四川大学固体物理期末复习

合集下载

固体物理期末复习题目

固体物理期末复习题目

一、名词解释:1、晶体 ;2、非晶体;3、点阵;4、晶格;5、格点;6、晶体的周期性;7、晶体的对称性8、密勒指数;9、倒格子;10、配位数;11、致密度;12、固体物理学元胞;13、结晶学元胞;14、布拉菲格子;15、复式格子;16、声子;17、布洛赫波 ;18、布里渊区;19、格波;20、电子的有效质量二、计算证明题1. 晶体点阵中的一个平面hkl ,试证:(1)晶格的两个相邻平行平面(这些平面通过格点)之间的距离为2||hkl d K π=此处123K hb kb lb =++;(2)利用上述关系证明,对于简单立方格子,22d l =+ a 为晶格常数;(3)说明什么样的晶面容易解理,为什么?2、金刚石晶胞的立方边长为m 101056.3-⨯,求最近邻原子间的距离、平均每立方厘米中的原子数和金刚石的密度。

(碳原子的重量为2310*99.1-g )3. 试证:在晶体中由于受到周期性的限制,只能有1、2、3、4、6重旋转对称轴,5重和大于6重的对称轴不存在。

4、晶体点阵中的一个平面.hkl(a )证明倒易点阵矢量321b l b k b h G ++=垂直于这个平面。

(b )证明正格子原胞体积与倒格子原胞体积互为倒数5. 证明体心立方格子和面心立方格子互为正、倒格子。

6. 在六角空间格子中选取一平行六面体为原胞,试求:(1)基矢321,,a a a的表示式;(2)原胞的体积;(3)倒格子基矢321,,b b b 。

7、氪原子组成惰性晶体为体心立方结构,其总势能可写为()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=6612122R A R A N R U σσε,其中N 为氪原子数,R 为最近邻原子间距离,点阵和A 6=12.25,A 12=9.11;设雷纳德—琼斯系数ε=0.014eV ,σ=3.65。

求:(1)平衡时原子间最近距离R 0及点阵常数a ;(2)每个原子的结合能(eV )。

8. 设两原子间的互作用能可表示为()n m r r r u βα+-=式中,第一项为引力能;第二项为排斥能;βα,均为正常数。

《固体物理》复习大纲

《固体物理》复习大纲

«固体物理»复习大纲招生专业:凝聚态物理/材料物理与化学固体物理学的基本内容(专题除外), 主要有:晶体结构, 晶体结合, 晶格振动和晶体热学性质, 晶体的缺陷, 金属电子论和能带理论.主要参考书目: 1. 黄昆, 韩汝琦, 固体物理学, 高教出版社2. 陆栋, 蒋平, 徐至中, 固体物理学, 上海科技出版社3. 朱建国, 郑文琛等, 固体物理学, 科学出版社«新型功能材料»复习大纲招生专业:材料物理与化学/光学工程一、复习大纲1,材料、新材料的重要性;2,材料科学、材料工程、材料科学与工程的学科形成与学科内涵;3,材料科学与工程的“四要素”的内容;“四要素”间的相互关系(用图来表示);“四要素”在材料研究中的作用;(要求能结合具体材料事例予以说明)4,如何理解材料、特别是新材料是社会现代化的物质基础与先导;5,怎样区分结构材料和功能材料?新型功能材料的内涵是什么?6,了解新型功能材料中相关科学名词的解释,并能给出适当的例子,如:信息材料;光电功能材料;能源材料;高性能陶瓷;纳米材料;晶体材料;人工晶体(材料);压电材料;铁电材料;复合材料;梯度材料;智能材料与结构;材料设计;环境材料;低维材料;生物材料;非线形光学材料;光子晶体;半导体超晶格;等等;7,注意了解材料检测评价新技术的发展;注意了解材料的成分测定、结构测定、形貌观测的方法;材料无损检测评价新技术的发展概况;8,能结合具体的材料对象,给出材料的成分分析、原子价态分析、结构(含微结构)分析、形貌分析等所采用的主要技术,以及利用这些技术所得出的主要结果;9,对若干常用的分析技术,包括:X射线衍射分析(XRD),原子力显微镜分析(AFM),扫描电子显微镜分析(SEM),透射电子显微镜分析(TEM),俄歇电子能谱分析,X射线光电子能谱分析(XPS),核磁共振谱分析,等,能结合具体事例,阐述它们在材料物化结构分析中的作用和能解决的具体问题;10,材料科学技术是一门多学科交叉的前沿综合性学科;材料科学技术的学科内涵极为丰富;当代材料科学技术正在飞速发展,其主要发展趋势可以归纳为8个方面。

固体物理期末考试题及答案

固体物理期末考试题及答案

固体物理期末考试题及答案一、选择题(每题2分,共20分)1. 晶体中原子排列的周期性结构被称为:A. 晶格B. 晶胞C. 晶面D. 晶向答案:A2. 描述固体中电子行为的基本理论是:A. 经典力学B. 量子力学C. 相对论D. 电磁学答案:B3. 以下哪项不是固体物理中的晶体缺陷:A. 点缺陷B. 线缺陷C. 面缺陷D. 体缺陷答案:D4. 固体物理中,晶格振动的量子称为:A. 声子B. 光子C. 电子D. 空穴答案:A5. 以下哪个不是固体的电子能带结构:A. 价带B. 导带C. 禁带D. 散射带答案:D二、简答题(每题10分,共30分)6. 解释什么是晶格常数,并举例说明。

晶格常数是晶体中最小重复单元的尺寸,通常用来描述晶体的周期性结构。

例如,立方晶系的晶格常数a是指立方体的边长。

7. 简述能带理论的基本概念。

能带理论是量子力学在固体物理中的应用,它描述了固体中电子的能量分布。

在固体中,电子的能量不是连续的,而是分成一系列的能带。

价带是电子能量较低的区域,导带是电子能量较高的区域,而禁带是两带之间的能量区域,电子不能存在。

8. 什么是费米能级,它在固体物理中有什么意义?费米能级是固体中电子的最高占据能级,它与温度有关,但与电子的化学势相等。

在绝对零度时,费米能级位于导带的底部,它决定了固体的导电性质。

三、计算题(每题15分,共30分)9. 假设一个一维单原子链的原子质量为m,相邻原子之间的弹簧常数为k。

求该链的声子频率。

解:一维单原子链的声子频率可以通过下面的公式计算:\[ \omega = 2 \sqrt{\frac{k}{m}} \]10. 给定一个半导体的电子亲和能为Ea,工作温度为T,求该半导体在该温度下的费米-狄拉克分布函数。

解:费米-狄拉克分布函数定义为:\[ f(E) = \frac{1}{e^{\frac{E-E_F}{kT}} + 1} \] 其中,E是电子的能量,E_F是费米能级,k是玻尔兹曼常数,T 是温度。

固体物理总复习资料及答案

固体物理总复习资料及答案

固体物理总复习题一、填空题1.原胞是 的晶格重复单元。

对于布拉伐格子,原胞只包含 个原子。

2.在三维晶格中,对一定的波矢q ,有 支声学波, 支光学波。

3.电子在三维周期性晶格中波函数方程的解具有 形式,式中 在晶格平移下保持不变。

4.如果一些能量区域中,波动方程不存在具有布洛赫函数形式的解,这些能量区域称为 ;能带的表示有 、 、 三种图式。

5.按结构划分,晶体可分为 大晶系,共 布喇菲格子。

6.由完全相同的一种原子构成的格子,格子中只有一个原子,称为格子,由若干个布喇菲格子相套而成的格子,叫做 格子。

其原胞中有 以上的原子。

7.电子占据了一个能带中的所有的状态,称该能带为 ;没有任何电子占据的能带,称为 ;导带以下的第一满带,或者最上面的一个满带称为 ;最下面的一个空带称为 ;两个能带之间,不允许存在的能级宽度,称为 。

8.基本对称操作包括 , , 三种操作。

9.包含一个n 重转轴和n 个垂直的二重轴的点群叫 。

10.在晶体中,各原子都围绕其平衡位置做简谐振动,具有相同的位相和频率,是一种最简单的振动称为 。

11.具有晶格周期性势场中的电子,其波动方程为 。

12.在自由电子近似的模型中, 随位置变化小,当作 来处理。

13.晶体中的电子基本上围绕原子核运动,主要受到该原子场的作用,其他原子场的作用可当作 处理。

这是晶体中描述电子状态的模型。

14.固体可分为,,。

15.典型的晶格结构具有简立方结构,,,四种结构。

16.在自由电子模型中,由于周期势场的微扰,能量函数将在K= 处断开,能量的突变为。

17.在紧束缚近似中,由于微扰的作用,可以用原子轨道的线性组合来描述电子共有化运动的轨道称为,表达式为。

18.爱因斯坦模型建立的基础是认为所有的格波都以相同的振动,忽略了频率间的差别,没有考虑的色散关系。

19.固体物理学原胞原子都在,而结晶学原胞原子可以在顶点也可以在即存在于。

20.晶体的五种典型的结合形式是、、、、。

固体物理经典复习题及答案(供参考)

固体物理经典复习题及答案(供参考)

一、简答题1.理想晶体答:内在结构完全规则的固体是理想晶体,它是由全同的结构单元在空间无限重复排列而构成的。

2.晶体的解理性答:晶体常具有沿某些确定方位的晶面劈裂的性质,这称为晶体的解理性。

3.配位数答: 晶体中和某一粒子最近邻的原子数。

4.致密度 ;答:晶胞内原子所占的体积和晶胞体积之比。

5.空间点阵(布喇菲点阵)答:空间点阵(布喇菲点阵):晶体的内部结构可以概括为是由一些相同的点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空间点阵(布喇菲点阵),即平移矢量123d 、d 、h h h d 中123,,n n n 取整数时所对应的点的排列。

空间点阵是晶体结构周期性的数学抽象。

6.基元答:组成晶体的最小基本单元,它可以由几个原子(离子)组成,整个晶体可以看成是基元的周期性重复排列而构成。

7.格点(结点)答: 空间点阵中的点子代表着结构中相同的位置,称为结点。

8.固体物理学原胞 .答:固体物理学原胞是晶格中的最小重复单元,它反映了晶格的周期性。

取一结点为顶点,由此点向最近邻的三个结点作三个不共面的矢量,以此三个矢量为边作的平行六面体即固体物理学原胞。

固体物理学原胞的结点都处在顶角位置上,原胞内部及面上都没有结点,每个固体物理学原胞平均含有一个结点。

9.结晶学原胞答:使三个基矢的方向尽可能的沿空间对称轴的方向,以这样三个基矢为边作的平行六面体称为结晶学原胞,结晶学原胞反映了晶体的对称性,它的体积是固体物理学原胞体积的整数倍,V=n ,其中n 是结晶学原胞所包含的结点数, 是固体物理学原胞的体积。

10.布喇菲原胞答:使三个基矢的方向尽可能的沿空间对称轴的方向,以这样三个基矢为边作的平行六面体称为布喇菲原胞,结晶学原胞反映了晶体的对称性,它的体积是固体物理学原胞体积的整数倍,V=n ,其中n 是结晶学原胞所包含的结点数,是固体物理学原胞的体积 11.维格纳-赛兹原胞(W-S 原胞)答:以某一阵点为原点,原点与其它阵点连线的中垂面(或中垂线) 将空间划分成各个区域。

四川大学固体物理期末复习

四川大学固体物理期末复习
V/(2)3 4q2dq 杜隆-帕蒂定律: 高温极限 爱因斯坦近似 德拜定律
非谐效应:热膨胀 非谐效应:热导率
重点
振动模式 • 振动模式,q,声学支与光学支的数量 • 三个重要的固体比热模型 • N-, U- (正常过程和倒逆过程)的定义
CH9晶、体1中0的点固缺体陷缺陷 肖脱基缺陷(Schottky defect): 晶格中的空位 弗伦克尔缺陷(Frenkel defect): 晶格中的空位与填隙原子 杂质原子(替位,填隙) 扩散机制
晶体按结合力的分类 共价晶体
共价键: 共用电子对
• 杂化理论: sp, sp2, sp3 • 共价键的特征:饱和性和方向性 • 共价晶体的特征:低配位数,弱导电性,高硬度,高熔点
晶体按结合力的分类
惰性气体晶体: 分子晶体
van der Waals 相互作用
• 短程、弱相互作用, Lennard-Jones 势 U(r)=4 [(/R)12-(/R)6]= B/R12-A/R6 • 密堆积、低熔点、透明
• = 3/5 F0 • F ~T: F= F0[1- (2/12) (kT/ F0)2]~ F0
电子气的比热 低温时 Ce T Ce 的实验结论
• C = Ce+Cl = T + bT3 • e/ T = m*/m
外场作用下电子的运动 = ne2/m; = m/ne2; = l+i ; -1=l-1+i-1 Ey = RH jxBz, RH = -1/ne 魏德曼-弗兰兹定律: /T = L
sc, bcc, fcc 的倒格子以及它们之间的关系
基元的傅立叶分析: 散射波振幅和晶体结构的关系
bcc 和 fcc的结构因子 原子散射因子
倒格子的定义

固体物理考试重点(广工版、复习资料)

固体物理考试重点(广工版、复习资料)

S h ( hkl ) f a e
j i
m
i 2 ( hui kv j lwk )
; 2d sin n ( 2d ) (布拉菲定律)
第二章
类型 离子晶体


代表 NaCl、CsCl、LiF
熔点高,硬度大,膨胀系数小,易沿解理面劈裂,导电性差, 高 温下才有良好的离子导电性。 完整晶体硬度大, 熔点一般较高,低温下导电性能较差,为绝 缘体或半导体。化学惰性大,由于饱和性、方向性,决定了原子 排列只能取有限的几种形式。 电导率热导率高、密度大、延展性好,对原子排列无特殊要求, 故原子尽可能密集排列(能量低) 低熔点、低沸点、易压缩、电绝缘,对原子排列无特殊要求, 故 一般取密堆积排列。 熔点和沸点介于离子晶体和分子晶体之间, 密度小, 有许多分子 聚合的趋势,介电系数大。
2 O

1 2
m

12 22 21 2 cos( qa )
m
光学支具有 q=0 时,ω0≠0 的特征。 晶格振动的波矢数=晶体的原胞数 晶格中格波的支数=原胞内的自由度数=原胞内原子数×维数=声学波支数+光学波支数 一维单原子链:仅存在 1 支格波,且为声学格波。 一维双原子链:存在 2 支格波——声学波和光学波各一支。 一维 S 原子链:存在 S 支格波——1 支声学波和 S-1 支光学波。 三维晶体: 原胞的总自由度数为 3S(S 为原胞的原子数),则晶体中原子振动可能存在的运动形式就有 3S 种, 用 3S 支格波来描述。其中有 3 只声学格波,其余 3(S-1)支光学格波。 例如,金属 Cu 或 Ag(FCC 结构、三维晶体)的原胞原子数=1,原胞内自由度数=1×3=3,格波支数=3, 声学波支数=3(维数) ,光波支数=3-3=0。

固体物理期末复习题目与答案

固体物理期末复习题目与答案

.. .. . .第一章 晶体结构1、把等体积的硬球堆成下列结构,求球可能占据的最大体积和总体积之比。

(1)简立方 (2)体心立方 (3)面心立方(4)金刚石 解:(1)、简立方,晶胞含有一个原子n=1,原子球半径为R ,立方晶格的顶点原子球相切,立方边长a=2R,体积为()32R ,所以 ()33344330.5262n R R K V R πππ⋅==== (2)、体心立方晶胞含有2个原子n=2,原子球半径为R ,晶胞边长为a ,立方晶格的体对角线原子球相切,体对角线长为4个原子半径,所以3a R =3334423330.6843n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭(3)、面心立方晶胞含有4个原子n=4,晶胞的面对角线原子球相切,面对角线长度为4个原子半径,立方体边长为a,所以2a R =3334442330.7442n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭(4)、金刚石在单位晶格中含有8个原子,碳原子最近邻长度2R 为体对角线14长,体对角线为83R a = 3334483330.3483n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭2、证明面心立方和体心立方互为倒格子。

09级微电子学专业《固体物理》期末考复习题目至诚 学院 信息工程 系 微电子学 专业 姓名: 陈长彬 学号: 2109918033、证明:倒格子原胞体积为()3*2cvvπ=,其中v c为正格子原胞的体积。

4、证明正格子晶面 与倒格矢 正交。

5能写出任一晶列的密勒指数,也能反过来根据密勒指数画出晶列;能写出任一晶面的晶面指数,也能反过来根据晶面指数画出晶面。

见课件例题 以下作参考: 15.如图1.36所示,试求:(1) 晶列ED ,FD 和OF 的晶列指数;(2) 晶面AGK ,FGIH 和MNLK 的密勒指数; (3) 画出晶面(120),(131)。

密勒指数:以晶胞基矢定义的互质整数( )。

固体物理重点知识点总结——期末考试、考研必备!!

固体物理重点知识点总结——期末考试、考研必备!!

固体物理概念总结——期末考试、考研必备!!第一章1、晶体-----内部组成粒子(原子、离子或原子团)在微观上作有规则的周期性重复排列构成的固体。

晶体结构——晶体结构即晶体的微观结构,是指晶体中实际质点(原子、离子或分子)的具体排列情况。

金属及合金在大多数情况下都以结晶状态使用。

晶体结构是决定固态金属的物理、化学和力学性能的基本因素之一。

2、晶体的通性------所有晶体具有的共通性质,如自限性、最小内能性、锐熔性、均匀性和各向异性、对称性、解理性等。

3、单晶体和多晶体-----单晶体的内部粒子的周期性排列贯彻始终;多晶体由许多小单晶无规堆砌而成。

4、基元、格点和空间点阵------基元是晶体结构的基本单元,格点是基元的代表点,空间点阵是晶体结构中等同点(格点)的集合,其类型代表等同点的排列方式。

倒易点阵——是由被称为倒易点或倒易点的点所构成的一种点阵,它也是描述晶体结构的一种几何方法,它和空间点阵具有倒易关系。

倒易点阵中的一倒易点对应着空间点阵中一组晶面间距相等的点格平面。

5、原胞、WS原胞-----在晶体结构中只考虑周期性时所选取的最小重复单元称为原胞;WS原胞即Wigner-Seitz原胞,是一种对称性原胞。

6、晶胞-----在晶体结构中不仅考虑周期性,同时能反映晶体对称性时所选取的最小重复单元称为晶胞。

7、原胞基矢和轴矢----原胞基矢是原胞中相交于一点的三个独立方向的最小重复矢量;晶胞基矢是晶胞中相交于一点的三个独立方向的最小重复矢量,通常以晶胞基矢构成晶体坐标系。

8、布喇菲格子(单式格子)和复式格子------晶体结构中全同原子构成的晶格称为布喇菲格子或单式格子,由两种或两种以上的原子构成的晶格称为复式格子。

9、简单格子和复杂格子(有心化格子)------一个晶胞只含一个格点则称为简单格子,此时格点位于晶胞的八个顶角处;晶胞中含不只一个格点时称为复杂格子,其格点除了位于晶胞的八个顶角处外,还可以位于晶胞的体心(体心格子)、一对面的中心(底心格子)和所有面的中心(面心格子)。

大一上学期末固体物理复习要点

大一上学期末固体物理复习要点

大一上学期末固体物理复习要点大一上学期末固体物理复习要点可以分为以下几个部分:热力学,材料结构和性质,固体的电学性质,固体的磁学性质。

一、热力学
1. 理想气体定律及其应用
2. 热力学第一定律及其应用
3. 热力学第二定律及其应用
4. 热力学第三定律及其应用
二、材料结构和性质
1. 固体晶体结构
- 立方密排晶体结构
- 非立方密排晶体结构
2. 晶体的缺陷及其影响
- 点缺陷
- 线缺陷
- 面缺陷
3. 晶体的生长和晶体缺陷对材料性能的影响
三、固体的电学性质
1. 金属的电子结构
- 自由电子模型
- 布里渊区
2. 半导体的电子结构
- 禁带宽度
- n型半导体和p型半导体
3. 绝缘体的电子结构
四、固体的磁学性质
1. 磁性基本概念
- 磁矩
- 磁化强度
2. 磁性材料的分类
- 铁磁材料
- 抗磁材料
- 顺磁材料
3. 磁性材料的应用
综上所述,大一上学期末固体物理复习要点包括热力学、材料结构和性质、固体的电学性质、固体的磁学性质等内容,希望同学们在复习中能够系统地掌握这些要点,为考试做好充分的准备。

固体物理复习总结

固体物理复习总结

固体物理复习总结(总18页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章 晶体结构1、试说明空间点阵和晶体结构的区别。

答:空间点阵是晶体中质点排列的几何学抽象,用以描述和分析晶体结构的周期性和对称性,它是由几何点在三维空间理想的周期性规则排列而成,由于各阵点的周围环境相同,它只能有14种类型。

晶体结构则是晶体中实际质点(原子、离子或分子)的具体排列情况,它们能组成各种类型的排列,因此实际存在的晶体结构是无限的。

当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。

2、证明体心立方格子和面心立方格子互为倒格子证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩由倒格子基矢的定义:1232()b a a π=⨯Ω31230,,22(),0,224,,022a aa a a a a a a a Ω=⋅⨯==,223,,,0,()224,,022i j ka a a a a i j k aa ⨯==-++ 213422()()4ab i j k i j k a aππ∴=⨯⨯-++=-++同理可得:232()2()b i j k ab i j k aππ=-+=+-即面心立方的倒格子基矢与体心立方的正格基矢相同。

所以,面心立方的倒格子是体心立方。

(2)体心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a i j k a a i j k a a i j k ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩由倒格子基矢的定义:1232()b a a π=⨯Ω3123,,222(),,2222,,222aa a a a a a a aa a a a -Ω=⋅⨯=-=-,223,,,,()2222,,222i j k a a a a a a j k a a a ⨯=-=+-213222()()2a b j k j k a aππ∴=⨯⨯+=+同理可得:232()2()b i k ab i j aππ=+=+即体心立方的倒格子基矢与面心立方的正格基矢相同。

固体物理期末考试.

固体物理期末考试.

一、概念、简答1.晶体,非晶体,准晶体;(p1,p41,p48)答:理想晶体中原子排列十分规则,主要体现是原子排列具有周期性,或称为长程有序,而非晶体则不具有长程的周期性.,因此不具有长程序,但非晶态材料中原子的排列也不是杂乱无章的,仍保留有原子排列的短程序.准晶态:具有长程序的取向序而没有长程序的平移对称序;取向序具有晶体周期性所不能容许的点群对称性,沿取向序对称轴的方向具有准周期性,有两个或两个以上的不可公度特征长度按着特定的序列方式排列. 2. 布拉菲格子; (p11)答:布拉菲格子是一种数学上的抽象,是点在空间中周期性的规则排列,实际晶格可以看成在空间格子的每个格点上放有一组原子,它们相对位移为r,这个空间格子表征了晶格的周期性叫布拉菲格子.3.原胞 ,晶胞; (p11)答:晶格的最小周期性单元叫原胞.晶胞:为了反映晶格的对称性,选取了较大的周期单元,我们称晶体学中选取的单元为单胞. 4.倒格子,倒格子基矢;(p16)5. 独立对称操作:m 、i 、1、2、3、4、6、6.七个晶系、十四种布拉伐格子;(p35) 答:47.第一布里渊区:倒格子原胞答:在倒格子中取某一倒格点为原点,做所有倒格矢G 的垂直平分面,这些平面将倒格子空间分成许多包围原点的多面体,其中与原点最近的多面体称为第一布里渊区。

8.基矢为 的晶体为何种结构;若 又为何种结构?解:计算晶体原胞体积: 由原胞推断,晶体结构属体心立方结构。

若 则由原胞推断,该晶体结构仍属体心立方结构。

9.固体结合的基本形式及基本特点。

(p49p55、57p67p69答:离子型结合以离子而不是以原子为结合的单位,共价结合是靠两个原子各贡献一个电子,形成所谓的共价键,具有饱和性和方向性。

金属性结合的基本特点是电子的共有化,在晶体内部一方面是由共有化电子形成的负电子云,另一方面是侵在这个负电子云中的带正点的各原子实。

范德瓦尔斯结合往往产生于原来有稳固电子结构的原子或分子间,是一种瞬时的电偶极矩的感应作用。

固体物理经典复习题及答案(供参考)

固体物理经典复习题及答案(供参考)

固体物理经典复习题及答案(供参考)⼀、简答题1.理想晶体答:内在结构完全规则的固体是理想晶体,它是由全同的结构单元在空间⽆限重复排列⽽构成的。

2.晶体的解理性答:晶体常具有沿某些确定⽅位的晶⾯劈裂的性质,这称为晶体的解理性。

3.配位数答: 晶体中和某⼀粒⼦最近邻的原⼦数。

4.致密度答:晶胞内原⼦所占的体积和晶胞体积之⽐。

5.空间点阵(布喇菲点阵)答:空间点阵(布喇菲点阵):晶体的内部结构可以概括为是由⼀些相同的点⼦在空间有规则地做周期性⽆限重复排列,这些点⼦的总体称为空间点阵(布喇菲点阵),即平移⽮量123d 、d 、h h h d 中123,,n n n 取整数时所对应的点的排列。

空间点阵是晶体结构周期性的数学抽象。

6.基元答:组成晶体的最⼩基本单元,它可以由⼏个原⼦(离⼦)组成,整个晶体可以看成是基元的周期性重复排列⽽构成。

7.格点(结点)答: 空间点阵中的点⼦代表着结构中相同的位置,称为结点。

8.固体物理学原胞答:固体物理学原胞是晶格中的最⼩重复单元,它反映了晶格的周期性。

取⼀结点为顶点,由此点向最近邻的三个结点作三个不共⾯的⽮量,以此三个⽮量为边作的平⾏六⾯体即固体物理学原胞。

固体物理学原胞的结点都处在顶⾓位置上,原胞内部及⾯上都没有结点,每个固体物理学原胞平均含有⼀个结点。

9.结晶学原胞答:使三个基⽮的⽅向尽可能的沿空间对称轴的⽅向,以这样三个基⽮为边作的平⾏六⾯体称为结晶学原胞,结晶学原胞反映了晶体的对称性,它的体积是固体物理学原胞体积的整数倍,V=n Ω,其中n 是结晶学原胞所包含的结点数, Ω是固体物理学原胞的体积。

10.布喇菲原胞答:使三个基⽮的⽅向尽可能的沿空间对称轴的⽅向,以这样三个基⽮为边作的平⾏六⾯体称为布喇菲原胞,结晶学原胞反映了晶体的对称性,它的体积是固体物理学原胞体积的整数倍,V=n Ω,其中n 是结晶学原胞所包含的结点数, Ω是固体物理学原胞的体积 11.维格纳-赛兹原胞(W-S 原胞)答:以某⼀阵点为原点,原点与其它阵点连线的中垂⾯(或中垂线) 将空间划分成各个区域。

固体物理经典复习题及答案(供参考)

固体物理经典复习题及答案(供参考)

一、简答题1.理想晶体答:内在结构完全规则的固体是理想晶体,它是由全同的结构单元在空间无限重复排列而构成的。

2.晶体的解理性答:晶体常具有沿某些确定方位的晶面劈裂的性质,这称为晶体的解理性。

3.配位数答: 晶体中和某一粒子最近邻的原子数。

4.致密度答:晶胞内原子所占的体积和晶胞体积之比。

5.空间点阵(布喇菲点阵)答:空间点阵(布喇菲点阵):晶体的内部结构可以概括为是由一些相同的点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空间点阵(布喇菲点阵),即平移矢量123d 、d 、h h h d 中123,,n n n 取整数时所对应的点的排列。

空间点阵是晶体结构周期性的数学抽象。

6.基元答:组成晶体的最小基本单元,它可以由几个原子(离子)组成,整个晶体可以看成是基元的周期性重复排列而构成。

7.格点(结点)答: 空间点阵中的点子代表着结构中相同的位置,称为结点。

8.固体物理学原胞答:固体物理学原胞是晶格中的最小重复单元,它反映了晶格的周期性。

取一结点为顶点,由此点向最近邻的三个结点作三个不共面的矢量,以此三个矢量为边作的平行六面体即固体物理学原胞。

固体物理学原胞的结点都处在顶角位置上,原胞内部及面上都没有结点,每个固体物理学原胞平均含有一个结点。

9.结晶学原胞答:使三个基矢的方向尽可能的沿空间对称轴的方向,以这样三个基矢为边作的平行六面体称为结晶学原胞,结晶学原胞反映了晶体的对称性,它的体积是固体物理学原胞体积的整数倍,V=n,其中n 是结晶学原胞所包含的结点数,是固体物理学原胞的体积。

10.布喇菲原胞 答:使三个基矢的方向尽可能的沿空间对称轴的方向,以这样三个基矢为边作的平行六面体称为布喇菲原胞,结晶学原胞反映了晶体的对称性,它的体积是固体物理学原胞体积的整数倍,V=n,其中n 是结晶学原胞所包含的结点数, 是固体物理学原胞的体积11.维格纳-赛兹原胞(W-S 原胞)答:以某一阵点为原点,原点与其它阵点连线的中垂面(或中垂线) 将空间划分成各个区域。

固体物理期末复习提纲终极版

固体物理期末复习提纲终极版

固体物理期末复习提纲终极版内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)《固体物理》期末复习要点第一章1.晶体、非晶体、准晶体定义晶体:原子排列具有长程有序的特点。

非晶体:原子排列呈现近程有序,长程无序的特点。

准晶体:其特点是介于晶体与非晶体之间。

2.晶体的宏观特征1)自限性 2)解理性 3)晶面角守恒 4)各向异性5)均匀性 6)对称性 7)固定的熔点3.晶体的表示,什么是晶格,什么是基元,什么是格点晶格:晶体的内部结构可以概括为是由一些相同的点在空间有规则地做周期性无限分布,这些点的总体称为晶格。

基元:若晶体有多种原子组成,通常把由这几种原子构成晶体的基本结构单元称为基元。

格点:格点代表基元的重心的位置。

4.正格和倒格之间的关系,熟练掌握典型晶体的倒格矢求法5.典型晶体的结构及基矢表示6.熟练掌握晶面的求法、晶列的求法,证明面间距公式7.什么是配位数,典型结构的配位数,如何求解典型如体心、面心的致密度。

一个粒子周围最近邻的粒子数称为配位数。

面心:12 体心:8 氯化铯(CsCl):8 金刚石:4 氯化钠(NaCl):68.什么是对称操作,有多少种独立操作,有几大晶系,有几种布拉维晶格,多少个空间群。

对称操作:使晶体自身重合的动作。

根据对称性,晶体可分为7大晶系, 14种布拉维晶格,230个空间群。

9.能写出晶体和布拉维晶格10.了解X射线衍射的三种实验方法及其基本特点1)劳厄法:单晶体不动,入射光方向不变。

2)转动单晶法:X射线是单色的,晶体转动。

3)粉末法:单色X射线照射多晶试样。

11.会写布拉格反射公式12.什么是几何结构因子。

几何结构因子:原胞内所有原子的散射波,在所考虑方向上的振幅与一个电子的散射波的振幅之比。

第二章1.什么结合能,其定位公式晶体的结合能就是将自由的原子(离子或分子) 结合成晶体时所释放的能量。

2.掌握原子间相互作用势能公式,及其曲线画法。

固体物理期末复习题目及答案

固体物理期末复习题目及答案
3、从能带论的角度解释导体,半导体和绝缘体的导电能力存在差别的原因。
答:(l)导体、半导体和绝缘体的能带图如下图所示。(3分)其中导体中存在不满带,半导体和绝缘体都只存在满带而不存在不满带,而不满带会导电,满带则不会导电,所以导体导电性好,而半导体和绝缘体则不容易导电。(3分)
(2)半导体中虽然只存在满带而不存在不满带,但由于其禁宽度比较小,所以在热激活下,满带顶的电子会被激活到空带上,使原来的空带变成不满带,原来的满带也变成不满带,所以半导体在热激活下也可.以导电。(2分、
5能写出任一晶列的密勒指数,也能反过来根据密勒指数画出晶列;能写出任一晶面的晶面指数,也能反过来根据晶面指数画出晶面。
见课件例题 以下作参考:
15.如图1.36所示,试求:
(1)晶列 , 和 的晶列指数;
(2)晶面 , 和 的密勒指数;
(3) 画出晶面(120),(131)。
密勒指数:以晶胞基矢定义的互质整数( )。 [截a,b,c.]
答:(1)波矢空间与倒格空间处于同一空间,倒格空间的基矢分别为b1,b2,b3,而波矢空间的基矢分别为b1/N1,b2/N2,b3/N3,其中N1,N2,N3分别是沿正格子基矢方向晶体的原胞数目。
(2)倒格空间中一个倒格点对应的体积为 ,
波矢空间中一个波矢点对应的体积为 即 ,
即波矢空间中一个波矢点对应的体积,是倒格空间中一个倒格点对应的体积的1/N。由于N是晶体的原胞数目, 数目巨大, 所以一个波矢点对应的体积与一个倒格点对应的体积相比是极其微小的. 也就是说, 波矢点作求和处理时, 可把波矢空间的状态点看成是准连续的.
3、计算由正负离子相间排列的一维离子链的马德隆常数。
4、氢原子电离能为13.6eV。(1)求PE和KE(2)电子的轨道半径(3)电子的运动速率(4)电子绕原子转动的频率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 简单的晶体结构
– sc, bcc, fcc, hcp, diamond and zinc sulfide • 对称性和晶体点群
– 对称性和对称操作 • 平移对称操作: T(Rn)=u1a1+u2a2+u3a3 • 旋转对称操作:2/n, n=1,2,3,4,6
• 其他对称操作: i, m and 4
• 关键点
– 布拉菲和非布拉菲晶格, 初基和非初基元胞, 威格纳-赛兹元胞
• 元胞体积 V = a1·(a2 a3 ) • 基元的平均格点数,
• 填充因子
• 重要晶面、晶向的Miller 指数
• 倒格子的性质
– 1D 和 2D 倒格子的基矢
– Ghkl~ dhkl 关系的证明 – bcc 和 fcc 正倒格子的关系
• 重点 – 不同类型的晶体的特征 – 活用U(r), F = – U(r) /r, U(r) /r|r0 =0
CH4、5 晶格振动和晶体的热学性质
• 单原子晶体的热振动 – 晶体振动的经典描述 – 色散关系 ~q: (q)=2(/m)1/2sinqa/2: 仅有一支 – 波矢 q 的允许值: Born-Karmann condition
– 杂质原子(替位,填隙) – 扩散机制
• 空位机制、间隙机制,复合机制 • 扩散的描述: Fick 1st 和 2nd 定律
• 色心: – F 心: 负离子空位+俘获的电子 – FA 心: 卤素离子+阳离子 – VK 心: 相邻的卤素离子空位对 – R 心:三个相邻的 F 心 – M心:两个相邻的 F 心 面缺陷:小角晶界,堆垛层错
• 晶体按结合力的分类 – 金属 • 金属键; 共用价电子 • 密堆积、高配位数、高延展性、金属光泽 – 氢键 – 电子云分布不均匀的相互作用 • 弱相互作用 • 混合型晶体:石墨(共价、分子和金属结合)
• 晶体结合的一般结论
– 互作用势 U(r)
– 互作用力 F = – U(r) /r
• 平衡位子 r0 U(r) /r|r0 =0 –排斥项和吸引项 u(r) = – /rn + /rm, >0, >0 稳定条件: m>n 排斥项和吸引项 ?
• 布里渊区 – 布里渊区的定义: a Wigner-Seize cell k•½Gh = (½Gh)2 – sc, bcc, fcc 的倒格子以及它们之间的关系
• 基元的傅立叶分析: 散射波振幅和晶体结构的关系 – bcc 和 fcc的结构因子 – 原子散射因子
• 倒格子的定义 – a1, a2, a3 正空间的基矢 • b1, b2, b3 倒空间的基矢 b1 =2/V (a2 a3 ); b2 =2/V (a3 a1 ) b3 =2/V (a1 a2 ) • 性质 – 倒空间元胞的体积: = b1·(b2 b3)=(2)3/V – Ghkl = hb1+kb2+lb3(h,k,l) – Dhkl = 2/ Ghkl
– 共价键: 共用电子对 • 杂化理论: sp, sp2, sp3 • 共价键的特征:饱和性和方向性
• 共价晶体的特征:低配位数,弱导电性,高 硬度,高熔点
• 晶体按结合力的分类 – 惰性气体晶体: 分子晶体 – van der Waals 相互作用 • 短程、弱相互作用, Lennard-Jones 势 U(r)=4 [(/R)12-(/R)6]= B/R12-A/R6 • 密堆积、低熔点、透明
• q=2 l/Na –N/2< l N/2
• 1st 布里渊区 • 长波极限 (q)= (/m)1/2qa
• 双原子晶格的振动 – 声学支和光学支: ± • 声学支和光学支的振动特性 – 由N个元胞每个元胞含有m个原子的n维晶体 的振动模式数、许可的波矢数、振动支数
• 振动模式数: Nnm, 晶体的自由度数. • q 的许可值数: N, 晶体的元胞数. • 振动的支数: mn, 元胞的自由度数
CH3 晶体的结合
• 晶体按结合力的分类 – 离子晶体: 离子键和离) = -N/2[e2/40 + B/r n], = ’±1/pij • 特性:绝缘, 高熔点, 高硬度,低膨胀性,透明 • 典型结构: NaCl 和 CsCl
晶体按结合力的分类 • 共价晶体
– 点群
• 原子结构的直接观察
– HR-TEM, STM
• 非理想晶体结构
– 非晶态: 无序堆积与聚合物
• 晶体对波的衍射
– 常用的衍射技术:X射线衍射、电子衍射和中 子衍射
– Bragg law: 2d sin = n, 衍射条件的正空间 表示
• 散射波振幅
– 傅立叶分析 – 倒格子、给定晶格的倒格子 – Laue 方程: k = nGh,衍射条件的倒空间表示
CH 1、2 晶体结构
• 原子的周期性排列: 晶体的定义和表示
• 原子的周期性排列
• 晶格、格点和基元 • 元胞:初基元胞(固体物理学元胞)和非初基元胞(
结晶学元胞)
– 晶格的基本类型
• 二维晶格 : • 三维晶格:7 大晶系, 14种布拉菲元胞
• 晶面和晶向的标定 – Miller 指数: 如何确定 Miller 指数
– 声学支 n ; 光学支 n(m-1)
• 弹性波的量子化 – 光子和晶格动量 – 弹性散射 • N 过程: q1+q2 = q3, q3 in 1st BZ • U 过程: q1+q2 = q3’=q3+Gh, q3 in 1st BZ, 倒逆过程
–thermal resistant
• 固体比热:声子的热容 – Plank 分布函数 pi = 1/(eħi/kT-1) – 态密度: q~q+dq 壳层内的波矢数:
V/(2)3 4q2dq – 杜隆-帕蒂定律: 高温极限 – 爱因斯坦近似 – 德拜定律 • 非谐效应:热膨胀 • 非谐效应:热导率
• 重点 – 振动模式 • 振动模式,q,声学支与光学支的数量 • 三个重要的固体比热模型 • N-, U- (正常过程和倒逆过程)的定义
CH9、10 固体缺陷
• 晶体中的点缺陷 – 肖脱基缺陷(Schottky defect): 晶格中的空位 – 弗伦克尔缺陷(Frenkel defect): 晶格中的空 位与填隙原子
相关文档
最新文档