理论力学12—动量矩定理解析
理论力学动量矩定理
四. 平行移轴定理
刚体对某轴的转动惯量等于刚体对通过质心且与该轴平行 的轴的转动惯量,加上刚体的质量与两轴间距离的平方之乘积。
J z ' J zC m d 2
证明:设刚体的质量为m,质心为C。
O ' z '//Cz
J zC mi ri 2 mi ( xi 2 yi 2 )
J z ' mi ri ' 2 mi ( xi ' 2 yi ' 2 )
xi xi ', yi ' yi d
J z ' mi [ xi 2 ( yi d )2 ]
mi ( xi 2 yi 2 ) ( mi )d 2 2d mi yi
质点对O点的动量矩与对 z 轴的动量矩之间的关系:
M O (mv )
注意:要求 z 轴通过O点。
z
M z (mv )
二.质点系的动量矩
质点系对O点动量矩: LO 质点系对 z 轴动量矩: 同样有关系式: 例:平动刚体的动量矩。
M
O
Lz M z (mi vi )
(mv i i ) r i mv i i
( e)
PA PB d g ( d t r PA PB P / 2
)
[例4] 已知猴子A重=猴子B重,初始静止,后猴B以相对绳 速度 v 上爬,猴A相对绳不动。问猴B向上爬时,猴A将如何 动?动的速度多大?(轮重不计)
解: 设猴A向上的绝对速度为 vA,则
猴B向上的绝对速度为 vB= vvA 。
平动刚体对固定点(轴)的动量矩就等于刚体质心的动量 对该点(轴)的动量矩。
理论力学-动量矩定理
d rC d vC vC , aC , dt dt
n d LC ri Fi e dt i
vC vC 0 ,
m a C Fie
n dLC M C (Fie ) dt i
相对质心的动量矩定理
质点系相对质心的动量矩定理
n n d LC e e ri Fi M C ( Fi ) i dt i
m v
i
i
m vC
LO rC m vC LC
相对质心的动量矩定理
质点系相对质心的动量矩定理
根据上式和质点系对固定点的动量矩定理,
n d LO d ( rC m vC LC ) ri Fi e dt dt i
ri rC rr
n n d rC d vC d LC e rC Fi ri Fi e m vC rC m dt dt dt i i
即有
LC ri mi vir
相对质心的动量矩定理
质点系相对质心的动量矩
质点系相对固定点的动量矩与质点系相对质心的动量矩 之间存在确定的关系。 质点系相对固定点的动量矩为
LO ri mi vi
i
因为 所以有 因为 所以有
ri rC rr
LO rC mi v i ri mi v i
刚体定轴转动微分方程
例 题 1
图示钟摆简化模型中,已知均质细杆 和均质圆盘的质量分别为m1 、m2 ,杆 长为l,圆盘直径为d。
ϕ
试求:钟摆作小摆动时的周期。 解:摆绕O轴作定轴转动。设ϕ 为任意 时刻转过的角度,规定逆时针为正。根 据定轴转动的微分方程
J z M z
梁坤京理论力学第十二章动量矩定理课后答案
动量矩定理12-1 质量为m 的点在平面Oxy 内运动,其运动方程为: x a cos t y bsin2 t 式中a 、b 和 为常量。
求质点对原点 O 的动量矩。
解:由运动方程对时间的一阶导数得原点的速度V xdxsin t dt aV y dy 2b cos2 t 质点对点 O 的动量矩为L O M o (mV x ) M 0(mV y )mv x y mv y x m ( a sin t) bsin2 t m 2b cos2 t acos t 2mab cos 3 t 12-3 如图所示,质量为m 的偏心轮在水平面上作平面运动。
轮子轴心为A,质心为C, AC = e ;轮子半径为 R,对轴心A 的转动惯量为J A ; C 、A 、B 三点在同一铅直线上。
(1 )当轮子只 滚不滑时,若 V A 已知,求轮子的动量和对地面上 B 点的动量矩。
(2)当轮子又滚又滑时, 若V A 、 已知,求轮子的动量和对地面上 B 点的动量矩。
解:(1)当轮子只滚不滑时 B 点为速度瞬心。
轮子角速度V A R质心C 的速度V CBCR e轮子的动量p mv Cmv A (方向水平向右)R对B 点动量矩L B J B2 2 2由于 J B J C m (R e) J A me m (R e) 故 L B J A me 2 m (R e )2食 (2)当轮子又滚又滑时由基点法求得 C 点速度。
V C V A V CA V A e 轮子动量 p mv C m(v A e) (方向向右) 对B 点动量矩L B mv C BC J Cm(v A 2e) (R e) (J A me) mv A (R e) (J A mRe) 12-13 如图所示,有一轮子,轴的直径为 50 mm 无初速地沿倾角 20的轨道滚下,设 只滚不滑,5秒内轮心滚动的距离为 s =3m 。
试求轮子对轮心的惯性半径。
解:取轮子为研究对象,轮子受力如图( a )所示,根据刚体平面运动微分方程有 ma C mgsi n F ( 1) J C = Fr ( 2)因轮子只滚不滑,所以有 a c = r ( 3) ® 12将式(3)代入式(1)、(2)消去F 得到mr sinm?g上式对时间两次积分,并注意到 t = 0时 0, 0,则 mgrt 2 sin mgrt 2s in 2(J C mr 2) 2(m 2 mr 2) 把 r = 0.025 m 及 t = 5 s 时,s 'grt 2sin f gt 2sin-r r「s r 1grt 2sin 2( 2 r 2) r 3 m 代入上式得0.0259.8 52si n202 30.09 m 90 mm12-17 图示均质杆 AB 长为I ,放在铅直平面内,杆的一端 A 靠在光滑铅直墙上,另一端 B 放在光滑的水平地板上,并与水平面成 °角。
理论力学动量矩定理
12.2 动量矩定理
12.2.1 质点旳动量矩定理
设质点对固定点O旳动 量矩为MO(mv),作用力F对 同一点旳矩为MO(F) ,如图 所示。
将动量矩对时间取一 次导数,得
d dt
MO
(mv)
d dt
(r
mv)
d r mv r d (mv)
dt
dt
MO(mv) MO(F)
x
z
F mv
Q
r
y
12.2.1 质点旳动量矩定理
将上式投影在直角坐标轴上,并将对点旳动量矩与对轴 旳动量矩旳关系代入,得
d dt
M
x
(mv)
M
x
(F
)
d dt
M
y
(mv)
M
y
(F
)
d dt
M
z
(mv)
M
z
(F
)
质点对某固定
轴旳动量矩对时间旳 一阶导数等于质点所 受旳力对同一轴旳矩。
12.2.1 质点旳动量矩定理
例12-2 图示为一单摆(数学摆),摆锤质量为m,摆线长为 l,如给摆锤以初位移或初速度(统称初扰动),它就在经过 O点旳铅垂平面内摆动。求此单摆在微小摆动时旳运动规律。
例12-1 均质圆盘可绕轴O转动,其上缠有一 绳,绳下端吊一重物A。若圆盘对转轴O旳转
动惯量为J,半径为r,角速度为,重物A旳
质量为m,并设绳与圆盘间无相对滑动,求系 统对轴O旳动量矩。
解:
LO L块 L盘 mvr J mr 2 J (mr 2 J )
LO旳转向沿逆时针方向。
Or
A mv
LO J m2vR MO (F (e) ) M m2 g sin R
动量矩定理
动量矩定理
动量矩定理是动力学普遍定理之一,它给出质点系的动量与质点系受机械作用的冲量之间的关系。
动量定理有微分形式和积分形式两种。
1)积分形式
设质点系中任一质点的质量为mi,受外力的合力和内力的合力作用,加速度为,沿曲线轨迹运动到Q点时的速度为(见图)。
根据牛顿第二定律,有:
将式(1)向轨迹的切线方向投影,得式
因
,
代入式(2)可得:。
上式可以改写为:
式中为质点i的动能;和分别为质点i上外力和内力的元功。
对于整个质点系则应为:
式中为质点系的总动能。
对式(4)进行积分,可得:
式中T1,为质点系在过程开始时的动能;T2为质点系在过程结束时的动能。
式(5)是以积分形式表示的质点系的动能定理,它表明:质点系的总
动能在某个力学过程中的改变量,等于质点系所受的诸外力和诸内力在此过程中所做功的总和。
2)微分形式
将式(4)两边除以dt,得:
式中为外力的功率;为内力的功率。
式(6)是以微分形式表示的质点系的动能定理,它表明;质点系的总动能随时间的变化率等于质点系所受诸外力和诸内力在单位时间内所作功的总和。
质点是质点系的一个特殊情况,故动能定理也适用于质点。
但是,对于质点和刚体,诸内力所做功的总和等于零,因为前者根本不受内力作用,而后者的内力则成对出现,其大小相等,方向相反,作用在同一直线上,且刚体上任两点的距离保持不变,故其内力作功总和等于零。
理论力学 动量矩定律
MO (mv) 恒矢量
作用于质点的力对某定轴的矩恒为零,则质点对该轴的动量矩 保持不变,即
M z (mv ) 恒量
以上结论称为质点动量矩守恒定律 2)质点系动量矩守恒定理 当外力对某定点(或某定轴)的主矩等于零时,质点系对 于该点(或该轴)的动量矩保持不变,这就是质点系动量矩 守恒定律。 15 另外,质点系的内力不能改变质点系的动量矩。
24
动力学 2. 回转半径 定义:
转动惯量
z
Jz m
则
J z m z
2
即物体转动惯量等于该物体质量与回转半径平方的乘
积; 对于均质物体,仅与几何形状有关,与密度无关。
对于几何形状相同而材料不同(密度不同)的均质刚 体,其回转半径是相同的。
25
动力学
转动惯量
3. 平行移轴定理 刚体对于某轴的转动惯量,等于刚体对于过质心、并与该轴平 行的轴的转动惯量,加上刚体质量与轴距平方的乘积,即
LC LC
这样刚体作平面运动时,对过质心C且垂直于平面图形的 轴的动量矩为
J C LC LC
12
动力学
质点系动量矩定理
2.质点系的动量矩定理
n个质点,由质点动量矩定理有
d M O (mi vi ) M O ( Fi ( i ) ) M O ( Fi ( e ) ) dt
n d (e) Lx M x ( Fi ) dt i 1 n d Ly M y ( Fi ( e ) ) dt i 1 n d Lz M z ( Fi ( e ) ) dt i 1
14
动力学
质点系动量矩定理
3.动量矩守恒定理 1)质点动量矩守恒定理 如果作用于质点的力对某定点O的矩恒为零,则质点对该 点的动量矩保持不变,即
第十二章:动量矩定理
周期 T = 2π J O
mga
§12-4 刚体对轴的转动惯量
n
Jz
=
∑
i −1
m
i
ri
2
单位:kg·m2
1. 简单形状物体的转动惯量计算
(1)均质细直杆对一端的转动惯量
∫ J z =
l 0
ρl x2dx
=
ρll3
3
由 m = ρll ,得
Jz
=
1 ml 2 3
(2)均质薄圆环对中心轴的转动惯量
与 zC 轴之间的距离。
即:刚体对于任一轴的转动惯量,等于刚体对 于通过质心并与该轴平行的轴的转动惯量,加 上刚体的质量与两轴间距离平方的乘积.
证明: J zC = ∑ mi (x12 + y12 )
Jz =∑mi r2 =∑mi (x2 +y2)
= ∑ mi[x12 + ( y1 + d )2 ]
=
1 ml 2 3
则
J zC
=
Jz
−
m( l )2 2
=
ml 2 12
要求记住三个转动惯量
(1) 均质圆盘对盘心轴的
转动惯量 mR2
2
(2) 均质细直杆对一端的
转动惯量 ml 2
3
(3) 均质细直杆对中心轴
的转动惯量 ml 2
12
§12-5 质点系相对于质心的动量矩定理
1.对质心的动量矩
∑ ∑ r
=
r LC
r LO
=
rrC
× mvrC
+
r LC
=
r M
O
(
mvrC
)
+
理论力学第12章-动量矩定理
z
M ,底圆半径为 R ,高为 h 。
r
h z dz
解:把圆锥体分成许多厚度为 d z
的薄圆片,该薄圆片的质量为
d m r2d z
O
y
R
x
为圆锥体的密度,r为薄圆片的半径。
圆锥体的质量
M 1R2h
3
薄圆片对自身直径的转动惯量
由几何关系知: r R h z
h 薄圆片对 y 轴转动惯量 d J y 为:
x
x yi
J z mi ri2
mi
xi2
yi
d
2
mi xi2 yi2 2 yid d 2
J z mi xi2 yi2 2d mi yi mi d 2
mi xi2 yi2 JzC
mid 2 Md 2
由质心坐标公式 :
因为
yC0
mi yi M yC
速度 a 。
解:小车与鼓轮组成质点系对 O 轴的动量矩为 :
LO J O m2 v R
作用于质点系的外力除M ,G 1 和 G 2 外,尚有轴承 O 的反力 Fo x 和 Fo y ,轨道对车的约束力FN 。其中G 1 , FO x ,Fo y 对 O 轴力矩为零。将 G 2 分解为 Gτ和 G n ,
(12-10)
l 为任意轴上的单位矢量。
动量矩的单位是牛·米·秒 ( N ·m ·s )。
12.2.3 定轴转动刚体的动量矩 设刚体绕固定轴 z 转动,某瞬时刚体
的角速度。对于刚体内任一质点 M i ,
其质量为 m i ,转动半径为 r i ,动量 m i v i 。 于是质点 M i 对轴的动量矩为:
LO MO mv r mv (12-8)
质点系对各坐标轴动量矩
第12章-动量矩定理
旳乘积: J z m z2
细直杆 均质圆环 均质圆板
J z /m 1 / 3 l2 z 0.5774 l
J z /m R2 z R
J z /m 1 / 2 R2 z 0.7071R
z 假如把刚体旳质量全部集中在与 轴相距为ρ z 旳点
上,则此质点对 z 轴旳转动惯量与原刚体相同。
四、平行轴定理
J z J z md 2
定理:刚体对任意轴旳转动惯量,等于刚体对 于经过质心、并与该轴平行旳轴旳转动惯量, 加上刚体旳质量与两轴间距离平方旳乘积。
z
O
z
d
ri
ri
C
O
mi
zi
y( y)
C点为质心;
O z 为质心轴,O z
为与之平行旳任
xi
一轴,距离为 d 。
x d x yi J z mi ri2 mi ( xi2 yi2 )
d dt
(
J
z
)
Jz
Mz
dω dt
(Fi
)M
M z (Fi )
z
(
FN
i
)
Fi
或
Jz
d2
dt2
M z (Fi )
或 J z M z (Fi )
FNi
与 m a Fi 比较
例:已知滑轮半径为 R ,转动惯量为 J ,带动滑轮
旳皮带拉力分别为 F1 和 F2 。求滑轮旳角加速度 。
F2 解:根据定轴转动微分方程
d(ri
mivi ) dt
ri
F (e) i
ri
Fi(i)
(i 1,2,, n)
相加得
动量矩定理公式
动量矩定理公式动量矩定理公式是经典力学中最为重要的定理之一,也是描述质点、力和角动量之间关系的基本公式。
它在物理学和工程学中的应用非常广泛,例如在机械设计中,我们需要利用动量矩定理公式来计算旋转惯量、角加速度等参数,以便进行机器的性能设计和优化。
在本文中,我们将深入探讨动量矩定理公式的含义、意义和应用。
一、动量矩定理的定义动量矩定理公式是描述质点或物体角动量的变化率与施加于物体的力矩之间的关系。
在经典力学中,动量矩定理的形式可以表示为:L = Iω其中,L 表示物体的角动量,I 表示物体的旋转惯量,ω 表示物体的角速度。
动量矩定理的本质是质点或物体的动量守恒定律和角动量守恒定律的延伸和综合。
动量守恒定律和角动量守恒定律分别是描述质点和物体在运动过程中动量和角动量不变的规律。
而动量矩定理则是将它们集成在一起,明确了物体动量和角动量与施加于它的力和力矩之间的关系。
在动量矩定理中,旋转惯量起到了很重要的作用。
旋转惯量是物体绕不同轴旋转时所具有的转动惯性,是物体旋转惯性的度量。
不同形状和密度的物体,其旋转惯量也会有所不同。
例如,某个物体绕它的质心旋转时,它的旋转惯量是最小的。
因为在质心系下,物体的动量为零,只有转动部分的动量和角动量。
二、动量矩定理的应用动量矩定理的具体应用非常广泛。
下面将分别就质点的动量矩定理、刚体的动量矩定理以及动量与角动量的守恒作一些说明。
1. 质点的动量矩定理对于一个质量为 m 的质点,在施加力 F 时,它的动量矩定理为:Ft = Δ(mv)其中,Ft 为施加于物体上的力矩,v 表示质点的速度,Δ(mv) 表示质点动量的变化。
2. 刚体的动量矩定理对于一个刚体在施加力矩 M 时,它的动量矩定理可以表示为:M = Iα其中,M 为施加于刚体上的力矩,I 表示刚体的转动惯量,α 表示刚体的角加速度。
在实际应用中,我们经常需要利用动量矩定理来计算旋转惯量、角加速度等参数。
例如,当我们想设计一个能够快速旋转的机器时,就需要通过动量矩定理来确定机器的转动惯量和角加速度等参数,并根据这些参数来设计机器的各个部分。
梁坤京理论力学第十二章动量矩定理课后答案
动量矩定理12-1 质量为m 的点在平面Oxy 内运动,其运动方程为:tb y ta x ωω2sin cos ==式中a 、b 和ω为常量。
求质点对原点O 的动量矩。
解:由运动方程对时间的一阶导数得原点的速度tb t y v t a txv y x ωωωω2cos 2d d sin d d ==-==质点对点O 的动量矩为ta tb m t b t a m xmv y mv m M m M L y x O O ωωωωωωcos 2cos 22sin )sin ()()(0⋅⋅+⋅-⋅-=⋅+⋅-=+=y x v vt mab ωω3cos 2=12-3 如图所示,质量为m 的偏心轮在水平面上作平面运动。
轮子轴心为A ,质心为C ,AC = e ;轮子半径为R ,对轴心A 的转动惯量为J A ;C 、A 、B 三点在同一铅直线上。
(1)当轮子只滚不滑时,若v A 已知,求轮子的动量和对地面上B 点的动量矩。
(2)当轮子又滚又滑时,若v A 、ω已知,求轮子的动量和对地面上B 点的动量矩。
解:(1)当轮子只滚不滑时B 点为速度瞬心。
轮子角速度 Rv A=ω质心C 的速度)(e R Rv C B v AC +==ω 轮子的动量A C mv ReR mv p +==(方向水平向右) 对B 点动量矩ω⋅=B B J L 由于222)( )( e R m me J e R m J J A C B ++-=++= 故 []Rv e R m me J L AA B 22)( ++-=(2)当轮子又滚又滑时由基点法求得C 点速度。
e v v v v A CA A C ω+=+=轮子动量 )(e v m mv p A C ω+== (方向向右) 对B 点动量矩)( )()()( )( 2e mR J e R mv me J e R e v m J BC mv L A A A A C C B +++=-+++=+=ωωωω12-13 如图所示,有一轮子,轴的直径为50 mm ,无初速地沿倾角︒=20θ的轨道滚下,设只滚不滑,5秒内轮心滚动的距离为s = 3 m 。
理论力学之动量矩定理
证明 过固定点O建立固定坐标系 Oxyz,以质点系的质心 C为
z
原点,取平动坐标系Cx y z ,它以质心的速度vC 运动。
ri rc rri 质心的性质 vi vc vri
z' A vr v vC vC y y'
mi ri mi rri rc rc 0 M M 定系 动系 Mvc mi vi mi vri 0
rC
C
x'
rr
O
质点系内任一质点 A的绝对速度 v=ve+vr=vc+vr , 则质点系对固定点O的动量矩
x
(r
LO
C
mi vi )
(r m v ) [(r
i
(r
i i
C
rri ) mi vi ]
ri mi v C )
(r
ri mi v ri )
d M O (mv ) M O ( F ) dt
质点对固定点的动量矩对时间的一阶导数等 于作用于质点上的力对同一点的力矩。
B 固定轴
d M O (mv ) M O ( F ) dt
(将上式两边分别向坐标轴投影,再利用对点和 对轴动量矩公式可得): d M x (mv ) M x ( F ) dt d M y (mv) M y (F ) dt d M z (mv) M z (F ) dt 质点对某固定轴的动量矩对时间的导数,等于作用 于该质点的所有力对于同一轴之矩的代数和。 质点对定点的动量矩定理在三个坐 标轴的投影方程不独立
O
A
mivi
ri
LO =∑ MO(mivi) = ∑(miri )×vC 又因为 (∑mi )rC = ∑miri 所以 LO = ∑mi rC ×vC=rC× (∑mi )vC
动量矩定理公式
动量矩定理公式标题:动量矩定理公式作为物理学中的重要定理之一,动量矩定理公式(也被称为角动量定理)在解释运动过程中起着至关重要的作用。
它描述了物体的力矩对其角动量变化的影响。
本文将详细介绍动量矩定理的基本原理、公式的推导过程以及其在实际物理现象中的应用。
动量矩定理的基本原理源于牛顿第二定律和角动量的定义。
根据牛顿第二定律,一个物体所受的合外力等于物体的质量乘以加速度。
而角动量是描述物体旋转运动的量度,其定义为物体的质量乘以线速度与转轴之间的距离乘积。
根据动量矩定理,当一个物体所受的力矩不为零时,物体的角动量将发生变化。
推导动量矩定理的公式相对简单明了。
设一个物体的角动量为L,力矩为τ,那么根据牛顿第二定律和角动量的定义可以得到:τ = dL/dt其中,τ表示力矩,L表示角动量,dt表示时间的微元。
根据微积分的知识,可以将上式进行积分,得到:∫τdt = ∫dL即∫τdt = L2 - L1其中,L1和L2分别表示起始时刻和结束时刻的角动量。
这个就是动量矩定理的基本公式。
动量矩定理的公式可以用于解释许多物理现象。
例如,在刚体的旋转问题中,一个刚体受到的力矩将会导致角动量的变化。
通过应用动量矩定理,可以计算出刚体在旋转过程中的加速度、转动角速度等信息。
这对于分析刚体运动的特性非常有帮助。
此外,动量矩定理公式还可以应用于解释守恒定律。
根据动量矩定理,当一个物体所受的合外力矩为零时,物体的角动量将保持不变。
这是因为合外力矩为零意味着物体不受到外部力矩的扰动,因而物体的角动量不会发生改变。
这就是角动量守恒定律的数学表达。
在实际应用中,动量矩定理的公式常常被用于设计和分析机械系统的工作原理。
例如,在车辆制动系统中,物体的角动量变化与制动力矩直接相关。
通过对动量矩定理的应用,可以计算制动力矩对车辆速度和行驶方向的影响,从而确保车辆在制动过程中的稳定性和安全性。
此外,动量矩定理的公式还可以用于解释许多自然现象。
理论力学_12.动量矩定理
动量定理: 质心运动定理:
dp dt
F
(e) i
M aC
Fi
(e)
质点、质点系 动量的改变—外力(外力系主矢)
质心的运动—外力(外力系主矢) 若当质心为固定轴上一点时,vC=0,则其动量恒等于零, 质心无运动,可是质点系确受外力的作用。 动量矩定理建立了质点和质点系相对于某固定点(固轴) 的动量矩的改变与外力对同一点(轴)之矩两者之间的关系。
取固结于质心的平动参考系, 由速度合成定理,有
所以 由于 故
LC
ri m i v
i
即:质点系对质心的绝对运动动量矩,等于质点系对随质 心平动的参考系的相对运动动量矩。
结论:在计算质点系对于质心的动量矩时,用质点相对于 惯性参考系的绝对速度vi,或用质点相对于固结在质心上的 平动参考系的相对速度vi`,所得结果是一样的。 l
LO
1 P 2 g
代入 , 得
r
g
2
( P A PB
P 2
)
由动量矩定理:
d r2 P [ ( P A PB )] ( P A PB ) r dt g 2
PA PB d g dt r PA PB P /2
§8-3 动量矩守恒
动量矩定理:内力不会改变质点系的动量矩,只有外力才 能改变质点系的动量矩。 质点系的动量矩守恒 当
质点绕某心(轴)转动的问题。
二.质点系的动量矩定理 对质点Mi :dt
d m O (m iv i ) m O ( Fi
d dt m O (m iv i )
()
) m O ( Fi
(i)
(e)
合肥工业大学《理论力学》l第十二章动量矩定理
Mz
ε
ε∝ Mz
当Mz= 0 时, ε= 0,刚体作匀速转动或静止。
刚体转动惯量的大小表现了刚体转动状态改变 的难易程度转。动惯量是刚体转动时的惯性度量。
请比较 Jz = ∑Mz 与 m a = ∑F 。
§4 刚体对轴的转动惯量
一、转动惯量的概念
转动惯量是刚体转动时的惯性度量, 它 等 于 刚 体内各质点的质量与质点到轴的垂直距离平方 的乘积之和,即
z
解:分析小球受力。
r2 B
∵ ∑MZ(F(e)) = 0, ∴ LZ = const ! 初瞬时(A处),
v2 F
r1
T
LZA = mv1r1, B处, LZB = mv2r2, ∴ mv1r1 = mv2r2
A mg v1
而 r1 =2r2 得 v2 = 2v1
解毕。
二、质点系的动量矩定理
设质点系由n个质点组成,第i个质点的质量为mi, 速度为vi, 受力:外力Fi(e) 、内力Fi(i) ,则 根 据 质 点 的动量矩定理,有
d dt
Mo
(mi vi
)
Mo
( Fi ( i )
)
Mo
( Fi ( e )
)
对于n个质点,有n个这样的方程,将这些方程求和,
则
内力系主矢 = 0
n
i1
d dt
Mo (mivi )
n i1
Mo (Fi(i) )
n i1
Mo (Fi(e) )
所以得
ddtindd1tMin1o
M(moi
v(mi )i
Lz=Jzω
§2 动量矩定理
一、质点的动量矩定理
zF
B
设质点质量为m,受力F, MO(mv)
理论力学第12章 动量矩定理.
因此,我们必须有新的概念来描述类似的运动。
作为矩轴,对此轴应用质点的动量矩定理
dLOz dt
MOz
O
由于动量矩和力矩分别是
LOz
mvl
m(l)l
ml 2
d
dt
和
MOz mgl sin
v
A
§12.2 动量矩定理
例 题 12-2
LOz
mvl
m(l)l
ml 2
d
dt
M Oz mgl sin
从而可得
d (ml2 d ) mgl sin
于是得 d
dt MO (mv) MO (F )
F
mv
Q
r
y
§12.2 动量矩定理
质点的动量矩定理:质点对某固定点的动量矩对时间的一阶导
数,等于作用于该质点上的力的合力对于同一点的矩。
d dt
MO
(mv )
MO
(F
)
将上式投影到以矩心 O为原点的直角坐标轴上,并注意到动量
及力对点的矩在某一轴上的投影,就等于动量及力对该轴的矩,
点系对该轴的动量矩。质点系对 O点的动量矩向通过 O点的 直角坐标系的各轴投影,即质点系对过 O点的轴的动量矩:
Lx LO i mi yi zi zi yi Ly LO j mi zi xi xi zi Lz LO k mi xi yi yi xi
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又因为
z
F mv
Q
r
y
O
v mv 0, r F M O (F )
所以
d M O (mv) M O (F )
dt
x 质点对某定点的 动量矩对时间的一阶 导数,等于作用力对 同一点的矩。
12.2.1 质点的动量矩定理
将上式投影在直角坐标轴上,并将对点的动量 矩与对轴的动量矩的关系代入,得
d d t M x (mv) M x (F )
z
4 定轴转动刚体的动量矩
Lz mz (mivi ) miviri miri2
令 Jz=Σmiri2 称为刚体对 z 轴的转动惯 量, 于是得
ri mivi Mi
Lz J z
即:绕定轴转动刚体对其转轴的动量矩等于刚体对 转轴的转动惯量与转动角速度的乘积。
质点系的动量矩
例1 均质圆盘可绕轴O转动,其上缠有一 绳,绳下端吊一重物A。若圆盘对转轴O的转
n i 1
MO (Fi(i) )
由于内力总是成对出现,因此上式右端的底二项
n
MO (Fi(i) ) 0
i 1
12.2.2 质点系的动量矩定理
上式左端为
n
i 1
d dt
MO (mivi )
d dt
n i 1
MO (mivi )
d dt
LO
于是得
d
dt
LO
n i 1
MO (Fi(e) )
d dt
M
y
(mv)
M
y
(F
)
d dt
M
z
(mv)
M
z
(F
)
质点对某 固定轴的动量 矩对时间的一 阶导数等于质 点所受的力对 同一轴的矩。
质点的动量矩定理
例2 图示为一单摆(数学摆),摆锤质量为m,摆线长为l, 如给摆锤以初位移或初速度(统称初扰动),它就在经过O点 的铅垂平面内摆动。求此单摆在微小摆动时的运动规律。
• 由刚体平面运动理论知:刚体的平面运动可以分 解为随同基点的平动和相对基点的转动。
• 若将简化中心和基点取在质心上,则动量定理(质 心运动定理)描述了刚体随同质心的运动的变化和外 力系主矢的关系。它揭示了物体机械运动规律的一 个侧面。刚体相对质心的转动的运动变化与外力系 对质心的主矩的关系将有本章的动量矩定理给出。 它揭示了物体机械运动规律的另一个侧面。
解:以摆锤为研究对象,受力如图,建立
如图坐标。在任一瞬时,摆锤的速度为v,
摆的偏角为 ,则
M z (mv) mvl ml2
M z (F ) mgl sin
O
l
N
式中负号表示力矩的正负号恒与角坐标
的正负号相反。它表明力矩总是有使
摆锤回到平衡位置的趋势。
x
y
v M mg
由
d d t M z (mv) M z (F )
12 动量矩定理
• 质点和质点系的动量矩 • 动量矩定理 • 刚体绕定轴转动的微分方程 • 刚体对轴的转动惯量 • 质点系相对质心的动量矩定理 • 刚体平面运动微分方程
引言
• 由静力学力系简化理论知:平面任意力系向任一 简化中心简化可得一力和一力偶,此力等于平面力 系的主矢,此力偶等于平面力系对简化中心的主矩。
12.2.2 质点系的动量矩定理
设质点系内有n个质点,作用于每个质点的力分为外力Fi(e) 和内力Fi(i) 。由质点的动量矩定理有
d dt
MO (mivi )
MO (Fi(e) )
MO (Fi(i) )
这样的方程共有n个,相加后得
n
i 1
d dt
MO (mivi )
ቤተ መጻሕፍቲ ባይዱ
n i 1
MO (Fi(e) )
质点系对某固定点O的动量矩对时间的导 数,等于作用于质点系的外力对于同一点的 矩的矢量和。
12.2.2 质点系的动量矩定理
在应用质点系的动量矩定理时,取投影式
d dt
Lx
M x (Fi(e) )
d dt
Ly
M y (Fi(e) )
d dt
Lz
M z (Fi(e) )
质点系对 某固定轴的动 量矩对时间的 导数,等于作 用于质点系的 外力对于同一 轴的矩的代数 和。
将动量矩对时间取一 次导数,得
LO(mv) MO(F)
d dt
MO
(mv)
d dt
(r
mv)
x
d r mv r d (mv)
dt
dt
z
F mv
Q
r
y
O
12.2.1 质点的动量矩定理
因为
所以
d
dr
(mv) F , v
dt
dt
LO(mv)
d d t M O (mv) v mv r FMO(F)
得
d (ml2) mgl sin
dt
即
g sin 0
l
这就是单摆的运动微分方程。
当 很小时摆作微摆动,sin ≈ ,于是上式变为
g 0
l
此微分方程的解为
Asin( g t )
l
其中A和为积分常数,取决于
初始条件。可见单摆的微幅摆 动为简谐运动。摆动的周期为
T 2 l
g
显然,周期只与 l 有关,而与 初始条件无关。
q
O
r
x
A mv
Q y
A Q
质点的动量矩
类似于力对点之矩和力对轴之矩的关系,质点 对点O的动量矩矢在 z 轴上的投影,等于对 z 的动 量矩。
[LO(mv)]z=Mz(mv)
在国际单位制中,动量矩的单位是 kg·m2/s。
质点系的动量矩
2 质点系的动量矩
质点系对某点O的动量矩等于各质点对同一点O的 动量矩的矢量和。
动惯量为J,半径为r,角速度为,重物A的
质量为m,并设绳与原盘间无相对滑动,求系 统对轴O的动量矩。
解:
LO L块 L盘 mvr J mr 2 J (mr 2 J )
Or
A mv
LO的转向沿逆时针方向。
12.2 动量矩定理
12.2.1 质点的动量矩定理
设质点对固定点O的动 量矩为LO(mv),作用力F对 同一点的矩为MO(F) ,如图 所示。
12.1 质点和质点系的动量矩
1 质点的动量矩
质点Q的动量对于点O的 矩,定义为质点对于点O 的动量矩,是矢量。
MO (mv) r mv
质点动量 mv 在 oxy 平面 内的投影(mv)xy对于点O的 矩,定义为质点动量对于 z轴的矩,简称对于z轴的 动量矩,是代数量。
z
LO(mv)
Mz(mv)
12.2.3 动量矩守恒定理
1. 质点动量矩守恒定律 如果作用在质点上的力对某定点(或定轴)
LO=ΣMO(mv)
质点系对某轴 z 的动量矩等于各质点对同一 z 轴的 动量矩的代数和。
LO=ΣMz(mv)
质点系对某点O的动量矩矢在通过该点的 z 轴上的 投影,等于质点系对 该轴的动量矩。
[LO]z= Lz
刚体的动量矩
3 平动刚体的动量矩
刚体平移时,可将全部质量集中于质心,作为一个
质点计算其动量矩。