2019届高三数学复习--解析几何--圆锥曲线的方程与性质解析
(全国通用版)高考数学二轮复习专题五解析几何第2讲圆锥曲线文-2022年学习资料
考情考向分析]-1.以选择题、填空题形式考查圆推曲线的方程、几何性质(特别-是离心率.-2以解答题形式考查直线与圆锥曲线的位置关系(弦长、中点等)
内容索引-热点分类突破-真题押题精练
热点分类突破(全国通用版)2019高考数学二轮复习专题五解析几何第2讲圆锥曲线文
2已知双曲线C:广-芳=1c0,>0的焦距为2c,直线/过点,0l日-与双曲线C的一条渐近线垂直,以双曲线C的右焦点为圆心,半焦距为-4V2-半径 圆与直线1交于M,N两点,若MN=3C,-则双曲线C的渐近-线方程为-A.y=±V2x-B=±V3x-C.y=±2x-D.y=±4x-解析-答案
热点三-直线与圆锥曲线-判断直线与圆锥曲线公共点的个数或求交点问题有两种常用方法-代数法:联立直线与圆锥曲线方程可得到一个关于x,y的方程组,-消 y或x得一元二次方程,此方程根的个数即为交点个数,方程组的-解即为交点坐标,-2几何法:画出直线与圆锥曲线的图象,根据图象判断公共点个数,
利32018衡水金卷调研已知椭圆+点=1a>b>0的左、右焦点分别-为F1,F2,过F1的直线交椭圆于A,B两点-1若直线AB与椭圆的长轴垂直,A =20,求椭圆的离心率;-解由题意可知,直线AB的方程为x=-C,-2b21-∴.AB1=-a=24,直线AB的斜率为1,AB1=a十,-求椭圆的短轴与长轴的比值.-解答
,2-例112018:乌鲁木齐诊断椭圆的离心率为2,F为椭圆的一个焦-点,若椭圆上存在一点与F关于直线y=x+4对称,则椭圆方程为-x2 y2-A 8+=1-B+的=1-+-1号+-1-解析-答案
22018龙岩质检已知以圆C:x-12+y2=4的圆心为焦点的抛物线C1-与圆C在第一象限交于A点,B点是抛物线C2:x2=8y上任意一点,BM与 直线y=-2垂直,垂足为M,则BMI-AB的最大值为-B.2-C.-1-D.8-解析-答案
高三数学一轮复习必备 圆锥曲线方程及性质
第33讲圆锥曲线方程及性质备注:【高三数学一轮复习必备精品共42讲全部免费欢迎下载】一.【课标要求】1.了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用;2.经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质;3.了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质二.【命题走向】本讲内容是圆锥曲线的基础内容,也是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,从近十年高考试题看主要考察圆锥曲线的概念和性质。
圆锥曲线在高考试题中占有稳定的较大的比例,且选择题、填空题和解答题都涉及到,客观题主要考察圆锥曲线的基本概念、标准方程及几何性质等基础知识和处理有关问题的基本技能、基本方法对于本讲内容来讲,预测2010年:(1)1至2道考察圆锥曲线概念和性质客观题,主要是求值问题;(2)可能会考察圆锥曲线在实际问题里面的应用,结合三种形式的圆锥曲线的定义。
三.【要点精讲】1.椭圆 (1)椭圆概念平面内与两个定点1F 、2F 的距离的和等于常数(大于21||F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫椭圆的焦距。
若M 为椭圆上任意一点,则有21||||2MF MF a +=椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或12222=+bx a y (0a b >>)(焦点在y 轴上)。
注:①以上方程中,a b 的大小0a b >>,其中222c a b =-;②在22221x y a b +=和22221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2x 和2y 的分母的大小。
例如椭圆221x y m n+=(0m >,0n >,m n ≠)当m n>时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆(2)椭圆的性质①范围:由标准方程22221x y a b+=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里;②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。
高中数学圆锥曲线知识点梳理+例题解析
x0 x a2
y0 y b2
1.
7.
x2
椭圆
a2
y2 b2
1
(a>b>0)的左右焦点分别为 F1,F 2,点 P 为椭圆上任意一点 F1PF2
,则椭圆的焦点角形的面积
S 为 F1PF2
b2
tan 2
.
-4-
8.
椭圆 x2 y2 a2 b2
1(a>b>0)的焦半径公式 | MF1 | a ex0 , | MF2 | a ex0 ( F1(c, 0)
x0
中心 顶点 对称轴
原点 O(0,0)
(a,0), (─a,0), (0,b) , (0,─b)
x 轴,y 轴; 长轴长 2a,短轴长 2b
原点 O(0,0)
(a,0), (─a,0) x 轴,y 轴;
实轴长 2a, 虚轴长 2b.
(0,0) x轴
焦点
F1(c,0), F2(─c,0)
F1(c,0), F2(─c,0)
e=1
a
a
-2-
【备注 1】双曲线:
⑶等轴双曲线:双曲线 x 2 y 2 a 2 称为等轴双曲线,其渐近线方程为 y x ,离心率 e 2 .
⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线. x 2 y 2 与 a2 b2
x 2 y 2 互为共轭双曲线,它们具有共同的渐近线: x 2 y 2 0 .
e 的点的轨迹.(e>1)
与定点和直线的距离相等的点的 轨迹.
-1-
轨迹条件
点集: ({M||MF1+|MF2|=2a,|F
(完整版)圆锥曲线的定义、方程和性质知识点总结
椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
高考总复习二轮数学精品课件 专题6 解析几何 第2讲 圆锥曲线的定义、方程与性质
3
a
在双曲线 C 上,若△AF1F2 的周长为 10,则△AF1F2 的面积为(
)
A. 15
B.2 15
C.15
D.30
(2)已知|z+ 5i|+|z- 5i|=6,则复数 z 在复平面内所对应的点 P(x,y)的轨迹方程
是椭圆的右焦点,若 AF⊥BF,则 a=
答案 3+ 3
.
解析 设椭圆C的左焦点为F1,如图,连接AF1,BF1,因为|OA|=|OB|,|OF1|=|OF|,
所以四边形AF1BF为平行四边形.
又 AF⊥BF,所以四边形 AF1BF
π
为矩形,所以∠F1AF= ,则
2
|OF1|=|OF|=|OA|=2 3.
为
.
(3)已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF与x
Hale Waihona Puke 轴垂直,Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线方程
为
答案 (1)A
.
2
(2)
9
2
+ =1
4
3
(3)x=2
解析 (1)由题意得
e=
所以双曲线方程为
=
2
1 + 2
=
3
1 + 2=2,所以 a2=1.
2
即 x±2y=0,故 B 正确;
2 5
5
e1·
e2= 5 × 2 =1,所以 C1 与 C2 的离心率互为倒数,故 C
2019版 第2部分 专题5 第9讲 圆锥曲线的定义、方程及性质
典
例 研 析
P→F1·P→F2=9,则|P→F1|·|P→F2|的值为(
)
• 提
A.8
B.10
C.12
D.15
素 养
D
[因为 P 是椭圆1x62 +1y22 =1 上一点,F1,F2 分别是椭圆的左、右焦点,所
专 题 限
时
真
以|PF1|+|PF2|=8,|F1F2|=4.因为P→F1·P→F2=9,所以|P→F1|·|P→F2|cos∠F1PF2=9,因
养
专 题
则a2+b2=9.①
限
时
真 题
又点( 15,4)在双曲线上,所以1a62-1b52=1.②
集 训
好
题 • 演
由①②解得a2=4,b2=5.故所求双曲线的标准方程为y42-x52=1.故选A.]
练
场
返
首
页
2.设椭圆1x62 +1y22 =1 的左、右焦点分别为 F1,F2,点 P 在椭圆上,且满足
(1)D
(2)6
[(1)根据题意画出草图如图所示,不妨设点A在渐近线y=
b a
x
研 析
上.
•
提
素 养
专 题
限
时
集
真
训
题
好
题
•
演
练
场
返
首
页
典
例
研
析 •
由△AOF是边长为2的等边三角形得到∠AOF=60°,c=|OF|=2.
提
素 养
又点A在双曲线的渐近线y=bax上,∴ba=tan 60°= 3.
专 题
限 时
真
解得a=2,又b2=c2-a2=5,
2019届高考数学(理)二轮复习提优导学案(江苏专用):第1部分 二轮课时专题5 解析几何 2 圆锥曲线
第2讲圆锥曲线【课前热身】第2讲圆锥曲线(本讲对应学生用书第45~47页)1.(选修2-1 P32练习3改编)已知椭圆的焦点分别为F1(-2,0),F2(2,0),且经过点P53-22⎛⎫⎪⎝⎭,,则椭圆的标准方程为.【答案】210x+26y=1【解析】设椭圆方程为22xa+22yb=1,由题意得2222259144-4a ba b⎧+=⎪⎨⎪=⎩,,解得a2=10,b2=6,所以所求方程为210x+26y=1.2.(选修2-1 P47练习2改编)若双曲线的虚轴长为12,离心率为54,则双曲线的标准方程为.【答案】264x-236y=1或264y-236x=1【解析】由b=6,ca=54,结合a2+b2=c2,解得a=8,c=10,由于对称轴不确定,所以双曲线标准方程为264x-236y=1或264y-236x=1.3.(选修2-1 P47练习3改编)已知双曲线x 2-22y m=1(m>0)的一条渐近线方程为x+0,则实数m= .【答案】3【解析】双曲线x 2-22y m=1(m>0)的渐近线方程为y=±mx ,又因为该双曲线的一条渐近线方程为x+0,所以m=3.4.(选修2-1 P53练习2改编)设抛物线y 2=mx 的准线与直线x=1的距离为3,则抛物线的标准方程为 .【答案】y 2=8x 或y 2=-16x【解析】当m>0时,准线方程为x=-4m=-2,所以m=8,此时抛物线方程为y 2=8x ;当m<0时,准线方程为x=-4m=4,所以m=-16,此时抛物线方程为y 2=-16x. 所以所求抛物线方程为y 2=8x 或y 2=-16x.5.(选修2-1 P37练习6改编)若一个椭圆长轴的长、短轴的长和焦距成等差数列,则该椭圆的离心率是 .【答案】35【解析】由题意知2b=a+c ,又b 2=a 2-c 2, 所以4(a 2-c 2)=a 2+c 2+2ac.所以3a 2-2ac-5c 2=0,所以5c 2+2ac-3a 2=0.所以5e 2+2e-3=0,解得e=35或e=-1(舍去).【课堂导学】求圆锥曲线的标准方程例1(2019·扬州中学)在平面直角坐标系xOy中,已知椭圆C:22xa+22yb=1(a>b>0)的离心率为32,以原点为圆心、椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的标准方程;(2)已知点P(0,1),Q(0,2),设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.【分析】(1)利用直线与圆相切求出b的值,然后利用离心率可求出a的值,从而求出椭圆方程.(2)解出两直线的交点,验证满足椭圆方程即可.【解答】(1)由题意知椭圆C的短半轴长为圆心到切线的距离,即22因为离心率e=ca=32,所以ba21-ca⎛⎫⎪⎝⎭12,所以a=2所以椭圆C的标准方程为28x+22y=1.(2)由题意可设M,N两点的坐标分别为(x0,y0),(-x0,y0),则直线PM的方程为y=-1yxx+1,①直线QN的方程为y=-2-yxx+2. ②设点T的坐标为(x,y).联立①②解得x0=2-3xy,y=3-42-3yy.因为28x+22y=1,所以2182-3xy⎛⎫⎪⎝⎭+213-422-3yy⎛⎫⎪⎝⎭=1,整理得28x+2(3-4)2y=(2y-3)2,所以28x+292y-12y+8=4y2-12y+9,即28x+22y=1,所以点T的坐标满足椭圆C的方程,即点T在椭圆C上.【点评】求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a,b的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx2+ny2=1(m>0,n>0,m≠n)的形式.变式已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.(1)求椭圆C的方程;(2)已知动点P到定点Q(20)的距离与点P到定直线l:x=2222,求动点P的轨迹C'的方程.【分析】本题主要考查椭圆的定义和椭圆的标准方程等基础知识,以及利用直接法和待定系数法求椭圆方程的基本方法.【解答】(1)依题意,可设椭圆C的方程为22xa+22yb=1(a>b>0),且可知左焦点为F'(-2,0),从而有22'358ca AF AF=⎧⎨=+=+=⎩,,解得24.ca=⎧⎨=⎩,又a2=b2+c2,所以b2=12,故椭圆C的方程为216x+212y=1.(2)设点P(x,y),依题意,得22(-2)|-22|x yx+=22,整理,得24x+22y=1,所以动点P的轨迹C'的方程为24x+22y=1.【点评】本题第一问已知焦点即知道了c,再利用椭圆定义先求得2a的值,再利用椭圆中a,b,c的关系,求得b的值,从而得椭圆方程.本题还可以利用待定系数法设椭圆方程为22xa+22-4ya=1,代入已知点求解,显然没有利用定义来得简单.求离心率的值或范围例2(1)(2019·徐州三校调研)如图(1),在平面直角坐标系xOy中,A1,A2,B1,B2分别为椭圆22xa+22yb=1(a>b>0)的四个顶点,F为其右焦点,直线A1B2与直线B1F相交于点T,线段OT与椭圆的交点M恰为线段OT的中点,则该椭圆的离心率为.(例2(1))(2)(2019·临川一中质检)如图(2),已知点A,F分别是2 2 xa-22yb=1(a>0,b>0)的左顶点与右焦点,过A,F作与x轴垂直的直线分别与两条渐近线交于P,Q,R,S,若S△ROS=2S△POQ,则双曲线的离心率为.(例2(2))(3)(2019·金陵中学)已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1,F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若PF1=10,椭圆与双曲线的离心率分别为e1,e2,则e1·e2的取值范围是.【点拨】依题设得出关于a,b,c的等式或不等式,再消去b.【答案】75(2)2(3)13∞⎛⎫+⎪⎝⎭,【解析】(1)由题意知直线A1B2的方程为-xa+yb=1,直线B1F的方程为xc+-yb=1.联立方程组解得T2()--ac b a ca c a c+⎛⎫⎪⎝⎭,.又M()-2(-)ac b a ca c a c⎛⎫+⎪⎝⎭,在椭圆22xa+22yb=1(a>b>0)上,故22(-)ca c+22()4(-)a ca c+=1,即e2+10e-3=0,解得e=275.(2)由题意,得A(-a,0),F(c,0),直线PQ,RS的方程分别为x=-a,x=c,与渐近线y=±ba x 联立,可求得P(-a,b),Q(-a,-b),R-bcca⎛⎫⎪⎝⎭,,Sbcca⎛⎫⎪⎝⎭,,则S△ROS=12·2bca·c=2bca,S△POQ =12a·2b=ab,于是由S△ROS=2S△POQ,得2bca=2ab,即22ca=2,所以e=2.(3)设椭圆的长轴长为2a,双曲线的实轴长为2m,则2c=PF2=2a-10,2m=10-2c,a=c+5,m=5-c,所以e1e2=5cc+·5-cc=2225-cc=2125-1c.又由三角形性质知2c+2c>10,又由已知得2c<10,c<5,所以52<c<5,1<225c<4,0<225c-1<3,所以e1e2=2125-1c>13.变式1(2019·苏北四市期末)已知椭圆22xa+22yb=1(a>b>0),点A,B1,B2,F依次为其左顶点、下顶点、上顶点和右焦点,若直线AB2与直线B1F的交点恰好在椭圆的右准线上,则该椭圆的离心率为.(变式1)【答案】12【解析】如图,A(-a,0),B1(0,-b),B2(0,b),F(c,0),设点M2Mayc⎛⎫⎪⎝⎭,.由2ABk=k AM,得ba=2Myaac+,所以y M=b1ac⎛⎫+⎪⎝⎭.由1FBk=k FM,得bc=2-Myacc,所以y M =2-b a c c c ⎛⎫⎪⎝⎭. 从而b 1a c⎛⎫+ ⎪⎝⎭=2-b a c c c ⎛⎫ ⎪⎝⎭, 整理得2e 2+e-1=0,解得e=12.变式2 (2019·泰州期末)若双曲线22x a -22y b=1的右焦点到渐近线的距离是其到左顶点距离的一半,则双曲线的离心率e= .【答案】53【解析】由双曲线的性质“焦点到渐近线的距离等于b ”,得b=2a c+,所以a 2+22a c +⎛⎫ ⎪⎝⎭=c 2,整理得3c 2-2ac-5a 2=0,所以3e 2-2e-5=0,解得e=53.变式3 (2019·泰州中学)如图,椭圆22x a +22y b=1(a>b>0)的右焦点为F ,其右准线l 与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是 .(变式3)【答案】112⎡⎫⎪⎢⎣⎭, 【解析】方法一:由题意知椭圆上存在点P ,使得线段AP 的垂直平分线过点F ,所以PF=FA ,而FA=2a c -c ,PF ≤a+c ,所以2a c -c ≤a+c ,即a 2≤ac+2c 2.又e=ca,所以2e 2+e ≥1,所以2e 2+e-1≥0,即(2e-1)(e+1)≥0.又0<e<1,所以12≤e<1.方法二:设点P(x,y).由题意,椭圆上存在点P,使得线段AP的垂直平分线过点F,所以PF=FA.由椭圆第二定义,2-PFaxc=e,所以PF=2ac e-ex=a-ex,而FA=2ac-c,所以a-ex=2ac-c,解得x=21-aa ce c⎛⎫+⎪⎝⎭.由于-a≤x≤a,所以-a≤21-aa ce c⎛⎫+⎪⎝⎭≤a.又e=ca,所以2e2+e-1≥0,即(2e-1)(e+1)≥0.又0<e<1,所以12≤e<1.直线与圆锥曲线问题例3(2019·南通一调)如图,在平面直角坐标系xOy中,已知椭圆22xa+22yb=1(a>b>0)过点A(2,1),离心率为3 2.(1)求椭圆的方程;(2)若直线l:y=kx+m(k≠0)与椭圆相交于B,C两点(异于点A),线段BC被y轴平分,且AB⊥AC,求直线l的方程.(例3)【点拨】联立方程化归为一元二次方程的根与系数问题.【解答】(1)由条件知椭圆22x a +22y b=1(a>b>0)的离心率为e=c a =32,所以b 2=a 2-c 2=14a 2.又点A (2,1)在椭圆上,所以24a +21b =1,解得2282.a b ⎧=⎨=⎩,所以所求椭圆的方程为28x +22y =1.(2)将y=kx+m (k ≠0)代入椭圆方程,得(1+4k 2)x 2+8mkx+4m 2-8=0, ①由线段BC 被y 轴平分,得x B +x C =-2814mkk +=0,因为k ≠0,所以m=0.因为当m=0时,B ,C 关于原点对称,设B (x ,kx ),C (-x ,-kx ),由方程①,得x 2=2814k +,又因为AB ⊥AC ,A (2,1),所以AB uuu r ·A C uuu r =(x-2)(-x-2)+(kx-1)(-kx-1)=5-(1+k 2)x 2=5-228(1)14k k ++=0,所以k=±12,由于k=12时,直线y=12x 过点A (2,1),故k=12不符合题设. 所以直线l 的方程为y=-12x.【点评】解析几何包含两个主要问题,即已知曲线求方程和已知方程研究曲线的性质.对解析几何的复习,要在牢固掌握与解析几何有关的基本概念基础上,把上述两个问题作为复习和研究的重点,把握坐标法思想的精髓.变式 (2019·南通、扬州、泰州、淮安三模)如图,在平面直角坐标系xOy 中,已知椭圆22x a +22y b =1(a>b>0)的离心率为22,长轴长为4,过椭圆的左顶点A 作直线l ,分别交椭圆和圆x 2+y 2=a 2于相异两点P ,Q.(1)若直线l的斜率为12,求APAQ的值;(2)若PQu u u r=λAPuuu r,求实数λ的取值范围.(变式)【解答】(1)由条件知2222422acaa b c=⎧⎪⎪=⎨⎪=+⎪⎩,,解得22.ab=⎧⎪⎨⎪⎩,所以椭圆的方程为24x+22y=1,圆的方程为x2+y2=4.由题知直线l的方程为y=12(x+2),即x=2y-2,联立方程组222-224x yx y=⎧⎨+=⎩,,消去x,得3y2-4y=0,所以y P=4 3.由222-24x yx y=⎧⎨+=⎩,,消去x,得5y2-8y=0,所以y Q=85.所以APAQ=PQyy=43×58=56.(2)因为PQu u u r=λAPuuu r,且APuuu r,PQu u u r同向,则λ=PQAP=-AQ APAP=AQAP-1,设直线l:y=k(x+2),联立方程组224(2)x yy k x⎧+=⎨=+⎩,,消去x,得(k2+1)y2-4ky=0,所以y Q =241k k +,同理y P =2421k k +,λ=AQ AP -1=QP y y -1=2241421k k k k ++-1=1-211k +.因为k 2>0,所以0<λ<1.即实数λ的取值范围是(0,1).【课堂评价】1.(2019·泰州期末)在平面直角坐标系xOy 中,双曲线22x -y 2=1的实轴长为 .【答案】22【解析】根据双曲线的方程知a=22a=22.(2019·镇江期末)以抛物线y 2=4x 的焦点为焦点,以直线y=±x 为渐近线的双曲线的标准方程为 .【答案】212x -212y =1【解析】由题意设双曲线的标准方程为22x a -22y b=1,y 2=4x 的焦点为(1,0),即c=1,则双曲线的焦点为(1,0).因为y=±x 为双曲线的渐近线,则b a =1,又a 2+b 2=c 2,所以a 2=12,b 2=12,故双曲线的标准方程为212x-212y=1.3.(2019·南京、盐城一模)在平面直角坐标系xOy中,已知抛物线C的顶点在坐标原点,焦点在x 轴上,若曲线C经过点P(1,3),则其焦点到准线的距离为.【答案】92【解析】由题意可设抛物线C的方程为y2=2px(p>0),因为曲线C过点P(1,3),所以9=2p,解得p=92,从而其焦点到准线的距离为p=92.4.(2019·苏中三校联考)设椭圆C:22xa+22yb=1(a>b>0)的左、右焦点分别为F1,F2,过F2作x轴的垂线与椭圆C相交于A,B两点,F1B与y轴相交于点D,若AD⊥F1B,则椭圆C的离心率为.(第4题)【答案】33【解析】如图,连接AF1,因为OD∥AB,O为F1F2的中点,所以D为BF1的中点.又AD⊥BF1,所以AF1=AB.所以AF1=2AF2.设AF2=n,则AF1=2n,F1F2=3所以e=ca=1212F FAF AF=33nn=33.温馨提示:趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》第23~24页.【检测与评估】第2讲圆锥曲线一、填空题1.(2019·苏锡常镇调研)若双曲线x2+my2=1过点(2),则该双曲线的虚轴长为.2.(2019·苏州调查)已知双曲线2xm-25y=1的右焦点与抛物线y2=12x的焦点相同,则此双曲线的渐近线方程为.3.(2019·徐州、连云港、宿迁三检)已知点F是抛物线y2=4x的焦点,该抛物线上位于第一象限的点A到其准线的距离为5,则直线AF的斜率为.4.(2019·普陀区调研)离为1,则该椭圆的离心率为.5.(2019·西安模拟)已知椭圆24x+22yb=1(0<b<2)的左、右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若BF2+AF2的最大值为5,则b的值是.6.(2019·盐城中学)设椭圆22xm+..=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为12,则此椭圆的短轴长为 .7.(2019·丹阳中学)设A ,B 分别是椭圆22x a +22y b =1(a>b>0)的左、右顶点,点P 是椭圆C 上异于A ,B 的一点,若直线AP 与BP 的斜率之积为-13,则椭圆C 的离心率为 .8.(2019·淮阴四校调研)已知椭圆C :22x a +22y b =1(a>b>0)的左、右焦点分别为F 1,F 2,若椭圆C 上恰好有6个不同的点P ,使得△F 1F 2P 为等腰三角形,则椭圆C 的离心率的取值范围是 .二、 解答题9.(2019·扬州期末)如图,已知椭圆22x a +22y b =1(a>b>0)的左、右焦点分别为F 1,F 2,P 是椭圆上一点,M 在PF 1上,且满足1F M u u u u r =λMP u u u r(λ∈R ),PO ⊥F 2M ,O 为坐标原点.(1)若椭圆方程为28x +24y =1,且P (2,2),求点M 的横坐标;(2)若λ=2,求椭圆离心率e 的取值范围.(第9题)10.(2019·赣榆中学)如图,椭圆长轴端点为A ,B ,O 为椭圆中心,F 为椭圆的右焦点,且AF u u u r ·FB u u u r=1,|OF u u u r |=1.(1)求椭圆的标准方程.(2)记椭圆的上顶点为M ,直线l 交椭圆于P ,Q 两点,问:是否存在直线l ,使得点F 恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.(第10题)11.如图,椭圆C:2 2 xa+22yb=1(a>b>0)的一个焦点为F(1,0),且过点622⎛⎫⎪⎪⎭,.(1)求椭圆C的方程;(2)已知A,B为椭圆上的点,且直线AB垂直于x轴,直线l:x=4与x轴交于点N,直线AF与BN交于点M,求证:点M恒在椭圆C上.(第11题)【检测与评估答案】第2讲圆锥曲线一、填空题1. 4【解析】将点(22)代入可得2+4m=1,即m=-14,故双曲线的标准方程为21x-24y=1,即虚轴长为4.2.y=±2x3,所以m=4.而双曲线的渐近线方程为x ,即y=±2x.3. 43 【解析】抛物线y 2=4x 的准线方程为x=-1,焦点F (1,0),设点A (x 0,y 0)(x 0>0,y 0>0),由题意得x 0+1=5,所以x 0=4,所以20y=4x 0=16,y 0=4,从而点A (4,4),直线AF 的斜率k=4-04-1=43.4.2 【解析】不妨设椭圆方程为22x a +22y b =1(a>b>0),则有222-1b a a c c ⎧=⎪⎪⎨⎪=⎪⎩,即2221b a b c ⎧=⎪⎪⎨⎪=⎪⎩, ②则①÷②得e=2.5.【解析】由题意知a=2,所以BF 2+AF 2+AB=4a=8,因为BF 2+AF 2的最大值为5,所以AB 的最小值为3,当且仅当AB ⊥x 轴时,取得最小值,此时A 3-2c ⎛⎫ ⎪⎝⎭,,B3--2c ⎛⎫ ⎪⎝⎭,,代入椭圆方程得24c +294b =1.又c 2=a 2-b 2=4-b 2,所以24-4b +294b =1,即1-24b +294b =1,所以24b =294b ,解得b 2=3,所以6.4【解析】由题意可知抛物线y 2=8x 的焦点为(2,0),所以c=2.因为离心率为12,所以a=4,所以47.【解析】由题意知A (-a ,0),B (a ,0),取P (0,b ),则k AP ·k BP =b a×-b a ⎛⎫ ⎪⎝⎭=-13,故a 2=3b 2,所以e 2=222-a b a =23,即e=3.8. 1132⎛⎫ ⎪⎝⎭,∪112⎛⎫⎪⎝⎭,【解析】6个不同的点有两个为短轴的两个端点,另外4个分别在第一、二、三、四象限,且上下对称、左右对称.不妨设P 在第一象限,PF 1>PF 2,当PF 1=F 1F 2=2c 时,PF 2=2a-PF 1=2a-2c ,即2c>2a-2c ,解得e=c a >12.又因为e<1,所以12<e<1.当PF 2=F 1F 2=2c 时,PF 1=2a-PF 2=2a-2c ,即2a-2c>2c ,且2c>a-c ,解得13<e<12.综上可得13<e<12或12<e<1.二、 解答题9. (1) 因为28x +24y =1,所以F 1(-2,0),F 2(2,0),所以k OP=22F Mk1F M k=4,所以直线F 2M 的方程为x-2),直线F 1M 的方程为y=4(x+2).联立-2)(2)4y x y x ⎧=⎪⎨=+⎪⎩,,解得x=65,所以点M 的横坐标为65.(2) 设P (x 0,y 0),M (x M ,y M ).因为1FM u u u u r=2MPuuu r ,所以1FM u u u u r =23(x 0+c ,y 0)=(x M +c ,y M ),所以M 00212-333x c y ⎛⎫⎪⎝⎭,,2F M u u u u r =00242-333x c y ⎛⎫ ⎪⎝⎭,因为PO ⊥F 2M ,O P uuu r=(x 0,y 0),所以2023x -43cx 0+223y =0,即20x +20y =2cx 0.联立方程2200022002221x y cx x y a b ⎧+=⎪⎨+=⎪⎩,,消去y 0,得c 220x -2a 2cx 0+a 2(a 2-c 2)=0,解得x 0=()a a c c +或x 0=(-)a a c c .因为-a<x 0<a ,所以x 0=(-)a a c c ∈(0,a ), 所以0<a 2-ac<ac ,解得e>12.综上,椭圆离心率e 的取值范围为112⎛⎫ ⎪⎝⎭,.10. (1) 设椭圆方程为22x a +22y b=1(a>b>0),则c=1.因为AF uuu r ·F B uuu r=1,即(a+c )(a-c )=1=a 2-c 2,所以a 2=2,故椭圆方程为22x +y 2=1.(2) 假设存在直线l 交椭圆于P ,Q 两点,且F 恰为△PQM 的垂心,则设P (x 1,y 1),Q (x 2,y 2),因为M (0,1),F (1,0),故k PQ =1,于是可设直线l 的方程为y=x+m.联立2222y x m x y =+⎧⎨+=⎩,,得3x 2+4mx+2m 2-2=0,则x 1+x 2=-43m ,x 1x 2=22-23m .因为MP uuu r·FQ u u u r=0=x 1(x 2-1)+y 2(y 1-1),又y i =x i +m (i=1,2),得x 1(x 2-1)+(x 2+m )(x 1+m-1)=0,即2x 1x 2+(x 1+x 2)(m-1)+m 2-m=0,所以2·22-23m -43m(m-1)+m 2-m=0,解得m=-43或m=1(舍去). 经检验m=-43符合条件, 所以直线l 的方程为y=x-43.11. (1) 由题意得2222212312-c a b a b c =⎧⎪⎪+=⎨⎪=⎪⎩,,,解得a 2=4,b 2=3,故椭圆C 的方程为24x +23y =1.(2) 因为F (1,0),N (4,0).设A (m ,n ),M (x 0,y 0),则B (m ,-n ),n ≠0,则直线AF 的方程为y=-1nm (x-1), 直线BN 的方程为y=4-nm (x-4), 解得点M 的坐标为5-832-52-5m n m m ⎛⎫⎪⎝⎭,. 代入椭圆方程中,得204x +203y =25-82-54m m ⎛⎫ ⎪⎝⎭+232-53n m ⎛⎫⎪⎝⎭=222(5-8)124(2-5)m n m +.由24m+23n=1,得n2=321-4m⎛⎫⎪⎝⎭,代入上式得24x+23y=1.所以点M恒在椭圆C上.。
全国通用版2019版高考数学总复习专题七解析几何7.2圆锥曲线的标准方程与性质课件理
∴椭圆方程为������2
9
+
���8���2=1,故选
B.
高考命题规律
2.(2018北京朝阳一模)已知F为抛物线C:y2=4x的焦点,过点F的直线 l交抛物线C于A,B两点,若|AB|=8,则线段AB的中点M到直线x+1=0 的距离为( ) A.2 B.4 C.8 D.16 答案B
高考命题规律
方程为 y=k1(x-1),
联立抛物线方程,得
������2 = 4������, ������ = ������1(������-1),
消去 y,得������12x2-2������12x-4x+������12=0,
所以 x1+x2=2���������12���12+4.同理,直线 l2 与抛物线的交点满足 x3+x4=2���������22���22+4.
由抛物线定义可知|AB|+|DE|=x1+x2+x3+x4+2p=2���������12���12+4 + 2���������22���22+4+4=���4���12 + ���4���22+8≥2 ������1126������22+8=16,
当且仅当 k1=-k2=1(或-1)时,取得等号.
∴不妨设直线 OA 的方程即双曲线的一条渐近线的方程为 y=x.
∴������������=1,即 a=b.又|OB|=2 2, ∴c=2 2.∴a2+b2=c2,即 a2+a2=(2 2)2,可得 a=2.
高考命题规律
新题演练提能·刷高分
1.(2018 山东济南一模)已知椭圆 C:������������22 + ������������22=1(a>b>0),若长轴长为 6, 且两焦点恰好将长轴三等分,则此椭圆的标准方程为( )
高中数学圆锥曲线知识点梳理+例题解析
高考数学圆锥曲线部分知识点梳理一、方程的曲线:在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。
点与曲线的关系:若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上⇔f(x 0,y 0)=0;点P 0(x 0,y 0)不在曲线C 上⇔f(x 0,y 0)≠0。
两条曲线的交点:若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则点P 0(x 0,y 0)是C 1,C 2的交点⇔{0),(0),(002001==y x f y x f 方程组有n个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有交点。
二、圆:1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径.2、方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(ED --半径是2422F E D -+。
配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E )2=44F -E D 22+②当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E );③当D 2+E 2-4F <0时,方程不表示任何图形.(3)点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +。
(完整版)高中数学专题七解析几何之圆锥曲线知识点总结及分析
①圆锥曲线的两种定义、标准方程及、、、、五个参数的求解。
a b c e p ②圆锥曲线的几何性质的应用。
2)求动点轨迹方程或轨迹图形在高考中出现的频率较高,此类问题的解决需掌握四种基本方法:
①直接法:建系、设点、列式、化简、证明(可以省略),此法适用于较简单的问题;
②定义法:如果能够确定动点的轨迹满足已知曲线(椭圆、双曲线、抛物线)的定义,则可由曲线(椭圆、双曲线、抛物线)的定义直接写出轨迹方程;③待定系数法:若已知曲线的形状(如椭圆、双曲线、抛物线),可用待定系数法;
④相关点法(坐标代换法):若动点依赖于另一动点,而
(,)P x y 11(,)Q x y 又在某已知曲线上,则可先写出关于的方程,再将换成。
11(,)Q x y 11,y x 11,y x y x ,3)有关直线与圆锥曲线位置关系问题,是高考的重热点问题,这类问题常涉及圆锥曲线的性质和直线的基本知识以及线段中点、弦长等,分析这类问题时,往往要利用数形结合思想和“设而不求”的方法、对称的方法及韦达定理,多以解答题的形式出现。
4)求与圆锥曲线有关的参数或参数范围问题,是高考命题的一大热点,这类问题综合性较大,运算技巧要求较高;尤其是与平面向量、平面几何、函数、不等式的综合,特别近年出现的解析几何与平面向量结合的问题,是常考常新的试题,将是今后高考命题的一个趋势。
2019高考数学二轮复习 专题六 解析几何 2.6.2 圆锥曲线的方程与性质课件 理PPT
∴双曲线C的方程为x42-y62=1,故选D. [答案] D
3.抛物线y2=2px(p>0)的焦点为F,O为坐标原点,M为抛
物线上一点,且|MF|=4|OF|,△MFO的面积为4 3,则抛物线的
方程为( )
A.y2=6x
B.y2=8x
C.y2=16x
D.y2=125x
[解析]
设M(x,y),因为|OF|=
[对点训练]
1.(2018·郑州检测)已知抛物线x2=4y上有一条长为6的动弦
AB,则AB的中点到x轴的最短距离为( )
3 A.4
3 B.2
C.1
D.2
[解析] 由题意知,抛物线的准线l:y=-1,过点A作AA1
⊥l交l于点A1,过点B作BB1⊥l交l于点B1,设弦AB的中点为M,
过点M作MM1⊥l交l于点M1,则
p 2
,|MF|=4|OF|,所以|MF|
=2p,由抛物线定义知x+
p 2
=2p,所以x=
3 2
p,所以y=±
3 p,
又△MFO的面积为4
3 ,所以
1 2
×
p 2
×
3 p=4
3 ,解得p=4(p=
-4舍去).所以抛物线的方程为y2=8x.
[答案] B
4.(2018·安徽淮南三校联考)已知双曲线
x2 4
[解析]
不妨设B(0,b),由
→ BA
=2
→ AF
,F(c,0),可得
A
23c,b3
,代入双曲线C的方程可得
4 9
×
c2 a2
-
1 9
=1,即
4 9
a2+b2 · a2
=
2019版步步高二轮数学三专题突破核心考点专题五解析几何第2讲圆锥曲线
第2讲 圆锥曲线[考情考向分析] 1.以选择题、填空题形式考查圆锥曲线的方程、几何性质(特别是离心率).2.以解答题形式考查直线与圆锥曲线的位置关系(弦长、中点等).热点一 圆锥曲线的定义与标准方程 1.圆锥曲线的定义(1)椭圆:|PF 1|+|PF 2|=2a (2a >|F 1F 2|). (2)双曲线:||PF 1|-|PF 2||=2a (2a <|F 1F 2|).(3)抛物线:|PF |=|PM |,点F 不在直线l 上,PM ⊥l 于点M . 2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a 2,b 2,p 的值.例1 (1)(2018·银川模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,左、右顶点为M ,N ,过F 2的直线l 交C 于A ,B 两点(异于M ,N ),△AF 1B 的周长为43,且直线AM 与AN 的斜率之积为-23,则C 的方程为( )A.x 212+y 28=1 B.x 212+y 24=1 C.x 23+y 22=1 D.x 23+y 2=1 答案 C【试题解析】由△AF 1B 的周长为43,可知|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =43, 解得a =3,则M ()-3,0,N (3,0). 设点A (x 0,y 0)(x 0≠±3),由直线AM 与AN 的斜率之积为-23,可得y 0x 0+3·y 0x 0-3=-23,即y 20=-23(x 20-3),①又x 203+y 20b2=1,所以y 20=b 2⎝⎛⎭⎫1-x 203,② 由①②解得b 2=2. 所以C 的方程为x 23+y 22=1.(2)(2018·龙岩质检)已知以圆C :(x -1)2+y 2=4的圆心为焦点的抛物线C 1与圆C 在第一象限交于A 点,B 点是抛物线C 2:x 2=8y 上任意一点,BM 与直线y =-2垂直,垂足为M ,则|BM |-|AB |的最大值为( ) A.1 B.2 C.-1 D.8 答案 A【试题解析】因为圆C :(x -1)2+y 2=4的圆心为C (1,0), 所以可得以C (1,0)为焦点的抛物线方程为y 2=4x ,由⎩⎪⎨⎪⎧y 2=4x ,(x -1)2+y 2=4,解得A (1,2). 抛物线C 2:x 2=8y 的焦点为F (0,2), 准线方程为y =-2,即有|BM |-|AB |=|BF |-|AB |≤|AF |=1,当且仅当A ,B ,F (A 在B ,F 之间)三点共线时,可得最大值1.【思维升华】(1)准确把握圆锥曲线的定义和标准方程及其简单几何性质,注意当焦点在不同坐标轴上时,椭圆、双曲线、抛物线方程的不同表示形式.(2)求圆锥曲线方程的基本方法就是待定系数法,可结合草图确定.跟踪演练1 (1)(2018·石嘴山模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 1,F 2为直径的圆与双曲线渐近线的一个交点为()3,4,则双曲线的方程为( ) A.x 216-y 29=1 B.x 23-y 24=1 C.x 24-y 23=1 D.x 29-y 216=1 答案 D【试题解析】∵点(3,4)在以|F 1F 2|为直径的圆上, ∴c =5,可得a 2+b 2=25.①又∵点(3,4)在双曲线的渐近线y =bax 上,∴b a =43.② ①②联立,解得a =3且b =4, 可得双曲线的方程为x 29-y 216=1.(2)如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线方程为( )A.y 2=9xB.y 2=6xC.y 2=3xD.y 2=3x答案 C【试题解析】如图分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设准线交x 轴于点G .设||BF =a ,则由已知得||BC =2a , 由抛物线定义,得||BD =a ,故∠BCD =30°, 在Rt △ACE 中,∵||AE =|AF |=3,||AC =3+3a ,|AC |=2|AE |, ∴3+3a =6,从而得a =1,||FC =3a =3. ∴p =||FG =12||FC =32,因此抛物线方程为y 2=3x ,故选C. 热点二 圆锥曲线的几何性质 1.椭圆、双曲线中a ,b ,c 之间的关系 (1)在椭圆中:a 2=b 2+c 2,离心率为e =ca=1-⎝⎛⎭⎫b a 2.(2)在双曲线中:c 2=a 2+b 2,离心率为e =ca =1+⎝⎛⎭⎫b a 2.2.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x .注意离心率e 与渐近线的斜率的关系.例2 (1)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B两点,若△AF 1F 2的面积是△BF 1F 2面积的三倍,cos ∠AF 2B =35,则椭圆E 的离心率为( )A.12B.23C.32D.22 答案 D【试题解析】设|F 1B |=k ()k >0, 依题意可得|AF 1|=3k ,|AB |=4k , ∴|AF 2|=2a -3k ,|BF 2|=2a -k . ∵cos ∠AF 2B =35,在△ABF 2中,由余弦定理可得|AB |2=|AF 2|2+|BF 2|2-2|AF 2||BF 2|cos ∠AF 2B , ∴(4k )2=(2a -3k )2+(2a -k )2-65(2a -3k )(2a -k ),化简可得(a +k )(a -3k )=0, 而a +k >0,故a -3k =0,a =3k , ∴|AF 2|=|AF 1|=3k ,|BF 2|=5k , ∴|BF 2|2=|AF 2|2+|AB |2,∴AF 1⊥AF 2,∴△AF 1F 2是等腰直角三角形. ∴c =22a ,椭圆的离心率e =c a =22. (2)已知双曲线M :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,||F 1F 2=2c .若双曲线M 的右支上存在点P ,使a sin ∠PF 1F 2=3csin ∠PF 2F 1,则双曲线M 的离心率的取值范围为( )A.⎝⎛⎭⎪⎫1,2+73 B.⎝⎛⎦⎥⎤1,2+73C.(1,2)D.(]1,2答案 A【试题解析】根据正弦定理可知sin ∠PF 1F 2sin ∠PF 2F 1=|PF 2||PF 1|,所以|PF 2||PF 1|=a 3c ,即|PF 2|=a 3c|PF 1|,||PF 1||-PF 2=2a ,所以⎝⎛⎭⎫1-a 3c ||PF 1=2a ,解得||PF 1=6ac 3c -a , 而||PF 1>a +c ,即6ac 3c -a>a +c ,整理得3e 2-4e -1<0,解得2-73<e <2+73.又因为离心率e >1,所以1<e <2+73,故选A.【思维升华】(1)明确圆锥曲线中a ,b ,c ,e 各量之间的关系是求解问题的关键.(2)在求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆或双曲线的几何特点,建立关于参数c ,a ,b 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.跟踪演练2 (1)(2018·全国Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A.23B.12C.13D.14 答案 D【试题解析】如图,作PB ⊥x 轴于点B .由题意可设|F 1F 2|=|PF 2|=2,则c =1, 由∠F 1F 2P =120°, 可得|PB |=3,|BF 2|=1, 故|AB |=a +1+1=a +2, tan ∠P AB =|PB ||AB |=3a +2=36,解得a =4,所以e =c a =14.故选D.(2)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的焦距为2c ,直线l 过点⎝⎛⎭⎫23a ,0且与双曲线C 的一条渐近线垂直,以双曲线C 的右焦点为圆心,半焦距为半径的圆与直线l 交于M ,N 两点,若|MN |=423c ,则双曲线C 的渐近线方程为( ) A.y =±2x B.y =±3x C.y =±2x D.y =±4x答案 B【试题解析】方法一 由题意可设渐近线方程为y =ba x ,则直线l 的斜率k l =-ab ,直线l 的方程为y =-ab ⎝⎛⎭⎫x -23a , 整理可得ax +by -23a 2=0.焦点(c,0)到直线l 的距离d =⎪⎪⎪⎪ac -23a 2a 2+b 2=⎪⎪⎪⎪ac -23a 2c,则弦长为2c 2-d 2=2c 2-⎝⎛⎭⎫ac -23a 22c 2=423c ,整理可得c 4-9a 2c 2+12a 3c -4a 4=0, 即e 4-9e 2+12e -4=0,分解因式得()e -1()e -2()e 2+3e -2=0.又双曲线的离心率e >1,则e =ca =2,所以b a=c 2-a 2a 2= ⎝⎛⎭⎫c a 2-1=3, 所以双曲线C 的渐近线方程为y =±3x . 方法二 圆心到直线l 的距离为c 2-⎝⎛⎭⎫223c 2=c3,∴⎪⎪⎪⎪ac -23a 2c=c 3,∴c 2-3ac +2a 2=0,∴c =2a ,b =3a , ∴渐近线方程为y =±3x . 热点三 直线与圆锥曲线判断直线与圆锥曲线公共点的个数或求交点问题有两种常用方法(1)代数法:联立直线与圆锥曲线方程可得到一个关于x ,y 的方程组,消去y (或x )得一元二次方程,此方程根的个数即为交点个数,方程组的解即为交点坐标. (2)几何法:画出直线与圆锥曲线的图象,根据图象判断公共点个数.例3 (2018·衡水金卷调研)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点.(1)若直线AB 与椭圆的长轴垂直,|AB |=12a ,求椭圆的离心率;(2)若直线AB 的斜率为1,|AB |=2a 3a 2+b 2,求椭圆的短轴与长轴的比值.解 (1)由题意可知,直线AB 的方程为x =-c , ∴|AB |=2b 2a =12a ,即a 2=4b 2, 故e =c a=a 2-b 2a 2=1-b 2a 2=32. (2)设F 1(-c,0),则直线AB 的方程为y =x +c , 联立⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b 2=1,消去y ,得(a 2+b 2)x 2+2a 2cx +a 2c 2-a 2b 2=0, Δ=4a 4c 2-4a 2(a 2+b 2)(c 2-b 2)=8a 2b 4. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2a 2ca 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b 2,∴|AB |=1+1|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2=2·8a 2b 4a 2+b2=4ab 2a 2+b 2=2a 3a 2+b 2, ∴a 2=2b 2,∴b 2a 2=12,∴2b 2a =22,即椭圆的短轴与长轴之比为22. 【思维升华】解决直线与圆锥曲线问题的通法是联立方程,利用根与系数的关系,设而不求思想,弦长公式等简化计算;涉及中点弦问题时,也可用“点差法”求解.跟踪演练3 如图,过抛物线M :y =x 2上一点A (点A 不与原点O 重合)作抛物线M 的切线AB 交y 轴于点B ,点C 是抛物线M 上异于点A 的点,设G 为△ABC 的重心(三条中线的交点),直线CG 交y 轴于点D .设点A (x 0,x 20)(x 0≠0).(1)求直线AB 的方程; (2)求|OB ||OD |的值. 解 (1)因为y ′=2x ,所以直线AB 的斜率k =y ′=2x 0. 所以直线AB 的方程y -x 20=2x 0(x -x 0), 即y =2x 0x -x 20,即直线AB 的方程为2x 0x -y -x 20=0. (2)由题意得,点B 的纵坐标y B =-x 20, 所以AB 的中点坐标为⎝⎛⎭⎫x 02,0. 设C (x 1,y 1),G (x 2,y 2),直线CG 的方程为x =my +12x 0.由⎩⎪⎨⎪⎧x =my +12x 0,y =x 2,联立得m 2y 2+(mx 0-1)y +14x 20=0.Δ=(mx 0-1)2-4×m 2×x 204=1-2mx 0>0,即mx 0<12.因为G 为△ABC 的重心,所以y 1=3y 2.由根与系数的关系,得y 1+y 2=4y 2=1-mx 0m 2,y 1y 2=3y 22=x 204m 2. 所以(1-mx 0)216m 4=x 2012m 2, 解得mx 0=-3±23,满足Δ>0. 所以点D 的纵坐标y D =-x 02m =x 206±43,故|OB ||OD |=|y B ||y D |=43±6.真题体验1.(2017·北京)若双曲线x 2-y 2m=1的离心率为3,则实数m =________.答案 2【试题解析】由双曲线的标准方程知, a =1,b 2=m ,c =1+m ,故双曲线的离心率e =ca =1+m =3,∴1+m =3,解得m =2.2.(2017·全国Ⅱ改编)若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则双曲线C 的离心率为________. 答案 2【试题解析】设双曲线的一条渐近线方程为y =ba x ,圆的圆心为(2,0),半径为2,由弦长为2,得圆心到渐近线的距离为22-12= 3.由点到直线的距离公式,得|2b |a 2+b 2=3,解得b 2=3a 2.所以双曲线C 的离心率e =ca =c 2a 2=1+b 2a2=2. 3.(2017·全国Ⅱ改编)过抛物线C :y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为________. 答案 2 3【试题解析】抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.由直线方程的点斜式,可得直线MF 的方程为y =3(x -1).联立方程组⎩⎨⎧y =3(x -1),y 2=4x ,解得⎩⎨⎧x =13,y =-233或⎩⎨⎧x =3,y =2 3.∵点M 在x 轴的上方,∴M (3,23). ∵MN ⊥l ,∴N (-1,23).∴|NF |=(1+1)2+(0-23)2=4, |MF |=|MN |=3-(-1)=4.∴△MNF 是边长为4的等边三角形. ∴点M 到直线NF 的距离为2 3.4.(2017·山东)在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为________. 答案 y =±22x【试题解析】设A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧x 2a 2-y 2b 2=1,x 2=2py ,消去x ,得a 2y 2-2pb 2y +a 2b 2=0, ∴y 1+y 2=2pb 2a 2.又∵|AF |+|BF |=4|OF |,∴y 1+p 2+y 2+p 2=4×p2,即y 1+y 2=p ,∴2pb 2a 2=p ,即b 2a 2=12,∴b a =22, ∴双曲线的渐近线方程为y =±22x .押题预测1.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 2作双曲线一条渐近线的垂线,垂足为点A ,交另一条渐近线于点B ,且AF 2→=13F 2B →,则该双曲线的离心率为( )A.62 B.52C. 3D.2 押题依据 圆锥曲线的几何性质是圆锥曲线的灵魂,其中离心率、渐近线是高考命题的热点. 答案 A【试题解析】由F 2(c,0)到渐近线y =b a x 的距离为d =bc a 2+b 2=b ,即|AF 2→|=b ,则|BF 2→|=3b .在△AF 2O 中,|OA →|=a , |OF 2→|=c ,tan ∠F 2OA =b a ,tan ∠AOB =4b a =2×ba 1-⎝⎛⎭⎫b a 2,化简可得a 2=2b 2,即c 2=a 2+b 2=32a 2,即e =c a =62,故选A.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且点⎝⎛⎭⎫1,32在该椭圆上. (1)求椭圆C 的方程;(2)过椭圆C 的左焦点F 1的直线l 与椭圆C 相交于A ,B 两点,若△AOB 的面积为627,求圆心在原点O 且与直线l 相切的圆的方程.押题依据 椭圆及其性质是历年高考的重点,直线与椭圆的位置关系中的弦长、中点等知识应给予充分关注.解 (1)由题意可得e =c a =12,又a 2=b 2+c 2, 所以b 2=34a 2.因为椭圆C 经过点⎝⎛⎭⎫1,32, 所以1a 2+9434a 2=1,解得a 2=4,所以b 2=3, 故椭圆C 的方程为x 24+y 23=1.(2)由(1)知F 1(-1,0),设直线l 的方程为x =ty -1, 由⎩⎪⎨⎪⎧x =ty -1,x 24+y 23=1,消去x ,得(4+3t 2)y 2-6ty -9=0, 显然Δ>0恒成立,设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=6t 4+3t 2,y 1y 2=-94+3t 2,所以|y 1-y 2|=(y 1+y 2)2-4y 1y 2 =36t 2(4+3t 2)2+364+3t 2=12t 2+14+3t 2,所以S △AOB =12·|F 1O |·|y 1-y 2|=6t 2+14+3t 2=627,化简得18t 4-t 2-17=0, 即(18t 2+17)(t 2-1)=0, 解得t 21=1,t 22=-1718(舍去). 又圆O 的半径r =|0-t ×0+1|1+t 2=11+t 2,所以r =22,故圆O 的方程为x 2+y 2=12.A 组 专题通关1.(2017·全国Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( ) A.x 28-y 210=1 B.x 24-y 25=1 C.x 25-y 24=1 D.x 24-y 23=1 答案 B【试题解析】由y =52x ,可得b a =52.① 由椭圆x 212+y 23=1的焦点为(3,0),(-3,0),可得a 2+b 2=9.② 由①②可得a 2=4,b 2=5. 所以C 的方程为x 24-y 25=1.故选B.2.(2018·全国Ⅰ)设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →等于( ) A.5 B.6 C.7 D.8 答案 D【试题解析】由题意知直线MN 的方程为y =23(x +2),联立直线与抛物线的方程,得⎩⎪⎨⎪⎧y =23(x +2),y 2=4x ,解得⎩⎪⎨⎪⎧ x =1,y =2或⎩⎪⎨⎪⎧x =4,y =4.不妨设点M 的坐标为(1,2),点N 的坐标为(4,4). 又∵抛物线的焦点为F (1,0),∴FM →=(0,2),FN →=(3,4). ∴FM →·FN →=0×3+2×4=8. 故选D.3.(2018·全国Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |等于( ) A.32 B.3 C.2 3 D.4 答案 B【试题解析】由已知得双曲线的两条渐近线方程为y =±13 x .设两渐近线的夹角为2α,则有tan α=13=33, 所以α=30°.所以∠MON =2α=60°.又△OMN 为直角三角形,由于双曲线具有对称性,不妨设MN ⊥ON ,如图所示.在Rt △ONF 中,|OF |=2,则|ON |= 3.则在Rt △OMN 中,|MN |=|ON |·tan 2α=3·tan 60°=3. 故选B.4.(2018·华大新高考联盟质检)设椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1,F 2,P 是椭圆上一点,且∠F 1PF 2=π3,若△F 1PF 2的外接圆和内切圆的半径分别为R ,r ,当R =4r 时,椭圆的离心率为( )A.45B.23C.12D.25 答案 B【试题解析】椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1(-c,0),F 2(c,0),P 为椭圆上一点,且∠F 1PF 2=π3,|F 1F 2|=2c ,根据正弦定理|F 1F 2|sin ∠F 1PF 2=2c sin π3=2R ,∴R =233c ,∵R =4r ,∴r =36c , 由余弦定理,()2c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos ∠F 1PF 2,由|PF 1|+|PF 2|=2a ,∠F 1PF 2=π3,可得|PF 1||PF 2|=43()a 2-c 2,则由三角形面积公式12()|PF 1|+|PF 2|+|F 1F 2|·r =12|PF 1||PF 2|sin ∠F 1PF 2,可得()2a +2c ·36c =43()a 2-c 2·32,∴e =c a =23.5.(2017·全国Ⅱ)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________. 答案 6【试题解析】如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF . 由题意知,F (2,0), |FO |=|AO |=2.∵点M 为FN 的中点,PM ∥OF , ∴|MP |=12|FO |=1.又|BP |=|AO |=2, ∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3,故|FN |=2|MF |=6.6.(2018·北京)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n 2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________. 答案3-1 2【试题解析】方法一 双曲线N 的渐近线方程为y =±n m x ,则nm =tan 60°=3,∴双曲线N 的离心率e 1满足e 21=1+n 2m2=4,∴e 1=2.由⎩⎪⎨⎪⎧y =3x ,x 2a 2+y 2b 2=1,得x 2=a 2b 23a 2+b 2. 如图,设D 点的横坐标为x ,由正六边形的性质得|ED |=2x =c ,∴4x 2=c 2. ∴4a 2b 23a 2+b2=a 2-b 2,得3a 4-6a 2b 2-b 4=0, ∴3-6b 2a 2-⎝⎛⎭⎫b 2a 22=0,解得b 2a2=23-3.∴椭圆M 的离心率e 2满足e 22=1-b 2a2=4-23.∴e 2=3-1.方法二 双曲线N 的渐近线方程为y =±nm x ,则nm=tan 60°= 3. 又c 1=m 2+n 2=2m ,∴双曲线N 的离心率为c 1m =2.如图,连接EC ,由题意知,F ,C 为椭圆M 的两焦点, 设正六边形的边长为1,则|FC |=2c 2=2,即c 2=1. 又E 为椭圆M 上一点,则|EF |+|EC |=2a ,即1+3=2a , ∴a =1+32.∴椭圆M 的离心率为c 2a =21+3=3-1.7.(2018·衡阳模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点,且直线l 与圆x 2-px +y 2-34p 2=0交于C ,D 两点,若|AB |=3|CD |,则直线l 的斜率为________. 答案 ±22【试题解析】由题意得F ⎝⎛⎭⎫p 2,0,由x 2-px +y 2-34p 2=0,配方得⎝⎛⎭⎫x -p 22+y 2=p 2, 所以直线l 过圆心⎝⎛⎭⎫p 2,0,可得|CD |=2p ,若直线l 的斜率不存在,则l :x =p2,|AB |=2p ,|CD |=2p ,不符合题意,∴直线l 的斜率存在.∴可设直线l 的方程为y =k ⎝⎛⎭⎫x -p2,A (x 1,y 1),B (x 2,y 2), 联立⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -p 2,y 2=2px , 化为x 2-⎝⎛⎭⎫p +2p k 2x +p24=0, 所以x 1+x 2=p +2pk2,所以|AB |=x 1+x 2+p =2p +2pk 2,由|AB |=3|CD |,所以2p +2pk 2=6p ,可得k 2=12,所以k =±22.8.(2018·百校联盟联考)已知A ,B 是椭圆C 上关于原点对称的两点,若椭圆C 上存在点P ,使得直线P A ,PB 斜率的绝对值之和为1,则椭圆C 的离心率的取值范围是________. 答案 ⎣⎡⎭⎫32,1【试题解析】不妨设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),P (x ,y ),A (x 1,y 1),则B ()-x 1,-y 1,所以x 2a 2+y 2b 2=1,x 21a 2+y 21b 2=1,两式相减得x 2-x 21a 2=-y 2-y 21b2,所以y 2-y 21x 2-x 21=-b 2a 2,所以直线P A ,PB 斜率的绝对值之和为⎪⎪⎪⎪⎪⎪y -y 1x -x 1+⎪⎪⎪⎪⎪⎪y +y 1x +x 1≥2⎪⎪⎪⎪⎪⎪y 2-y 21x 2-x 21=2b a , 由题意得2ba≤1,所以a 2≥4b 2=4a 2-4c 2,即3a 2≤4c 2, 所以e 2≥34,又因为0<e <1,所以32≤e <1. 9.(2018·全国Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程. 解 (1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0. Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1) =4k 2+4k2.由题意知4k 2+4k 2=8,解得k =-1(舍去)或k =1.因此l 的方程为x -y -1=0.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5. 设所求圆的圆心坐标为(x 0,y 0), 则⎩⎪⎨⎪⎧y 0=-x 0+5,(x 0+1)2=(x 0-y 0-1)22+16, 解得⎩⎪⎨⎪⎧ x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.10.(2018·天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的离心率为53,点A的坐标为(b,0),且|FB |·|AB |=6 2. (1)求椭圆的方程;(2)设直线l :y =kx (k >0)与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若|AQ ||PQ |=524sin ∠AOQ (O 为原点),求k 的值.解 (1)设椭圆的焦距为2c ,由已知有 c 2a 2=59,又由a 2=b 2+c 2,可得2a =3b . 由已知可得|FB |=a ,|AB |=2b ,由|FB |·|AB |=62,可得ab =6,从而a =3,b =2. 所以椭圆的方程为x 29+y 24=1.(2)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2). 由已知有y 1>y 2>0,故|PQ |sin ∠AOQ =y 1-y 2. 又因为|AQ |=y 2sin ∠OAB,而∠OAB =π4,所以|AQ |=2y 2. 由|AQ ||PQ |=524sin ∠AOQ ,可得5y 1=9y 2. 由方程组⎩⎪⎨⎪⎧y =kx ,x 29+y 24=1,消去x ,可得y 1=6k 9k 2+4 . 由题意求得直线AB 的方程为x +y -2=0,由方程组⎩⎪⎨⎪⎧y =kx ,x +y -2=0,消去x ,可得y 2=2kk +1.由5y 1=9y 2,可得5(k +1)=39k 2+4,两边平方, 整理得56k 2-50k +11=0,解得k =12或k =1128.所以k 的值为12或1128.B 组 能力提高11.(2018·长沙模拟)2000多年前,古希腊大数学家阿波罗尼奥斯(Apollonius)发现:平面截圆锥的截口曲线是圆锥曲线.已知圆锥的高为PH ,AB 为地面直径,顶角为2θ,那么不过顶点P 的平面与PH 夹角π2>a >θ时,截口曲线为椭圆;与PH 夹角a =θ时,截口曲线为抛物线;与PH 夹角θ>a >0时,截口曲线为双曲线.如图,底面内的直线AM ⊥AB ,过AM 的平面截圆锥得到的曲线为椭圆,其中与PB 的交点为C ,可知AC 为长轴.那么当C 在线段PB 上运动时,截口曲线的短轴端点的轨迹为( )A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案 D【试题解析】如图,因为对于给定的椭圆来说,短轴的端点Q 到焦点F 的距离等于长半轴a ,但短轴的端点Q 到直线AM 的距离也是a ,即说明短轴的端点Q 到定点F 的距离等于到定直线AM 的距离,且点F 不在定直线AM 上,所以由抛物线的定义可知,短轴的端点的轨迹是抛物线的一部分,故选D.12.(2018·河南省名校联考)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线交于A ,B 两点,D 为虚轴的一个端点,且△ABD 为钝角三角形,则此双曲线离心率的取值范围为______________________. 答案 (1,2)∪(2+2,+∞)【试题解析】设双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点F 1(-c,0),令x =-c ,可得y =±bc 2a 2-1=±b 2a , 设A ⎝⎛⎭⎫-c ,b 2a ,B ⎝⎛⎭⎫-c ,-b 2a ,D (0,b ), 可得AD →=⎝⎛⎭⎫c ,b -b 2a ,AB →=⎝⎛⎭⎫0,-2b 2a ,DB →=⎝⎛⎭⎫-c ,-b -b 2a ,若∠DAB 为钝角,则AD →·AB →<0,即0-2b 2a ·⎝⎛⎭⎫b -b 2a <0, 化为a >b ,即有a 2>b 2=c 2-a 2,可得c 2<2a 2,即e =c a<2, 又e >1,可得1<e <2;若∠ADB 为钝角,则DA →·DB →<0,即c 2-⎝⎛⎭⎫b 2a +b ⎝⎛⎭⎫b 2a -b <0, 化为c 4-4a 2c 2+2a 4>0, 由e =c a,可得e 4-4e 2+2>0, 又e >1,可得e >2+2;又AB →·DB →=2b 2a⎝⎛⎭⎫b +b 2a >0, ∴∠DBA 不可能为钝角.综上可得,e 的取值范围为(1,2)∪(2+2,+∞).13.已知直线MN 过椭圆x 22+y 2=1的左焦点F ,与椭圆交于M ,N 两点,直线PQ 过原点O 与MN 平行,且与椭圆交于P ,Q 两点,则|PQ |2|MN |=________. 答案 2 2【试题解析】方法一 特殊化,设MN ⊥x 轴,则|MN |=2b 2a =22=2,|PQ |2=4,|PQ |2|MN |=42=2 2. 方法二 由题意知F (-1,0),当直线MN 的斜率不存在时,|MN |=2b 2a =2,|PQ |=2b =2,则|PQ |2|MN |=22;当直线MN 的斜率存在时,设直线MN 的斜率为k ,则MN 的方程为y =k (x +1),M (x 1,y 1),N (x 2,y 2),联立方程⎩⎪⎨⎪⎧ y =k (x +1),x 22+y 2=1,整理得(2k 2+1)x 2+4k 2x +2k 2-2=0,Δ=8k 2+8>0.由根与系数的关系,得x 1+x 2=-4k 22k 2+1,x 1x 2=2k 2-22k 2+1, 则|MN |=1+k 2(x 1+x 2)2-4x 1x 2 =22(k 2+1)2k 2+1. 直线PQ 的方程为y =kx ,P (x 3,y 3),Q (x 4,y 4),则⎩⎪⎨⎪⎧y =kx ,x 22+y 2=1,解得x 2=21+2k 2,y 2=2k 21+2k 2, 则|OP |2=x 23+y 23=2(1+k 2)1+2k 2, 又|PQ |=2|OP |, 所以|PQ |2=4|OP |2=8(1+k 2)1+2k 2, 所以|PQ |2|MN |=2 2. 综上,|PQ |2|MN |=2 2. 14.(2017·天津)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-c,0),右顶点为A ,点E 的坐标为(0,c ),△EF A 的面积为b 22. (1)求椭圆的离心率;(2)设点Q 在线段AE 上,|FQ |=3c 2,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM ∥QN ,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .①求直线FP 的斜率;②求椭圆的方程.解 (1)设椭圆的离心率为e .由已知可得12(c +a )c =b 22. 又由b 2=a 2-c 2,可得2c 2+ac -a 2=0,即2e 2+e -1=0,解得e =-1或e =12. 又因为0<e <1,所以e =12.所以椭圆的离心率为12. (2)①依题意,设直线FP 的方程为x =my -c (m >0),则直线FP 的斜率为1m. 由(1)知a =2c ,可得直线AE 的方程为x 2c +y c=1, 即x +2y -2c =0,与直线FP 的方程联立,可得x =(2m -2)c m +2,y =3c m +2, 即点Q 的坐标为⎝⎛⎭⎪⎫(2m -2)c m +2,3c m +2. 由已知|FQ |=3c 2, 有⎣⎢⎡⎦⎥⎤(2m -2)c m +2+c 2+⎝⎛⎭⎫3c m +22=⎝⎛⎭⎫3c 22, 整理得3m 2-4m =0,所以m =43(m =0舍去), 即直线FP 的斜率为34. ②由a =2c ,可得b =3c ,故椭圆方程可以表示为x 24c 2+y 23c 2=1. 由①得直线FP 的方程为3x -4y +3c =0,与椭圆方程联立得⎩⎪⎨⎪⎧3x -4y +3c =0,x 24c 2+y 23c 2=1, 消去y ,整理得7x 2+6cx -13c 2=0,解得x =-13c 7(舍去)或x =c .因此可得点P ⎝⎛⎭⎫c ,3c 2, 进而可得|FP |= (c +c )2+⎝⎛⎭⎫3c 22=5c 2, 所以|PQ |=|FP |-|FQ |=5c 2-3c 2=c .由已知,线段PQ 的长即为PM 与QN 这两条平行直线间的距离,故直线PM 和QN 都垂直于直线FP .因为QN ⊥FP ,所以|QN |=|FQ |·tan ∠QFN =3c 2×34=9c 8, 所以△FQN 的面积为12|FQ ||QN |=27c 232. 同理△FPM 的面积等于75c 232. 由四边形PQNM 的面积为3c ,得75c 232-27c 232=3c , 整理得c 2=2c .又由c >0,得c =2.所以椭圆的方程为x 216+y 212=1.。
高三数学二轮专题复习 专题6 解析几何 第14讲 圆锥曲
【分析】1.解决本题的关键是利用好点 P,M 坐标之
间的关系和几何条件||OOMP||=λ,在分析这个关系时注意根 据|OP|,|OM|是点 P,M 到坐标原点的距离,对几何条件 OOMP=λ 的两端进行平方,便于利用点 P 在椭圆上的条件, 这样就建立了关于点 M 坐标之间的一个方程,化简整理 就可得出点 M 的轨迹方程.在解答数学试题时,对题目 中的已知条件进行有目的的变换是解决问题的重要技巧 之一.
轴上的双曲线满足-4≤x≤4 的部分.
当34<λ<1 时,点 M 的轨迹为中心在原点、焦点在 x
轴上的椭圆满足-4≤x≤4 的部分.
当 λ≥1 时,点 M 的轨迹为中心在原点、焦点在 x
轴上的椭圆.
探究二 离心率问题
例 2 (1)已知椭圆xa22+by22=1(a>b>0)的两个焦点分别 为 F1,F2,短轴的一个顶点为 P,若∠F1PF2 为钝角,则 椭圆离心率的取值范围为________.
(i)当 λ=34时,化简得 9y2=112,所以点 M 的轨迹方
程为 y=±437(-4≤x≤4),轨迹是两条平行于 x 轴的线 段.
(ii)当 λ≠34时,方程变形为
x2 112
+
y2 112
=1,
16λ2-9 16λ2
其中 x∈-4,4.
当 0<λ<34时,点 M 的轨迹为中心在原点、焦点在 y
第 14 讲 圆锥曲线方程及几何性质
【命题趋势】 1.圆锥曲线的几何性质常与代数、三角函数、平面向量、 不等式等知识交汇在一起进行命题,综合性强,体现了在知 识的交汇点处命题的原则,尤其是使用新教材后,与平面向 量、导数等知识综合命题又是一个新的热点.(1)离心率与范 围问题:离心率范围问题是近几年高考的又一热点,选择题、 填空题及解答题中都会出现.(2)求参数取值问题:解析几何 中的求参数取值问题,是从动态角度去研究数学问题,因而 倍受高考命题组的青睐,其解法是运用待定系数法设出方程, 然后根据题设条件寻找参数满足的不等关系,从而求出相关 参数的取值范围,在高考试题中时常出现,应引起足够重 视.(3)求最值问题:利用圆锥曲线的几何性质求最值问题也 是高考命题的又一趋势,常用的解题方法是数形结合法.
通用版2019版高考数学(文)二轮复习讲义:重点增分专题十 圆锥曲线的方程与性质(含解析)
重点增分专题十 圆锥曲线的方程与性质[全国卷3年考情分析](1)圆锥曲线的定义、方程与性质是每年必考内容,多以选择题的形式考查,常出现在第4~11题的位置,着重考查圆锥曲线的几何性质与标准方程的求法,难度中等.(2)圆锥曲线与直线的综合问题多以解答题的形式考查,常出现在第20题的位置,一般难度较大.考点一 圆锥曲线的定义 保分考点·练后讲评 1.[椭圆的定义]设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514 B.59C.49D.513解析:选D 如图,设线段PF 1的中点为M ,因为O 是F 1F 2的中点,所以OM ∥PF 2,可得PF 2⊥x 轴,|PF 2|=b 2a =53,|PF 1|=2a -|PF 2|=133,所以|PF 2||PF 1|=513.2.[双曲线的定义]已知双曲线的虚轴长为4,离心率e =62,F 1,F 2分别是双曲线的左、右焦点,若过F 1的直线与双曲线的左支交于A ,B 两点,且|AB |是|AF 2|与|BF 2|的等差中项,则|AB |等于( )A .8 2B .4 2C .2 2D .8解析:选A 由题意可知2b =4,e =c a =62,于是a =2 2.∵2|AB |=|AF 2|+|BF 2|,∴|AB |+|AF 1|+|BF 1|=|AF 2|+|BF 2|,得|AB |=|AF 2|-|AF 1|+|BF 2|-|BF 1|=4a =8 2.3.[抛物线的定义]过抛物线y 2=2px (p >0)的焦点F 作直线交抛物线于A ,B 两点,若|AF |=2|BF |=6,则p =________.解析:设直线AB 的方程为x =my +p2,A (x 1,y 1),B (x 2,y 2),且x 1>x 2,将直线AB 的方程代入抛物线方程得y 2-2pmy -p 2=0,所以y 1y 2=-p 2,4x 1x 2=p 2.设抛物线的准线为l ,过A 作AC ⊥l ,垂足为C ,过B 作BD⊥l ,垂足为D ,因为|AF |=2|BF |=6,根据抛物线的定义知,|AF |=|AC |=x 1+p 2=6,|BF |=|BD |=x 2+p2=3,所以x 1-x 2=3,x 1+x 2=9-p ,所以(x 1+x 2)2-(x 1-x 2)2=4x 1x 2=p 2,即18p -72=0,解得p =4.答案:4[解题方略] 圆锥曲线的定义(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|); (2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d (d 为M 点到准线的距离).[注意] 应用圆锥曲线定义解题时,易忽视定义中隐含条件导致错误.考点二 圆锥曲线的标准方程 保分考点·练后讲评 [大稳定——常规角度考双基]1.[双曲线的标准方程]已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为45,渐近线方程为2x ±y =0,则双曲线的方程为( )A.x 24-y 216=1 B.x 216-y 24=1C.x 216-y 264=1 D.x 264-y 216=1解析:选A 易知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点在x 轴上,所以由渐近线方程为2x ±y =0,得ba =2,因为双曲线的焦距为45,所以c =2 5.结合c 2=a 2+b 2,可得a =2,b =4,所以双曲线的方程为x 24-y 216=1.2.[椭圆的标准方程]若椭圆的中心为坐标原点,短轴的一个端点与两焦点组成一个正三角形,且焦点到椭圆上的点的距离的最小值为3,则椭圆的标准方程为________.解析:设长半轴长为a ,短半轴长为b ,半焦距为c , 由已知得⎩⎨⎧b =3c ,a -c =3,又a 2=b 2+c 2,∴⎩⎨⎧a =23,b =3,c = 3.∴椭圆的标准方程为x 212+y 29=1或x 29+y 212=1.答案:x 212+y 29=1或x 29+y 212=13.[抛物线的标准方程]若抛物线y 2=2px (p >0)上一点到焦点和到抛物线对称轴的距离分别为10和6,则抛物线的标准方程为____________________.解析:因为抛物线y 2=2px (p >0)上一点到抛物线对称轴的距离为6, 若设该点为P ,则P (x 0,±6).因为P 到抛物线焦点F ⎝⎛⎭⎫p 2,0的距离为10,根据抛物线的定义得x 0+p2=10.①因为P 在抛物线上,所以36=2px 0.② 由①②解得p =2,x 0=9或p =18,x 0=1, 所以抛物线的标准方程为y 2=4x 或y 2=36x . 答案:y 2=4x 或y 2=36x[解题方略] 求解圆锥曲线标准方程的思路[小创新——变换角度考迁移]1.[双曲线与向量交汇]已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点B 是虚轴的一个端点,线段BF 与双曲线C 的右支交于点A ,若BA ―→=2AF ―→,且|BF ―→|=4,则双曲线C 的方程为( )A.x 26-y 25=1 B.x 28-y 212=1C.x 28-y 24=1 D.x 24-y 26=1解析:选D 不妨设B (0,b ),由BA ―→=2AF ―→,F (c,0),可得A ⎝⎛⎭⎫2c 3,b 3,代入双曲线C 的方程可得49×c 2a 2-19=1,∴b 2a 2=32.① 又|BF ―→|=b 2+c 2=4,c 2=a 2+b 2, ∴a 2+2b 2=16.②由①②可得,a 2=4,b 2=6, ∴双曲线C 的方程为x 24-y 26=1.2.[抛物线在物理知识中的创新]抛物线有如下光学性质:由焦点射出的光线经抛物线反射后平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必经过抛物线的焦点.若抛物线y 2=4x 的焦点为F ,一平行于x 轴的光线从点M (3,1)射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则直线AB 的斜率为( )A.43 B .-43C .±43D .-169解析:选B 将y =1代入y 2=4x ,可得x =14,即A ⎝⎛⎭⎫14,1.由抛物线的光学性质可知,直线AB 过焦点F (1,0),所以直线AB 的斜率k =1-014-1=-43.3.[椭圆中的创新]如图,记椭圆x 225+y 29=1,y 225+x 29=1内部重叠区域的边界为曲线C ,P 是曲线C 上的任意一点,给出下列四个命题:①P 到F 1(-4,0),F 2(4,0),E 1(0,-4),E 2(0,4)四点的距离之和为定值;②曲线C 关于直线y =x ,y =-x 均对称; ③曲线C 所围区域的面积必小于36; ④曲线C 的总长度不大于6π. 其中正确命题的序号为________.解析:对于①,若点P 在椭圆x 225+y 29=1上,则P 到F 1(-4,0),F 2(4,0)两点的距离之和为定值,到E 1(0,-4),E 2(0,4)两点的距离之和不为定值,故①错;对于②,联立两个椭圆的方程⎩⎨⎧x 225+y 29=1,y 225+x29=1,得y 2=x 2,结合椭圆的对称性知,曲线C 关于直线y =x ,y =-x 均对称,故②正确;对于③,曲线C 所围区域在边长为6的正方形内部,所以其面积必小于36,故③正确;对于④,曲线C 所围区域的内切圆为半径为3的圆,所以曲线C 的总长度必大于圆的周长6π,故④错.所以正确命题的序号为②③.答案:②③考点三 圆锥曲线的几何性质 增分考点·深度精研 [析母题——高考年年“神”相似][典例] (1)(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( ) A.23 B.12C.13D.14(2)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O为坐标原点.若双曲线的离心率为5,△AOB 的面积为2,则p =( )A .2B .1(3)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 2的直线与双曲线的右支交于A ,B两点,若△F 1AB 是以A 为直角顶点的等腰直角三角形,则e 2(e 为双曲线离心率)的值为________.[解析] (1)如图,作PB ⊥x 轴于点B .由题意可设|F1F 2|=|PF 2|=2,则c =1.由∠tan ∠PAB =|PB ||AB |=F 1F 2P =120°,可得|PB |=3,|BF 2|=1,故|AB |=a +1+1=a +2,3a +2=36,解得a =4,所以e =c a =14.(2)不妨设A 点在B 点上方,由双曲线的离心率为5,得1+b 2a 2=e 2=5,解得ba =2,所以双曲线的两条渐近线方程为y =±b a x =±2x .又抛物线的准线方程为x =-p2,则交点的坐标为A ⎝⎛⎭⎫-p 2,p ,B ⎝⎛⎭⎫-p 2,-p ,所以|AB |=2p .由△AOB 的面积为2,得12|AB |·p 2=2,即12×2p ×p 2=2,解得p =2,故选A.(3)如图所示,因为|AF1|-|AF 2|=2a ,|BF 1|-|BF 2|=2a ,|AF 1|=|AF 2|+|BF 2|,所以|BF 2|=2a ,|BF 1|=4a . 所以|AF 1|=22a , |AF 2|=22a -2a .因为|F 1F 2|2=|AF 1|2+|AF 2|2, 所以(2c )2=(22a )2+(22a -2a )2, 所以e 2=5-2 2.[答案] (1)D (2)A (3)5-2 2[练子题——高考年年“形”不同]1.本例(3)若变为:已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 2的直线与椭圆交于A ,B 两点,若△F 1AB 是以A 为直角顶点的等腰直角三角形,则e 2=________.解析:设|F 1F 2|=2c ,|AF 1|=m ,因为△F 1AB 是以A 为直角顶点的等腰直角三角形, 所以|AB |=|AF 1|=m ,|BF 1|=2m . 由椭圆的定义可知△F 1AB 的周长为4a , 所以4a =2m +2m ,即m =2(2-2)a . 所以|AF 2|=2a -m =(22-2)a . 因为|AF 1|2+|AF 2|2=|F 1F 2|2, 所以4(2-2)2a 2+4(2-1)2a 2=4c 2, 所以e 2=9-6 2. 答案:9-6 22.本例(3)若变为:F 1,F 2为双曲线的两个焦点,点A 在双曲线上,且△AF 2F 1为等腰直角三角形,则双曲线的离心率为______.解析:注意到|F 2A |≠|F 1A |, 不妨设|F 2A |>|F 1A |.因为△AF 2F 1为等腰直角三角形, 则|F 2A |∶|F 1F 2|∶|F 1A |=2∶1∶1. 所以e =c a =|F 1F 2||F 2A |-|F 1A |=12-1=2+1.答案:2+13.本例(3)中,若双曲线上存在一点P ,使得sin ∠PF 1F 2sin ∠PF 2F 1=ac ,求双曲线离心率的取值 范围.解:如图所示,由⎩⎪⎨⎪⎧sin ∠PF 1F 2sin ∠PF 2F 1=|PF 2||PF 1|=a c ,|PF 1|-|PF 2|=2a , 得|PF 1|=2ac c -a ,且|PF 2|=2a 2c -a.又由|PF 1|≥a +c ,可得2acc -a≥a +c ,即e 2-2e -1≤0,解得1-2≤e ≤2+1,又因为e >1,所以双曲线离心率的取值范围为(1,2+1]. [解题方略]1.椭圆、双曲线的离心率(或范围)的求法求椭圆、双曲线的离心率或离心率的范围,关键是根据已知条件确定a ,b ,c 的等量关系或不等关系,然后把b 用a ,c 代换,求ca的值.2.双曲线的渐近线的求法及用法(1)求法:把双曲线标准方程等号右边的1改为零,分解因式可得. (2)用法:①可得b a 或ab 的值.②利用渐近线方程设所求双曲线的方程.[多练强化]1.(2018·全国卷Ⅱ)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22xD .y =±32x解析:选A ∵e =ca =a 2+b 2a =3,∴渐近线方程为y =±2x .2.(2018·阜阳模拟)已知F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右两个焦点,若椭圆上存在点P 使得PF 1⊥PF 2,则该椭圆的离心率的取值范围是( )A.⎣⎡⎭⎫55,1 B.⎣⎡⎭⎫22,1 C.⎝⎛⎦⎤0,55 D.⎝⎛⎦⎤0,22 解析:选B ∵F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >0,b >0)的左、右两个焦点,∴F 1(-c,0),F 2(c,0),c 2=a 2-b 2.设点P (x ,y ),由PF 1⊥PF 2,得(x +c ,y )·(x -c ,y )=0,化简得x 2+y 2=c 2. 联立方程组⎩⎪⎨⎪⎧x 2+y 2=c 2,x 2a 2+y 2b 2=1,整理得,x 2=(2c 2-a 2)·a 2c 2≥0,解得e ≥22.又0<e <1,∴22≤e <1. 3.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8解析:选B 设抛物线的方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2. ∵|AB |=42,|DE |=25, 抛物线的准线方程为x =-p2,∴不妨设A ⎝⎛⎭⎫4p ,22,D ⎝⎛⎭⎫-p 2,5. ∵点A ⎝⎛⎭⎫4p ,22,D ⎝⎛⎭⎫-p 2,5在圆x 2+y 2=r 2上, ∴⎩⎨⎧16p 2+8=r 2,p24+5=r 2,∴16p 2+8=p 24+5,∴p =4(负值舍去). ∴C 的焦点到准线的距离为4.4.(2018·惠州调研)已知F 1,F 2是双曲线y 2a 2-x 2b 2=1(a >0,b >0)的两个焦点,过其中一个焦点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段F 1F 2为直径的圆内,则双曲线离心率的取值范围是________.线y =ab x 平行的直解析:如图,不妨设F 1(0,c ),F 2(0,-c ),则过点F 1与渐近线为y =ab x +c ,联立⎩⎨⎧y =ab x +c ,y =-ab x ,解得⎩⎨⎧x =-bc2a ,y =c2,即M ⎝⎛⎭⎫-bc 2a ,c 2.因为点M 在以线段F 1F 2为直径的圆x 2+y 2=c 2内,故⎝⎛⎭⎫-bc 2a 2+⎝⎛⎭⎫c 22<c 2,化简得b 2<3a 2,即c 2-a 2<3a 2,解得c a <2,又双曲线的离心率e =ca >1,所以双曲线离心率的取值范围是(1,2).答案:(1,2)考点四 直线与圆锥曲线 增分考点·广度拓展 [分点研究]题型一 直线与圆锥曲线的位置关系[例1] (2016·全国卷Ⅰ)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |; (2)除H 以外,直线MH 与C 是否有其他公共点?说明理由. [解] (1)如图,由已知得M (0,t ),P⎝⎛⎭⎫t 22p ,t , 又N 为M 关于点P 的对称点,故N ⎝⎛⎭⎫t 2p ,t , 故直线ON 的方程为y =pt x ,将其代入y 2=2px 整理得px 2-2t 2x =0, 解得x 1=0,x 2=2t 2p ,因此H ⎝⎛⎭⎫2t 2p ,2t . 所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点,理由如下: 直线MH 的方程为y -t =p2t x ,即x =2tp (y -t ).代入y 2=2px 得y 2-4ty +4t 2=0, 解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点.[解题方略]1.直线与圆锥曲线有两个不同的公共点的判定通常的方法是直线方程与圆锥曲线方程联立,消元后得到一元二次方程,其Δ>0;另一方法就是数形结合,如直线与双曲线有两个不同的公共点,可通过判定直线的斜率与双曲线渐近线的斜率的大小得到.2.直线与圆锥曲线只有一个公共点的结论直线与圆锥曲线只有一个公共点,则直线与双曲线的一条渐近线平行,或直线与抛物线的对称轴平行,或直线与圆锥曲线相切.题型二 直线与圆锥曲线的弦长[例2] 已知椭圆C :x 2a 2+y 2=1(a >1),F 1,F 2分别是其左、右焦点,以F 1F 2为直径的圆与椭圆C 有且仅有两个交点.(1)求椭圆C 的方程;(2)设过点F 1且不与坐标轴垂直的直线l 交椭圆于A ,B 两点,线段AB 的垂直平分线与x 轴交于点P ,点P 横坐标的取值范围是⎝⎛⎭⎫-14,0,求线段AB 长度的取值范围. [解] (1)因为以F 1F 2为直径的圆与椭圆C 有且仅有两个交点, 所以b =c =1,即a =b 2+c 2=2, 所以椭圆C 的方程为x 22+y 2=1.(2)过点F 1且不与坐标轴垂直的直线l 交椭圆于A ,B 两点,即直线AB 的斜率存在且不为0.设直线AB 的方程为y =k (x +1),与x 22+y 2=1联立,得(1+2k 2)x 2+4k 2x +2k 2-2=0.设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M ,则x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2,y 1+y 2=k (x 1+1)+k (x 2+1)=2k1+2k 2, 即M ⎝⎛⎭⎫-2k 21+2k 2,k 1+2k 2.所以线段AB 的垂直平分线的方程为y -k 1+2k 2=-1k ⎝⎛⎭⎫x +2k 21+2k 2,设点P (x P ,y P ),令y =0,得x P =-k 21+2k 2.因为x P ∈⎝⎛⎭⎫-14,0,所以0<k 2<12. |AB |= (1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+k 2)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫-4k 21+2k 22-4×2k 2-21+2k 2因为0<k 2<12,所以32<1+11+2k 2<2,即322<|AB |<2 2. 故线段AB 长度的取值范围是⎝⎛⎭⎫322,22.[解题方略] 直线与圆锥曲线的相交弦弦长的求法解决直线与圆锥曲线的相交弦问题的通法是将直线方程与圆锥曲线方程联立,消去y 或x 后得到一元二次方程,当Δ>0时,直线与圆锥曲线有两个交点,设为A (x 1,y 1),B (x 2,y 2),由根与系数的关系求出x 1+x 2,x 1x 2或y 1+y 2,y 1y 2,则弦长|AB |=1+k 2·(x 1-x 2)2=1+k 2·(x 1+x 2)2-4x 1x 2=1+1k2·|y 1-y 2|=1+1k 2·(y 1+y 2)2-4y 1y 2(k 为直线的斜率且k ≠0),当A ,B 两点坐标易求时也可以直接用|AB |=(x 1-x 2)2+(y 1-y 2)2 求之.[多练强化]已知点M ⎝⎛⎭⎫22,233在椭圆G :x 2a 2+y 2b 2=1(a >b >0)上,且点M 到两焦点的距离之和 为4 3. (1)求椭圆G 的方程;(2)若斜率为1的直线l 与椭圆G 交于A ,B 两点,以AB 为底作等腰三角形,顶点为P (-3,2),求△PAB 的面积.解:(1)∵2a =43,∴a =2 3. 又点M ⎝⎛⎭⎫22,233在椭圆上, ∴23+43b 2=1,解得b 2=4, ∴椭圆G 的方程为x 212+y 24=1.(2)设直线l 的方程为y =x +m .由⎩⎪⎨⎪⎧y =x +m ,x 212+y 24=1,得4x 2+6mx +3m 2-12=0. ① 设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2)(x 1<x 2),AB 的中点为E (x 0,y 0), 则x 0=x 1+x 22=-3m 4,y 0=x 0+m =m 4.∵AB 是等腰△PAB 的底边,∴PE ⊥AB . ∴PE 的斜率k =2-m4-3+3m 4=-1,解得m =2.此时方程①为4x 2+12x =0,解得x 1=-3,x 2=0, ∴y 1=-1,y 2=2,∴|AB |=3 2.此时,点P (-3,2)到直线AB :x -y +2=0的距离 d =|-3-2+2|2=322,∴△PAB 的面积S =12|AB |·d =92.数学运算——直线与圆锥曲线综合问题的求解[典例] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为(3,0),且经过点⎝⎛⎭⎫-1,32,点M 是x 轴上的一点,过点M 的直线l 与椭圆C 交于A ,B 两点(点A 在x 轴的上方).(1)求椭圆C 的方程;(2)若AM ―→=2MB ―→,且直线l 与圆O :x 2+y 2=47相切于点N ,求|MN |.[解](1)由题意知⎩⎨⎧a 2-b 2=c 2=3,(-1)2a 2+⎝⎛⎭⎫322b 2=1,得(a 2-4)(4a 2-3)=0,又a 2=3+b 2>3,故a 2=4,则b 2=1, 所以椭圆C 的方程为x 24+y 2=1.(2)设M (m,0),直线l :x =ty +m ,A (x 1,y 1),B (x 2,y 2), 由AM ―→=2MB ―→,得y 1=-2y 2.由⎩⎪⎨⎪⎧x 24+y 2=1,x =ty +m得(t 2+4)y 2+2tmy +m 2-4=0,则y 1+y 2=-2tm t 2+4,y 1y 2=m 2-4t 2+4.由y 1y 2=-2y 22,y 1+y 2=-2y 2+y 2=-y 2, 得y 1y 2=-2[-(y 1+y 2)]2=-2(y 1+y 2)2, 所以m 2-4t 2+4=-2⎝⎛⎭⎫-2tm t 2+42,化简得(m 2-4)(t 2+4)=-8t 2m 2. 易知原点O 到直线l 的距离d =|m |1+t 2, 又直线l 与圆O :x 2+y 2=47相切,由⎩⎪⎨⎪⎧(m 2-4)(t 2+4)=-8t 2m 2,t 2=74m 2-1,得21m 4-16m 2-16=0, 即(3m 2-4)(7m 2+4)=0,解得m 2=43,此时t 2=43,满足Δ>0,所以M ⎝⎛⎭⎫±233,0. 在Rt △OMN 中,|MN |=43-47=42121.[素养通路]本题是直线与椭圆、圆的综合问题:(1)由题意,列关于a ,b 的方程组,解方程组可得a ,b 的值进而求得椭圆的方程;(2)设出M ,A ,B 的坐标及直线l 的方程x =ty +m ,与椭圆方程联立,再结合根与系数的关系,得m 与t 的关系,由直线与圆相切,得另一关系式,联立可得M 的坐标进而得|MN |.考查了数学运算这一核心素养.[专题过关检测]A 组——“6+3+3”考点落实练一、选择题1.(2018·全国卷Ⅰ)已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则C 的离心率为( )A.13 B.12C.22D.223解析:选C ∵a 2=4+22=8,∴a =22,∴e =c a =222=22.2.一个焦点为(26,0)且与双曲线y 24-x 29=1有相同渐近线的双曲线方程是( )A.y 218-x 28=1 B.x 218-y 28=1C.x 216-y 210=1 D.y 216-x 210=1解析:选B 设所求双曲线方程为y 24-x 29=t (t ≠0),因为一个焦点为(26,0),所以|13t |=26.又焦点在x 轴上,所以t =-2,即双曲线方程为x 218-y28=1.3.若抛物线y 2=4x 上一点P 到其焦点F 的距离为2,O 为坐标原点,则△OFP 的面积为( ) A.12 B .1 C.32D .2解析:选B 设P (x 0,y 0),依题意可得|PF |=x 0+1=2,解得x 0=1,故y 20=4×1,解得y 0=±2,不妨取P (1,2),则△OFP 的面积为12×1×2=1.4.(2018·全国卷Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,则点(4,0)到C 的渐近线的距离为( )A. 2 B .2 C.322D .2 2解析:选D ∵e =ca =1+b 2a2=2,∴b a =1. ∴双曲线的渐近线方程为x ±y =0. ∴点(4,0)到C 的渐近线的距离d =42=2 2. 5.已知双曲线x 2-y 28=1 的左、右焦点分别为F 1,F 2,过F 2的直线l 与C 的左、右两支分别交于A ,B 两点,且|AF 1|=|BF 1|,则|AB |=( )A .2 2B .3C .4D .22+1解析:选C 设双曲线的实半轴长为a ,依题意可得a =1,由双曲线的定义可得|AF 2|-|AF 1|=2a =2,|BF 1|-|BF 2|=2a =2,又|AF 1|=|BF 1|,故|AF 2|-|BF 2|=4,又|AB |=|AF 2|-|BF 2|,故|AB |=4.6.(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点.若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( )A .1-32B .2- 3 C.3-12D.3-1解析:选D 在Rt △PF 1F 2中,∠PF 2F 1=60°, 不妨设椭圆焦点在x 轴上,且焦距|F 1F 2|=2, 则|PF 2|=1,|PF 1|=3,由椭圆的定义可知,方程x 2a 2+y 2b2=1中,所以离心率e =ca =21+3=3-1. 二、填空题7.已知双曲线x 2a 2-y 2=1(a >0)的渐近线方程为y =±33x ,则其焦距为________.解析:由渐近线方程y =±33x ,可得1a =33,解得a =3,故c =(3)2+1=2,故焦距为4.答案:48.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为________.解析:设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),由题意可知,直线l 过焦点,且垂直于x 轴,将x =c 代入双曲线方程,解得y =±b 2a ,则|AB |=2b 2a ,由|AB |=2×2a , 则b 2=2a 2,所以双曲线的离心率e =ca=1+b 2a2= 3. 答案: 39.已知抛物线C 的顶点为坐标原点,准线为x =-1,直线l 与抛物线C 交于M ,N 两点,若线段MN 的中点为(1,1),则直线l 的方程为________.解析:依题意易得抛物线的方程为y 2=4x ,设M (x 1,y 1),N (x 2,y 2),因为线段MN 的中点为(1,1),故x 1+x 2=2,y 1+y 2=2,则x 1≠x 2,由⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,两式相减得y 21-y 22=4(x 1-x 2),所以y 1-y 2x 1-x 2=4y 1+y 2=2,故直线l 的方程为y -1=2(x -1),即2x -y -1=0.答案:2x -y -1=0 三、解答题10.(2018·石家庄模拟)设A ,B 为曲线C :y =x 22上两点,A 与B 的横坐标之和为2.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,曲线C 在点M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.解:(1)设A (x 1,y 1),B (x 2,y 2),则x 1≠x 2,y 1=x 212,y 2=x 222,x 1+x 2=2,故直线AB 的斜率k =y 1-y 2x 1-x 2=x 1+x 22=1.(2)由y =x 22,得y ′=x .设M (x 3,y 3),由题设知x 3=1,于是M ⎝⎛⎭⎫1,12.设直线AB 的方程为y =x +m ,故线段AB 的中点为N (1,1+m ),|MN |=⎪⎪⎪⎪m +12. 将y =x +m 代入y =x 22,得x 2-2x -2m =0.由Δ=4+8m >0,得m >-12,x 1,2=1±1+2m .从而|AB |=2|x 1-x 2|=22(1+2m ).由题设知|AB |=2|MN |,即2(1+2m )=⎪⎪⎪⎪m +12,解得m =72, 所以直线AB 的方程为y =x +72.11.(2018·全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程. 解:(1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x得k 2x 2-(2k 2+4)x +k 2=0. Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k 2.由题设知4k 2+4k 2=8,解得k =1或k =-1(舍去).因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3), 即y =-x +5.设所求圆的圆心坐标为(x 0,y 0), 则⎩⎪⎨⎪⎧y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16. 解得⎩⎪⎨⎪⎧ x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.12.已知直线x +ky -3=0所经过的定点F 恰好是椭圆C 的一个焦点,且椭圆C 上的点到点F 的最大距离为8.(1)求椭圆C 的标准方程.(2)已知圆O :x 2+y 2=1,直线l :mx +ny =1,试证:当点P (m ,n )在椭圆C 上运动时,直线l 与圆O 恒相交,并求直线l 被圆O 所截得的弦长l 的取值范围.解:(1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),直线x +ky -3=0所经过的定点是(3,0), 即点F (3,0).因为椭圆C 上的点到点F 的最大距离为8, 所以a +3=8,a =5,所以b 2=52-32=16, 所以椭圆C 的方程为x 225+y 216=1.(2)因为点P (m ,n )在椭圆C 上, 所以m 225+n 216=1,即n 2=16-16m 225.又原点到直线l :mx +ny =1的距离d =1m 2+n2=1925m 2+16<1,所以直线l :mx +ny =1与圆O :x 2+y 2=1恒相交. 则l 2=4(12-d 2)=4⎝ ⎛⎭⎪⎫1-1925m 2+16, 因为-5≤m ≤5,所以152≤l ≤465. 故直线l 被圆O 所截得的弦长l 的取值范围为⎣⎡⎦⎤152,465.B 组——大题专攻补短练1.已知抛物线C :x 2=2py (p >0),过焦点F 的直线交C 于A ,B 两点,D 是抛物线的准线l 与y 轴的交点. (1)若AB ∥l ,且△ABD 的面积为1,求抛物线的方程; (2)设M 为AB 的中点,过M 作l 的垂线,垂足为N . 证明:直线AN 与抛物线相切. 解:(1)∵AB ∥l ,∴|AB |=2p . 又|FD |=p ,∴S △ABD =p 2=1.∴p =1,故抛物线C 的方程为x 2=2y . (2)证明:设直线AB 的方程为y =kx +p 2,由⎩⎪⎨⎪⎧y =kx +p 2,x 2=2py 消去y 得,x 2-2kpx -p 2=0. ∴x 1+x 2=2kp ,x 1x 2=-p 2.其中A ⎝⎛⎭⎫x 1,x 212p ,B ⎝⎛⎭⎫x 2,x 222p .∴M ⎝⎛⎭⎫kp ,k 2p +p 2,N ⎝⎛⎭⎫kp ,-p2. ∴k AN =x 212p +p 2x 1-kp=x 212p +p 2x 1-x 1+x 22=x 21+p 22p x 1-x 22=x 21-x 1x 22p x 1-x 22=x 1p . 又x 2=2py ,即y =x 22p,∴y ′=xp .∴抛物线x 2=2py 在点A 处的切线斜率k =x 1p .∴直线AN 与抛物线相切.2.(2018·贵阳适应性考试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点M 为短轴的上端点,MF 1―→·MF 2―→=0,过F 2垂直于x 轴的直线交椭圆C 于A ,B 两点,且|AB |= 2.(1)求椭圆C 的方程;(2)设经过点(2,-1)且不经过点M 的直线l 与C 相交于G ,H 两点.若k 1,k 2分别为直线MH ,MG 的斜率,求k 1+k 2的值.解:(1)由MF 1―→·MF 2―→=0,得b =c .①因为过F 2垂直于x 轴的直线交椭圆C 于A ,B 两点, 且|AB |=2,所以b 2a =22.②又a 2=b 2+c 2,③联立①②③,解得a 2=2,b 2=1, 故椭圆C 的方程为x 22+y 2=1.(2)设直线l 的方程为y +1=k (x -2), 即y =kx -2k -1,将y =kx -2k -1代入x 22+y 2=1,得(1+2k 2)x 2-4k (2k +1)x +8k 2+8k =0, 由题设可知Δ=-16k (k +2)>0, 设G (x 1,y 1),H (x 2,y 2),则x 1+x 2=4k (2k +1)1+2k 2,x 1x 2=8k 2+8k1+2k 2,k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1-2k -2x 1+kx 2-2k -2x 2=2k -(2k +2)×4k (2k +1)1+2k 28k 2+8k 1+2k 2=2k -(2k +1)=-1,所以k 1+k 2=-1.3.(2019届高三·唐山五校联考)在直角坐标系xOy 中,长为2+1的线段的两端点C ,D 分别在x 轴,y 轴上滑动,CP ―→= 2 PD ―→.记点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)经过点(0,1)作直线l 与曲线E 相交于A ,B 两点,OM ―→=OA ―→+OB ―→,当点M 在曲线E 上时,求直线l 的方程.解:(1)设 C (m,0),D (0,n ),P (x ,y ).由CP ―→= 2 PD ―→,得(x -m ,y )=2(-x ,n -y ),所以⎩⎨⎧x -m =-2x ,y =2(n -y ),得⎩⎪⎨⎪⎧m =(2+1)x ,n =2+12y ,由|CD ―→|=2+1,得m 2+n 2=(2+1)2, 所以(2+1)2x 2+(2+1)22y 2=(2+1)2,整理,得曲线E 的方程为x 2+y 22=1.(2)设A (x 1,y 1),B (x 2,y 2),由OM ―→=OA ―→+OB ―→, 知点M 的坐标为(x 1+x 2,y 1+y 2).易知直线l 的斜率存在,设直线l 的方程为y =kx +1,代入曲线E 的方程,得(k 2+2)x 2+2kx -1=0, 则x 1+x 2=-2kk 2+2, 所以y 1+y 2=k (x 1+x 2)+2=4k 2+2. 由点M 在曲线E 上,知(x 1+x 2)2+(y 1+y 2)22=1,即4k 2(k 2+2)2+8(k 2+2)2=1,解得k 2=2. 此时直线l 的方程为y =±2x +1.4.如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,右顶点、上顶点分别为点A ,B ,且|AB |=52|BF |. (1)求椭圆C 的离心率;(2)若点M ⎝⎛⎭⎫-1617,217在椭圆C 的内部,过点M 的直线l 交椭圆C 于P ,Q 两点,M 为线段P Q 的中点,且OP ⊥O Q ,求直线l 的方程及椭圆C 的方程.得a 2+b 2=52a , 即4a 2+4b 2=5a 2,4a 2+4(a 2-c 2)=5a 2, 所以e =c a =32.(2)由(1)知a 2=4b 2,所以椭圆C 的方程可化为x 24b 2+y 2b 2=1.设P (x 1,y 1),Q (x 2,y 2),由x 214b 2+y 21b 2=1,x 224b 2+y 22b 2=1, 可得x 21-x 224b 2+y 21-y 22b2=0,即(x 1+x 2)(x 1-x 2)4b 2+(y 1+y 2)(y 1-y 2)b 2=0,即-3217(x 1-x 2)4+417(y 1-y 2)=0,从而k P Q =y 1-y 2x 1-x 2=2, 所以直线l 的方程为y -217=2⎣⎡⎦⎤x -⎝⎛⎭⎫-1617, 即2x -y +2=0.联立⎩⎪⎨⎪⎧2x -y +2=0,x 24b 2+y 2b 2=1消去y ,得17x 2+32x +16-4b 2=0. 则Δ=322+16×17×(b 2-4)>0⇔b >21717,x 1+x 2=-3217,x 1x 2=16-4b 217.因为OP ⊥O Q ,OP ―→·O Q ―→=0,即x 1x 2+y 1y 2=0, x 1x 2+(2x 1+2)(2x 2+2)=0, 5x 1x 2+4(x 1+x 2)+4=0,从而5(16-4b 2)17-12817+4=0,解得b =1,所以椭圆C 的方程为x 24+y 2=1.综上,直线l 的方程为2x -y +2=0, 椭圆C 的方程为x 24+y 2=1.。
完整版)高三圆锥曲线知识点总结
完整版)高三圆锥曲线知识点总结第八章《圆锥曲线》专题复一、椭圆方程1.椭圆的第一定义:设F1.F2是平面内两个定点,对于任意点P,有PF1 +PF2 = 2a (a。
0),则称所有满足该性质的点P的轨迹为椭圆。
椭圆的方程为 PF1 + PF2 = 2a,无轨迹为 PF1 + PF2 = 2a,以F1,F2为端点的线段。
2.椭圆的方程形式:①椭圆的标准方程:i。
中心在原点,焦点在x轴上。
x^2/a^2 + y^2/b^2 = 1 (a。
b)。
ii。
中心在原点,焦点在y轴上:x^2/b^2 + y^2/a^2 = 1 (a。
b)。
②一般方程:Ax^2 + By^2 = 1 (A,B不同时为0)。
③椭圆的参数方程:x = a*cosθ,y = b*sinθ (θ ∈ [0,π])。
注意:椭圆参数方程的推导:设点N(acosθ,bsinθ),则有PF1 + PF2 = 2a,即√[(acosθ - c)^2 + (bsinθ)^2] + √[(acosθ + c)^2 + (bsinθ)^2] = 2a,整理得到x = a*cosθ,y = b*sinθ。
3.椭圆的性质:①顶点:(±a,0)或(0,±b)。
②轴:对称轴为x轴,y轴;长轴长2a,短轴长2b。
③焦点:(±c,0)或(0,±c),其中c = √(a^2 - b^2)。
④焦距:F1F2 = 2c,c = √(a^2 - b^2)。
⑤准线:x = ±a/e 或 y = ±b/e,其中e为离心率。
⑥离心率:e = c/a。
⑦焦半径:y = ±(b^2 - x^2)^(1/2) 或 x = ±(a^2 - y^2)^(1/2)。
⑧通径:垂直于x轴且过焦点的弦叫做通径,坐标为(±c,d/2),其中d为通径长度。
4.共离心率的椭圆系的方程:椭圆 x^2/a^2 + y^2/b^2 = 1 的离心率是e = c/a (c = √(a^2 -b^2)),方程 x^2/a^2 + y^2/b^2 = t (t。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届高三数学复习--解析几何--圆锥曲
线的方程与性质解析
A.y2=8x
B.x2=-8y
c.y2=xD.x2=-y
2. 已知F1(-1,0),F2(1,0) 是椭圆c的焦点,过点F2且垂
直于x轴的直线交椭圆c于A,B两点,且|AB|=3,则椭圆c的方程为()
A.+y2=1
B.+=1
c.+=1D.+=1
3. 若双曲线x2+y2=( € R)的焦距为4,则该双曲线的渐近
线方程为()
A.y= ± x
B.y= ± x
c.y= ± xD.y= ± x
4. 已知直线x-y=0与抛物线y2=12x相交于点A(不与原
点重合),则点A到抛物线焦点的距离为()
A.6
B.7
C.9
D.12
5. 在平面直角坐标系中,经过点P(2,-)且离心率为的双
曲线的标准方程为()
A.-=1
B.-=1
c.-=1 或-=1D.-=1 或-=1
6. 已知椭圆c:+y2=1的离心率与双曲线E:-=1(a>0,b>0)
的一条渐近线的斜率相等,则双曲线E的离心率为()
A.B.
c.D.
7. 已知抛物线y2=4x的焦点为F,准线I与x轴的交点为
k,抛物线上有一点P,若|PF|=5,则厶PkF的面积为()
A.4
B.5
C.8
D.10
8. 设A,B分别是椭圆c:+=1的左、右焦点,点P是椭圆c 与圆:x2+y2=10 的一个交点,则||PA|-|PB||=( )
A.2
B.4
C.4
D.6
9. 椭圆c:+=1(a>b>0)的右焦点为F,存在直线y=t与椭
圆c交于A,B两点,使得△ ABF为等腰直角三角形,则椭圆c 的离心率e=( )
A.B.-1
c.-1D.
10. 已知双曲线-=1(a>0,b>0)的离心率为,其一条渐近
线被圆(x-)2+y2=4(>0)截得的线段长为2,则实数的值为
( )
A.3
B.1
c.D.2
11. 若过抛物线y=x2的焦点的直线与抛物线交于A,B两点,则?(o为坐标原点)的值是()
A.B.-
C.3
D.-3
12. 设椭圆c:+y2=1的左焦点为F,直线l:y=kx(k工0)与椭圆c交于A,B两点,则厶AFB的周长的取值范围是
13. 抛物线y2=8x的焦点为F,点A(6,3),P为抛物线上一点,且P不在直线AF上,则厶PAF的周长的最小值为.
能力提升
14. 已知抛物线c:y2=2x,直线l:y=-x+b 与抛物线c交于
A,B两点,若以AB为直径的圆与x轴相切,则b的值是(
)
A.-
B.-c.-D.-
15. 已知椭圆+=1的左、右焦点分别为F1,F2,过F2且垂
直于长轴的直线交椭圆于A,B两点,则厶ABF1的内切圆的半径为()
A.B.1C.D.
16. 已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,若
在直线x=2a上存在点P使线段PF1的中垂线过点F2,则椭圆的离心率的取值范围是()
A.B.
c.D.
17. 已知双曲线-y2=1的右焦点是抛物线y2=2px(p>0)的焦点,直线y=kx+与抛物线相交于A,B两个不同的点,点(2,2)是线段AB的中点,则厶AoB(o为坐标原点)的面积是.
18. 抛物线y2=2px(p>0)的焦点为F,A,B为抛物线上的
两点,以AB为直径的圆过点F,过AB的中点作抛物线的准线的垂线N,垂足为N,则的最大值为
限时集训(十五)
基础过关
1. B [解析]双曲线-x2=1的一个焦点为(0,-2),所以抛
物线的焦点坐标也是(0,-2),故抛物线c的方程为x2=-8y.
2. c [解析]设椭圆c的方程为+=1(a>b>0),则|AB|=3=,
根据a2-b2=c2可得a2-a-1=0,得a=2,所以b2=3,所以椭圆c 的方程为+=1.
3. D [解析]双曲线的标准方程为y2-=1,
•••双曲线的焦距为4,
••• =2,即=-3,
•••双曲线的标准方程为y2-=1,
•双曲线的渐近线的方程为y= ± x.
4. B [解析]联立得到3x2=12x, ••• x=4或0(舍),•
A(4,4),又焦点F(3,0),
• |AF|==7.
5. B [解析]由e==,得=.当焦点在x轴上时,设双曲线
方程为-=1(a>0,b>0),代入P(2,-),得-=1,解得a2=7,b2=14; 当焦点在y轴上时,设双曲线方程为-=1(a>0,b>0),代入
P(2,-),得-=1,无解.综上,双曲线的标准方程为-=1,故选B.
6. D [解析]易知椭圆c:+y2=1的离心率为,由题可知=, 又因为c2=a2+b2,所以双曲线的离心率e==.
7. A [解析]由抛物线的方程y2=4x,可得
F(1,0),k(-1,0),
设P(x0,y0),则|PF|=xO+仁5,即x0=4,
不妨设P(x0,y0)在第一象限,则P(4,4),
所以S A PkF=?|Fk||yO|= X 2X 4=4,故选 A.
8. c [解析]由题易知线段AB是圆的一条直径,则有|PA|+|PB|=2a=4,|PA|2+|PB|2=(2c)2=40,
(|PA|+|PB|)2=|PA|2+|PB|2+2|PA||PB|, 得2|PA||PB|=8, (|PA|-
|PB|)2=|PA|2+|PB|2-2|PA||PB|=32, 则||PA|-|PB||=4, 故选c.
9. B [解析]由题知,当BF丄AB时,△ ABF为等腰直角三
角形,•••|FB|=|AB|,即=2c,
即b2=2ac, ••• a2-c2=2ac,二1-e2=2e, /. e2+2e-1=0,解得
e=± -1,由于椭圆的离心率e€ (0,1), ••• e=-1,故选B.
10. D [解析]双曲线-=1(a>0,b>0)的离心率为,则=,•••
c2=2a2, •••a2+b2=2a2, ••• a=b,则双曲线的一条渐近线方程为x-
y=0,圆(x-)2+y2=4(>0) 的圆心坐标为(,0),半径为2,则圆心到渐近线的距离d==,解得=2.
11. D [解析]抛物线为x2=4y,焦点为F(0,1),设直线
AB的方程为y=kx+1,A(x1,y1),B(x2,y2), 联立方程得x2-4kx-4=0,所以x1x2=-4,y1y2=(x1x2)2=1, 故?
=x1x2+y1y2=-3,故选D.
12. (6,8) [解析]根据椭圆的对称性得△ AFB的周长等
于|AF|+|BF|+|AB|=2a+|AB|=4+|AB|, 而A,B 为直线y=kx(k 工0)与椭圆的交点,所以2b 13.13 [解析]由抛物线定义知,抛物线上的点P到焦点的距离|PF|等于点P到准线的距离d,即|FP|=d. 所以△ PAF 的周长l=|PF|+|PA|+|AF|=d+|PA|+ >
6+2+5=13.
能力提升
14. C [解析]由题意,可设A,B的坐标分别为
(x1,y1),(x2,y2), 联立直线与抛物线方程消去y得x2-(b+2)x+b2=0,贝U x1+x2=4(b+2),x1x2=4b2,y1+y2=-4. 由题知|AB|=,即=2,解得b=-.故选c.
15. D [解析]由题不妨设点A在第一象限.由+=1得
a=2,b=,易知A,B的纵坐标yA,yB分别为,-.根据椭圆的定义可知△ ABF1的周长为4a=8,设厶ABF1的内切圆半径为r, △ABF1 的面积为|F仆2| ?|yA-yB|= x 2 x 3=3= x 8?r,解得r=,故选
D.
16. B [解析]根据中垂线的性质可
得,|PF2|=|F1F2|=2c, 又T |PF2| > 2a-c, A 2a< 3c,即e > , 又••• e 17.2 [解析]由题意得,抛物线的焦点坐标为(2,0),则y2=8x,
联立得y2-y+=0, 设A(x1,y1),B(x2,y2), 则y1+y2=,y1y2=,
又因为点(2,2)是线段AB的中点,所以y1+y2==4,解得k=2,=-2,
则|AB|=|y1-y2|= X 4=2,点o 到直线AB 的距离d==,
所以△ AoB的面积S=|AB| ?d=2.
18. [解析]过A,B分别向准线作垂线交准线于
A' ,B',由抛物线定义得|AA' |=|AF|,|BB ' |=|BF|,所以|N|=(|AF|+|BF|)=(|AA ' |+|BB ' |),易知AF丄BF,|F|=|AB|, 所以=w =,当且仅当|AF|=|BF|时,等号成立,则的最大值为,所以的最大值为.。