电动力学_08静电场唯一性定理

合集下载

边值问题和唯一性定理(静电场)

边值问题和唯一性定理(静电场)
静电场边值问题 唯一性定理

静电场的边值问题

静电场的唯一性定律
目前可解决的静电场问题



电荷在有限区域内,电荷的分布情况已知,并 且介质为线性各向同性均匀介质中的静电场问 题。对于此类问题,一般可以先求出电位,再 计算场中各点的电场强度和电位移矢量。 电荷、介质分布具有某种对称性的问题。由于 电荷和介质的分布具有对称性,因此电位移矢 量的分布必然也具有对称性。在这种情况下, 可以先用高斯通量定理求解电位移矢量,然后 再求电场强度。 已知电场的分布求电荷分布的问题。在这种情 况下,可直接由公式计算电荷的体密度,导体 上的面电荷密度根据分界面条件确定。
2
静电场边值问题的提出

实际中对于很多电磁场的问题通常并不 知道电荷分布,如静电场中导体表面的 感应电荷分布,介质极化后极化电荷的 分布等。对于此类的问题,必须通过求 解满足给定边界条件的电位微分方程 (泊松方程或拉普拉斯方程)的电位函 数,进而再求场域中的电场强度。我们 把这种在给定边界条件下,求解泊松方 程或拉普拉斯方程的问题称为边值问题。

对于各向同性、线性的非均匀媒质,电位 满足的微分方程又是什么形式呢?
D
D E
E
( )
7
边值问题举例-直接积分法
例 设有电荷均匀分布在半径为a的介质球型区域中,电荷 体密度为 ,试用解微分方程的方法求球体内、外的电位 及电场。(同例2-4) 解:采用球坐标系,分区域建立方程
自学)
10
反设满足场的解答有两个相异的解答1和 2,则差
场u= 1 2 满足拉普拉斯方程
2 2
u 1 2 0 根据矢量恒等式

1.8 静电场的唯一性定理

1.8 静电场的唯一性定理

ρ ∇ U = − →泊 方 , 松 程 ε0
2
静电场 +边界条件 的边值 2 问题 or ∇ U 0 →拉 拉 方 = 普 斯 程
物理系:杨友昌 编
在这个竟争激烈的社会中,若想永不落伍,就必须懂得终身学习的道理。
唯一性定理
• 对于静电场,给定一组边界条件,空间能否存在不同的恒 对于静电场,给定一组边界条件, 定电场分布?——回答:否! 电场分布? 回答: 回答 • 边界条件可将空间里电场的分布唯一地确定下来 边界条件可将空间里电场的分布唯一地确定下来 电场的分布唯一 • 该定理对包括静电屏蔽在内的许多静电问题的正确解释至 关重要 • 理论证明在电动力学中给出,p67 给出普物方式的论证 理论证明在电动力学中给出, • 论证分三步:引理 论证分三步:引理——叠加原理 叠加原理——证明 叠加原理 证明
§8 静电场边值问题的唯一性定理
在这个竟争激烈的社会中,若想永不落伍,就必须懂得终身学习的道理。
物理系:杨友昌

一. 典型的静电问题
–给定导体系中各导体的电量或电势 给定导体系中各导体的电量或电势 给定导体系中各导体的 以及各导体的形状、相对位置( 以及各导体的形状、相对位置(统 称边界条件),求空间电场分布, ),求空间电场分布 称边界条件),求空间电场分布, 即在一定边界条件下求解 泛 定 方 程
Q Q ' r' Q ' + = 0⇒ = ⇒r'Q= −rQ' r r' r Q
2
R b R ' - 有b = ⇒Q = ± Q= ± Q 取 ? a a a cos θ的系数 三角形
相似
在这个竟争激烈的社会中,若想永不落伍,就必须懂得终身学习的道理。

电动力学二二(唯一性定理)

电动力学二二(唯一性定理)
V
= ∫ ′ (∇ϕ ) dV + ∫ ′ ϕ∇ ϕdV
2 2 V V
14
上式左边的面积分包括V的边界 以 上式左边的面积分包括 的边界S以 的边界 及每个导体的表面Si上的积分。 及每个导体的表面 上的积分。 在Si上的积分

Si
ϕ∇ϕ ⋅ dS = −ϕ i ∫
Si
∂ϕ dS = 0 ∂n
2
在S上的积分 上的积分 由此
令 由 得
ϕ = ϕ ′ − ϕ ′′
∇ 2ϕ ′ = − ρ ε i , ∇ 2ϕ ′′ = − ρ ε i
∇ ϕ = 0.
2
(each of regionsV) i
5
ϕi = ϕ j ,
在两均匀区 界面上有
∂ϕ ∂ϕ εi = ε j . ∂n i ∂n j
S1 S2
将电场值代入得
2π (ε 1 + ε 2 ) A = Q
解出
Q A= 2π (ε 1 + ε 2 )
20

v v Qr E1 = , ( Left) 3 2π (ε 1 + ε 2 )r v v Qr E2 = , ( Right ) 3 2π (ε 1 + ε 2 )r
此解满足唯 一性定理的 所有条件, 所有条件, 因此是唯一 正确的解。 正确的解。
第二节 唯一性定理
1
一、静电问题的唯一性定理
区域V可以分为若干个均匀区域 区域 可以分为若干个均匀区域Vi,每 可以分为若干个均匀区域 一均匀区域的电容率为ε 一均匀区域的电容率为εi 。设V内有给 内有给 定的电荷分布ρ 电势φ在均匀区域 定的电荷分布ρ(x) 。电势 在均匀区域 Vi内满足泊松方程

静电场边值问题唯一性定理

静电场边值问题唯一性定理

场分布。
02
指导数值计算
在数值计算中,唯一性定理为我们提供了判断计算结果正确性的依据。
如果计算结果不满足唯一性定理,则说明计算过程中存在错误或近似方
法不够精确。
03
简化问题求解
在某些情况下,唯一性定理可以帮助我们简化问题的求解过程。例如,
在某些对称性问题中,我们可以利用唯一性定理直接得出部分解或特殊
01 02 03
深入研究复杂边界条件下的静电场边值问题
目前的研究主要集中在简单边界条件下的问题,对于复杂 边界条件的研究相对较少。未来可以进一步探讨复杂边界 条件下的静电场边值问题,为实际应用提供更广泛的理论 支持。
发展高效稳定的数值计算方法
尽管现有的数值计算方法已经取得了显著的进展,但在处 理大规模、高维度问题时仍面临挑战。未来可以致力于发 展更高效稳定的数值计算方法,以应对日益复杂的实际问 题。
导体表面的电荷分布
导体表面电荷分布的特点
在静电平衡状态下,导体表面电荷分布是不 均匀的,电荷密度与导体表面的曲率有关, 曲率越大电荷密度越大。
导体表面电荷与电场的关系
导体表面电荷产生的电场与导体内部电荷产生的电 场相互抵消,使得导体内部电场为零。
导体表面电荷分布的求解 方法
可以通过求解泊松方程或拉普拉斯方程得到 导体表面的电荷分布。
数值计算方法的改进
针对静电场边值问题的求解,提出了一系列高效的数值计算方法,如有限元法、有限差分法等,这些方法在保持计算 精度的同时,显著提高了计算效率。
实际应用领域的拓展
将静电场边值问题唯一性定理应用于多个实际领域,如电子工程、生物医学等,成功解决了一系列具有 挑战性的实际问题。
对未来研究的展望
解,从而简化计算过程。

电动力学uniquenesstheorem唯一性定理完全解读

电动力学uniquenesstheorem唯一性定理完全解读
们都能满足同一种泊松方程和边界条件,下面我们将证明 它们只能是同一种解.
引入标量函数Φ ,令Φ = '- ″
2 , 2 , 2 0
i
i
在区域边界面S 上
S
S
0 S
(给定第一类边界条件)
或 ,
n S n S
0
n S
(给定第二类边界条件)
下面需要证明旳是,满足以上方程和边界条件旳'和
1) 绝缘介质静电问题旳唯一性定理及证明 在有限旳边界区域V 内有几种均匀旳绝缘介质Vi 、εi
(i = 1、2、3 …) ,V 中旳自由电荷分布(ρ或σ) 为已知,那
么,当V 旳边界面S 上旳电势 给 定(或电势旳法向导数边
界条件) ,则V 内旳电场有唯一拟定旳解。
数学表述如下:
2 i
i
(在每个小区Vi)
V′旳全部内、外表面上都有一定旳值或 值,应用有关绝缘介
质旳唯一性定理,则V′内旳电场必有唯一解. n
b)区域V 内有若干导体,假设除导体以外旳区域V′内旳自由电荷分
布ρ已知,V′旳外表面S 上有已知旳值或 值,另外,若每个导
n 体所带旳总电量Qi 为已知,则区域V′内旳电场有唯一解。
数学表达为:
场有唯一解。这么,有导体存在时静电问题旳唯一性定理 也得到证明。
最终需要强调一点,尽管唯一性定理并不给出求解泊松方程旳详细措 施与环节,但它对于处理实际旳边值问题有着主要旳意义. 首先,它明 确了在哪些条件下能够唯一地拟定一种静电场,即给出了求解静电场 旳根据;其次,它使我们能够灵活地选用最简朴、最合适旳解题措施, 甚至能够猜一种解(即提出尝试解) . 只要这个解确实满足了问题中 旳场方程和全部定解条件,那么,根据唯一性定理我们就能够肯 定地说,它就是该问题中旳唯一正确旳解.

静电唯一性定理

静电唯一性定理

静电唯一性定理我们将证明,如果我们得到了满足给定边界条件的泊松方程的解,那么,这个解是唯一的。

这就是静电唯一性定理。

下面我们证明这一定理并初步介绍它的应用。

在由边界面s 包围的求解区域V 内,若:1) 区域V 内的电荷分布给定;2) 在边界面s 上各点,给定了电势s ϕ,或给定了电势法向偏导数s n ϕ∂∂, 则V 内的电势唯一确定。

以上的表述就是静电唯一性定理。

下面,我们用反证法证明静电唯一性定理。

证: 假定在区域V 内的电荷密度分布为ρ(x ),且有两个不同的解φ1和φ2满足泊松方程及给定边界条件(给定的电势值s ϕ或电势法向偏导数s n ϕ∂∂)。

即: 2212,ρρϕϕεε∇=-∇=- 并有12s s s ϕϕϕ==或12ss s n n n ϕϕϕ∂∂∂==∂∂∂ 式中s ϕ和sn ϕ∂∂为给定的边界条件。

令φ = φ1 – φ2,则在区域V 内各点: 2212()0φϕϕ∇=∇-= (2-2-1)及在边界s 上各点:120s s s φϕϕ=-= (2-2-2)或120s s sn n n ϕϕφ∂∂∂=-=∂∂∂ (2-2-3) 利用公式22d d ()d V V sV V φφφφφ∇+∇=∇⎰⎰⎰s 将式(2-2-1)带入上式得:2d ()d d V ss V s n φφφφφ∇=∇∂=∂⎰⎰⎰s (2-2-4)若在边界s 上各点无论是给定了电势或给定了电势法向偏导数均有:2d 0V V φ∇=⎰ (2-2-5)因|∇φ|2 ≥ 0,满足上式的条件只能是在求解区域V 内各点∇φ = 0。

因此,φ1 - φ2= 常数如果在边界上(或部分边界上)给定了电势φ|s ,则因φ1|s = φ2|s ,此常数为零;若全部边界条件给出的不是电势,而是(∂φ/∂n )|s ,此常数不一定为零。

但由式E = -∇φ,区域V 内的电场唯一确定,一个常数并不改变电场的基本特性,通常为了方便,此常数可选择为零。

关于静电场的唯一性定理

关于静电场的唯一性定理

关于静电场的唯一性定理静电场的唯一性定理被称为静电学中的一颗明珠。

说说静电场唯一性定理的重大意义。

静电场的唯一性定理是以库仑定律为基础推导出来的一个极为重要和有用的定理,它是静电学中极有品位和令人赞叹的定理。

静电场的唯一性定理有许多种表述。

其中一种常见的表述是:若区域V 内给定电介质分布和自由电荷分布()r ρ ,在V 的边界面S 上给定电位S ϕ或者电位的法向空间变化率Sn ϕ∂∂,若区域内有导体存在,如果还给定各导体的电位或者各导体所带的自由电量,则V 内的静电场就唯一地确定了。

静电场的唯一性定理表明,一定的空间区域外界的电荷对该区域内静电场的影响,完全体现在该区域的边界面上。

只要一定的空间区域内的电介质的分布和自由电荷的分布给定了,同时该区域边界面上的电位或者电位沿边界面的法线方向的空间变化率的分布给定了,那么不论外界的电荷分布怎样改变,该区域内的静电场都是唯一确定的。

因此,静电场的唯一性定理给出了确定静电场的条件,为求电场强度以及设计静电场指明了方向。

(镜像法就是建立在唯一性定理的基础之上的。

)更重要的是它具有十分重要的实用价值。

无论采用什么方法得到解,只要该解满足泊松方程、边值关系和给定的边界条件,则该解就是唯一的正确解。

因此对于许多具有对称性的问题,可以不必用繁杂的数学去求解泊松方程,而是通过提出尝试解,然后验证是否满足泊松方程、边值关系和边界条件。

满足即为唯一解,若不满足,可以加以修改。

如果有人精于设计和求解静电场,那么他已经是一个有名望的专家学者了,并且享有丰厚的报酬。

因此,虽然静电学是电磁场理论中相对比较简单的一门学问,请同学也不要小看它。

一个外行人,有谁会相信上述有名望的专家学者的工作基础就是高中生都明白的库仑定律呢?大理大学工程学院教授罗凌霄2020年3月20日。

唯一性定理

唯一性定理
唯一性定理
静电场的基本问题:
求出在每个均匀区域内满足泊松方程,在所有分界面 上满足边值关系,在所研究的整个区域边界上满足边 界条件的电势的解
2 i
i
Sij
j
Sij
i
i
n
Sij
j
j
n
Sij
V
j S
i
Sij evn
除此之外,要完全确定V内静电场的解,还必须给出 整个区域边界S上的一些条件。
1
到底需要给定哪些条件,才能求得静电场的解,并且 解是唯一的?
Ra
(2) 介质内无自由电荷分布; (3) R=a处导体球带总电量Qf 该定解问题有唯一解。
9
1. 给出边值关系和边界条件 设左、右介质的电势分别为 1 和 2
Ñ dS Qi
Si n
根据唯一性定理,只要能找到一个满足上面定解条件 的特解,那该解就一定是该问题的唯一解。
10
2. 提出尝试解
C与 0为待定系数,且 0与外球壳半径a’有关 3. 由边值关系和边界条件确定待定系数
2 0 Qf 2 1 2 a2
相同
v
2
0Q f
1 2 a2
(, 右半球)
P1
v P2
15
所以,由于有束缚电荷的存在,在内导体球壳两半球 面上束缚电荷与自由电荷之和是球对称的,所以电场 强度E是球对称的。
首先判断该问题是否满足唯一性定理。 1. 给出边值关系和边界条件 2. 提出尝试解 3. 由边值关系和边界条件确定待定系数 4. 求电场和球壳上的电荷分布
Ñ i
Vi
i
2dV
v
Si i dS i
2 0
Vi i 2 dV
积分区域包括沿区域V的边界S上的面积分和沿各分区的分界面Sij的面积4分

静电场唯一性定理

静电场唯一性定理

静电场唯一性定理
静电场唯一性定理是一种重要的物理定理,它有助于我们理解电场,研究电磁场,有助于研究一般相对论、量子力学和统计物理等科学理论的发展。

它指出,当电场的空间和时间的变化都可以完全确定时,其静态状态就是唯一的。

在实际应用中,它为解决复杂的电力电子、光电子和微电子学问题提供了有力的理论支持。

静电场唯一性定理是由19世纪90年代著名物理学家雷诺兹等提出的。

他们提出,电场的动量和能量有相应的定律,可以用来描述其变化,不论是在空间上还是时间上都是这样。

根据它们提出的新定律,假设电场的状态完全确定,不论是在空间上还是时间上,其静态状态都是唯一的。

结合泰勒到的变分原理,可以证明静电场唯一性定理的有效性。

当电场的状态完全确定时,可以用变分原理来证明它的静态态一定是唯一的,这就是静电场唯一性定理的关键性证明过程。

除了可以用于研究电场外,静电场唯一性定理也可以用于研究重力场。

由于重力场是空间和时间变量关系的最简单形式,可以用静电场唯一性定理来分析它,并且可以证明重力场也是唯一的。

总之,静电场唯一性定理是一种重要的物理定理,它对研究电场、重力场以及一般相对论、量子力学和统计物理等科学理论都有着重要的意义。

通过它,我们可以更加有效率地研究和分析物理现象,从而不断地拓展物理知识面,并进一步深入地研究物理本质。

- 1 -。

静电场的唯一性定理_工程电磁场_[共5页]

静电场的唯一性定理_工程电磁场_[共5页]

(2-8-12) (2-8-13)
讨论的是同一个体系,必有: ∇ ⋅ D ' = ∇ ⋅ D '' = ρ
则式(2-8-13)第一项为零,得 ∇ ⋅ Z (r) = −(E '− E '') ⋅ (D '− D '')
对上式两边积分
∫∫∫ ∇ ⋅ Z(r)dV = −∫∫∫ (E '− E '') ⋅ (D '− D '')dV
分布在有限区域的无界电场问题,在无限远处( r → ∞ )应有
lim[rϕ] = 有限值
r→∞
(2-8-9)
这表明 rϕ 在无限远处是有界的,即电位 ϕ 在无限远处取值为零 ϕ r→∞ = 0 。 当场域中存在多种介质时,还必须引入不同介质分界面上的边界条件,常称为辅助的边
界条件。
2.8.3 静电场的唯一性定理
(2-8-10)
构造如下的函数:
Z (r) = (ϕ '− ϕ '')(D '− D '')
(2-8-11)
在给定边界所包围的体积内对上式进行体积分,并利用散度定理得
∫∫∫ ∇ ⋅ Z(r)dV= ∫∫∫ ∇ ⋅[(ϕ '− ϕ '')(D '− D '')]dV
V
V
利用矢量恒等式 ∇ ⋅ (ϕ A) = ∇ϕ ⋅ A + ϕ∇ ⋅ A ,则 ∇ ⋅ Z (r=) (ϕ '− ϕ '')(∇ ⋅ D '− ∇ ⋅ D '') +(∇ϕ '− ∇ϕ '') ⋅ (D '− D '')

关于静电场中唯一性定理的证明

关于静电场中唯一性定理的证明

关于静电场中唯一性定理的证明
静电场中唯一性定理:满足静电场的**Maxwell方程组的唯一解,取决于指定的边界条件而不受初始条件的约束。

为了证明该定理,我们首先考虑Maxwell方程组:
$\nabla\cdot\vec{E} = \frac{\rho}{\varepsilon_0}$
可以看出,这套方程是由边界条件决定的,其解也是由边界条件决定的。

为证明唯一性定理,我们使用变分法从而得出以下**Euler-Lagrange方程组:
$\frac{\partial L}{\partial \vec{E}}-\frac{\partial}{\partial
\vec{x}}\frac{\partial L}{\partial(\frac{\partial\vec{E}}{\partial
x})}+\frac{\partial}{\partial t}\frac{\partial L}{\partial\frac{\partial
\vec{E}}{\partial t}}=0$
其中,$L$表示Lagrange函数,它是由Maxwell方程组构成的。

由此,我们可以得出雅可比方程:
这组方程有两个基本性质,一是称为“唯一性原理”,一是称为“不变性定理”。

不变性定理:对于给定的满足Maxwell方程组的特定边界条件,解不会随着时间变化而变化。

这两个定理说明,解是唯一的,而且不受初始条件的限制,而只受边界条件的约束。

因此,以上证明了静电场中唯一性定理。

静电场中的唯一性定理

静电场中的唯一性定理

静电场中的唯一性定理作者:张清郑赣鸿戴振翔等来源:《赤峰学院学报·自然科学版》 2014年第13期张清,郑赣鸿,戴振翔,马永青(安徽大学物理与材料科学学院,安徽合肥 230039)摘要:唯一性定理是解决静电磁场问题的重要理论依据,应用构造恰当函数的技巧和一些数学运算,从给定的边界条件出发,本文给出了静电场唯一性定理的证明,最后给出了唯一性定理关于静电场实际问题的应用举例.关键词:电动力学;唯一性定定理;边界条件中图分类号:O441.1 文献标识码:A 文章编号:1673-260X(2014)07-0021-02静电场中的唯一性定理是电动力学中的重要定理,在郭硕鸿的《电动力学》已经给出非常清晰的证明.但是还是有必要对静电场的唯一性定理给出一个统一的系统证明,为解决静场问题提供理论依据.本文从边界条件出发,论证了唯一性定理的内在逻辑的合理性,最后给出实例,深化了对唯一性定理的认识.1 静电场边界条件对于介质表面,用下标i和j表示界面两侧,n表示界面法线方向的单位矢量,从i侧指向j侧.?滓0表示自由电荷面密度.则:综合以上两种情形,在给定的边界条件下,满足泊松方程及边值关系的电场唯一确定.3 结论从静场的角度论证电动力学中的唯一性定理已完成.在时变电场中论证唯一性定理和在运动的参考系下即相对论情形下论证电磁张量的特定给定的边界条件下的唯一性定理是今后进一步的研究工作.参考文献:〔1〕蔡圣善,朱耘.经典电动力学[M].上海:复旦大学出版社,1985.120-210.〔2〕赵凯华,陈熙谋.电磁学上册[M].北京:高等教育出版社,1985.213-219.〔3〕胡友秋,程福臻.电磁学与电动力学上册[M].北京:科学出版社,2008.30-85.〔4〕张玉民,戚伯云.电磁学[M].北京:科学出版社2007.213-241.〔5〕郭硕鸿.电动力学[M].北京:高等教育出版社,2008.37-90.〔6〕林璇英,张之翔.电动力学题解[M].北京:科学出版社,2007.99-263.〔7〕梁昌洪,褚庆昕.运动边界的电磁场边界条件[J].物理学报,2002,51(10):2201-2204(10).〔8〕雷银照,徐纪安.时变电磁场唯一性定理的完整表述[J].电工技术报,2000,15(1):16-20.〔9〕胡森.静磁场矢势A的唯一性定理及其证明[J].湖北第二师范学院学报,2008,25(2):31-32.〔10〕张福恒.静电唯一性定理的意义与应用[J].海南师范大学学报,2008,21(2):161-166.〔11〕张国文,王福谦.在电磁学中讲授静电场的唯一性定理[J].长治学院学报,2005,22(2):45-47.〔12〕邵建军.论电磁势的唯一性(非动力物理效应)与相对论[J].湖北教育学院学报,2002,19(2):22-26.。

静电场的唯一性定理及其应用(精)

静电场的唯一性定理及其应用(精)
静电场的唯一性定理及其应用
11
第二种情形:设封闭导体壳的内 表面为S2,对于壳内区域而言它是 一个边界面。首先,S2是一个等位 面。其次,如在壳内紧贴S2作一高 斯面S,则有
S n dS q1
(电位移矢量 D 的通量为q1)
以S2作为导体壳内电场的一个边界面,通过它的电通量仅仅 决定于导体壳内的电荷,而与壳外的电荷分布是无关的。根据唯 一性定理,当导体壳内带电导体都是给定电荷量时,电位函数可 以相差一个常数,但是电场强度是唯一确定的。它不受导体壳外 电荷q2的影响。有时甚至壳内的电位函数也是唯一确定的。
平行双电轴法
26
A DnA A DnA
14
q

q
E
§2-2 平 行 双 电 轴 法
一、平行双电轴电场
平行双电轴电场是一个平行 平面场,在垂直于电轴的各个平 面上,场有完全相同的分布图形 设介质电容率为ε0的空间有两无限长平行电轴,两电轴 所带有的电荷线密度分别为 ,
E
由高斯定理可得两电轴分别产 生的电场强度表达式为
2
2
平行双电轴法
18
可知: 1) 若已知电轴位置,选取任意点x0为圆心,即可作
出以x0为圆心R0为半径的等位圆。
2) 若已知电轴位置,给定任意的R0,亦可作出此等 位圆圆心所在处x0的等位圆。 3) 若已知R0,及圆心的位置x0,亦可推出电轴所在 的位置,亦即推求出距离D
平行双电,给定各导 体表面的电荷量,此时由边值问 题所解得的电位函数,仅相差一 无关紧要的常数,而电位的梯度 E是唯一的。
3、若给定某些导体表面的电 位值,及其它导体表面(导体 表面为等位面)的电荷量,此 时由边值问题所解得的电位函 数为唯一。

静电场唯一性定理

静电场唯一性定理

静电场唯一性定理
静电场唯一性定理是指:在相同的静电场中,对任意一点,总的电场强度和电场的方向唯一确定,其相应的力场强度和力场方向也唯一确定。

一、定理内容
1、静电场唯一性定理指出:在同一个静电场中,总的电场强度以及它的方向,是唯一确定的。

2、电场强度和方向唯一确定,则相应的力场方向及强度也唯一确定。

3、对于任何一点,在同一个静电场中,电场强度和力场强度(方向)都是唯一确定的,而不用管附近是否有其它电荷存在。

二、定理的严谨性
静电场唯一性定理可以从两个层面上来说明它的严谨性:
1、在相同静电场中,总电场强度和电场方向是唯一确定的,这样在相同的静电场中,不管电荷位置以及大小如何变化,都会得到相同的电场结果。

2、只要电荷总量不变,就可以确定电场强度,而不用考虑附近有没有
其它电荷的存在,所以,电场的强度和方向都是唯一确定的。

三、定理的应用
1、用来研究静电场:静电场唯一性定理是用来研究电场的重要定理,
可以用来评估复杂的电场结构,也可以用来求解各类电力学问题,如:电场及电动势分布,电容电感等问题。

2、在分析电场结构时有重要作用:静电场唯一性定理在分析电场结构
时有重要作用,它可以把电场潜力和电场强度根据电荷分布范围与数量,用一种抽象的模型来简化整个计算过程,以达到某种理想的数值
结果。

3、研究电场特性时也有用:静电场唯一性定理也用在研究电场特性时,由于电场强度和方向都是唯一确定的,所以,在研究电场物理学时,
可以从多种不同的角度出发,以简化分析,缩小计算空间,这样可以
得出更加准确的结果。

第二章第二节 唯一性定理

第二章第二节 唯一性定理

ϕi ' = ϕ j '
∂ϕ j ' ∂ϕ i ' εi =εj ∂n ∂n
ϕi ' ' = ϕ j ' '
∂ϕ j ' ' ∂ϕ i ' ' εi =εj ∂n ∂n
Vj
因此,在介质分界面上, 因此,在介质分界面上,ϕ也满足
Vi
ϕi = ϕ j
∂ϕ j ∂ϕ i εi =εj ∂n ∂n
——(2.5)
运用唯一性定理讨论几个问题
例一: 例一:有一个中性的导体球壳 A,在此球壳内放 置一带电体 M,其荷电为 Q。证明: 1) 球壳外的电场只与 Q有关, 与 M在球壳内的位置无关; 2) 球壳 A的外表面上的电荷为 均匀分布,与 M在球壳内的 位置无关。
S
M
证明: 证明: 所研究的区域为球壳外的区域, 其界面为 S∞ 和 S 。 边界 S∞ 上的电势为零; 而对于界面S,由于感应使得 S的内表面的电量为 -Q,则界面 S上的总电量为 +Q,这一结论不 论M在球壳内何处,只要在球壳 内即成立。

Si
ϕ∇ϕ ⋅ dS = −ϕ i ∫ ∇ϕ ⋅ dS
Si
V V’
=0
而对于外边界面 S,根据(2.13) 外边界面 可知,
i
Si
∫ ϕ ∇ ϕ ⋅ dS = 0
S
n S
对于区域 V 的外表面 S
ϕ S = 0 或者 ∂ϕ ∂n S = 0 ——(2.13)
V
因此,对 V’ 的整个界面
V’
∫ ϕ ∇ ϕ ⋅ dS = 0
2 i Vi i
Vj
但是被积函数始终满足
Vi

静电场唯一性定理

静电场唯一性定理
关于静电场唯一性定理
王向斌 静电场唯一性定理的部分内容表述
若真空区域所有边界面的条件确定了,则该真空区域的静电场 就唯一确定了. 根据此定理,不论真空区域以外(含边界)的电荷分布如何变化, 只要边界条件维持不变,则真空区域电场维持不变. (但是区域 以外的电场可能会发生变化.) 换言之,不论真空区域以外的实 际点荷分布如何,我们可以在真空区域之外构造一种简单的电 荷分布,只要它能够满足给定的真空区域边界面条件,我们就可 以按这种人为构造的电荷分布计算真空区域内的电场. (但不能 用此法计算真空区域以外的电场.) 根据此定理,只要找到一个电势函数, 能满足区域真空条件和 边界条件的要求,则真空区域内的电场可由该函数算出. (真空区域以外的电场不可以.)
思考题: 上述封闭面S在引理和定理中,是否必需是导体面? 还是任何满足面上电势要求的数学面都可以? 思考题: 在哪里用到或者隐含用到了势函数满足区域真空条件?
应用
静电屏蔽,电像法, 其他计算问题 思考题: 电像法中,像电荷为什么必需在真空区域以外? 思考题: 课本的电像法例题中,利用了唯一性定理.究竟是怎样与 唯一性定理的边界条件一一对应的? 即,接地的无限大金属板以及 题中的点电荷应该理解成唯一性定理的哪一个边界面?
引理2: 引理1中,若封闭面S是带电量为0的等势面,结论依然成立.
唯一性定理的部分内容的证明
条件: 静电场情况; 封闭面S, 该面电势函数确定;S面内部最多有3类区域: 真空区域, 电势确定的的导体区域,和带电量确定的导体区域.
依据唯一性定理, 上述真空区域的电场唯一确定. 思路: 真空区域若有两个势函数,函数1和函数2都满足边界条件 和区域真空条件, 把这两个势函数之差看成第三个势函数,由于 每个势函数边界条件都一样, 第三个势函数的边界条件必然是 引理1中的边界条件,因而第三个势函数在真空区域是等势区域, 此即说明函数1和函数2在真空区域最多只相差一个常数,因此给 出相同的电场. 思考题: 为什么两个电势函数之差这样一个数学函数一定可以 看成一个电势函数?

电磁学8 静电场的唯一性定理

电磁学8 静电场的唯一性定理
1:给定每个导体的电势UⅠk(或总电量QⅠk) 2:给定每个导体的电势UⅡk(或总电量QⅡk) 设UⅠ、 UⅡ满足上述两条件,则它们的线性组合
U=a UⅠ+b UⅡ必满足条件3: 3:给定每个导体的电势Uk=a UⅠk+b UⅡ k
(或总电量Qk= QⅠk a k+b QⅡ k) 特例 : 取UⅠk= UⅡ k,则U=UⅠ-UⅡ(a=1,b=-1)满足
势处处为0
证明(反证)
在无电荷空间里电势分布连续 变化,若空间有电势大于0 (或小于0)的点,而边界上 电势又处处等于零——必出现 极大值或极小值——矛盾
推广:若完全由导体所包围的空间里各导体 的电势都相等(设为U0),则空间电势等于 常量U0
引理三:若所有导体都不带电, 则各导体的电势都相等
证明(反证)
4:给定每个导体的电势为0
唯一性定理
给定每个导体电势的情形
设对应同一组边值 Uk (k 1,2) 有两种恒定的电势分布U I和U II
相当于所有导 体上电势为0时 的恒定电势分

UI UII EI EII
说明场分布是唯一的
给定每个导体上总电量的情形
电量与场 强、电势
第k个导体上的电量
静电场边值问题的 唯一性定理
典型的静电问题
给定导体系中各导体的电量或电势以及各导体 的形状、相对位置(统称边界条件),求空间 电场分布,即在一定边界条件下求解
唯一性定理
对于静电场,给定一组边界条件,空间能否 存在不同的恒定电场分布?——回答:否!
边界条件可将空间里电场的分布唯一地确定 下来
图中是根据导体内场强处处为零判断存在两种实 在的电荷分布的迭加就是唯一的分布
电像法——解静电问题的一种特殊方法

静电场的唯一性定理

静电场的唯一性定理

静电场若干关系
电场的若干关系
U 2 0
当 0
U 2 0
E U
(1)
Laplace equation
静电场若干关系
对静电场E
Ò
Eds
2Udv
如果
E F
则有
E F E • gradΒιβλιοθήκη 静电场若干关系 Green函数
当E为一数函数之梯度
E grad
由Gauss定理有
grad 2 •
静电场边界条件的唯一性定理
魏国华
0710261
南开大学物理学院
2008年6月
静电场边界条件的唯一性定理
所谓唯一性定理,就是在一个空间内,导体的 带电量或者电势给定以后,空间电场分布恒定、 唯一。边界条件可以是各导体电势,各导体电 量或部分导体电量与部分导体电势之混合,这 样根据高斯公式,泊松方程、拉普拉斯方程可 证明空间电场分布。
Ò grad • ds (2 • )dv
s
v
Ò grad • ds (2 • )dv
s
v
静电场边界条件定理1
因此
(2 2)dv
v
( grad grad) • ds s
静电场边界条件定理1
定理一: 有函数U满足(1)且满足空间边界面S上
所确定的U值,则该函数唯一。 证:若有U1,U2都 满足,则在S面上,
y
A
r a 1•
r
OO c
b
B•
x
一球接地,半径a,球外距球心b 处有电荷e,求球外电势之分布
唯一性定理之应用2
易知电势分布关于OB对称,如图,
只需求X-Y面,再将y 2变y 2 z 2即可
设C c,0 是(b, 0)的像点,其关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
A 导体表面电荷 Q已知,电场唯一确定。设 B R A R
( R a)
B0
在导体边界上
Q S R
A A4a 2 dS 2 dS A4 2 S R a Ra
机动 目录 上页 下页 返回 结束
Q A 4
利用
积分为零必然有
0
机动 目录 上页 下页 返回 结束
1 2 常数
(1)若给定的是第一类边值关系 S 0
即常数为零。 1 2 电场唯一确定且 电势也是唯一确定的。
n
S
(2)若给定的是第二类边值关系
0
1 2 常数,1 , 2 相差一个常数, 虽不唯一,但电场 E 是唯一确定的。
Q 4R
( R a ) E QR ( R a) 4R 3
P n ( E2 E1 ), 0
E
0 QP ( 1)Q
3.两种均匀介质( 1 和 2 ) 充满空间,一半 径 a 的带电Q导体球放 在介质分界面上(球心 在界面上),求空间电 势分布。
在介质分界面上
1 S 2
c1 c2 c
dS
r a
1 Q 1 S1 r
2 dS 2 S2 r r a
c c c c 2 1 2 dS 2 2 dS 2 1 2 a 2 2 2 a 2 S1 S2 a a a a
2
1
机动
a
Q
目录
上页
下页
返回
结束
解:外边界为无穷远,电荷分布在有限区 给定,所以球外场唯一确定。 对称性分析:

0 导体上Q
1 2 1 2

4R 场对称 场仍对称!
Q
2
a
Q
S2
E2 E1
在两介质分界面上:
1
P
S1
p E2 n E1n p 0 0 2 试 c1 d 1 0 1 1 探 r 解 2 c 2 d 2 0 2 2 r
V
2
)dV

2 2

S
dS

dS V ( () )dV S 0 dS 0
S
S

由于 ( ) 2 0
2 ( ) dV 0 0 V
2
n: i j
j
j n
S ij
i
S ij
j
S ij
i i n

Sij
注:在实际问题 中,因为导体内 场强为零,可以 不包含在所求区 域 V 内。导体面 上的边界条件可 视为外边界条件。
V内两介质分 界面上自由 电荷为零
j i n
机动 目录 上页 下页 返回 结束
四、应用举例
1. 半 径 为 a 的 导 体 球 壳 接 地 壳内中心放置一个点电荷 Q, 求壳内场强。
解:点电荷 Q 放在球心处,壳接地
2
Q

S
0
Q
0 ( R 0) 因而腔内场唯一确定。
已知点电荷产生的电势为 但它在边界上 1
1
40 R
返回
结束
三、唯一性定理的意义
1. 唯一性定理给出了确定静电场的条件,为求电 场强度指明了方向。 2. 更重要的是它具有十分重要的实用价值。无论 采用什么方法得到解,只要该解满足泊松方程 和给定边界条件,则该解就是唯一的正确解。 因此对于许多具有对称性的问题,可以不必用 繁杂的数学去求解泊松方程,而是通过提出尝 试解,然后验证是否满足方程和边界条件。满 足即为唯一解,若不满足,可以加以修改。
2 2 2 r
r a
1Q 下半球面上均匀分布 2 2 ( 1 2 )a
2Q 2 ( 1 2 )a 2
上半球面上均匀分布
r a
束缚电荷分布:
其他实例: 左半空 间电势?
P1
0 0 ( 1) 1 P 2 ( 1) 2 1 1
2
2 ,有
2 n
n S
n
S
S
1 2
2 2 1 2 2 0
机动 目录 上页 下页 返回 结束
S 1 S 2 S 0
由格林第一公式
n
S
1 n
S
2 n
0
S
(
S
S
Q 4 0 a
不满足
0
返回 结束
机动
目录
上页
下页
要使边界上任何一点电势为0 , 设
Q 4 0 R
2

Q 4 0 a
它满足
0 S 0
根据唯一性定理,它是腔内的唯一解。 Q QR E ( R a) 3 4 0 R 可见腔内场与腔外电荷无关,只与腔内电荷Q 有关。
Q Q
球壳外 空间电 势?
机动
目录
上页
下页
返回
结束
i i
2
(i 1,2, , m)
n
两类边界条件:① 边界S上,
S
S
为已知,若为导体
S =常数。②
边界S上,
为已知, 若是导体要给
定总电荷Q。它相当于
n
S
dS ) 给定( Q S n S
机动 目录 上页 下页 返回 结束
内边界条件为边值关系
机动 目录 上页 下页 返回 结束
2. 带电荷Q 的半径为a 的导体球放在均匀无限大介 质中,求空间电势分布。 解:导体球具有球对称性,电荷只分布在外表面上。 假定电场也具有球对称性,则电势坐标与 , 无关。 因电荷分布在有限区,外边界条件 0
R A 3 0 3 R R R 满足 2 0 , R R 0
2
机动
目录
上页
下页
返回
结束
3. 均匀单一介质中有导体(证明见教材)
导体中 E 0 ,求 V 内的电势。

S

n
S
已知, n
、 S1 n
S
S2
Q2 S1
Q1 S2
(或 Q1、Q2 )为已知,则区域 V 内电场唯一确定。
ε
V
Q dS s n
机动 目录 上页 下页
机动 目录 上页 下页 返回 结束
2. 介质分区均匀(不包含导体)
V 内 已知, 成立,给定区域 i 或 。在分界面上, i S j 或 S ij ij n S
2
S
j
j n
Sij
i i n
1
Sij
3
v s
区域V内电场唯一确定 (证明见书P.60)
机动 目录 上页
S ij
下页
返回
结束
二、唯一性定理
1.均匀单一介质
若V边界上 区域内 分布已知, 满足
2
S 已知,或V边界上
n
已知,则 V 内场( 静
S
电场)唯一确定。
证明: 假定泊松方程有两个解 1
1
2
在边界上

1 S
2 1 2 S S
E1n E2 n 0
束缚电荷只分布在导体与 介质分界面上。对于上半 个空间,介质均匀极化, 场具有对称性,同样下半 空间也具有对称性。而在 介质分界面上 E1 E 2 , 所以可考虑球外电场仍具 有球对称性。
机动 目录 上页 下页 返回 结束
确定常数
r
0
S
d1 d 2 0
第二章第二节
唯一性定理
§2.2 唯一性定理
主要内容 一、泊松方程和边界条件
二、唯一性定理的内容
三、唯一性定理的意义
机动 目录 上页 下页 返回 结束
一、泊松方程和边界条件
假定所研究的区域为 V ,在一般情况下 V 内可以 有多种介质或导体,对于每一种介质自身是均匀 线性各向同性。 设V内所求电势为 ,它们满足泊松方程 i
Q 1 2 ( 1 2 )r 上半空间 Q 2 下半空间 2 ( 1 2 )r
2 (1 2 )c
Q c 2 ( 1 2 )
Q 4 ( 1 2 )r
机动 目录 上页 下页
(r a)
返回
结束
导体球面上面电荷分布:
1 1 1 r
相关文档
最新文档