答案)

实数知识点一:无理数1 无理数的概念:无限不循环小数叫做无理数. 注意:(1)所有开方开不尽的方根都是无理数,不是所有带根号的数都是无理数. (2)圆周率π及一些含π的数是无理数. (3)不循环的无限小数是无理数.(4)有理数可化为分数,而无理数则不能化为分数. 2 无理数的性质:设a 为有理数,b 为无理数,则a+b ,a-b 是无理数;3、判断方法:①定义是判断一个数是不是无理数的重要依据;②有理数都可以写成分数的形式,而无理数则不能写成分数的形式(两个整数的商).4等;②含有π一类数,如5π,3+π等;③以无限不循环小数的形式出现的特定结构的数,如0.2020020002…(相邻两个2之间0的个数逐渐加1).二、知识点+例题+练习一、无理数的判断1.判断一个数是不是无理数,必须看它是否同时满足两个条件:无限小数和不循环小数这两者缺一不可.2.带根号的数并不都是无理数,而开方开不尽的数才是无理数. 【例1】0;3227;1.1010010001…,无理数的个数是 A .5B .4C .3D .2【答案】C【解析】因为02273π;1.1010010001…是无限不循环小数,所以无理数有3个,故选C .【变式训练1-1】在,–2018,π这四个数中,无理数是A .B .–2018CD .Π【答案】D1、实数的概念:有理数和无理数统称为实数.2、实数的分类: (1)实数按定义分类:0⎧⎧⎫⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数整数负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数负无理数( 2 )按正负分类:227227例题精讲二、实数的概念和分类1.实数的分类有不同的方法,但要按同一标准,做到不重不漏.2.对实数进行分类时,应先对某些数进行计算或化简,然后根据最后结果进行分类.【例1】在5π131401232,,,.,,----中,其中__________是整数,__________是无理数,__________是有理数.【答案】01-;π5131401322,,;,,.,---- 【例2】将这些数按要求填入下列集合中:0.01001001…,4,122-,3.2,0,-1,-(-5),-|-5|负数集合{ …};分数集合{…};非负整数集合{…};无理数集合{…}.【解析】负数集合{122-,-1,-|-5| 分数集合{122-,3.2…}; 非负整数集合{4,0,-(-5)…};无理数集合{0.01001001…,【变式训练2-1】判断正误.(1)实数是由正实数和负实数组成.( ) (2)0属于正实数.( )(3)数轴上的点和实数是一一对应的.( )(4)如果一个数的立方等于它本身,那么这个数是±1.( )(5)若x =x =( )【答案】(1)×;(2)×;(3)√;(4)×;(5)√.【变式训练2-2】下列说法错误的是( )A .实数都可以表示在数轴上B .数轴上的点不全是有理数C .坐标系中的点的坐标都是实数对 D【答案】D【变式训练2-3】下列说法正确的是( )A .无理数都是无限不循环小数B .无限小数都是无理数C .有理数都是有限小数D .带根号的数都是无理数【答案】A【变式训练2-4】 把下列各数填入相应的集合:-1、π、 3.14-、12、7.0、0(1)有理数集合{ }; (2)无理数集合{ }; (3)整数集合{ }; (4)正实数集合{ }; (5)负实数集合{ }.【答案】(1)-1 3.14-、12、7.0、0(2-、(3)-10;(4、π、127.0 ;(5)-1、 3.14-、(1)任何实数a ,都有一个相反数-a .(2)任何非0实数a ,都有倒数1a.(3)正实数的绝对值是它本身,负实数的绝对值是它的相反数,0的绝对值是0.(4)正实数大于0,负实数小于0;两个正实数,绝对值大的数大,两个负实数,绝对值大的反而小.一、相反数与绝对值求一个有理数的相反数和绝对值与求一个实数的相反数和绝对值的意义是一样的,实数a 的相反数是-a ,一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0.【例1的相反数是A .BC .D 【答案】A【解析】根据相反数的定义可知:2的相反数是2-,故选A . 【例2】3-π的绝对值是 A .3-π B .π-3 C .3 D .π【答案】B【解析】∵3−π<0,∴|3−π|=π−3,故选B .【例3】 A .相反数 B .倒数 C .绝对值 D .算术平方根【答案】A【解析】A .【变式训练3-1的相反数是________;的倒数是________;35-的绝对值是________.【答案】【变式训练3-2】3.141π-=______;=-|2332|______.【答案】-3.141π;【变式训练3-3】若||x =x =______;若||1x ,则x =______.【答案】1或11 实数与数轴上的点一一对应:即数轴上的每一个点都可以用一个实数来表示,反过来,每个实数都可以在数轴上找到表示它的点. 2、两个实数比较大小:1.数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大;2.正实数大于0,负实数小于0,正实数大于一切负实数,两个负实数比较,绝对值大的反而小.【例1】如图,数轴上点P 表示的数可能是AB .C .–3.2D .【答案】B≈2.65 3.16,设点P 表示的实数为x ,由数轴可知,–3<x <–2,∴符合题意的数为.故选B .【例2】和数轴上的点成一一对应关系的数是A .自然数B .有理数C .无理数D .实数【答案】D【解析】数轴上的点不仅表示有理数,还表示所有的无理数,即实数与数轴上得点是一一对应的,故选D .【例3】已知实数m 、n 在数轴上对应点的位置如图所示,则下列判断错误的是A .m <0B .n >0C .n >mD .n <m【答案】D【解析】由数轴上的点,得m <0<n ,所以m <0,n >0,n >m 都正确,即选项A ,B ,C 判断正确,选项D 判断错误.故选D .【变式训练4-1】已知数轴上A 、B 两点表示的数分别为–3A 、B 间的距离为__________. 【解析】A 、B 两点表示的数分别为–3和A 、B 间的距离为3),故答案为:.【变式训练4-2】如图,点A 、B 、C 在数轴上,O 为原点,且BO :OC :CA =2:1:5. (1)如果点C 表示的数是x ,请直接写出点A 、B 表示的数; (2)如果点A 表示的数比点C 表示的数两倍还大4,求线段AB 的长.【解析】(1)∵BO :OC :CA =2:1:5,点C 表示的数是x , ∴点A 、B 表示的数分别为:6x ,–2x ;(2)设点C 表示的数是y ,则点A 表示的数为6y , 由题意得,6y =2y +4, 解得:y =1,∴点C 表示的数是1,点A 表示的数是6,点B 表示的数是–2, ∴AB =8. 二、比较大小【例4】 ) A .7~8之间 B .8.0~8.5之间 C .8.5~9.0之间D .9~10之间【答案】C【例5】 实数2.6 ( )A .2.6<<B .2.6C 2.6<D 2.6<【答案】B【变式训练4-3】一个正方体水晶砖,体积为1002cm ,它的棱长大约在 ( ) A .4~5cm 之间 B .5~6cm 之间 C .6~7cm 之间 D .7~8cm 之间【答案】A【变式训练4-4】把下列各数按照由大到小的顺序,用不等号连接起来.4,4-,153-,1.414,π,0.6, ,34-,【答案】314 1.4140.64543π>>>>>>->-.1.在进行实数的运算时,有理数的运算法则、运算性质、运算顺序、运算律等同样适用.2.在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算. 【例1】计算下列各式:(1)221.【解析】(1=-.(2)原式21=1=.【变式训练5-1】计算题(1)32716949+- (2) 233)32(1000216-++【解析】(1)32716949+-71333=-+=-; (2)233)32(1000216-++226101633=++=. 【答案】(1)3-;(2)2163.1.在下列实数中,属于无理数的是 A .0BC .3D .2.在每两个1之间依次多一个中,无理数的个数是 A .1个 B .2个C .3个D .4个3的值在 A .0和1之间B .1和2之间C .2和3之间D .3和4之间4.下列四个数中,最小的一个数是 A .5的绝对值是A .3B .6.下列说法中,正确的个数有 ①不带根号的数都是有理数; ②无限小数都是无理数;③任何实数都可以进行开立方运算;1313.140.231.131331333133331(3π-,,,,……3)B 3-.C -.D π-.3-1C 3.1D 3-.④不是分数. A .0个B .1个C .2个D .3个7.下列各组数中互为相反数的一组是 A .-|-2|B .-4与C .与D .8.如图,数轴上点P 表示的数可能是AB.C . 3.4-D.92-的相反数是__________,绝对值是__________. 10.计算:+-=__________.11__________. 12=__________(=__________. 13.把下列各数填入相应的集合内:4230.15,-7.5,-π,0,23.. ①有理数集合:{ …}; ②无理数集合:{ …}; ③正实数集合:{ …}; ④负实数集合:{…}.14.已知:x 是|-3|的相反数,y 是-2的绝对值,求2x 2-y 2的值.515.已知ab的小数部分,|c,求a -b +c 的值.16.已知5的小数部分分别是a 、b,则(a +b )(a–b )=__________.17.6的整数部分是a ,小数部分是b .(1)a =__________,b=__________.(2)求3a –b 的值.18.如图,点A ,一只蚂蚁从点A沿数轴向右直爬2个单位后到达点B,设点B 所表示的数为n .(1)求n的值;(2)求|n +1|+(n –2)的值.答案:1.【答案】B【解析】0、3、是无理数.故选B . 2.【答案】C【解析】,π,1.131331333133331……(每两个1之间依次多一个3)是无理数,故选C . 3.【答案】B【解析】∵<2的值在:1和2之间.故选B .4.【答案】D【解析】∵7<8<9<π2,3<π,∴>–π,∴最小的一个数是–π.故选D . 13<<3--5.【答案】A.–3的绝对值是3.故选A.6.【答案】C【解析】①不带根号的数不一定是有理数,如π,错误;②无限不循环小数是无理数,错误;③任何实数都可以进行开立方运算,正确;不是分数,正确;故选C.8.【答案】B【解析】由图可知,P点表示的数在之间,故选B.9.【答案】22;--2-的相反数是2-,绝对值是2-,故答案为:22;--10.【答案】【解析】(35+-=+-,故答案为.11.【答案】【解析】它们互为相反数,分别是故答案为:121)3(1-13-1.3=-13.【解析】有理数集合:{4,230.15,-7.5,0,23.…};,π-…};4,230.15,23.…}; ④负实数集合:{-7.5,π-…}.14.【解析】∵x 是|−3|的相反数,∴x 是3的相反数−3,即x =−3.∵y 是−2的绝对值,∴y =2.∴22229414x y -=⨯-=.15.【解析】∵<3,∴a =2,b-2,∵|c,∴c当ca -b +c =4;当c =a -b +c =4-.16.【答案】5【解析】∵与5a 、b ,∴a =(–2,b=(5)–2=3,∴(a+b )(a –b )=–2+32–5.故答案为:5.17.【解析】(1)∵,∴<3.∴–23.∴6–2>66–3,∴4>63.∴a =3,b =3(2)3a –b =3×3–(3=9–1. 下列命题中,错误的命题个数是( )(1)2a -没有平方根; (2)100的算术平方根是10,记作10100=± (3)数轴上的点不是表示有理数,就是表示无理数; (4)2是最小的无理数.A .1个B .2个C .3个D .4个【答案】C2. 若22b a =,则下列等式成立的是( )A .33b a =B .b a =C .b a =D . ||||b a =【答案】D3. 已知坐标平面内一点A(2-,3),将点A A ′的坐标为 .【答案】(2--四、课后作业4.已知10<<x ,则21x x x x 、、、的大小关系是__________________________(用“>”连接). 【解析】可以采用特殊值法解题,如14x =.【答案】21x x x>>5.计算:(1(2)2(2)-【解析】(111213333-=- ;(2)2(2)-11433231423=⨯+-⨯=+-=. 【答案】(1) 13- ; (2)4.6.已知一个长方体封闭水箱的容积是1620立方分米,它的长、宽、高的比试5:4:3,则水箱的长、宽、高 各是多少分米?做这个水箱要用多少平方分米的板材?【解析】在列方程解应用题时,要注意见比设k 的应用.【答案】长、宽、高各是15分米,12分米,9分米;846平方分米.7.已知实数a ,满足0a =,求11a a -++的值.【解析】0a ,0a a a ∴++=,20a a +=,0a ∴=,112a a -++=【答案】28.先阅读理解,再回答下列问题:,且12<<的整数部分为1;23<2;=34<的整数部分为3;n 为正整数)的整数部分为______,请说明理由.【解析】n2(1)n n n n +=+,又22(1)(1)n n n n <+<+,1n n ∴<+(n 为正整数),∴整数部分为n .【答案】n9. 计算下列各组算式,观察各组之间有什么关系,请你把这个规律总结出来,然后完成后面的填空.(1(2(3(4(5= ;(6= (0,0)a b ≥≥.【解析】(5(6【答案】(5;(610.若a 为217-的整数部分,1-b 是9的平方根,且a b b a -=-||,求b a +的算术平方根.【解析】161725,45,223,2a <<∴<∴<<∴=,14b b -==或2b =-.又a b b a -=-,b a ∴≥,2,4a b ∴==,.。

七年级(下)数学 同步讲义 实数的概念及数的开方 (解析版)

七年级(下)数学 同步讲义 实数的概念及数的开方 (解析版)

知识点1:实数的概念1、无限不循环的小数叫做无理数.注意:1)整数和分数统称为有理数; 2)圆周率π是一个无理数. 2、无理数也有正、负之分.如2、π、0.101001000100001等这样的数叫做正无理数;2-、π-、0.101001000100001-这样的数叫做负无理数;只有符号不同的两个无理数,如2与2-,π与π-,称它们互为相反数.实数、数的开方知识结构模块一 实数的概念和分类知识精讲3、有理数和无理数统称为实数. (1)按定义分类⎧⎫⎧⎪⎪⎨⎬⎨⎪⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数(2)按性质符号分类0⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数【例1】 写出下列各数中的无理数:3.1415926,2π,16,.0.5,0,23-,0.1313313331…(两个1之间依次多一个3),0.2121121112.【答案】2π、0.1313313331….【解析】无限不循环小数都是无理数. 【总结】考查无理数的概念.【例2】 判断正误,在后面的括号里对的用“√”,错的记“×”表示.(1)无限小数都是无理数. ( ) (2)无理数都是无限小数.( ) (3)带根号的数都是无理数.( ) (4)不带根号的数一定不是无理数.()【答案】(1)×; (2)√; (3)×; (4)×.【解析】(1)无限不循环小数才是无理数;(2)无理数是无限不循环小数当然是无限小数; (3)开方开不尽的数是无理数;(4)π没带根号但是无理数. 【总结】考查无理数的概念及无理数与小数的关系.【例3】 a 是正无理数与a 是非负无理数这两种说法是否一样?为什么. 【答案】一样.例题解析【解析】a 是非负无理数实质上就是说a 是正无理数,因为0不是无理数. 【总结】考查无理数的分类及无理数的概念.【例4】 若a +bx =c +dx (其中a 、b 、c 、d 为有理数,x 为无理数),则a =c ,b =d ,反之, 亦成立,这种说法正确吗?说明你的理由. 【答案】略.【解析】移项得:()()a c d b x -=-, 因为非零有理数乘以无理数的结果还是无理数,而a c -是有理数(两个有理数的差仍是有理数),忧伤0d b -=,从而0a c -=, 于是有:a c b d ==,,当a c b d ==,时,等式a bx c dx +=+成立. 【总结】考查有理数、无理数的运算性质.【例5】 3为什么是无理数?请说明理由.【解析】假设3是有理数,则3能写成两个整数之比的形式:3p q=, 又因为p 、q 没有公因数可以约去,所以pq是最简分数. 把3p q=两边平方,得223p q =,即223q p =.由于23q 是3的倍数,则p 必定是3的倍数.设3p m =, 则2239q m =, 同理q 必然也是3的倍数,设3q n =,既然p 、q 都是3的倍数,它们必定有公因数3,与前面假设pq是最简分数矛盾, 故3是无理数.【总结】考查对无理数的理解及证明.模块二:数的开方知识精讲一、开平方:1、定义:求一个数a的平方根的运算叫做开平方.2、如果一个数的平方等于a,那么这个数叫做a的平方根.这个数a叫做被开方数.x=±,1的平方根是1±.如21x=,1说明:1)只有非负数才有平方根,负数没有平方根;2)平方和开平方互为逆运算.3、算术平方根:正数a的两个平方根可以用“a的正平方根(又叫算术平方根),读作“根号a”;a的负平方根,读作“负根号a”.★注意:1)一个正数有两个平方根,这两个平方根互为相反数;零的平方根是0;2=2是被开方数的根指数,平方根的根指数为2,书写上一般平方根的根指数2略写;3)一个数的平方根是它本身,则这个数是0.二、开立方:1、定义:求一个数a的立方根的运算叫做开立方.2、如果一个数的立方等于a,那么这个数叫做a的立方根号a a叫做被开方数,“3”叫做根指数.★注意:1)任意一个实数都有立方根,而且只有一个立方根;负数有立方根;2)零的立方根是0;3)一个数的立方根是它本身,则这个数是0,1和-1.三、开n次方:1、求一个数a的n次方根的运算叫做开n次方.a叫做被开方数,n叫做根指数.2、如果一个数的n次方(n是大于1的整数)等于a,那么这个数叫做a的n次方根.3、当n为奇数时,这个数为a的奇次方根;当n为偶数时,这个数为a的偶次方根.★注意:1)实数a a是任意一个数,根指数n是大于1的奇数;2)正数a”表示,负n次方根用“0n=时,在中省略n);a>,根指数n是正偶数(当23)负数的偶次方根不存在;4)零的n 次方根等于零,表示为00n =.【例6】 写出下列各数的平方根:(1)9121; (2)2(9)-.【答案】(1)311±; (2)3±. 【解析】注意要先把题中给的算式化简,再求它的平方根. 【总结】考查平方根的概念,注意平方根有两个.【例7】 写出下列各数的正平方根: (1)225;(2)9.【答案】(1)15;(2)3.【解析】(1)15; (2)93=,3的正平方根是3. 【总结】考查平方根的概念,注意对正平方根的准确理解.【例8】 下列各式是否正确,若不正确,请说明理由.(1)1的平方根是1;(2)9是2(9)-的算术平方根; (3)π-是2π-的平方根;(4)81的平方根是9±.【答案】(1)×; (2)√; (3)×; (4)×.【解析】(1)错误:1的平方根是1±;(2)正确;(3)错误:2π-是负数,没有平方根; (4)2π-错:819=,9的平方根是3±.例题解析【总结】考查平方根的基本概念,注意一定要先化简,再求平方根.【例9】写出下列各数的立方根:(1)216;(2)0;(3)1-;(4)3438-;(5)27.【解析】(1)6;(2)0;(3)1-;(4)72-;(5)3.【总结】本题主要考查立方根的概念.【例10】判断下列说法是否正确;若不正确,请说明理由:(1)一个数的偶次方根总有两个;()(2)1的奇次方根是1±;()(3)7=±;()(4)2±是16的四次方根;()(5)a的n次方根的个数只与a的正负有关.()【答案】(1)×;(2)×;(3)×;(4)√;(5)×.【解析】(1)错误:负数没有偶次方根;(2)错误:奇次方根只有一个,所以1的奇次方根是1;(37=;(4)正确;(5)错误:还与n的奇偶性有关.【总结】考查数的开方的基本概念,注意奇次方根与偶次方根的区别.【例11】写出下列各数的整数部分和小数部分:(1(2(3)9【解析】(1)因为89=,8,8;(2)因为78==77;(3)因为34=,所以596<<,所以95,小数部分为4-【总结】考查利用估算法求出无理数的整数部分和小数部分.【例12】 求值:(1 (2);(3)2; (4)2(.【解析】(1)12; (2)0.1- ; (3)4; (4)11. 【总结】考查对平方根的理解及运用.【例13】 求值:(1 (2 (3; (4【解析】(1)4; (2)35-; (3)原式54=-; (4)原式2-. 【总结】考查实数的立方根的运用.【例14】 求值:(1 (2 (3; (4【解析】(1)6 ; (2)3 ; (3)3- ; (4)2. 【总结】考查实数的奇次方根与偶次方根的计算.【例15】 求值:(1(2)(3.【解析】(1)0.5 ; (2)原式=95; (3)原式60=. 【总结】考查实数的立方根运算.【例16】 小明的房间面积为17.62m ,房间的地面恰好由110块大小相同的正方形地砖铺成,问:每块地砖的边长是多少? 【答案】0.4m .【解析】设每块地砖的边长是x 米,则有:211017.6x =,化简得20.16x =,解得:0.4x = 即每块地砖的边长是0.4m .【总结】考查实数的运算在实际问题中的运用.【例17】 已知2a -1的平方根是3±,3a +b -1的算术平方根是4 【答案】3.【解析】由题意知:219a -=,3116a b +-=,即210a =,173b a =-解得:5a =,2b =,所以2549a b +=+=3=. 【总结】本题主要考查实数的平方根与算术平方根的区别,以及代数式的值.【例18】 若a 的平方根恰好是方程3x +2y =2的一组解,求x y a a +的值.【答案】125716()1616或.【解析】由题意,因为a 的两个平方根是相反数,那么y x =-,则有:32322x y x x +=-=,即2x =,2y =-.那么由题意可得:4a =,所以22125744161616x y a a -+=+=+=. 【总结】本题主要考查实数的平方根与求代数式的值.【例19】 3,3(43)8x y +=-,求2()n x y +的值. 【答案】1.【解析】由题意可得:49432x y x y -=⎧⎨+=-⎩, 解得:12x y =⎧⎨=-⎩,所以222()(12)(1)1n n n x y +=-=-=.【总结】本题考查实数的开方以及二元一次方程组的解法,学生忘记解方程组的情况下,老师可以略微拓展复习一下二元一次方程组的解法哦.【例20】用“>”把下列各式连接起来:=,-12-23【总结】本题考查实数的大小比较,注意先化简,再比较大小.【例21】 1.732 5.477≈,利用以上结果,求下列各式的近似值.(1≈_______;(2____________;(3≈_________;(4≈______________;(5___________;(6≈_____________.【答案】略.【解析】(1 1.7321017.32⨯=;(2 5.4771054.77≈⨯=;(3 1.732100173.2⨯=;(4 5.4770.10.5477≈⨯=;(5 1.7320.10.1732⨯=;(6 5.4770.010.05477≈⨯=.【总结】本题考查实数的运算,注意每题之间的联系,类比推理.【例22】填写下表,并回答问题:a…0.000001 0.001 1 1000 1000000 …….3a……(1)数a与它的立方根3a的小数点的移动有何规律?(2)根据这个规律,若已知33,,求a的值.==a0.005250.1738 1.738【解析】(1)由题可知,被开方数a的小数点每向右或向左移动三位,立方根3a的小数点相应地向右或向左移动一位;(2)由(1)总结的规律可知: 5.25a=.【总结】本题考查实数的开方与被开方数之间的关系,注意引导学生仔细分析表格.【例23】阅读下面材料并完成填空:你能比较两个数20162017和20172016的大小吗?为了解决这个问题先把问题一般化,要比较n n+1和(n+1)n的大小(的整数),先从分析n=1,=2,=3,……这些简单的情况入手,从中发现规律,经过归纳,猜想出结论.(1)通过计算,比较下列①—⑦各组中两个数的大小(在横线上填“>、=、<”号①12______21;②23______32;③34______43;④45______54;⑤56______65;⑥67______76;⑦78______87.(2)对第(1)小题的结果进行归纳,猜想出n n+1和(n+1)n的大小关系: ______(3)根据上面的归纳结果猜想得到的一般结论是:20162017_____20172016.【答案】(1)①<;②<;③>;④>;⑤>;⑥>;⑦>:(2)当n =1或2时,n n+1<(n+1)n;当n>2的整数时,n n+1>(n+1)n;(3)>.【解析】(1)①12 <21;②23<32;③34>43;④45>54;⑤56>65;⑥67>76;⑦78>87;(2)当n=1或2时,n n+1<(n+1)n;当n>2的整数时,n n+1>(n+1)n;(3)根据第(2)小题的结论可知,20162017>20172016.【总结】本题考查实数的运算规律,注意观察计算后的结果,总结出规律。

第一讲 实数辅导讲义

第一讲 实数辅导讲义

重点考点例析考点一:无理数的识别。

例1 (2012•六盘水)实数312,,,8,cos 45,0.323o &&中是无理数的个数有( )个.A . 1B . 2C . 3D . 4 点评:此题考查了无理数的定义,属于基础题,关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数。

对应训练1.(2012•盐城)下面四个实数中,是无理数的为( )A .0B .3C .﹣2D .27考点二、实数的有关概念。

例2 (2012•乐山)如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作( )A .﹣500元B . ﹣237元C . 237元D . 500元点评: 此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.例3 (2012•遵义)﹣(﹣2)的值是( )A .﹣2B . 2C . ±2D . 4点评: 本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.例4 (2012•扬州)﹣3的绝对值是( )A .3B . ﹣3C . ﹣3D .点评: 此题主要考查了绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.例5 (2012•黄石)13-的倒数是( ) A .13 B . 3 C . ﹣3 D .13- 点评: 此题考查倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.例6 (2012•怀化)64的立方根是( )A .4B . ±4C . 8D . ±8点评: 此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.例7 (2012•荆门)若29x y -+与|3|x y --互为相反数,则x+y 的值为( )A .3B . 9C . 12D . 27点评: 本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.对应训练2.(2012•丽水)如果零上2℃记作+2℃,那么零下3℃记作( )A .﹣3℃B . ﹣2℃C . +3℃D . +2℃3.(2012•张家界)﹣2012的相反数是( )A .﹣2012B . 2012C .12012-D .120124.(2012•铜仁地区)|﹣2012|= .5.(2012•常德)若a 与5互为倒数,则a=( )A .15 B . 5 C . ﹣5 D .156.(2011•株洲)8的立方根是( )A .2B . ﹣2C . 3D . 4 7.(2012•广东)若x ,y 为实数,且满足|x ﹣3|+=0,则()2012的值是 .考点三、实数与数轴。

《实数》 讲义

《实数》 讲义

《实数》讲义一、实数的定义实数,是数学中最基本的概念之一。

简单来说,实数就是有理数和无理数的统称。

有理数,大家应该都比较熟悉,像整数(包括正整数、零、负整数)和分数(包括有限小数和无限循环小数),都属于有理数。

比如5、0、-3 、1/2 、0333 等等。

而无理数,则是那些无限不循环小数。

比较典型的无理数有圆周率π(约等于 31415926)、根号 2(约等于 14142135)等等。

二、实数的性质1、实数的有序性实数是可以按照大小顺序排列的。

对于任意两个实数 a 和 b,要么a < b,要么 a = b,要么 a > b,这三种情况必有且仅有一种成立。

2、实数的稠密性在任意两个不同的实数之间,总是存在着无数个其他的实数。

这意味着实数在数轴上是密密麻麻分布的,没有任何空隙。

3、实数的运算性质实数具有加、减、乘、除(除数不为 0)四则运算的封闭性。

也就是说,两个实数进行四则运算,其结果仍然是实数。

例如:3 + 5 = 8,5 2 = 3,3 × 4 = 12,6 ÷ 2 = 3 。

而且,实数的运算还满足交换律、结合律和分配律。

交换律:a + b = b + a ,a × b = b × a 。

结合律:(a + b) + c = a +(b + c) ,(a × b) × c = a ×(b ×c) 。

分配律:a ×(b + c) = a × b + a × c 。

三、实数与数轴数轴是一条规定了原点、正方向和单位长度的直线。

每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都对应着一个实数。

例如,实数 5 可以用数轴上距离原点 5 个单位长度且在正方向上的点来表示;实数-3 则可以用数轴上距离原点 3 个单位长度且在负方向上的点来表示。

四、实数的分类1、按符号分类实数可以分为正实数、零和负实数。

(完整版)实数讲义

(完整版)实数讲义
当 时, ,例如 ;
当 时, ,例如
5、立方根的概念及性质(例8)
(1)立方根的定义:一般地,如果一个数 的立方等于 ,即 ,那么这个数 就叫做 的立方根,也叫做 的三次方根.如 ,2叫做8的三次方根.
(2)立方根的性质:一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0.
(3)立方根的表示:数 的立方根用符号“ ”来表示,读作“三次根号 ”。其中, 称为被开方数,3称为根指数。
12、近似数(例15)
接近实际的数或在计算中按要求所取的与某个准确数接近的数,我们把它叫做近似数.
注意:近似数产生的原因主要有两种:(1)有些需要度量的数,由于受到测量工具精度的限制,得到完全准确的数值几乎是不可能的,这就需要用和准确数尽可能接近的数来表示;(2)有时没有必要完全准确,用近似数表示就可以了.
6、开立方(例9)
求一个数的立方根的运算,叫做开立方.
(1)开立方是一种运算,是与加、减、乘、除、乘方一样的运算,是求立方根的过程,立方和开立方互为逆运算.
(2)由立方根的性质可知开立方的结果是唯一的.
7、无理数(例10)
(1)无理数:无限不循环小数叫做无理数.
(2)无理数的常见类型主要有以下3种:
(3)对于带有“文字单位”的近似数,在确定其精确到哪一位时,分为两种情况:文字单位前面是整数,如18亿,则它精确到文字单位这一位(亿位);文字单位前面是小数,如2.61万,则先将它还原为普通数26100,此时1所在的数位(百位)就是它精确到的数位.
三、例题讲解
1、下列各数中,没有平方根的是()
A.1 B.0 C. D.
所有带根号且被开方数是开方开不尽的数;
圆周率 及一些含有 的数;
无理数与有理数的和、差,无理数乘或除以一个不为0的有理数所得的结果.

12.6 实数的运算 讲义

12.6 实数的运算  讲义

第十二章 第6讲 实数的运算学习目标理解实数的运算法则、性质和顺序并能根据相关知识进行实数运算;会利用平方根意义化简根式;掌握实数的加、减、乘、除、开方、乘方的运算;能辨别精确数与近似数,并能确定近似数的精确度,能求出近似数的有效数字。

知识精要1.实数的运算法则:在实数范围内,可以进行加、减、乘、除、乘方及开方运算,有理数的运算法则和运算性质在实数范围内仍然适用。

2.实数的运算顺序:实数混合运算的运算顺序与有理数运算顺序基本相同,先乘方、开方,再乘除,最后算加减。

同级运算按照从左到右的顺序进行,有括号的要先算括号里面的。

3.实数的运算结果:对于涉及无限小数的运算,可以根据保留几位小数的要求,取无限小数的近似值(有限小数)进行运算,将实数的运算转化为有限小数的运算,逐步接近原来的运算结果;对于涉及无理数的运算,如果没有指明运算结果保留几位小数,那么通常是利用实数的运算法则和运算性质对算式进行化简,其结果可能是化简了的一个算式。

4.实数的运算性质: (1)⎪⎩⎪⎨⎧<-=>==)0(,)0(,0)0(,2a a a a a a a (2))0()(2≥=a a a (3))0,0(≥≥⋅=b a b a ab (4))0,0(>≥=b a ba b a 5.实数的精确度:一般来说,完全符合实际地表示一个量多少的数叫做准确数;与准确数达到一定接近程度的数叫做近似数(或近似值)。

近似数与准确数的接近程度即近似程度,对近似程度的要求叫做精确度。

近似数的精确度通常有以下两种表示方式:(1)精确到哪一数位,例如:精确到百分位,或精确到0.01;(2)保留几个有效数字。

有效数字:对于一个近似数,从左边第一个不为零的数字起,往右到末位数字为止的所有数字,叫做这个近似数的有效数字。

经典题型精讲(一)实数的基本运算例1.不用计算器,计算: (1)520⨯ (2)33913÷ (3))32132(33-- (4)1523458⨯- (5)51107÷⨯ (6)42625)2(+- (7)0)14.3()23)(23(-+-+π (8)22)572()572(-+举一反三:计算下列各题: (1))32332(23-- (2)⎥⎦⎤⎢⎣⎡-+--)7721(737274 (3)2)2(16+ (4)2332⨯÷÷ (5)332332÷⨯ (6)332332÷⨯ (7)32053÷⨯ (8)[]2232)7(- (9)22)23()23(--+例2.化简:(1)347+ (2)2)549549(--+ (3)722341012--+举一反三:化简:(1)2)23(- (2)2)10(-π (3))7(962=+-x x x例3.已知:0981642=+-+-a a b a ,求实数b a 、的值。

实数复习讲义

实数复习讲义

课题实数1教学目标1.掌握平方根,立方根以的概念2.掌握开平方,开立方的有关运算3.利用所学的知识解决实际问题重点、难点1. 开平方,开立方的有关运算2. 利用所学的知识解决实际问题教学内容类型一.有关概念的识别例1.下面几个数:0.23,1.010010001…,,3π,,,其中,无理数的个数有()A、1B、2C、3D、4举一反三:【变式1】下列说法中正确的是()A、的平方根是±3B、1的立方根是±1C、=±1D、是5的平方根的相反数【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A、1B、1.4C、D、【变式3】类型二.计算类型题例2.设,则下列结论正确的是()A. B. C. D.举一反三:【变式1】1)1.25的算术平方根是__________;平方根是__________.2)-27立方根是__________.3)___________,___________,___________.【变式2】求下列各式中的(1)(2)(3)类型三.数形结合例3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是().A.-1 B.1-C.2-D.-2 [变式2]已知实数、、在数轴上的位置如图所示:化简类型四.实数绝对值的应用例4.化简下列各式:(1) |-1.4|(2) |π-3.142| (3) |-| (4) |x-|x-3|| (x≤3) (5) |x2+6x+10|分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。

举一反三:【变式1】化简:类型五.实数非负性的应用例5.已知:=0,求实数a, b的值。

七年级实数讲义

七年级实数讲义

1月17日复华七年级数学实数12、1 实数得概念一、引入 数得范围至此扩大到了有理数,复习有理数得定义与分类:定义:整数与分数统称为有理数。

分类: 有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数如果把整数瞧作分母为1得分数,那么有理数就就是用两个整数之比表示得分数:)0,(≠q q p qp都是整数,且 质疑:数得扩充就是不就是到此为止了呢?有理数就是不就是够用了?还有没有不就是有理数得数呢? 问题2:正方形ABCD 得边长怎样表示?分析:设正方形ABCD 得边长为x,那么x 2=2,即x 就是这样一个数,它得平方等于2。

这个数表示面积为2得正方形得边长,就是现实世界中真实存在得线段长度。

由于这个数与2有关,我们现在用2(读作“根号2”)来表示。

追问:面积为3得正方形,它得边长又如何表示?若面积为5呢? 问题3:2就是有理数吗? 因为:有理数=分数)0,(≠q q p qp都是整数,且= 而2肯定不能表示为分数(详见P36),,所以2只能就是“无限不循环小数”。

问题4:无限不循环小数还有吗?就是分数吗? Π就是有理数码? 二、归纳1.无理数(1)无限不循环小数叫做无理数。

(2)无理数包括正无理数与负无理数。

(3)只有符号不同得两个无理数,它们互为相反数。

2.实数(1)有理数与无理数统称为实数。

(2)实数可以这样分类:正有理数有理数 零 ——有限小数或无限循环小数实数 负有理数{{正无理数无理数 ——无限不循环小数负无理数三、练习1.将下列各数填入适当得括号内: 0、-3、2、6、3、14159、722、32.0 、5、π、0、3737737773…、 有理数:﹛ ﹜;无理数:﹛ ﹜; 正实数:﹛ ﹜;负实数:﹛ ﹜; 非负数:﹛ ﹜;整 数:﹛ ﹜、 提问:常见得无理数得形式有哪几种?(三种形式) 2.请构造几个大小在3与4之间得无理数。

3.就是非题(1) 无限小数都就是无理数; 无理数都就是无限小数; (2)正实数包括正有理数与正无理数; (3)实数可以分为正实数与负实数两类; (4)带根号得数都就是无理数; (5)不含根号得数不一定就是有理数; (6)实数不就是有理数就就是无理数;(7)无限小数不能化为分数;4.用“就是”、“不就是”、“统称”、“包括”、“叫做”填空,并体会这些词得含义: (1)2 分数。

初三数学讲义

初三数学讲义

初三数学总复习代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a 叫实数a 的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

实数基本概念的讲义

实数基本概念的讲义

实数的基本概念一 •平方根平方根:如果一僚的平方等于“,那么这个数叫做“的平方根• 也就是说,若A-2=t/ ,贝!k 就叫做"的平方根. —个非负数"的平方根可用符号表示为"土后 .—个正数有两个平方根,它们互为相反数;0的平方根是0 ;负数没有平方根.例题::L —个正数的两个平方根分别是2a ・1与・a+2 ,则a 的值为—2 •下列说法正确的是() A.正数的平方根是它本身C.-10是100的一个平方根 练习:1•已知|b -4|+ (a-l )2=0f 贝片的平方根是( )bA. +丄 B •丄 -2 2 2・一个正数的平方根分别是x+1和x • 5 ,则x= ________________3・若一正数的两个平方根分别是a ・3和3a ・「则这个正数是.-:算术平方根算术平方根:f 正数乂有两个互为相反数的平方根,其中正的平方根叫做“的算术平方根,可用符号表示 为"后; 0有一个平方根,就是0 , 0的算术平方根也是0 ,负数没有平方根,当然也没有算术平方根・例题:B.100的平方根是10 D. - 1的平方根是-11.顶的算术平方根为—练习:1. (5+m )2的平方根是_____________ ,算术平方根是_____________________ .2.自由落体的公式为s=*gt2 (g为重力加速度,g=9.8m/s2).若物体下落的高度s为78.4m ,则下落的时间t是 __________________ s .3 .血)算术平方根是_________________________ •三:立方根立方根:如果一个数的立方等于“,那么这个数叫做"的立方根,也就是说,若丘=“,则X就叫做“的立方根. —个数“的立方根可用符号表示"長",其中"3"叫做根指数,不能省略.前面学习的"后其实省略了根扌旨数"2",即:亦也可以表示为需•任^_个数都有立方根,且只有一个立方根”正数的立方根为正数,负数的立方根为负数,0的立方根为0.例题:1.计算际的结果是()2如果m2=36 , n3= - 64 ,辰=5 ,则m+n - x的值有—个.练习1 •已知2a - 7的平方根是±3 , 2a+b- 1的算术平方根是4 ,求a+b的立方根.2 •已知x ・2的平方根是±2 f 2x+y+7的立方根是3 ,求炒+护的平方根.3•已知2x - y 的平方根为±4 , - 2是y 的立方根,求-2xy 的平方根・四:实数1无理数的概念:无限不循坏小数叫做无理数・注意:(1)所有开方开不尽的方根都是无理数,但不是所有带根号的数都是无理数.(2) 圆周率只及一些含兀的数是无理数•(3) 不循环的无限小数是无理数•(4) 有理数可化为分数,而无理数则不能化为分数•2无理数的性质:设刁为有理数,b 为无理数,则a+b , a"是无理数;3实数的概念:有理数和无理数统称为实数・实数的分类:'正无理数 负无理数实数与数轴上的点一一对应:即数轴上的每一个点都可以用_个实数来表示,反过来,每个实数都可以在数轴战到表示它的点・例题:1•下列各数中:学,—访,, -TI , - 0.1010010001,无理数有—个2 •把下列各数填入相应的集合:-1、负只、-3.14.筋、-晶五逬、0、0.131331333.-顼(1)有理数集合{ };(2 )无理数集合{ ___________________ } 实数 有理数 分数? '正整数’0 .负整数'正分数负分数「有限小数或无限循环小数无限不循环小数(3 )整数集合{ ___________________ }(4 )负实数集合{ ___________________ }3.计算:练习:1.计算:话|-2|+(寺)-1= ______________________________ •2.计算(-1)2018-(73-2) °= _______________________________ •3.走义:如果一个数的平方等于-「记为i2= -1,这个数i叫做虚数单位,把形如a+bi ( a , b为实数) 的数叫做复数,具中a叫这个复数的实部,b叫做这个复数的虚部,它的加.减,乘法运算与整式的加, 减,乘法运算类似•例如计算:(2+i) + ( 3 - 5i) = ( 2+3 ) + ( 1 - 5 ) i=5 - 4i ;(1+i) x (2-i) =1x2 - i+2xi - P=2+ ( -1+2) i+l=3+i;根据以上信息,下列各式:① |3= - 1 ;②i4 = l ;③(1 + 1 ) X ( 3 - 41 ) = - 1 - I ;④i + i2+i3 + j4+……+ j2019= -1 .其中正确的是___________________ (填上所有正确答案的序号)•4.计算:罔-薔+ ( -3) o+2-i= _______________________________综合练习:1 •昙的平方根是2.( -4)2的算术平方根是3•计算:紅0.064 二 _____4•已知一个正数的两个平方根分别为2m・6和3+m ,则(・m )型8的值为5•已知2a - 1的平方根是±3 , 3a+b・1的平方根为±4 ,则a+2b的平方根是-V0~9,番中,无理数的有—个•6•在晋,2n , 一2寺,0 , 0.454454445...,7 •设n为正整数■且n<A/65<n+i r则n的值为8 •比衍大且比MI®J\的整数是—・9将下列各数填入相应的集合内• - 3.14,器,-V2, -V4,0, 1010010001...•L乙①有理数集合{ ___________ ...}②无理数集合{ ______________ ...}③负实数集合{ ______________ …}・10•计算:3/g-2V3+IV3-2I ・12.—个数值转换器,如图所示:(1)当输入的x为16时.输出的y值是_ ;(2)若输入有效的x值后,始终输不出y值,请写岀所有满足要求的x的值,并说明你的理由;(3 )若输出的y是丁5 •请写出两个满足要求的x值:。

数学分析讲义全

数学分析讲义全

数学分析讲义全第一章:实数本章主要介绍实数的定义及其性质。

1.1 实数的定义实数包括有理数和无理数两部分。

有理数是可以表示为两个整数之间的比,无理数则不能用有理数表示。

1.2 实数的性质实数满足一些基本性质,如实数的加法、乘法满足交换律、结合律和分配律等。

第二章:极限与连续本章主要介绍数列极限、函数极限和连续函数的定义及其相关概念。

2.1 数列极限数列极限是数列逐渐逼近某个确定值的概念。

包括数列迫敛、数列发散等。

2.2 函数极限函数极限是函数在某点逐渐接近某个确定值的概念。

包括左极限、右极限等。

2.3 连续函数连续函数是函数在某点处无间断、无跳跃的性质。

第三章:导数与微分本章主要介绍导数、微分的定义及其相关性质。

3.1 导数的定义导数描述了函数在某一点的变化率。

包括函数的导数定义、导数的性质等。

3.2 微分的定义微分是函数在某点处的线性近似。

包括函数的微分定义、微分的性质等。

第四章:积分与定积分本章主要介绍积分、定积分的定义及其应用。

4.1 积分的定义积分是函数的反导数。

包括不定积分、定积分等。

4.2 定积分的性质定积分具有线性性质、加法性质、区间可加性等。

第五章:级数本章主要介绍级数的概念及其计算方法。

5.1 级数的定义级数是无穷数列之和的概念。

包括级数收敛、级数发散等。

5.2 级数的计算方法级数的计算方法具有求和、判定级数收敛性等。

这份讲义全面介绍了数学分析的基础知识,希望能帮助到您。

3.2节实数的有关概念(一)讲义

3.2节实数的有关概念(一)讲义

龙文教育学科教师辅导讲义课题 3.2节实数的有关概念(一)教学目标1.了解无理数与实数的意义;2.了解有理数的运算法则在实数范围内仍然适用;3.能利用化简对实数进行简单的四则运算;4.了解实数的意义,能对实数按要求进行分类;5.掌握有理数的运算法则在实数范围内仍然适用;6.能利用实数的性质熟练地进行四则运算;7.注意:(1)无理数应满足:①是小数;②是无限小数;③不循环;(2)无理数不是都带根号的数(例如π就是无理数),反之,带根号的数也不一定都是无理数(例如4,327就是有理数).重点、难点无理数及实数分类考点及考试要求教学内容知识归纳:1.实数的性质(1)实数范围内仍然适用在有理数范围内定义的一些概念(如倒数,相反数);(2)两实数的大小关系:正数大于0,0大于负数;两个正实数,绝对值大的实数大;两个负实数,绝对值大的实数反而小;(3)在实数范围内,加、减、乘、除(除数不为零)、乘方五种运算是畅通无阻的,但是开方运算要注意,正实数和零总能进行开方运算,而负实数只能开奇次方,不能开偶次方;(4)有理数范围内的运算律和运算顺序在实数范围内仍然相同.2.实数与数轴的关系每一个实数都可以用数轴上的一个点表示;反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应关系.3.实数的分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负有理数零正有理数有理数实数4.实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数. 【典型例题】例1若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1)分析:本题主要考查负数和非负数的概念,同时涉及考查字母表示数这个知识点.由于a 为实数,a 2、( a +1)2、2a 均为非负数,∴-a 2≤0,-( a +1)2≤0,-2a ≤0.而0既不是正数也不是负数,是介于正数与负数之间的中性数.因此,A 、B 、C 不一定是负数.又依据绝对值的概念及性质知-(a -+1)﹤0.故选D例2 实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =分析:这里考查了数形结合的数学思想,要去掉绝对值符号,必须清楚绝对值符号内的数是正还是负.由数轴可知:1﹤a ﹤2,于是,22)2(,112a a a a a -=-=--=-所以, 2)2(1-+-a a =a -1+2-a =1.例3 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( )A. 5-2B. 2-5C.5-3 D.3-5分析:这道题也考查了数形结合的数学思想,同时又考查了对称的性质.B 、C 两点关于点A 对称,2-1CB A 因而B 、C 两点到点A 的距离是相同的,点B 到点A 的距离是5-1,所以点C 到点A 的距离也是5-1,设点C 到点O 的距离为a ,所以a +1=5-1,即a =5-2.又因为点C 所表示的实数为负数,所以点C 所表示的实数为2-5.例4 已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b 的值为分析:因为(a -2)2+3-b =0,所以a -2=0,b -3=0。

实数的有关概念课件

实数的有关概念课件

VS
详细描述
实数的乘法运算具有结合律和分配律,即 (ab)c=a(bc),a(b+c)=ab+ac。乘法运 算在实数轴上表示为标量积,即结果向量 的长度为两个向量长度乘积的绝对值。
除法运算
总结词
实数的除法运算是将一个实数除以另一个非 零实数,得到商的操作。
详细描述
除法运算可以理解为乘上倒数,即 a/b=a*1/b。除法运算在实数轴上表示为向 量缩放,即结果向量的长度为被除数向量长 度除以除数向量的长度。
03
实数的运算
加法运算
要点一
总结词
实数的加法运算是指将两个实数相加,得到另一个实数的 操作。
要点二
详细描述
实数的加法运算具有交换律和结合律,即a+b=b+a, (a+b)+c=a+(b+c)。加法运算在实数轴上表示为向量相加 ,即求得两个向量终点坐标的和作为结果向量的终点坐标 。
减法运算
总结词
整数与小数
整数
整数包括正整数、零和负整数,如1、0、-1、200等。整数是数学中基本的计数 系统,具有封闭性,即任意两个整数的四则运算结果仍为整数。
小数
小数是一种特殊的实数,可以表示为有限小数或无限循环小数,如0.5、0.333... 等。小数可以用来表示精确度或比例,如测量时的精确数值或价格的比例关系。
02
数轴上的点与实数一一对应,可以用实数表示点的 位置,也可以用点表示实数的值。
03
数轴上的点可以按照大小关系进行排列,从而将实 数也按照大小关系进行排列。
02
实数的分类
有理数与无理数
有理数
有理数是可以表示为两个整数之比的数,包括整数、有限小数和无限循环小数。有理数在数轴上表示为两点之间 的线段。

八年级上实数复习专题讲义

八年级上实数复习专题讲义

实数复习专题知识回顾一、实数1、概念:有理数与无理数统称为实数。

2、实数得分类:(1)按定义分: 有理数实数无理数(2)按性质分: 正数实数 0负数二、数轴1、概念:规定了原点、正方向、单位长度得直线,叫做数轴。

(数轴“三要素”)2、数轴上得点与实数得关系:所有得实数都可以用数轴上得点表示,0用原点表示,正数用原点右边得点表示,负数用原点左边得点表示。

小结:数轴上,右边得数比左边得数大。

三、相反数1、概念:如果两个数只有符号不同,那么我们称其中一个数为另一个数得相反数,也称这两个数互为相反数,特别地,0得相反数就是0。

字母表示: a > 0时,-a < 0,a > -aa = 0时,-a = 0,a = -aa < 0时,-a > 0,a < -a2、几何意义:在数轴上,表示互为相反数得两个点,位于原点两侧,并且与原点得距离相等。

字母表示:如果a 、b 互为相反数,那么a+b=0。

四、绝对值1、概念:在数轴上,一个数所对应得点与原点得距离叫做该数得绝对值。

2、绝对值得求法:正数得绝对值就是它本身,负数得绝对值就是它得相反数,0得绝对值就是0。

用字母表示: a (a>0)|a| = 0 (a=0)-a (a<0)小结:绝对值具有非负性;0得绝对值就是0。

五、倒数概念:乘积为1得两个实数互为倒数;字母表示:a ·b = 1。

0没有倒数。

六、实数得运算法则1、(1)加法法则:同号两数相加,取相同得符号,并把绝对值相加;异号两数相加,绝对值相等时与为0,绝对值不相等时,取绝对值较大得数得符号,并用较大得绝对值减去较小得绝对值;一个数同0相加,仍得这个数。

(2)加法运算律:①交换律:a + b = b + a;②结合律:(a + b)+ c = a + (b + c)。

2、(1)减法法则:减去一个数等于加上这个数得相反数。

(2)字母表示:a - b = a +(-b)。

实数讲义

实数讲义

第十二章实数【知识点说明】1、掌握实数的概念、数的开方。

2、掌握实数的运算、分数指数幂、熟练运用有理数指数幂的公式。

【知识梳理】一、实数的概念1、定义:有理数和无理数统称为实数。

2、实数的分类:正有理数有理数零----有限小数或无无限循环小数负无理数实数正无理数无理数----无限不循环小数负无理数二、数的开方1、平方根和开平方:①定义:如果一个数的平方等于a,那么这个数叫做a的平方根;求一个数a的平方根的运算叫做开平方,a叫做被开方数。

,其中______表示a的正平方根(又叫______________),读作“根号a”。

②表示:正数a的两个平方根记作a③性质:正数的平方根有两个,且互为_________;0的平方根为________;负数没有平方根。

④2a=_______=⑤一个数a的算术平方根具有_________,即:____________________。

2、立方根和开立方:① 定义:如果一个数的立方等于a ,那么这个数叫做a 的立方根,用3a 表示,读作“三次根号a ”,3a 中的a 叫做被开方数,“3”叫做___________;求一个数a 的立方根的运算叫做开立方。

② 任意一个实数都有立方根,而且只有一个立方根。

3、n 次方根:定义:如果一个数的n 次方(n 是大于1的正数)等于a ,那么这个数叫做a 的n 次方根。

当n 为奇数时,这个数为a 的奇次方根;当n 为偶数时,这个数为a 的偶次方根。

求一个数a 的n 次方根的运算叫做开n 次方,a 叫做被开方数,n 叫做根指数。

【热身练习】1、与数轴上的点一一对应的是( ) A.全体有理数B.全体无理数C.全体实数D.全体整数2、如果一个实数的平方根与它的立方根相等,那么这个数是 ( ).A.0B.正实数C.0和1D.13、如果y =0.25,那么y 的值是( ) A 0.0625 B .-0.5C .0.5D . 0.6254、如果x 是a 的立方根,那么下列说法中正确的是( )A -x 也是a 的立方根B .-x 是-a 的立方根C .x 是-a 的立方根D . x 等于a 的立方3 5、若式子x-31的平方根只有一个,则x 的值是__________ 6、若一个正数的平方根是2a-1和 -a+2,则这个正数是__________ 7、已知1-2a + (b + 3)2 = 0,则=332ab__________ 8、已知y =191x -91+-+x ,则xy=_________ 9、有理数x 经过四舍五入得到的近似数是3.142,则x 的范围是__________ 10、若22x =+,则(x + 2)2的平方根为___________ 11、设x ,y 为实数,且y = 5x -54-++x ,则 | x – y | =__________【课堂练习】一、选择题1. 实数38、2π、34、310、25其中无理数有() A 、 1个 B 、 2个 C 、 3个 D 、 4个 2. 如果162=x ,则x 的值是()A 、 4B 、 -4C 、4±D 、2± 3.下列说法正确的是()A 、25的平方根是5B 、22-的算术平方根是2 C 、8.0的立方根是 D 、65 是3625 的一个平方根 5.下列说法⑴无限小数都是无理数 ⑵无理数都是无限小数 ⑶带根号的数都是无理数 ⑷两个无理数的和还是无理数 其中错误的有( )个A 、 3B 、 1C 、 4D 、 2 6.如果x x -=2 成立的条件是()A 、x ≥0B 、 x ≤0C 、 x>0D 、x <07.设面积为3的正方形的边长为x ,那么关于 x 的说法正确的是() A 、x 是有理数 B 、3±=x C 、 不存在 D 、 取1和2之间的实数 8.下列说法错误的是()A 、2a 与2)(a -相等 B 、a 与a - 互为相反数 C 、3a 与3a -是互为相反数 D 、a 与a -互为相反数 三、实数的运算1、掌握用数轴上的点表示实数,在数轴上,如果点A 、点B 所对应的数分别为a 、b ,那么A 、B 两点的距离为____2、有理数的额运算法则、运算性质以及运算顺序的规定,在实数范围内仍旧适用,开方和乘方是同级运算。

《实数的概念》课件

《实数的概念》课件

实数在生活中的应用
温度计上的实数
温度计上的数字表示实际温 度
温度计在生活中的应用:测 量体温、监测天气等
温度计的种类:水银温度计、 电子温度计等
温度计的准确性和使用注意 事项
身高体重指数(BMI)中的实数
身高体重指数(BMI)的定义 BMI中的实数计算 BMI指数在健康生活中的应用 如何根据BMI指数调整生活方式
课堂互动环节设计
案例分析:通过分析具体案例,让 学生更好地理解实数的概念和应用
添加标题
添加标题
添加标题
添加标题
分组讨论:将学生分成小组,让他 们讨论相关问题,提高合作能力
课堂测验:通过小测验或练习题, 检验学生对实数概念的理解和掌握 情况
练习题与答案解析
● 题目1:什么是实数? 答案1:实数包括有理数和无理数,有理数包括整数、分数、小数等,无理数包括无限不循 环小数等。
添加标题 添加标题 添加标题 添加标题
地图上的经纬度
经纬度定义:经度和纬度是地图上的两个基本坐标系统,用于确定地球上 任何位置的坐标。
实数与经纬度的关系:经度和纬度都是实数,可以用小数或度数表示。
经纬度在地图上的应用:通过经纬度可以确定地球上任何位置的精确位置, 从而进行导航、定位和地理信息系统的应用。
添加标题
添加标题
实数与其他数学概念的关系
总结与回顾
本节课的重点与难点总结
重点:实数的概 念、分类和性质
难点:实数的运 算规则和实际应 用
解决方法:通过 例题讲解和练习 巩固,加深对实 数概念的理解和 掌握
总结:回顾本节 课所学内容,强 调容

无理数与有理 数的区别:定 义、性质、运 算规则等方面
的差异
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.实数及其运算
一、基础知识和方法要点
实数及其运算的主要内容是实数的运算,以及有理数、无理数、数轴和绝对值的概念和性质。

思考题1 何为实数?数学分类应该满足怎样的准则? 思考题2 叙述引入数轴的必要性 ;
思考题 3 什么是零点分段法?零点分段法体现的思想在其他方面有什么应用?
思考题4 非负数有哪些性质?举例说明;
思考题5 你是怎样理解实数与数轴的一一对应关系的? 思考题6 数轴上有理数和无理数哪个更多?为什么?
思考题7怎样定义无理数的概念? 数学上一般不用否定的形式给一个概念下定义,按照这样的约定,又该如何定义? 思考题8 实数是稠密的,你怎样理解实数的稠密性?
二、典型问题分析
1. 实数的运算
1.计算.1009998143213211⨯⨯++⨯⨯+⨯⨯
2.设A=⎪⎪⎭
⎫ ⎝⎛+++⨯4-14-14-14810043222 ,求与A 最接近的正整数. 3.计算:
4. 比较
与2的大小.
5. 已知,其中n为正整数.证明:
2.数轴与绝对值
1.已知<-3,化简:.
2.化简:|3x+1|+|2x-1| .
3.若2x+|4-5x|+|1-3x|+4的值恒为常数,求x满足的条件及此常数的
值.
4.求代数式|x+11|+|x-12|+|x+13|的最小值.
5. 将1,2,…,100这100个正整数任意分成50组,每组两个数,现将每组的两个数中任一个数记为a,另一个数记为b,代人代数式(|a-b|+a+b)中进行计算,求出其结果,50组都代入后可求得50个值,求这50个值的和的最大值.
6. 设n个有理数,,…,满足||<1(i=1,2,…,n),且
||+||+….+|19+|++…+.求n的最小值.
3.关于无理数、有理数的判断、证明及计算
1.证明循环小数
2.615454 54=2.61是有理数.
2.已知x是无理数,且(x+1)(x+3)是有理数,在上述假定下,下面四个结
论:
(1)是有理数; (2)(x-1)(x-3)是无理数;
(3)(x+1)²是有理数; (4)(x-1)²是无理数.
哪些是正确的?哪些是错误的?
3.设a、b及+都是整数,证明及都是整数.
4. 求满足等式 =1+ y 的有理数x 、y.
5. (练习)已知在等式
=S 中,a 、b 、c 、d 都是有理数,x 是无理数.问:
(1)当a 、b 、c 、d 满足什么条件时,S 是有理数;
(2)当a 、b 、C 、d 满足什么条件时,S 是无理数.
6.已知a 、b 是两个任意有理数,且a<b,问是否存在无理数a,使得a< <b 成立?
7. (练习)若n 为正整数,求证: 必为无理数.
8. (练习)如果m 、n 是正整数,a 、d 是实数,问是否存在三个不同的素
数p 、q 、r,满足 =a, =a+ md, a+nd?
9.设n a 是2222...321n ++++的个位数字,n=1,2,3,...,求证;0.......321n a a a a 是有理数.
10. (练习)设a,b 是实数,对所有正整数n(≥2),a n +b n
都是有理数,证明:a+b 是有理数.
给教师的建议
本节内容的重点是掌握实数有关基本概念、定义和基本运算能力的培养。

重点掌握非负数的性质以及零点分段法等等,难点是有关实数判断的证明,需要掌握反证法,构造法等数学方法。

课后练习
1.计算:100211432113211211+++++++++++++ .
2. 2008加上它的 得到一个数,再加上这次得数的
又得到一个数,
再加上所得的数的又得到一个数,,依次类推,一直加到上一次得数的.最后得到的数是多少?
3.计算
.
4. 计算:1+
5. 若x<0,化简.
6.设a<0,且x,试化简.
7.如果m为有理数,求代数式
|m-1|+lm-3|+|m+5|+|m+6|的最小值.
8. 已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.
三、整式的运算测试题
1.计算:
2.计算:
1
3. 计算:-
.
4.化简
5.已知|xl≤1,|y|≤1,且
k=|x+y|+|y+1|+|2y-x-4|,求k的最大值和最小值.
6.若a、b、c为整数,且|a-b+|c-a=1,试计算|c-a|+|a-b|+|b-c的
值.
7. 已知x+y ,x-y,xy,y x
均为有理数,如果它们中有三个数相等,求x,y 的值。

8.设A 是给定的正有理数.
(1)若A 是一个三边长都是有理数的直角三角形的面积,证明:一定存在3个正有理数使得,,,z y x .2222A z y y x =-=-
(2)满足个正有理数若存在,,,3z y x .2222A z y y x =-=-
证明:存在一个三边长都是有理数的直角三角形,它的面积等于A.。

相关文档
最新文档