一元二次方程单元试卷附答案

合集下载

一元二次方程单元测试题(含答案)

一元二次方程单元测试题(含答案)

一元二次方程单元测试题(含答案)第二章一元二次方程测试题(1)一、选择题(每题3分,共30分)1.以下方程属于一元二次方程的是(A)(x-2)·x=x2 (B) ax+bx+c=0 (C) x+=5 (D) x2=02.方程x(x-1)=5(x-1)的解是(C)1或53.2a-1的值是(B)44.把方程x2-4x-6=0配方,化为(x+m)2=n的形式应为(B)(x-2)2=45.以下方程中,无实数根的是(D)2x2-x-1=06.今世数式x2+3x+5的值为7时,代数式3x2+9x-2的值是(A)47.方程(x+1)(x+2)=6的解是(D)x1=2,x2=38.若是关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,那么这个一元二次方程是(C)x2+4x-3=09.某市计划经过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增加率是20%10.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5,400cm2,设金色纸边的宽为xcm,那么x满足的方程是(A)x2+130x-1,400=0二、填空题(每题3分,共24分)11.方程2x2-x-2=0的二次项系数是2,一次项系数是-1,常数项是-2.1.若方程 $ax^2+bx+c=0$ 的一个根为 $-1$,则 $a-b+c=2a+a-b+c=2a-(-1)^2-b(-1)+c=2a-b+c+1=0$,所以 $2a-b+c=-1$。

2.已知 $x^2-2x-3=x+7$,移项得 $x^2-3x-10=0$,因此$(x-5)(x+2)=0$,所以 $x=5$ 或 $x=-2$。

3.设一元二次方程为 $ax^2+bx+c=0$,两根为 $-2$ 和 $3$,则可以列出方程组:begin{cases}a(-2)^2+b(-2)+c=0 \\a3^2+b3+c=0end{cases}化XXX:begin{cases}4a-2b+c=0 \\9a+3b+c=0end{cases}解得 $a=-1$,$b=2$,$c=-3$,因此所求方程为 $-x^2+2x-3=0$。

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案一、选择题(每题3分,共30分)1. 下列方程中,不是一元二次方程的是()。

A. x^2 - 2x + 1 = 0B. 3x - 2 = 0C. 2x^2 - 3x + 1 = 0D. x^2 - 3x + 2 = 0答案:B2. 一元二次方程ax^2 + bx + c = 0(a ≠ 0)的根的判别式是()。

A. b^2 - 4acB. b^2 + 4acC. 4ac - b^2D. 4ac + b^2答案:A3. 已知方程x^2 - 5x + 6 = 0的两个根为x1和x2,则x1 + x2的值为()。

A. 5B. -5C. 6D. -6答案:A4. 如果方程x^2 + 2x - 3 = 0的两个根是x1和x2,那么x1x2的值为()。

A. 3B. -3C. 1D. -1答案:B5. 一元二次方程x^2 - 4x + 4 = 0的解是()。

A. x = 2B. x = -2C. x = 0D. x = 4答案:A6. 已知方程2x^2 - 3x - 2 = 0的判别式为△,那么△的值为()。

A. 13B. -13C. 17D. -17答案:B7. 一元二次方程x^2 - 2x - 3 = 0的根的和为()。

A. 2B. -2C. 3D. -3答案:A8. 方程x^2 + 4x + 4 = 0的根是()。

A. x = 2B. x = -2C. x = 0D. x = -4答案:B9. 一元二次方程x^2 - 6x + 9 = 0的根是()。

A. x = 3B. x = -3C. x = 0D. x = 9答案:A10. 方程x^2 - 2x + 1 = 0的判别式△为()。

A. 1B. 0C. -1D. 3答案:B二、填空题(每题4分,共20分)1. 一元二次方程x^2 - 4x + 4 = 0的根为______。

答案:x = 22. 已知方程x^2 - 6x + 9 = 0的两个根为x1和x2,则x1x2 =______。

一元二次方程单元综合测试题含答案

一元二次方程单元综合测试题含答案

方圆学校九年级第21章一元二次方程单元综合测试题一、填空题〔每题2分,共20分〕1.方程,x〔x—3〕=5〔x—3〕的根是___________ .22.以下方程中,是关于x的一元二次方程的有.[1] 2y2+y-1=0;〔2〕x〔2x—1〕=2x2;〔3〕∖—2x=l;〔4〕ax2+bx+c=0;〔5〕x- —x2=0 ・23.把方程[l-2x] [l+2x] =2χ2-l化为一元二次方程的一般形式为.1 2 14.如果一7 ——— 8=0,那么一的值是_________ .X" X X5.关于x的方程[m2-1] x2+〔m—1〕x+2m-1=0是一元二次方程的条件是6.关于x的一元二次方程χ2—χ-3m=0有两个不相等的实数根,那么m的取值围是定_______________ .7. X2-5 | x | ÷4=0的所有实数根的和爰_____________ .8.方程χ4-5χ2+6=0,设y=χ2,那么原方程变形原方程的根为.9.以一1为一根的一元二次方程可为〔写一个即可〕.10.代数式1χ2+8x+5的最小值爰 ___________ .2二、选择题〔每题3分,共18分〕11.假设方程〔a—b〕x2+ [b-c] x+ [c-a] =0是关于x的一元二次方程,那么必有〔〕.B. 一根为1 C∙ 一根为一1 D.以上都不对A∙ a=b=cχ2 —χ-()12.假设分式~的值为0,那么x的值为〔〕.x -3x + 2A. 3 或一2B. 3C. -2D. -3 或213. [x2÷y2+l] [x2÷y2÷3] =8,那么区?+/的值为〔〕.A. -5 或1B. 1C. 5D. 5 或一114.方程χ2+px+q=0的两个根分别是2和一3,那么χ2-pχ+q可分解为〔〕.A. [x+2] [x÷3]B.〔x—2]〔x—3〕C.〔x-2]〔x+3〕D.〔x+2〕〔x—3]15α, 0是方程χ2+2006x+l=0 的两个根,那么[1+2008(1+/] [l÷2008β+β2]的值为〔〕.A. 1B. 2C. 3D. 416.三角形两边长分别为2和4,第三边是方程χ2-6x+8=0的解,那么这个三角形的周长是〔〕.A. 8 .B. 8 或10C. 10D. 8 和10三、用适当的方法解方程〔每题4分,共16分〕17.〔1〕2 tx÷2j 2-8=0; 〔2〕x〔x-3〕=x;〔3〕∖∣3 X2=6X—Λ∕3; 〔4〕〔x+3〕2÷3 fx+3] —4=0.四、解答题[18, 19, 20, 21题每题7分,22, 23题各9分,共46分〕X18.如果χ2 — 10x+y2-16y+89=0,求一的值.)'19.阅读下面的材料,答复以下问题:解方程χ4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设χ2=y,那么χ4=y2,于是原方程可变为y2—5y+4=0 ①,解得%=1, y2=4.当y=l 时,x2=l, .,.x=±lj当y=4 时,X2=4,.*.X=±2J万程有四个根:Xi=l, X2~ - 1, X3=2, X4=-2.〔1〕在由原方程得到方程①的过程中,利用法到达的目的,表达了数学的转化思想.⑵ 解方程(x2+x] 2-4 [x2+x] -12=0.20.如图,是市统计局公布的2000〜2003年全社会用电量的折线统计图.(1)填写统计表:2000 -2003年市全社会用电量统计表:年份200020012002200313.33全社会用电量〔单位:亿kW-h〕〔2〕根据市2001年至2003年全社会用电量统计数据,求这两年年平均增长的百分率〔保存两个有效数字〕.用电量(亿kW ∙ h)2520151052000 2001 2002 2003 年份21.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.〔1〕假设商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?〔2〕试说明每件衬衫降价多少元时,商场服装部每天盈利最多.22.设a, b, c是4ABC的三条边,关于x的方程Lx?+括x+c—'a=0有两个2 2相等的实数根,方程3cx+2b=2a的根为x=0.〔1〕试判断4ABC的形状.〔2〕假设a, b为方程χ2+mχ-3m=0的两个根,求m的值.23.关于x的方程fχ2+〔2a-l〕x+l=0有两个不相等的实数根5, x2.⑴求a的取值围;〔2〕是否存在实数a,使方程的两个实数根互为相反数?如果存在,求出a的值;如果不存在,说明理由.解:〔1〕根据题意,得△=[2a-1] 2-4a2>0,解得av'.4・•・当a<0时,方程有两个不相等的实数根.2a— 1 〔2〕存在,如果方程的两个实数根X],X2互为相反数,那么X1÷X2=--=0a ①,解得经检验,&二;是方程①的根.当a=:时,方程的两个实数根羽与X2互为相反数.a上述解答过程是否有错误?如果有,请指出错误之处,并解答.24、如图,A、B、C、D为矩形的4个顶点,AB = 16cm, BC=6cm,动点P、Q分别从点A、C同时出发,点P以3cm∕s的速度向点B移动,一直到达点B为止;点Q以2cm∕s的速度向点B移动,经过多长时间P、Q两点之间的距离是10cm?25、如图,在aABC 中,ZB = 90° , BC=12cm, AB = 6cm,点P 从点A 开场段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒,〔1〕当t为何值时,ZiAPQ与4AOB相似?24〔2〕当t为何值时,ZXAPQ的面积为一个平方单位?2、有一边为5cm的正方形ABCD和等腰三角形PQR, PQ=PR=5cm, QR=8cm, 点B、C、Q、R在同一直线1上,当C、Q两点重合时,等腰三角形PQR以lcm/s 的速度沿直线1按箭头方向匀速运动,〔1〕t秒后正方形ABCD与等腰三角形PQR重合局部的面积为5,求时间t;〔2〕当正方形ABCD与等腰三角形PQR重合局部的面积为7,求时间t;B QC R3、如下图,在平面直角坐标中,四边形OABC 是等腰梯形,CB H OA, OA=7, AB=4, ZCOA=60°,点P 为x 轴上的一个动点,点P 不与点0、点A 重合.连结CP,过点P 作PD 交AB 于点D,⑴求点B 的坐标沐⑵当点P 运动什么位置且鲁《求这时点P 的坐标;答案:1. Xι=3, X2=102,〔5〕 点拨:准确掌握一元二次方程的定义:即含一个未知数,未知数的最高次数是2,整式方程.3. 6χ2-2=04. 4 —2点拨:把一看做一个整体.X5. m≠ ± 16. m>-- 点拨:理解定义是关键.127. 0点拨:绝对值方程的解法要掌握分类讨论的思想. 8. y2 — 5y+6=0 Xi — ^∖∕2 f X2二一Λ∕2 , X3- , X4~ 一 Λ∕3 9. x 2-x=0〔答案不唯一〕 10. -2711. D 点拨:满足一元二次方程的条件是二次项系数不为0. 12. A 点拨:准确掌握分式值为0的条件,同时灵活解方程是关键.13. B 点拨:理解运用整体思想或换元法是解决问题的关键,同时要注意χ2+F 式子本身的属性.14. C 点拨:灵活掌握因式分解法解方程的思想特点是关键. 15. D 点拨:此题的关键是整体思想的运用.16. C 点拨:此题的关键是对方程解的概念的理解和三角形三边关系定理的运用. 17. ⑴ 整理得〔x+2〕2=4,即 0+2〕=±2,.*.x 1=0, x 2=~4〔2〕x 〔x —3〕— x=0,x 〔x —3—1〕=0, x 〔x —4〕=0, ∙*∙ Xl =0 9 X2=4 9〔3〕整理得 G χ2+ \/3 — 6χ=0,时,4OCP 为等腰三角形,求这时点P 的坐标;(3)当求P 率动什幺住聂时,使<ZCPD=ZOAB,DX2—2λ∕3 x+l=0,由求根公式得X1= V3 + λ∕2 , X2= \/3 — V2 .〔4〕设x+3=y,原式可变为y2+3y-4=0,解得力二-4, y2=l,即x+3=—4, x= —7.由x+3=l,得x=-2.二原方程的解为xi= -7, x2=-2.18.由x2- 10x+y2- 16y+89=0,得〔x—5〕2+〔y—8〕2=0,x 5∕.x=5, y=8,> 819.〔1〕换元降次〔2〕设χ2+x=y,原方程可化为y2-4y-12=0,解得yι=6, y2= -2∙由x2+x=6,得xi= -3, X2=2.由x2+x= — 2,得方程X2÷X+2=0,b2-4ac=l-4×2=-7<0,此时方程无解.所以原方程的解为、二-3, X2=2.20.⑴〔2〕设2001年至2003年平均每年增长率为x,那么2001年用电量为14.73亿kW ∙ h,2002 年为14.73 [l+x]亿kW ∙ h,2003 年为14.73 [l+xj 2亿kW ∙ h.那么可列方程:14.73 [l+x] 2=21.92, 1+X=±1.22,∕.xι=0.22=22%, x2=-2.22〔舍去〕.那么2001〜2003年年平均增长率的百分率为22%.21. [1]设每件应降价x元,由题意可列方程为〔40-x〕∙〔30+2x〕=1200,解得X]=0, X2=25,当x=0时,能卖出30件;当x=25时,能卖出80件.根据题意,x=25时能卖出80件,符合题意.故每件衬衫应降价25元.〔2〕设商场每天盈利为W元.W=〔40—x〕(30+2x] =-2X2+50X+1200=-2[X2-25X] +1200=-2 [χ-12.5] 2+1512.5 当每件衬衫降价为12.5元时,商场服装部每天盈利最多,为1512.5元.22. ∙.∙,χ2+扬x+c-'a=0有两个相等的实数根,2 2判别式=[y[b ] 2—4×一[c -------------- a] =0,2 2整理得a+b-2c=0 ①,又3cx+2b=2a 的根为x=0,**- a—b ②.把②代入①得a=c,Λa=b=c, ∙∙∙4ABC为等边三角形.〔2〕a, b是方程x2+mx-3m=0的两个根,所以I∏2-4X〔一3m〕=0,即f∏2+12m=0,∕.t∏ι=0, m2=-12.当m=0时,原方程的解为x二O〔不符合题意,舍去〕,∕.m=12.23.上述解答有错误.〔1〕假设方程有两个不相等实数根,那么方程首先满足是一元二次方程,二.&2壬0 且满足〔2a-1〕2—4a2>0, .,.a< 一且a#0.4〔2〕a不可能等于!.2〔1〕中求得方程有两个不相等实数根,同时a的取值围是av,且aK0,4而a=—> 一〔不符合题意〕2 4所以不存在这样的&值,使方程的两个实数根互为相反数.。

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案一、选择题1. 一元二次方程的一般形式是:A. ax^2 + bx + c = 0B. ax^2 + bx = 0C. ax^2 + c = 0D. ax + b = 0答案:A2. 下列哪个方程不是一元二次方程?A. x^2 - 3x + 2 = 0B. x^2 - 5 = 0C. 2x + 5 = 0D. 3x^2 - 7x = 0答案:C3. 一元二次方程 ax^2 + bx + c = 0 的判别式是:A. b^2 - 4acB. b^2 + 4acC. a^2 - 4bcD. a^2 + 4bc答案:A二、填空题4. 解一元二次方程 x^2 - 5x + 6 = 0,其判别式为 _______ 。

答案:15. 如果一元二次方程的根是 x1 = 2 和 x2 = 3,那么这个方程可以写成 _______ 。

答案:x^2 - 5x + 6 = 0三、解答题6. 解一元二次方程 2x^2 - 7x + 3 = 0。

解:首先计算判别式Δ = b^2 - 4ac = (-7)^2 - 4 * 2 * 3 = 49 - 24 = 25。

由于Δ > 0,方程有两个不相等的实数根。

根据求根公式 x = (-b ± √Δ) / (2a),我们得到:x1 = (7 + √25) / 4 = (7 + 5) / 4 = 12 / 4 = 3,x2 = (7 - √25) / 4 = (7 - 5) / 4 = 2 / 4 = 0.5。

7. 已知方程 x^2 + 4x + k = 0 的一个根是 x = -2,求 k 的值。

解:将 x = -2 代入方程,得到 (-2)^2 + 4 * (-2) + k = 0。

简化得 4 - 8 + k = 0,解得 k = 4。

四、应用题8. 一个长方形的长是宽的两倍,面积是 24 平方米,求这个长方形的长和宽。

解:设宽为 x 米,长为 2x 米。

一元二次方程单元测验题及答案

一元二次方程单元测验题及答案

一元二次方程单元测验题及答案
1.求解方程:x²+4x+4=0
解答:该方程可以写成(x+2)²=0,由此可以得到x=-2
2.求解方程:2x²+5x-3=0
解答:使用因式分解,可以写成(2x-1)(x+3)=0,解得x=1/2或x=-3
3.求解方程:3x²-12x+9=0
解答:使用因式分解,可以写成(3x-3)²=0,解得x=1
4.求解方程:x²-7x+12=0
解答:使用因式分解,可以写成(x-3)(x-4)=0,解得x=3或x=4
5.求解方程:4x²-12x+9=0
解答:使用二次方程公式,可以得到x=(-(-12)±√((-12)²-
4*4*9))/(2*4),解得x=(3±√3)/2
6.求解方程:x²+3x+2=0
解答:使用二次方程公式,可以得到x=(-3±√(3²-4*1*2))/(2*1),解得x=-1或x=-2
7.求解方程:2x²+7x+3=0
解答:使用二次方程公式,可以得到x=(-7±√(7²-4*2*3))/(2*2),解得x=-1/2或x=-3
8.求解方程:x²+5x+6=0
解答:使用因式分解,可以写成(x+2)(x+3)=0,解得x=-2或x=-3
9.求解方程:x²-9=0
解答:使用因式分解,可以写成(x+3)(x-3)=0,解得x=3或x=-3
10.求解方程:3x²+4x+1=0
解答:使用二次方程公式,可以得到x=(-4±√(4²-4*3*1))/(2*3),解得x=-1或x=-1/3。

一元二次方程单元测试卷含答案

一元二次方程单元测试卷含答案

一元二次方程单元测试卷含答案一元二次方程单元测试卷一、选择题(每题2分,共30分)1.下列关于x的方程中,一元二次方程是()A。

x-y=2B。

2x2+x=C。

x3+1=D。

(m+2)x/(11-m-3mx)=2.方程(m+2)x2/(11-m-3mx)+1=是关于x的一元二次方程,则()A。

m=±2B。

m=2C。

m=-2D。

m≠±23.将一元二次方程-3x2-2=-4x化成一般形式ax2+bx+c=(a≠0)后,一次项和常数项分别是()A。

-4,2B。

-4x,2C。

4x,-2D。

-3x2,24.方程x2=4x的根是()A。

x=4B。

x=1/2,x=4C。

x=0,x=4D。

x=1,x=35.一元二次方程y2-y-3/4=0配方后可化为()A。

(y+2)/2=1B。

(y-2)/2=1C。

(y+1)/3=1D。

(y-1)/3=16.已知x=1是方程x2+px+1=0的一个实数根,则P的值是()A。

0B。

1C。

2D。

-27.x=1关于x的一元二次方程x2+ax+2b=0的解,则2a+4b=()A。

-2B。

-3C。

-1D。

-68.若关于x的一元二次方程x2-4x+m+2=0有两个不相等实数根,且m为正整数,则此方程的解为()A。

x1=-1,x2=3B。

x1=-1,x2=-3C。

x1=1,x2=3D。

x1=1,x2=-39.若x-2px+3q=0的两根分别是-3和5,则多项式2x-4px+6q可以分解为()A。

(x+3)(x-5)B。

(x-3)(x+5)C。

2(x+3)(x-5)D。

2(x-3)(x+5)10.某市决定改善城市容貌,绿化环境,计划经过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是()A。

20%B。

11%C。

22%D。

44%11.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A。

(完整版)_一元二次方程单元测试题(含答案)

(完整版)_一元二次方程单元测试题(含答案)

第二章一元二次方程测试题(1)姓名学号一、选择题(每题 3 分,共 30 分)1.以下方程属于一元二次方程的是().( A )( x2- 2)·x=x 2 (B ) ax2 +bx+c=01( D )x2=0 ( C)x+ =5x2.方程 x( x-1 ) =5( x-1 )的解是().(A)1 (B)5 (C)1或 5 ( D)无解3.已知 x=2 是对于 x 的方程 3 x2- 2a=0 的一个根,则2a-1 的值是().2(A)3(B)4(C)5(D)64.把方程 x2-4x-6=0 配方,化为( x+m )2=n 的形式应为().( A)( x-4 )2=6 ( B)( x-2 )2=4 ( C)( x-2 )2=0 (D)( x- 2)2=10 5.以下方程中,无实数根的是().( A) x2+2x+5=0 ( B) x2-x-2=0 ( C) 2x2+x-10 =0 ( D) 2x2-x-1=06.今世数式 x2+3x+5 的值为 7 时,代数式3x2+9x-2 的值是().(A)4 (B)0 (C)-2 (D)-47.方程( x+1)( x+2) =6 的解是().( A )x =- 1, x =- 2 ( B )x =1, x =- 4 ( C) x =- 1, x =4 ( D) x =2 , x =31 2 1 2 1 2 1 28.假如对于 x 的一元二次方程 2 的两根分别为 1 2 ,?那么这个一元二次x +px+q=0 x =3 ,x =1 方程是().( A )x2+3x+4=0 ( B) x2-4x+3= 0 ( C) x2+4x-3= 0 (D ) x2+3x -4=09.某市计划经过两年时间,绿地面积增添44% , ?这两年均匀每年绿地面积的增添率是().(A ) 19% ( B) 20% ( C)21% (D ) 22% 10.在一幅长80cm,宽 50cm 的矩形景色画的周围镶一条金色纸边, ?制成一幅矩形挂图,如下图.假如要使整个挂图的面积是 5 400cm2,设金色纸边的宽为 xcm, ?那么 x 知足的方程是().( A) x2+130x-1 40 0=0 ( B) x2+65x-350=0( C) x2-130x-1 400=0 ( D) x2-65x-350=0二、填空题(每题 3 分,共 24 分)11.方程 2x2-x-2=0 的二次项系数是 ________,一次项系数是 ________, ?常数项是 ________.12.若方程ax2+bx+c=0 的一个根为 -1 ,则 a-b+c=_ ______.13.已知 x2-2x-3与x+7的值相等,则x 的值是 ________.14.请写出两根分别为-2 , 3 的一个一元二次方程_________.15.假如( 2a+2b+1)( 2a+2b-1 ) =63,那么 a+b 的值是 ________.16.已知 x2+y2-4x+6y+13=0 , x, y 为实数,则x y=_________.17.已知三角形的两边分别是 1 和 2,第三边的数值是方程2x2 -5x+3=0 的根,则这个三角形的周长为 _______.18.若 -2 是对于 x 的一元二次方程(k2-1 ) x2+2kx+4=0 的一个根,则k=________ .三、解答题(共46 分)19.解方程:8x2=24x(x+2) 2=3x+6(7x-1) 2 =9x2(3x-1)2=10x2+6x=1-2x2+13x-15=0 .x2 2 2x 2 2 x21x 136 2 20.(此题 8 分)李先生计入银行 1 万元,先存一个一年按期,?一年后将本息自动转存另一个一年按期,两年后共得本息 1.045 5 万元.存款的年利率为多少?(?不考虑利息税)21.(此题 8 分)现将进货为 40 元的商品按 50 元售出时,就能卖出 500 件. ?已知这批商品每件涨价 1 元,其销售量将减少 10 个.问为了赚取 8 000 元收益,售价应定为多少?这时应进货多少件?第二章一元二次方程测试题(2)一、选择题(每题 3 分,共 30 分)1 .方程( y+8)2 =4y+(2y-1 )2 化成一般式后 a,b,c 的值是()A .a=3,b=-16 ,c=-63;B . a=1,b=4,c=(2y-1 )2C .a=2,b=-16 ,c=-63;D . a=3,b=4,c=(2y-1 )22 .方程 x2-4x+4=0 根的状况是()A .有两个不相等的实数根 ;B .有两个相等的实数根 ;C .有一个实数根 ;D .没有实数根3 .方程 y2+4y+4=0 的左侧配成完整平方后得()A .(y+4)2 =0B .(y-4 )2 =0C .(y+2)2=0D .( y-2 )2=04 .设方程 x2+x-2=0 的两个根为α,β,那么(α -1 )(β -1 )的值等于()A.-4B.-2 C .0 D .25 .以下各方程中,无解的方程是()A . x 2 =-1B . 3( x-2 )+1=0C .x2-1=0D .x=2 x 16 .已知方程 x x 3 =0,则方程的实数解为()A.3 B.0 C.0,1 D .0,37 .已知 2y 2+y-2 的值为 3,则 4y 2+2y+1 的值为( ) 8 A .10 B .11 C .10或 11 D .3或 11) .方程 x 2有两个不相等的实根,则 , 知足的关系式是( +2px+q=0 p q A .p 2-4q>0 B .p 2-q ≥0 C .p 2-4q ≥ 0 D . p 2-q>09 .已知对于 x 的一元二次方程( m-1)x 2+x+m 2+2m-3=0的一个根为 0,则 m 的值为( )A .1B .-3C .1 或-3D .不等于 1 的随意实数10 .已知 m 是整数,且知足2m1 0,则对于 x 的方程 m 2x 2-4x-2= ( m+2)5 2m 1x 2+3x+4 的解为( )6D .x 13 或 A .x 1 , 2=- 3 B .x 1 , 2 = 3 C . x=- , 2=-2 x 2 =2 x 2=-2x =27x=673 分,共 30 分)二、填空题(每题11.一元二次方程 x 2+2x+4=0的根的状况是 ________.12.方程 x 2( x-1 )( x-2 )=0 的解有 ________个. 13.假如( 2a+2b+1)( 2a+2b-2) =4,那么 a+b 的值为 ________.14.已知二次方程 3x 2-(2a-5 )x-3a-1=0 有一个根为 2,则另一个根为 ________. 15.对于 x 的一元二次方程 x 2 +bx+c=0的两根为 -1 ,3,则 x 2+bx+c?分解因式的结果为 _________.16.若方程 x 2-4x+m=0有两个相等的实数根,则 m 的值是 ________. 17.若 b (b ≠0)是方程 x 2+cx+b=0 的根,则 b+c 的值为 ________.18.一元二次方程( 1-k )x 2-2x-1=?0? 有两个不相等的实根数, ?则 k?的取值范围是 ______.19.若对于 x 的一元二次方程 x 2+bx+c=0 没有实数根,则切合条件的一组 b , c 的实数值能够是 b=______,c=_______.20.等腰三角形 ABC 中, BC=8,AB , AC 的长是对于 x 的方程 x 2-10x+m=0 的两根,则 m?的值是 ________. 三、解答题21.(12 分)采用适合的方法解以下方程:(1)(x+1)( 6x-5 ) =0; ( 2) 2x 2+ 3 x-9=0 ;(3)2(x+5)2=x ( x+5);(4) 2 x 2-4 3 x-2 2 =0.22.(5 分)不解方程,鉴别以下方程的根的状况:(1)2x 2+3x-4=0;(2)16y 2+9=24y ;(3) 3 x 2- 2 x+2=0;(4)3t 2-3 6 t+2=0 ;(5)5(x 2+1) -7x=0 .23.(4 分)已知一元二次方程 ax 2+bx+c=0(a ≠0)的一个根是 1,且 a ,b 满 足 b= a 2 + 2 a -3 ,?求对于 y 的方程 1y 2-c=0 的根.424.(4 分)已知方程 x 2+kx-6=0 的一个根是 2,求它的另一个根及 k 的值. 25.(4 分)某村的粮食年产量,在两年内从 60 万千克增添到 72.6 万千克,问 均匀每年增添的百分率是多少?26.(5 分)为了合理利用电力资源,缓解用电紧张状况,我市电力部门出台了 使用“峰谷电”的政策及收费标准(见表) .已知王老师家 4 月份使用“峰谷 电”95kMh ,缴电费 43.40 元,问王老师家 4 月份“峰电”和“谷电”各用了 多少 kMh ?峰电 08:00 —22:00 元 /kWh 谷电 22:00 —08:00元 /kWh27.(6 分)印刷一张矩形的张贴广告(如图) ,?它的印刷面积是 32dm 2,?上 下空白各 1dm ,两边空白各,设印刷部分从上到下的长是 xdm ,周围空白处的面积为 Sdm 2.( 1)求 S 与 x 的关系式;2( 2)当要求周围空白的面积为 18dm 时,求用来印刷这张广告的纸张的长和宽各是多少?。

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案1. 单项选择题(每题2分,共10题)1) 求方程x^2 + 3x - 4 = 0的根是:A. 2和-2B. 1和-4C. -1和4D. 0和-32) 方程2x^2 + 5x + 3 = 0的根是:A. -3和-1/2B. 1/2和3C. -1/2和-3D. -3和1/23) 若x^2 + ax + 6 = 0的根为-2和3,则a的值是:A. -5B. -1C. 1D. 54) 若x^2 + (k + 1)x + 1 = 0有相等的根,则k的值是:B. 0C. 1D. 25) 若x^2 - (2k + 1)x + 2 = 0的根之和与根之积的乘积为4,则k的值是:A. -1B. 0C. 1D. 26) 方程x^2 + (k + 3)x + 2k = 0的根是互为相反数,则k的值是:A. 2/7B. -2/7C. 3/8D. -3/87) 若方程x^2 - (a + 1)x + a^2 - 2a + 1 = 0的两个根之差为1,则a的值是:A. -1B. 0D. 28) 若方程x^2 - (2k + 1)x + k^2 + 1 = 0的两个根之和为k,则k的值是:A. -2B. -1C. 0D. 19) 若方程3x^2 - (a - 1)x - 2a = 0的两个根之差为2,则a的值是:A. -2B. -1C. 0D. 110) 若方程(k + 1)x^2 - (2k - 1)x + k - 4 = 0的两个根之积为4,则k 的值是:A. -3B. -2C. -1D. 1答案:1) B 2) A 3) B 4) C 5) A 6) B 7) C 8) A 9) C 10) B2. 解答题(每题10分,共2题)题目1:求解方程x^2 - 5x + 6 = 0的根。

解答:首先,我们可以尝试因式分解这个二次方程,看看是否可以将其化简为两个一次方程相乘的形式。

将x^2 - 5x + 6 = 0进行因式分解,得到(x - 2)(x - 3) = 0。

(完整版)一元二次方程全章测试及答案

(完整版)一元二次方程全章测试及答案

一元二次方程全章测试及答案一、填空题1.一元二次方程x 2-2x +1=0的解是______.2.若x =1是方程x 2-mx +2m =0的一个根,则方程的另一根为______.3.小华在解一元二次方程x 2-4x =0时,只得出一个根是x =4,则被他漏掉的另一个根是x =______.4.当a ______时,方程(x -b )2=-a 有实数解,实数解为______.5.已知关于x 的一元二次方程(m 2-1)x m -2+3mx -1=0,则m =______.6.若关于x 的一元二次方程x 2+ax +a =0的一个根是3,则a =______.7.若(x 2-5x +6)2+|x 2+3x -10|=0,则x =______.8.已知关于x 的方程x 2-2x +n -1=0有两个不相等的实数根,那么|n -2|+n +1的化简结果是______.二、选择题9.方程x 2-3x +2=0的解是( ).A .1和2B .-1和-2C .1和-2D .-1和210.关于x 的一元二次方程x 2-mx +(m -2)=0的根的情况是( ).A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定11.已知a ,b ,c 分别是三角形的三边,则方程(a +b )x 2+2cx +(a +b )=0的根的情况是( ).A .没有实数根B .可能有且只有一个实数根C .有两个不相等的实数根D .有两个不相等的实数根12.如果关于x 的一元二次方程0222=+-k x x 没有实数根,那么k 的最小整数值是( ).A .0B .1C .2D .313.关于x 的方程x 2+m (1-x )-2(1-x )=0,下面结论正确的是( ).A .m 不能为0,否则方程无解B .m 为任何实数时,方程都有实数解C .当2<m <6时,方程无实数解D .当m 取某些实数时,方程有无穷多个解三、解答题14.选择最佳方法解下列关于x 的方程:(1)(x +1)2=(1-2x )2.(2)x 2-6x +8=0.(3).02222=+-x x (4)x (x +4)=21.(5)-2x 2+2x +1=0.(6)x 2-(2a -b )x +a 2-ab =0.15.应用配方法把关于x 的二次三项式2x 2-4x +6变形,然后证明:无论x 取任何实数值,二次三项式的值都是正数.16.关于x 的方程x 2-2x +k -1=0有两个不等的实数根.(1)求k 的取值范围;(2)若k +1是方程x 2-2x +k -1=4的一个解,求k 的值.17.已知关于x 的两个一元二次方程:方程:02132)12(22=+-+-+k k x k x ①方程:0492)2(2=+++-k x k x ②(1)若方程①、②都有实数根,求k 的最小整数值;(2)若方程①和②中只有一个方程有实数根;则方程①,②中没有实数根的方程是______(填方程的序号),并说明理由;(3)在(2)的条件下,若k 为正整数,解出有实数根的方程的根.18.已知a ,b ,c 分别是△ABC 的三边长,当m >0时,关于x 的一元二次方程+2(x c 02)()2=--+ax m m x b m 有两个相等的实数根,试说明△ABC 一定是直角三角形.19.如图,菱形ABCD 中,AC ,BD 交于O ,AC =8m ,BD =6m ,动点M 从A 出发沿AC方向以2m/s 匀速直线运动到C ,动点N 从B 出发沿BD 方向以1m/s 匀速直线运动到D ,若M ,N 同时出发,问出发后几秒钟时,ΔMON 的面积为?m 412答案与提示一元二次方程全章测试1.x 1=x 2=1. 2.-2. 3.0. 4..,0a b x -±=≤5.4. 6.⋅-49 7.2. 8.3.9.A. 10.A. 11.A. 12.D. 13.C.14.(1)x 1=2,x 2=0; (2)x 1=2,x 2=4; (3);221==x x (4)x 1=-7,x 2=3; (5);31,3121-=+=x x (6)x 1=a ,x 2=a -b .15.变为2(x -1)2+4,证略.16.(1)k <2;(2)k =-3.17.(1)7;(2)①;∆2-∆1=(k -4)2+4>0,若方程①、②只有一个有实数根,则∆2>0> ∆ 1;(3)k =5时,方程②的根为;2721==x x k =6时,方程②的根为x 1=⋅-=+278,2782x 18.∆=4m (a 2+b 2-c 2)=0,∴a 2+b 2=c 2.19.设出发后x 秒时,⋅=∆41MON S (1)当x <2时,点M 在线段AO 上,点N 在线段BO 上.⋅=--41)3)(24(21x x 解得);s (225,2)s (225,21-=∴<±=x x x x (2)当2<x <3时,点M 在线段OC 上,点N 在线段BO 上,)3)(42(21x x --⋅=41解得);s (2521==x x (3)当x >3时,点M 在线段OC 上,点N 在线段OD 上,=--)3)(42(21x x ⋅41解得).s (225+=x 综上所述,出发后s,225+或s 25时,△MON 的面积为.m 412。

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案一、选择题1. 解一元二次方程 ax^2 + bx + c = 0 的常用方法不包括:A. 配方法B. 因式分解法C. 直接开平方法D. 微分法2. 已知方程 x^2 - 5x + 6 = 0 的两个根为 a 和 b,下列关系式正确的是:A. a + b = 5B. ab = 6C. a^2 + b^2 = 25D. a^2 - 5ab + b^2 = 13. 若一元二次方程 x^2 - 2x + 1 = 0 有两个相等的实根,则该方程的判别式Δ等于:A. 1B. 0C. -4D. 44. 一元二次方程 ax^2 + bx + c = 0 的根与系数的关系中,如果 a < 0,b > 0,c < 0,那么方程的根的情况是:A. 有两个正实根B. 有两个负实根C. 有一个正实根和一个负实根D. 没有实根5. 用配方法解方程 x^2 - 6x + 9 = 0,其解为:A. x = 3B. x = -3C. x = ±3D. x = 0二、填空题6. 方程 x^2 - 4x + 3 = 0 的两个根之积为 _______。

7. 方程 x^2 - 8x + 15 = 0 的两个根之和为 _______。

8. 已知一元二次方程 ax^2 + bx + c = 0 的两个根为 x1 和 x2,则a -b +c = _______。

9. 若一元二次方程 x^2 + px + q = 0 有两个不相等的实根,且这两个实根的倒数之和为 4,则 p = _______,q = _______。

三、解答题10. 解方程 x^2 - 3x - 4 = 0,并验证其解的正确性。

11. 已知一元二次方程 x^2 - (m-1)x - m^2 = 0 有两个不相等的实根,求 m 的取值范围。

12. 利用因式分解法解方程 2x^2 + 5x - 3 = 0,并指出其解的情况。

《一元二次方程》 单元测试卷 (含答案)

《一元二次方程》  单元测试卷 (含答案)

《一元二次方程》单元检测题一、选择题(每小题只有一个正确答案)1. 把方程23402x x ++=左边配成一个完全平方式后,所得方程是( ). (A )2355()416x += (B )2315()24x +=- (C )2315()24x += (D )2355()416x +=- 2.已知方程260x x q -+=可以配方成2()7x p -=的形式, 那么262x x q -+=可以配方成下列的 ( )(A) 2()5x p -= (B) 2()9x p -=(C) 2(2)9x p -+= (D) 2(2)5x p -+=3.一元二次方程2230x x --=的两个根分别为( ).(A)X l =1, x 2=3 (B)X l =1, x 2=-3(C)X 1=-1,X 2=3 (D)X I =-1, X 2=-34. 若2222()(1)60m n m n +--+=,则22m n +的值为( ).(A )3 (B )-2 (C )3或-2 (D )-3或25. 方程(3)x x x +=的根是( ).(A )-2 (B )0 (C )无实根 (D )0或-2 6. 已知x 满足方程2310x x -+=,则1x x+的值为( ). (A )3 (B )-3 (C )32 (D )以上都不对 7. 要使分式2544x x x -+-的值为0,x 等于( ). (A )1 (B )4或1 (C )4 (D )-4或-18. 关于x 的方程22(2)0a a x ax b --++=是一元二次方程的条件是( ).(A )2a ≠-且1a = (B )2a ≠ (C )2a ≠-且1a =- (D )1a =-二、填空题 9. 222(_____)[(____)]3y y y -+=+.10. x =__________.11. 若代数式2713x x -+的值为31,则x =_________________.12.用公式法解方程2815x x =--,其中24b ac -=__________,1x =__________,2x =_______________.13. 一元二次方程x 2-2x-1=0的根是__________.14. 若方程x 2-m=0的根为整数,则m 的值可以是________(只填符合条件的一个即可)15. 若(2x+3y )2+3(2x+3y )-4=0,则2x+3y 的值为_________.16. 请写出一个根为x= 1, 另一根满足-1< x< 1 的一元二次方程_______.三、计算题17.用配方法解下列方程:(1)210257x x -+=; (2)261x x +=;(3)23830x x +-=;(4)2310x x -+=.18.用公式法解下列方程:(1)27180x x --=;(2)22980x x -+=;(3)29610x x ++=;(4)21683x x +=.19.用因式分解法解下列方程:(1)(41)(57)0x x -+=; (2)3(1)22x x x -=-;(3)2(23)4(23)x x +=+; (4)222(3)9x x -=-.20. 阅读材料,解答问题:材料:为解方程(x 2-1)2-5(x 2-1)+4=0我们可以将x 2-1视为一个整体,然后设x 2-1=y ,•则(x 2-1)2=y 2,原方程可化为y 2-5y+4=0,解得y 1=1,y 2=4,当y=1时,x 2-1=1,∴x 2=2,∴x=;当y=4时,x 2-1=4,∴x 2=5,∴x=x 1,x 2,x 3x 4解答问题:(1)填空,在解原方程得到①的过程中利用_________法达到了降次的目的,体现了_______•数学思想;(2)利用上述方法解方程x 4-x 2-6=0.21. 若规定两数a 、b 通过“※”运算,得到4ab ,即a ※b=4ab ,例如2※6=4•×2•×6=48(1)求3※5的值;(2)求x ※x+2※x-2※4=0中x 的值;(3)若无论x 是什么数,总有a ※x=x ,求a 的值.参考答案:一、选择题1.D ;2.B ;3.C ;4.A ;5.D ;6.A ;7.A ;8.C ;二、填空题 9. 19,13-; 10. -5或3;11.9或-2;12.4,-3,-5;13. x 1;x 2;14.如4 , 提示:m 应是一个整数的平方,此题可填的数字很多.15. -•4或1;16.略;三计算题17.(1)15x =25x =(2)13x =-23x =-(3)113x =,23x =-;(4)132x +=,2x =; 18.(1)19x =,22x =-;(2)194x +=,294x =; (3)1213x x ==-; (4)114x =,234x =-; 19.(1)175x =-,214x =;(2)12 3x=-,21x=;(3)13 2x=-,21 2x=;(4)13x=,29x=.20. (1)换元,转化;(2)x=21. (1)3※5=4×3×5=60,(2)由x※x+2※x-2※4=0得4x2+8x-32=0,即x2+2x-8=0,∴x1=2,x2=-4,(3)由a*x=x得4ax=a,无论x为何值总有4ax=x,∴a=14.。

2024人教版数学九年级上册第一章一元二次方程单元复习卷(含答案)

2024人教版数学九年级上册第一章一元二次方程单元复习卷(含答案)

第二十一章一元二次方程章末复习测试题(二)一.选择题1.一元二次方程(x﹣2)2=0的根是()A.x=2B.x1=x2=2C.x1=﹣2,x2=2D.x1=0,x2=2 2.用公式法解一元二次方程2x2+3x=1时,化方程为一般式当中的a、b、c依次为()A.2,﹣3,1B.2,3,﹣1C.﹣2,﹣3,﹣1D.﹣2,3,1 3.若关于x的一元二次方程m2x2﹣(2m﹣1)x+1=0有两个实数根,则m的取值范围是()A.m <B.m≤C.m≥D.m ≤且m≠04.已知关于x的一元二次方程x2﹣2ax+4=0的一个根是2,则a的值为()A.1B.﹣1C.2D.﹣25.方程(m﹣1)x2+2mx﹣3=0是关于x的一元二次方程,则()A.m≠±1B.m=1C.m≠﹣1D.m≠16.菱形ABCD的一条对角线长为6cm,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长等于()A.10cm B.12cm C.16cm D.12cm或16cm7.已知一元二次方程x2+2x﹣1=0的两实数根为x1、x2,则x1•x2的值为()A.2B.﹣2C.1D.﹣1 8.九江某快递公司随着网络的发展,业务增长迅速,完成快递件数从六月份的10万件增长到八月份的12.1万件.假定每月增长率相同,设为x.则可列方程为()A.10x+x2=12.1B.10(x+1)=12.1C.10(1+x)2=12.1D.10+10(1+x)=12.19.若等腰三角形一条边的边长为3,另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是()A.27B.36C.27或36D.1810.用配方法解方程x2﹣8x+5=0,将其化为(x+a)2=b的形式,正确的是()A.(x+4)2=11B.(x+4)2=21C.(x﹣8)2=11D.(x﹣4)2=112024人教版数学九年级上册第一章一元二次方程单元复习卷(含答案)11.若a,b,c满足,则关于x的方程ax2+bx+c=0(a≠0)的解是()A.1,0B.﹣1,0C.1,﹣1D.无实数根12.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.32x+2×20x﹣2x2=570B.32x+2×20x=32×20﹣570C.(32﹣2x)(20﹣x)=32×20﹣570D.(32﹣2x)(20﹣x)=570二.填空题13.一元二次方程x(x﹣2)=x﹣2的一个根为x=2,另一个根为.14.用一根20m长的绳子围成一个面积为24m2矩形,则矩形的长与宽分别是.15.今年我国生猪价格不断飙升,某超市的排骨价格由第一季度的每公斤40元上涨到第三季度的每公斤元90,则该超市的排骨价格平均每个季度的增长率为.16.若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为.17.某企业退休职工李师傅2013年月退休金为1500元,2015年达到2160元.设李师傅的月退休金从2013年到2015年年平均增长率为x,可列方程为.18.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒,若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长,设剪去的小正方形边长是xcm,根据题意可列方程,化为一般式为.三.解答题19.解下列方程.(1)(4x﹣1)2=225.(2)(x﹣5)(x﹣6)=x﹣5.20.已知:关于x的一元二次方程x2+(2m+1)x+m2+m=0.(1)求证:此方程总有两个不相等的实数根;(2)请选择一个合适的m值,写出这个方程并求出此时方程的根.21.a为实数,关于x的方程(x﹣a)2+2(x+1)=a有两个实数根x1,x2.(1)求a的取值范围.(2)若(x1﹣x2)2+x1x2=12.试求a的值.22.有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃的一边AB为xm,面积为ym2.(1)用含有x的代数式表示y.(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成面积为72m2的花圃吗!如果能,请求出AB的长;如果不能,请说明理由.23.方程x2+ax+b=0与x2+bx+a=0有一个公共根,设它们另两个根为x1,x2;方程x2﹣cx+d=0与x2﹣dx+c=0有一个公共根,设它们另两个根为x3,x4.求x1x2x3x4的取值范围(a、b<0,a≠b,c、d<0,c≠d)24.2019年国庆档上映了多部优质国产影片,其中《我和我的祖国》、《中国机长》这两部影片不管是剧情还是制作,都非常值得一看.《中国机长》是根据真实故事改编的,影片中全组机组人员以自己的实际行动捍卫安全、呵护生命,堪称是“新时代的英雄”、“民航奇迹的创造者”,据统计,某地10月1日该影片的票房约为1亿,10月3日的票房约为1.96亿.(1)求该地这两天《中国机长》票房的平均增长率;(2)电影《我和我的祖国》、《中国机长》的票价分别为40元、45元,10月份,某企业准备购买200张不同时段的两种电影票,预计总花费不超过8350元,其中《我和我的祖国》的票数不多于《中国机长》票数的2倍,请求出该企业有多少种购买方案,并写出最省钱的方案及所需费用.25.为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.参考答案一.选择题1.解:(x﹣2)2=0,则x1=x2=2,故选:B.2.解:∵方程2x2+3x=1化为一般形式为:2x2+3x﹣1=0,∴a=2,b=3,c=﹣1.故选:B.3.解:由已知得:,解得:m≤且m≠0.故选:D.4.解:∵关于x的一元二次方程x2﹣2ax+4=0的一个根是2,∴22﹣2a×2+4=0,即﹣4a=﹣8解得,a=2.故选:C.5.解:根据题意得:m﹣1≠0,解得:m≠1,故选:D.6.解:解方程x2﹣7x+12=0得:x=3或4,即AB=3或4,∵四边形ABCD是菱形,∴AB=AD=DC=BC,当AD=DC=3cm,AC=6cm时,3+3=6,不符合三角形三边关系定理,此时不行;当AD=DC=4cm,AC=6cm时,符合三角形三边关系定理,即此时菱形ABCD的周长是4×4=16,故选:C.7.解:∵一元二次方程x2+2x﹣1=0的两实数根为x1、x2,所以x1•x2==﹣1.故选:D.8.解:设每月增长率为x,根据题意得:10(1+x)2=12.1.故选:C.9.解:当3为腰长时,将x=3代入原方程得9﹣12×3+k=0,解得:k=27,∴原方程为x2﹣12x+27=0,∴x1=3,x2=9,∵3+3<9,∴长度为3,3,9的三条边不能围成三角形∴k=27舍去;当3为底边长时,△=(﹣12)2﹣4k=0,解得:k=36.故选:B.10.解:x2﹣8x+5=0,x2﹣8x=﹣5,x2﹣8x+16=﹣5+16,(x﹣4)2=11.故选:D.11.解:当x=1时,a+b+c=0,当x=﹣1时,a﹣b+c=0,所以关于x的方程ax2+bx+c=0(a≠0)的解为1或﹣1.故选:C.12.解:设道路的宽为xm,则草坪的长为(32﹣2x)m,宽为(20﹣x)m,根据题意得:(32﹣2x)(20﹣x)=570.故选:D.二.填空题(共6小题)13.解:方程整理为x2﹣3x+2=0,设方程的另一个解为t,则2t=2,解得t=1,即方程的另一个解为1.故答案为1.14.解:设矩形的长为xm,则宽为m,依题意,得:x•=24,整理,得:x2﹣10x+24=0,解得:x1=6,x2=4.∵x≥,∴x≥5,∴x=6,=4.故答案为:6m,4m.15.解:设平均每个季度的增长率为x,依题意,得:40(1+x)2=90,解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).故答案为:50%.16.解:∵a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,∴a、b可看作方程x2﹣4x+1=0的两个实数解,∴a+b=4,ab=1,而a2+1=4a,b2+1=4b,∴=+=×=×=1.故答案为1.17.解:如果设李师傅的月退休金从2013年到2015年年平均增长率为x,那么根据题意得今年退休金为:1500(1+x)2,列出方程为:1500(1+x)2=2160.故答案为:1500(1+x)2=2160.18.解:设剪去的小正方形边长是xcm,则长方形纸盒的底面长为(10﹣2x)cm,宽为(6﹣2x)cm,依题意,得:(10﹣2x)(6﹣2x)=32,即x2﹣8x+7=0.故答案为:x2﹣8x+7=0.三.解答题(共7小题)19.解:(1)∵(4x﹣1)2=225,∴4x﹣1=15或4x﹣1=﹣15,解得x=4或x=﹣;(2)∵(x﹣5)(x﹣6)﹣(x﹣5)=0,∴(x﹣5)(x﹣7)=0,则x﹣5=0或x﹣7=0,解得x=5或x=7.20.(1)证明:∵△=(2m+1)2﹣4m2﹣4m=1>0,∴方程总有两个不相等的实数根;(2)解:当m=0时,方程化为x2+x=0,解得x1=0,x2=﹣1.21.解:(1)(x﹣a)2+2(x+1)=a,变形为x2﹣2(a﹣1)x+a2﹣a+2=0.根据题意得△=4(a﹣1)2﹣4(a2﹣a+2)=4a2﹣8a+4﹣4a2+4a﹣8=﹣4a﹣4≥0,解得a≤﹣1.即a的取值范围是a≤﹣1;(2)由根与系数的关系得x1+x2=2(a﹣1),x1x2=a2﹣a+2,∵(x1﹣x2)2+x1x2=12,∴(x1+x2)2﹣3x1x2=12,∴[2(a﹣1)]2﹣3(a2﹣a+2)=12,即a2﹣5a﹣14=0,解得a1=﹣2,a2=7,∵a≤﹣1,∴a的值为﹣2.22.解:(1)由题意得:y=x(30﹣3x),即y=﹣3x2+30x.(2)当y=63时,﹣3x2+30x=63.解此方程得x1=7,x2=3.当x=7时,30﹣3x=9<10,符合题意;当x=3时,30﹣3x=21>10,不符合题意,舍去;∴当AB的长为7m时,花圃的面积为63m2.(3)不能围成面积为72m2的花圃.理由如下:如果y=72,那么﹣3x2+30x=72,整理,得x2﹣10x+24=0,解此方程得x1=4,x2=6,当x=4时,30﹣3x=18,不合题意舍去;当x=6时,30﹣3x=12,不合题意舍去;故不能围成面积为72m2的花圃.23.解:∵x2+ax+b=0与x2+bx+a=0有一个公共根,∴x2+ax+b=x2+bx+a,∴(a﹣b)x=a﹣b,∵a≠b,∴x=1,∴x1=b,x2=a,∴a+b=﹣1,∴x1+x2=﹣1,∵x2﹣cx+d=0与x2﹣dx+c=0有一个公共根,∴x2﹣cx+d=x2﹣dx+c,∴﹣(d﹣c)x=d﹣c,∵c≠d,∴x=﹣1,∴x3=﹣d,x4=﹣c,∴d+c=﹣1,∴x3+x4=1,∵a、b<0,c、d<0,∴(﹣x1)+(﹣x2)≥2,x3+x4≥2,∴0<x1x2≤,0<x3x4≤,∴0<x1x2x3x4≤.24.解:(1)设该地这两天《中国机长》票房的平均增长率为x.根据题意得:1×(1+x)2=1.96解得:x1=0.4,x2=﹣2.4(舍)答:该地这两天《中国机长》票房的平均增长率为40%.(2)设购买《我和我的祖国》a张,则购买《中国机长》(200﹣a)张根据题意得:解得:130≤a≤∵a为正整数∴a=130,131,132,133∴该企业共有4种购买方案,购买《我和我的祖国》133张,《中国机长》67张时最省钱,费用为:40×133+45×67=8335(元).答:最省钱的方案为购买《我和我的祖国》133张,《中国机长》67张,所需费用为8335元.25.解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三(上) 一元二次方程单元试卷
姓名 班级 成绩
一、精心选一选(每小题2分,共18分)
1. 方程2269x x -=的二次项系数. 一次项系数. 常数项分别为( ) . A .6.
2. 9 B .2. -6. -9 C .2. -6. 9 D .-2. 6. 9 2. 已知m 是方程022=--x x 的一个根,则m m -2的值是( ) . A. 0 B. 1 C. 2 D. -2
3.方程3(3)5(3)x x x -=-的根是( ) .
A. 35
B. 3
C. 35和3
D. 3
5
和-3
4. 将方程0982=++x x 左边变成完全平方式后,方程是( ) . A. 7)4(2=+x B. 25)4(2=+x C. 9)4(2-=+x D. 7)4(2-=+x
5. 下列方程中一定是一元二次方程的是( ) A.(a-3)x 2=8 (a ≠0) B.ax 2 +bx+c=0
C.(x+3)(x-2)=x 2 23
2057x +-= 6. 已知两数之差为4,积等于45,则这两个数是( ) .
A. 5和9
B. -9和-5
C. 5和-5或-9和9
D. 5和9或-9和-5 7. 某型号的手机连续两次降阶,每个售价由原来的1185元降到580元,设平均每次降价的百分率为x ,则列出方程正确的是( ) .
A. 2580(1-)1185x =
B. 21185(1-)580x =
C. 2580(1)1185x +=
D. 21185(1)580x +=.
8. 从一块正方形的木板上锯掉2米宽的长方形木条,剩下的面积是48平方米,则原来这块木板的面积是( ) 平方米. A. 64 B. 100 C. 81 D. 48
9. 已知方程11x a x a +
=+ 的两根分别为a ,1a , 则方程1111
x a x a +=+-- 的根是( ) A.1,1a a - B.11,1a a -- C.11,a a - D.,1
a
a a -
二、细心填一填(每小题2分,共18分)
11. 把方程2(x -3)2 =5化成一元二次方程的一般形式是 .
12. 方程20x =的根是 .
13. 设b a ,是一个直角三角形两条直角边的长,且
12)1)((2222=+++b a b a ,则这个直角三角形的斜边长为 .
14. 若一元二次方程ax 2 +bx +c = 0(a ≠0)有一个根为1,则 a + b + c = ;若有一个根为-1,则b 与a 、c 之间的关系为 ;若有一个根为零,则c = .(3分)
15. 如果-1是方程0422=-+bx x 的一个根,则方程的另一个根是 .
16. 某食品连续两次涨价10%后价格是a 元,那么原价是_______ ___.
17. 在一元二次方程的配方过程中得到a ac b a b x 44222
-=⎪⎭⎫ ⎝

+,我们常把
ac b 42-记作△。

当△______0,方程有两个不等的实数根; 当△______0,方程有
两个相等的实数根;当△________0方程没有实数根.(3分)
18.请写出一个根为x = 1的一元二次方程: .
三、耐心解一解(共分)19.解方程(每小题5分,共30分):
(1)02522
=-+)(x (直接开平方法) (2)0542=-+x x (配方法)
(3)0)2(10)2(2=+-+x x (因式分解法) (4)01722=+-x x (公式法)
(5)x x 3232=+ (6)036252=-x
20. (8分)(只选做一题,做两题只计一题的分)
(1)对于二次三项式2 -1036x x +,小明同学得到如下结论:无论x 取何值,它的值
都不可能是10.你是否同意他的说法?请你说明理由.
(2)当x 取何值时,代数式752+-x x 取得最大(小)值,这个最大(小)值是多少?
21. (8分) 已知方程11
1
=-x 的解是k ,求关于x 的方程x 2 + kx = 0 解.
22. (9分)西瓜经营户以2元/千克的价格购进一批西瓜,以3元/千克的价格出售,每天可售出200千克,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多出售40千克。

另外,每天的房租等固定成本共24元,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降价多少元?
四、决心探一探(共9分)先阅读,再填空解题
(1)方程0122=--x x 的根是:x 1 = -3 ,x 2 = 4,则x 1 +x 2 =1;x 1 ∙x 2 =- 12; (2)方程03722=+-x x 的根是:x 1 =
21,x 2 = 3,则;x 1 +x 2 =27 ;x 1 ∙x 2 =2
3
; (3)方程0132=+-x x 的根是:x 1 = __,x 2 =___,则x 1 +x 2 =___ ;x 1 ∙x 2 = ____;
根据(1)(2)(3)你能否猜出:
如果关于x 的一元二次方程mx 2 +nx +p = 0(m ≠0且m 、n 、p 为常数)的两根为x 1 、x 2 ,那么x 1 +x 2 、x 1 ∙x 2与系数m 、n 、p 有什么关系?请写出你的猜想并说明理由.
参考答案:
一、精心选一选
1. B ;
2. C ;
3. C ;
4. A ;
5.D ;
6. D ;
7. B ;
8. A ;
9. D. 二. 细心填一填
11. 2
2x -12x+13=0; 12. x 1=0,x 2=5 ;13. 3 ; 14. 0,b=a +c,0; 15. 2; 16.
a 81
100
; 17.>、=、<; 18. 20x x -=(答案不唯一). 三. 耐心解一解
19. (1) 31=x ,72-=x ; (2)11=x ,52-=x ;(3);81=x ,22-=x
(4) 44171+=
x ,4
41
72-=x .(5)321==x x (6) 562±=x
20.(1) 同意他的说法(配方,或根的判别法理由略).(2)配方得
4
3
,25,43)25(2取最小值当=+-x x
21.k=2 , 01=x , 22-=x
22. 设每千克小型西瓜的售价降价x 元,有(200+1
.040x
)(3-2-x)-24= 200 解得x 1 = 0.2 ; x 2 = 0.3
四、决心探一探 23.(3)
253+,2
5
3-,3,1 x 1 +x 2 = m
n -
; x 1 ∙x 2 = m p
.
用公式法解得m
mp
n n x 242-±-=。

相关文档
最新文档