2015中考函数应用题专题训练(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考方程、不等式、函数应用题专题训练
1、(2014湖北黄石)某校九(3)班去大冶茗山乡花卉基地参加社会实践活动,该基地有玫瑰花和薰衣草两种花卉,活动后,小明编制了一道数学题:花卉基地有甲乙两家种植户,种植面积与卖花总收入如下表.(假设不同种植户种植的同种花卉每
是多少?(2)甲、乙种植户计划合租30亩地用来种植玫瑰花和薰衣草,根据市场调查,要求玫瑰花的种植面积大于薰衣草的种植面积(两种花卉的种植面积均为整数亩),花卉基地对种植玫瑰花的种植户给予补贴:种植玫瑰花的面积不超过15亩的部分,每亩补贴100元;超过15亩但不超过20亩的部分,每亩补贴200元;超过20亩的部分,每亩补贴300元.为了使总收入不低于127500元,则他们有哪几种种植方案?
2、(2014湖北黄冈)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一、每位居民年初缴纳医保基金70元;二、居民每
个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:他个人实际承担的医疗费用(包括医疗费用中个人承担部分和年初缴纳的医保基金)记为y 元. (1)当0≤x ≤n 时y =70;当n <x ≤6000时,y =________(用含n ,k ,x 的式子表示).
(2)表二是该地A ,B ,C 三位居民2013年治病所
花费的医疗费和个人实际承担的医疗费用,根据
用共32000
元,那么这一年他个人实际承担的医疗费用是多少元?
3、(2014湖北孝感)我市荸荠喜获丰收,某生产基地收获荸荠40吨.经市场调查,可采用批发、零售、加工销售三种销售方式,这三种销售方式每吨荸荠的利润如下表 设按计划全部售出后的总利润为y 百元,其中批发量为x 吨,且加工销售量为15吨. (1)求y 与x 之间的函数关系式;
(2)若零售量不超过批发量的4倍,求该生产基地按计划全部售完荸荠后获得的最大利润.
4、(2014黑龙江牡丹江)某工厂有甲种原料69千克,乙种原料52千克,现计划用这两种原料生产A 、B 两种型号的产品共80件.已知每件A 型号产品需要甲种原料0.6千克,乙种原料0.9千克;每件B 型号产品需要甲种原料 1.1千克,乙种原料0.4千克.请解答下列问题: (1)该工厂有哪几种生产方案?
(2)在这批产品全部售出的条件下,若1件A 型号产品获利35元,1件B 型号产品获利25元,(1)中哪种方案获利最大?最大利润是多少?
(3)在(2)的条件下,工厂决定将所获利润的25%全部用于再次购进甲、乙两种原料,要求每种原料至少购进4千克,且购进每种原料的数量均为整数.若甲种原料每千克40元,乙种原料每千克60元.请直接写出购买甲、乙两种原料之和最多的方案.
5、2014黑龙江绥化)某商场用36万元购进A 、B 两种商品,销售完后共获利6万元,其进价、售价如下表(注:获利=售价-进价).
场第二次以原价购进A 、B 两种商品,购进B 种商品的件数不变,而购进A 种商品的件数是第一次的2倍,A 种商品按原价销售,而B 种商品打折销售,若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B 种商品最低售价为每件多少元?
6 (2014湖北鄂州)大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x 天的销售量
p
q =x +60;当25≤x ≤50时,.
(1)请分析表格中销售量p 与x 的关系,求出销售量p 与x 的函数关系.
(2)求该超市销售该新商品第x 天获得的利润y 元关于x 的函数关系式.
(3)这50天中,该超市第几天获得利润最大?最大利润为多少?
7、(2014湖北荆门)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.
(1)试确定月销售量y (台)与售价x (元/台)之间的函数关系式;
(2)求售价x 的范围;
(3)当售价x (元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w (元)最大?最大利润是多少?
8、(2014湖北天门)为改善生态环境,防止水土流失,某村计划在汉江堤坡种植白杨树,现甲、乙两家林场有相同的白杨树苗可供选择,其具体
分别为y 甲(元)、y 乙(元).
(1)该村需要购买1500棵白杨树苗,若都在甲林场购买所需费用为________元,若都在乙林场购买所需费用为________元;
(2)分别求出y 甲、y 乙与x 之间的函数关系式; (3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么?
9.(2014四川攀枝花)为了打造区域中心城市,实现攀枝花
跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m 3
,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示: 完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共
有几种不同的租用方案?
10、为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y (件)与销售单价x (元)之间的关系近似满足一次函数:y =-10x +500.
(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?
(2)设李明获得的利润为w (元),当销售单价定为多少元时,每月可获得最大利润?
(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?
11、(2013年湖北省孝感市)在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y (件)与销售价格x (元/件)满足一个以x 为自变量的一次函数.
(1)求y 与x 满足的函数关系式(不要求写出x 的取值范围);
(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P 最大
12、(2013年湖北省恩施)某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.
(1)求这两种商品的进价.
(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?
13、(2014山东东营)为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,须在40天内完成工程.现
有甲、乙两个工程队有意承包这项工程.经调查知道:乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是 4.5万元,乙工程队每天的工程费用是 2.5万元.请你设计一种方案,既能按时完工,又能使工程费用最少.(2014四川泸州)某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产A 、B 两种产品共50件.已知生产1件A 产品需要甲种原料9千克,乙种原料3千克,可获利700元;生产1件B 产品需甲种原料4千克,乙种原料10千克,可获利1200元.设工厂生产A 、B 两种产品可获总利润为y 元,其中A 种产品生产件数是x .(1)写出y 与x 之间的函数关系式;(2)如何安排A 、B 两种产品的生产件数,使总利润y 有最大值,并求出y 的最大值.
14,(2014四川南充)今年我市水果大丰收,A 、B 两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A 基地运往甲、乙两销售点的费用分别为每件40元和20元,从B 基础运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A 基地运往甲销售点水果x 件,总运费为w 元,请用含x 的代数式表示w ,并写出x 的取值范围;(2)若总运费不超过18300元,且A 地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.
15、(2014四川凉山州)我州某校计划购买甲、乙两种树苗共1000株用以绿化校园.甲种树苗每株25元,乙种树苗每株30元,通过调查了解,甲、乙两种树苗的成活率分别是90%和95%.
(1)若购买这两种树苗共用去28000元,则甲、乙两种树苗各购买多少株?
(2)要使这批树苗的总成活率不低于92%,则甲种树苗最多购买多少株?
(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用