最新正比例函数、一次函数、反比例函数知识点总结教学文案
正比例函数、反比例函数、一次函数、二次函数
正比例函数、反比例函数、一次函数、二次函数【教学目标】1.通过具体实例,了解简单的分段函数,并能简单应用;2.整理初中已学过的函数正比例函数、反比例函数、一次函数、二次函数,特别是二次函数;3.学会运用函数图象理解和研究函数的性质。
【教学重点】基础知识整理【教学难点】题型分类解析【教学方法】引导学生自主学习法教学过程:【知识回顾】1.正比例函数的定义是:;图象是:2.反比例函数的定义是:;图象是:3.一次函数的定义: ;图象是:4.二次函数解析式的三种形式:①一般式、②两根式、③顶点式5.二次函数的图象和性质,通常抓住以下三方面:①对称轴②单调性、③最值 .【基础练习】1.函数y=x2+bx+c(x≥0)是单调函数的充要条件是f x=x2+bx+c对任意实数t都有f(2+t)=f(2-t ),则f(1)、f(2)、2.若函数()f(4)的大小关系是:3.关于x的不等式-mx2-8mx-21>0的解为:-7<x<-1则m的值为f x的顶点为(4,0),且过点(0,2),则4.二次函数()f(x)= .5.两个不同函数()f x =x 2+ax+1和g(x)=x 2+x+a (a 为常数)定义域都为R ,若()f x 与g(x)的值域相同,则a= . 6.函数()f x =2x 2-mx+3当x∈(-∞,-1)时是减函数,当x∈(-1,+∞)时是增函数,则f(2)= . 7.实系数方程20(0)ax bx c a ++=≠两实根异号的充要条件是 ,有两正根的充要条件是 ;有两负根的充要条件是 .8.已知二次函数21(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点(2,4),A B -(如图),则能使12y y >成立的x 的取值范围是_______.参考答案: 1. b≥ 02. f(2)<f(1)<f(4) 3. 34. 2)4(81-x5. 5-或16. 197. ;000;02121⎪⎩⎪⎨⎧>>+≥∆<x x x x ac ;0002121⎪⎩⎪⎨⎧><+≥∆x x x x(A (第8题)8. x<-2 ,x>8【典型例题】1.正比例函数、反比例函数、一次函数的图象、性质、应用 例1.已知正比例函数(21)y m x =-的图象上两点11(,)A x y 、22(,)B x y ,当12x x <时,有12y y >,那么m 的取值范围是_______. 答案:12m <例2.(1)已知函数)0()(<+=a xax x f ,请写出它的单调区间,你能画出它的简图吗?(2)请画出函数)0()(>+=a xax x f 的图象,并写出它的单调区间. 答案:(1)在)0,(-∞、),0(+∞上为增函数(2)),[],,(+∞--∞a a 增函数;],0(),0,[a a -减函数2.求二次函数的解析式例1.分别求满足下列条件的二次函数的解析式:①过点(0,2),(1,-1),(-2,20) ②过点(-1,0),(-4,0),(2,-36)③图象的顶点是(1,2)-,且经过原点答案:①2522+-=x x y ;②81022---=x x y ;③x x y 422--=例2.已知二次函数f(x)满足f(2)= -1,f(-1)= -1且f(x)的最大值是8,试确定此二次函数.思维分析:恰当选择二次函数的解析式法一:利用一般式设f(x)=ax 2+bx+c(a ≠0),由题意得:⎪⎪⎩⎪⎪⎨⎧=--=+--=++84411242a bac c b a c b a 解得:⎪⎩⎪⎨⎧==-=744c b a ∴f(x)= - 4x 2+4x+7法二:利用顶点式∵f(2)= f(-1) ∴对称轴212)1(2=-+=x 又最大值是8 ∴可设)0(8)21()(2<+-=a x a x f ,由f(2)= -1可得a= - 47448)21(4)(22++-=+--=∴x x x x f法三:由已知f(x)+1=0的两根为x 1=2,x 2=-1,故可设f(x)+1=a(x-2)(x+1)即f(x)=ax 2-ax-2a-1,又84)12(482max=---=aa a a y 即得a= - 4或a=0(舍)∴f(x)= - 4x 2+4x+7例3.已知二次函数f(x)=ax 2+bx+c 满足下列条件:(1)图象过原点,(2)f(-x+2002)=f(x -2000),(3)方程f(x)=x 有重根; 试确定此二次函数. 解:由(1)得:c=0,由(2)对称轴1220002002=-++-=x x x 可确定12=-ab, 由(3) f(x)=x 即ax 2+(b-1)x+c=0有重根 .2110)1(:))1(0(02-==∴=-==∆a b b c 从而得由x x x f +-=∴221)(3.二次函数在给定区间上的最值问题 例1.(1)已知f(x)=-x 2+2x+6, x∈[2,3],求f(x)的最大(小)值;(2)已知f(x)=-x 2+5x+6, x∈[2,3],求f(x)的最大(小)值. 答案:(1)大6,小3;(2)大449,小12;例2.已知f(x)=-x 2+ax+6, x∈[2,3],求f(x)的最大值答案:⎪⎪⎩⎪⎪⎨⎧>-≤≤+<+=).6(,33);64(,424);4(,22)(2maxa a a a a a x f例3.已知y=f(x)=x 2-2x+3,当x ∈[t,t+1]时,求函数的最大值和最小值. 答案:32,2,12min 2max +-=+=>t t y t y t 时2,2,121min 2max =+=≤<y t y t 时 2,32,210min 2max =+-=≤<y t t y t 时2,32,02min 2max +=+-=≤t y t t y t 时例4.已知函数f(x)= -x 2+2ax+1-a 在0≤x ≤1时有最大值2,求a 的值. 思维分析:一般配方后结合二次函数图象对字母参数分类讨论 解:f(x)= -(x-a)2+a 2-a+1(0≤x ≤1),对称轴x=a 10 a<0时,121)0()(max -=∴=-==a a f x f20 0≤a≤1时)(25121)()(2max舍得±==+-==aaaafxf30 a>1时,22)1()(max=∴===aafxf综上所述:a= - 1或a=24.一元二次方程根的分布的讨论例1.已知关于x的二次方程x2+2mx+2m+1=0(1)若方程有两根,一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围.(2)若方程两根在区间(0,1)内,求m的范围.思维分析:一般需从三个方面考虑①判别式Δ②区间端点函数值的正负③对称轴abx2-=与区间相对位置.解:设f(x)=x2+2mx+2m+1(1)由题意画出示意图216556)1(2)1(12)0(-<<-⇒⎪⎩⎪⎨⎧>+>=-<+=⇔mmffmf(2)2121100)1(0)0(0-≤<-⇒⎪⎪⎩⎪⎪⎨⎧<-<>>≥∆⇔m m f f例2.方程k x x =-232在(-1,1)上有实根,求k 的取值范围. 分析:宜采用函数思想,求)11(23)(2<<--=x x x x f 的值域.答案:)25,169[-∈k5.函数应用题:例.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租的车将会增加一辆,租出的车每辆需要维护费150元,未租的车每辆每月需要维护费50元, (1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少时,租赁公司的月收益最大?最大月收益是多少?思维分析:应用问题的数学建模,识模—建模—解模—验模 解:(1)当每辆车的月租金定为3600元时,未租出的车辆数为125030003600=-∴租出100-12=88辆。
初中数学所有函数的知识点总结
课题§3. 5 正比例函数、反比例函数、一次函数和二次函数教学目标1、掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质2、会用待定系数法确定函数的解析式教学重点掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质教学难点掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质教学方法讲练结合法教学过程(I)知识要点(见下表:)注:二次函数))((44)2(222n x m x a ab ac a b x a c bx ax y --=-++=++=(0≠a ) 对称轴abx 2-=,顶点)442(2a b ac a b --, 抛物线与x 轴交点坐标)0()0(,,,n m (II )例题讲解例1、求满足下列条件的二次函数的解析式: (1)抛物线过点A (1,1),B (2,2),C (4,2-) (2)抛物线的顶点为P (1,5)且过点Q (3,3)(3)抛物线对称轴是2=x ,它在x 轴上截出的线段AB 长为22,且抛物线过点(1,7)。
解:(1)设)0(2≠++=a c bx ax y ,将A 、B 、C 三点坐标分别代入,可得方程组为⎪⎩⎪⎨⎧-==-=⎪⎩⎪⎨⎧-=++=++=++24124162241c b a c b a c b a c b a 解得 242-+-=∴x x y (2)设二次函数为5)1(2--=x a y ,将Q 点坐标代入,即35)13(2=--a ,得2=a ,故3425)1(222--=--=x x x y(3)∵抛物线对称轴为2=x ;∴抛物线与x 轴的两个交点A 、B 应关于2-=x 对称; ∴由题设条件可得两个交点坐标分别为)0222()022(,、,+--B A∴可设函数解析式为:a x a x x a y 2)2()22)(22(2-+=-+++=,将(1,7)代入方程可得1=a∴所求二次函数为242++=x x y ,例2:二次函数的图像过点(0,8),)51(--,,(4,0) (1)求函数图像的顶点坐标、对称轴、最值及单调区间 (2)当x 取何值时,①y≥0,②y<0解:(1)依题意可设函数的解析式为:)0(2≠++=a c bx ax y将三点坐标分别代入,可得方程组为:⎪⎩⎪⎨⎧=++-=+--=041658c b a c b a c 解得⎪⎩⎪⎨⎧-=-=-=821c b a9)1(8222--=--=∴x x x y∴函数图像的顶点为(1,9-),对称轴为1=x又∵01>=a , ∴函数有最小值,且9m in -=y ,无最大值 函数的增区间为[1,+∞),减区间为]1(,-∞(2)由2408202-≤≥≥--≥x x x x y 或,解得可得 由4208202<<-<--<x x x y ,解得可得例3:求函数]11[1)(2,,-∈+-=x x x x f 的最值及相应的x 值 解由43)21(122+-=+-=x x xy ,知函数的图像开口向上,对称轴为21=x∴依题设条件可得)(x f 在]211[,-上是减函数,在]121[,上是增函数。
反比例函数教案(优秀7篇)
反比例函数教案(优秀7篇)反比例函数教案篇一一、背景分析1.对教材的分析本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。
本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。
本节课前一课时是在具体情境中领会反比例函数的意义和概念。
函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。
同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。
传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。
本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。
因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。
在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。
这也充分体现了重视获取知识过程体验的新课标的精神。
(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。
(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。
(3)难点:探索并掌握反比例函数的主要性质。
2、对学情的分析九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用z+z智能教育平台进行教学,比较形象,便于学生接受。
18-第十八章-正比例函数和反比例函数-八年级(上)-知识点汇总-沪教版
第十八章正比例函数和反比例函数18.1 函数的概念1、 在问题研究过程中,可以取不同数值的量叫做变量;保持数值不变的量叫做常量2、 在某个变化过程中有两个变量,设为x 和y ,如果在变量x 的允许取之范围内,变量y随变量x 的变化而变化,他们之间存在确定的依赖关系,那么变量y 叫做变量x 的函数,x 叫做自变量3、 表达两个变量之间依赖关系的数学是自称为函数解析式4、 函数的自变量允许取之的范围,叫做这个函数的定义域;如果变量y 是自变量x 的函数,那么对于x 在定义域内去顶的一个值a ,变量y 的对应值叫做当x=a 时的函数值18.2 正比例函数1、 如果两个变量每一组对应值的比是一个不等于零的常数,那么就说这两个变量成正比例2、 正比例函数:解析式形如y=kx (k 是不等于零的常数)的函数叫做正比例函数,气质常数k 叫做比例系数;正比例函数的定义域是一切实数3、 对于一个函数()y f x =,如果一个图形上任意一点的坐标都满足关系式()y f x =,同时以这个函数解析式所确定的x 与y 的任意一组对应值为坐标的点都在图形上,那么这个图形叫做函数()y f x =的图像4、 一般地,正比例函数y kx =(0)k k ≠是常数且的图像时经过原点O (0,0)和点(1,k )的一条直线,我们把正比例函数y kx =的图像叫做直线y kx =5、 正比例函数有如下性质:(1)当k <0时,正比例函数的图像经过一、三象限,自变量x 的值逐渐增大时,y 的值也随着逐渐增大(2)当k <0时,正比例函数的图像经过二、四象限,自变量x 的值逐渐增大时,y 的值则随着逐渐减小18.3 反比例函数1、 如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例2、 解析式形如(0)k y k k x=≠是常数,的函数叫做反比例函数,其中k 也叫做反比例系数(反比例函数的定义域是不等于零的一切实数)3、 反比例函数(0)k y k k x =≠是常数,有如下性质:(1)当k>0时,函数图像的两支分别在第一、三象限,在每一个象限内,当自变量x的值逐渐增大时,y的值则随着逐渐减小(2)当k<0时,函数图像的两支分别在第二、四象限,在每一个象限内。
一次函数和反比例函数知识点总结
一次函数知识点总结:函数性质:1. y的变化值与对应的x的变化值成正比例,比值为k. 即:y=kx+b(k,b为常数,k≠0)当x增加m,k(x+m)+b=y+km, km/m=k。
2. 当x=0时,b为函数在y轴上的点,坐标为(0,b)。
3. 当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。
4. 一次函数的图像:直线5. 在两个一次函数表达式中:当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。
若两个变量x,y间的关系式可以表示成Y=KX+b(k,b为常数,k不等于0)则称y是x的一次函数图像性质1.作法与图形:通过如下3个步骤:(1)列表.(2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。
一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。
正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。
(3)连线,可以作出一次函数的图象——一条直线。
因此,作一次函数的图象只需知道2点,并连成直线即可。
(通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b).2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。
3.函数不是数,它是指某一变化过程中两个变量之间的关系。
4.k,b与函数图像所在象限:y=kx时(即b等于0,y与x成正比例):当k>0时,直线必通过第一、三象限,y随x的增大而增大;当k<0时,直线必通过第二、四象限,y随x的增大而减小。
一次函数和反比例函数知识点
正比例、反比例、一次函数一次函数,正比例函数的定义(1)如果y=kx+b(k,b 为常数,且k ≠0),那么y 叫做x 的一次函数。
(2)当b =0时,一次函数y=kx+b 即为y=kx(k ≠0).这时,y 叫做x 的正比例函数。
注:正比例函数是特殊的一次函数,一次函数包含正比例函数。
2、正比例函数的图象与性质(1)正比例函数y=kx(k ≠0)的图象是过(0,0)(1,k )的一条直线。
3、一次函数的图象与性质一次函数y=kx+b(k ≠0)的图象是必过点(0,b )和点(-k b ,0)的一条直线。
注:(0,b )是直线与y 轴交点坐标,(-kb ,0)是直线与x 轴交点坐标.4、一次函数y=kx+b(k ≠0, k b 为常数)中k 、b 的符号对图象的影响(1)k>0, b>0⇔直线经过一、二、三象限(2)k>0, b<0⇔直线经过一、三、四象限(3)k<0, b>0⇔直线经过一、二、四象限(4)k<0, b<0⇔直线经过二、三、四象限5、对一次函数y=kx+b 的系数k, b 的理解。
(1)k(k ≠0)相同,b 不同时的所有直线平行,即直线l 1:y=k 1x+b 1;直线l 2:y=k 2x+b 2( k 1,k 2均不为零,k 1,b 1,k 2, b 2为常数)k 1=k 2 b 1≠b 2 l 1∥l 2平行k 1=k 2 b 1=b 2 l 1与l 2重合(2)k(k ≠0)不同,b 相同时的所有直线恒过y 轴上一定点(0,b ),例如:直线y=2x+3, y=-2x+3, y=21x+3均交于y 轴一点(0,3) 6、直线的平移:所谓平移,就是将一条直线向左、向右(或向上,向下)平行移动,平移得到的直线k 不变,直线沿y 轴平移多少个单位,可由公式︱b 1-b 2︱得到,其中b 1,b 2是两直线与y 轴交点的纵坐标,直线沿x 轴平移多少个单位,可由公式︱x 1-x 2︱求得,其中x 1,x 2是由两直线与x 轴交点的横坐标。
反比例函数教案(优秀6篇)
反比例函数教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!反比例函数教案(优秀6篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。
《正比例函数》人教版八年级数学教案
《正比例函数》人教版八年级数学教案正比例函数是本章的重点内容,是学生在初中阶段第一次接触的函数,这部分内容的学习是在学生已经学习了变量和函数的概念及图像的基础之上进行的。
下面由我为大家整理了关于《正比例函数》人教版八年级数学教案,供大家参考。
《正比例函数》人教版八年级数学教案1教学目标:1、认识目标(1)通过对不同背景下函数模型的比较,接受正比例函数的概念。
(2)在用描点法画正比例函数图象的过程中发现正比例函数的性质。
2、能力目标(1)利用发现的性质简便地画出正比例函数的图象,培养学生的动手能力。
(2)通过结合函数图象揭示性质的教学,培养学生观察、比较、抽象、概括能力。
3、情感、态度与价值观(1)通过正比例函数概念的形成过程,培养学生的探索精神和创新意识。
(2)在画正比例函数图象的活动中获得成功的体验,培养学生积极思考和动手学习的良好习惯,激发学习数学的热情。
教学重点:正确理解正比例函数的概念。
教学难点:体验研究函数的一般思路与方法。
教学方法:1、教法:本节教材实例取自生活实际,通过引导学生对身边事物的观察,让学生认识到大量活生生的正比例函数模型就在我们身边,从而让他们感受到数学贴近于现实生活,通过创设问题情景,精心设问,适时适度运用激励性语言,采用引导讨论法,让学生主动、愉快的参与到学习的全过程中来。
2、学法:倡导学生参与,师生互动,充分调动学生思考与探究的积极性,使学生成为学习的主体,让学生在学习过程中体验“观察、思考、探索、归纳”整个思维过程。
教学手段:运用多媒体,实现现代化教学手段,重现生活中事物变化过程,将教材中的静态画面转变为动态画面,从视觉、听觉吸引学生观察、体验,从而进一步思考、探究,得出结论,以提高课堂教学效率。
教学过程:一、创设情境,设疑激思1、实物情境:春天到了,燕子又飞回来了。
请同学们观察图片(多媒体展示燕欧飞行图片),1966年,鸟类研究者在芬兰给一只燕欧(候鸟)套上标志杆;4个月零1周后,人们在2.56万千米外的澳大利亚发现了它。
(完整版)反比例函数教案
第十七章 反比例函数17.1.1反比例函数的意义一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想 二、重、难点1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式 2.难点:理解反比例函数的概念 3.难点的突破方法:(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解(2)注意引导学生对反比例函数概念的理解,看形式xky =,等号左边是函数y ,等号右边是一个分式,自变量x 在分母上,且x 的指数是1,分子是不为0的常数k;看自变量x 的取值范围,由于x 在分母上,故取x ≠0的一切实数;看函数y 的取值范围,因为k ≠0,且x ≠0,所以函数值y 也不可能为0.讲解时可对照正比例函数y =kx (k ≠0),比较二者解析式的相同点和不同点。
(3)xky =(k ≠0)还可以写成1-=kx y (k ≠0)或xy =k(k ≠0)的形式三、例题的意图分析教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。
教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。
补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念.补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。
四、课堂引入1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的? 五、例习题分析例1.见教材P47分析:因为y 是x 的反比例函数,所以先设xky =,再把x =2和y =6代入上式求出常数k,即利用了待定系数法确定函数解析式。
一次函数和反比例函数知识点总结
一次函数知识点总结:函数性质:1.y的变化值与对应的x的变化值成正比例,比值为k. 即:y=kx+b(k,b为常数,k≠0),∵当x增加m,k(x+m)+b=y+km,km/m=k。
2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。
3当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。
4.在两个一次函数表达式中:当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。
若两个变量x,y间的关系式可以表示成Y=KX+b(k,b为常数,k不等于0)则称y是x的一次函数图像性质:1.作法与图形:通过如下3个步骤:(1)列表.(2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。
一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。
正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。
(3)连线,可以作出一次函数的图象——一条直线。
因此,作一次函数的图象只需知道2点,并连成直线即可。
(通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b).2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。
3.函数不是数,它是指某一变化过程中两个变量之间的关系。
4.k,b与函数图像所在象限:y=kx时(即b等于0,y与x成正比例):当k>0时,直线必通过第一、三象限,y随x的增大而增大;当k<0时,直线必通过第二、四象限,y随x的增大而减小。
初中数学函数知识点总结6篇
初中数学函数知识点总结初中数学函数知识点总结6篇总结是在某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而得出教训和一些规律性认识的一种书面材料,它可以帮助我们有寻找学习和工作中的规律,让我们抽出时间写写总结吧。
那么总结有什么格式呢?以下是小编整理的初中数学函数知识点总结,仅供参考,大家一起来看看吧。
初中数学函数知识点总结1课题3.5正比例函数、反比例函数、一次函数和二次函数教学目标1、掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质2、会用待定系数法确定函数的解析式教学重点掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质教学难点掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质教学方法讲练结合法教学过程(I)知识要点(见下表:)第三章第29页函数名称解析式图像正比例函数ykx(k0)0x反比例函数一次函数ykxb(k0)0x二次函数yax2bxc(a0)y0xy0xky (k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0图像过点(0,0)及(1,k)的直线双曲线,x轴、y轴是它的渐近线与直线ykx平行且过点(0,b)的直线抛物线定义域RxxR且xoyyR且yoRR4acb2a0时,y,4aR 值域R4acb2a0时,y,4aba0时,在-,上为增2a函数,在,-单调性k0时,在,0,k0时为增函数0,上为减函数k0时,为增函数b上为减函数2ak0时为减函数k0时,在,0,k0时,为减函数0,上为增函数ba0时,在-,上为减2a函数,在,-b上为增函数2a奇偶性奇函数奇函数b=0时奇函数b=0时偶函数a0且x-ymin最值无无无b时,2a24acb4ab时,2a24acb4aa0且x-ymax第三章第30页b24acb2注:二次函数yaxbxca(x (a0))a(xm)(xn)2a4abb4acb2对称轴x,顶点(,)2a2a4a2抛物线与x轴交点坐标(m,0),(n,0)(II)例题讲解例1、求满足下列条件的二次函数的解析式:(1)抛物线过点A (1,1),B(2,2),C(4,2)(2)抛物线的顶点为P(1,5)且过点Q(3,3)(3)抛物线对称轴是x2,它在x轴上截出的线段AB长为2且抛物线过点(1,7)。
正比例函数、一次函数、反比例函数知识点总结
正比例函数、反比例函数
一、正比例函数性质和图象:
概念:一般地,形如y=kx (k 是常数,且k≠0 )的函数,叫做正比例函数。
当k >0时,图象(除原点外)在一、三象限;当x 增大时,y 的值也增大;y 随x 的增大而增大。
当k <0时,图象(除原点外)在二、四象限;x 增大时,y 的值反而减小;y 随x 的增大而减小。
二、一次函数的性质和图象:
概念:一般地,形如y=kx+b(k ,b 是常数,且k≠0 )的函数, 叫做一次函数。
性质:
①k>0,b>O,则图象过一、二、三象限
②k>0,b<0,则图象过一、三、四象限
③k<0,b>0,则图象过一、二、四象限
④k<0,b<0,则图象过二、三、四象限 三、反比例函数性质和图象:
1.定义:形如y =x
k (k 为常数,k≠0)的函数称为反比例函数。
其他形式 xy=k 1-=kx y x
k y 1= 2.图像:反比例函数的图像属于双曲线。
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x 和 y=-x 。
对称中心是:原点
3.性质:当k >0时双曲线的两支分别位于第一、第三象限,在每个象限内y 值随
x 值的增大而减小。
当k <0时双曲线的两支分别位于第二、第四象限,在每个象限内y 值随
x 值的增大而增大。
4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴
所作的垂线段与两坐标轴围成的矩形的面积。
正比例函数、一次函数和反比例函数知识点归纳
正比例函数、一次函数和反比例函数知识点归纳正比例函数:解析式:y=kx(k为常数,k工0) ,k叫做函数的比例系数;(注意:x的指数为1)图像:过原点的直线;必过点:(0,0 )和(1,k);走向:k>o,图像过一三象限,k<0,图像过二四象限;y yK>0k<0/ \0OJx IV x倾斜度:|k|越大,倾斜度越大,也就是越靠近y轴,|k|越小,倾斜度越小,也就是越靠近x轴;如图:yy=2x//y=xO yx增减性:k>O,y随x的增大而增大;k<0,y随x的增大而减小;一次函数:解析式:y=kx+b(k,b为常数,k^ 0),k叫做函数的比例系数,(注意:x的指数为1,b为直线与y轴交点的纵坐标);正比例函数是一次函数的特殊情况,即b=0时的一种情况;图像:一条直线;必过点:(0,b)(-b/k,0);走向:k>o, b>0,图像过一二三象限,k>0,b<0,图像过一三四象限;y yk>0,b<0O O /x x倾斜度:|k|越大,倾斜度越大,也就是越靠近y轴,|k|越小,倾斜度越小,也就是越靠近x轴;如图:yy=2x /F y=xk>0,b>0k<o,b>0,图像过一二四象限k<o ,b>0,图像过二三四象限增减性:k>O,y 随x 的增大而增大;k<0, y 随x 的增大而减小;平移:y=kx+b,向上平移 m 个单位:y=kx+b+m;向下平移 n 个单位:y=kx+b-n;向左平移 m 个单位:y=k (x+m )+b;向右平移 n 个单位:y=k (x-n )+b;简称:上加下减,左加右减;(注:上加下减到代数式后面,左加右减到x 后面,直接与x进行加减,与系数和指数都没关系);反比例函数:解析式:y=k/x (k 为常数,k z 0) 图像:双曲线(图像无限靠近坐标轴, 所在象限:k>0图像经过一三象限;增减性:k>0,y 随x 的增大而减小;k<0,y 随x 的增大而增大;反比例函数知识点归纳1、基础知识(一)反比例函数的概念但永不相交。
初二数学正比例反比例一次函数知识点总结
正比例、反比例、一次函数第一象限(+,+),第二象限(-,+)第三象限(-、-)第四象限(+,-);x 轴上的点的纵坐标等于0,反过来,纵坐标等于0的点都在x 轴上,y 轴上的点的横坐标等于0,反过来,横坐标等于0的点都在y 轴上,若两个点关于x 轴对称,横坐标相等,纵坐标互为相反数;若两个点关于y 轴对称,纵坐标相等,横坐标互为相反数;若两个点关于原点对称,横坐标、纵坐标都是互为相反数。
原点(x ,y ) (x ,-y );(x ,y ) (-x ,y );(x ,y ) (-x ,-y )对称1、 一次函数,正比例函数的定义(1)如果y=kx+b(k,b 为常数,且k ≠0),那么y 叫做x 的一次函数。
(2)当b =0时,一次函数y=kx+b 即为y=kx(k ≠0).这时,y 叫做x 的正比例函数。
注:正比例函数是特殊的一次函数,一次函数包含正比例函数。
2、正比例函数的图象与性质(1)正比例函数y=kx(k ≠0)的图象是过(0,0)(1,k )的一条直线。
3、一次函数的图象与性质一次函数y=kx+b(k ≠0)的图象是必过点(0,b )和点(-k b ,0)的一条直线。
注:(0,b )是直线与y 轴交点坐标,(-kb ,0)是直线与x 轴交点坐标.x 轴 对称 y 轴 对称4、一次函数y=kx+b(k≠0, k b 为常数)中k 、b的符号对图象的影响(1)k>0, b>0⇔直线经过一、二、三象限(2)k>0, b<0⇔直线经过一、三、四象限(3)k<0, b>0⇔直线经过一、二、四象限(4)k<0, b<0⇔直线经过二、三、四象限5、对一次函数y=kx+b 的系数k, b 的理解。
(1)k(k ≠0)相同,b 不同时的所有直线平行,即直线l 1:y=k 1x+b 1;直线l 2:y=k 2x+b 2( k 1,k 2均不为零,k 1,b 1,k 2, b 2为常数)k 1=k 2 k 1=k 2l 1∥l 2平行 l 1与l 2重合b 1≠b 2 b 1=b 2(2)k(k ≠0)不同,b 相同时的所有直线恒过y 轴上一定点(0,b ),例如:直线y=2x+3, y=-2x+3, y=21x+3均交于y 轴一点(0,3) 6、直线的平移:所谓平移,就是将一条直线向左、向右(或向上,向下)平行移动,平移得到的直线k 不变,直线沿y 轴平移多少个单位,可由公式︱b 1-b 2︱得到,其中b 1,b 2是两直线与y 轴交点的纵坐标,直线沿x 轴平移多少个单位,可由公式︱x 1-x 2︱求得,其中x 1,x 2是由两直线与x 轴交点的横坐标。
正比例、一次函数笔记
正比例函数、一次函数、反比例函数(一)正比例函数:1、一般形式:y=kx (其中k是比例系数,k≠0)2、图像:是一条经过原点的直线。
3、简单作图:(0,0)、(1,k)4、性质:当k>0时,图像经过一、三象限;y随x的增大而增大;当k<0时,图像经过二、四象限;y随x的减小而减小。
5、特殊的直线:一、三象限的角平分线:y=x;二、四象限的角平分线:y=-x(二)一次函数:1、一般形式:y=kx +b(其中k、b是常数,k≠0)2、图像:当b≠0时,是一条不经过原点的直线,当b=0时,图像是经过原点的直线。
3、直线与坐标轴的交点:与x轴的交点(bk-,0);与y轴的交点(0,b)4、简单作图:(bk-,0)、(0,b)5、k、b的几何意义:k决定直线的倾斜程度:当k>0时,图像从左向右上升;当k<0时,图像从左向右下降。
b是直线与y轴交点的纵坐标:当b>0时,直线与y轴的交点在正半轴;当b<0时,直线与轴的交点在负半轴。
6、性质:(1)当k>0时,图像从左向右上升, y随x的增大而增大;当k<0时,图像从左向右下降, y随x的增大而减小。
(2)当b>0时,直线与y轴的交点在正半轴;当b<0时,直线与y轴的交点在负半轴。
(3)经过的象限:与k、b都有关。
一般根据k、b的几何意义,先确定b对应的大致位置,再确定k对应的倾斜程度,画出大概图像,从而决定经过的象限。
这也是画大致图像的方法。
(三)反比例函数:1、一般形式:y=kx(其中k是常数,k≠0),还有:y=kx-1、xy=k 、x=ky、等。
2、图像:是双曲线。
3、性质:当k>0时,图像位于一、三象限,在每个象限内,y随x的增大而减小;当k<0时,图像位于二、四象限,在每个象限内,y随x的增大而增大。
4、k的几何意义:︱k︱=S矩形或︱k︱=2S△(其中,S矩形指过双曲线上任意一点作x、y轴的垂线,这两条垂线和坐标轴围城的矩形的面积。
而S△是(四)待定系数法具体步骤:1、设。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习资料
正比例函数、一次函数、反比例函数的性质及图象
、一次函数的性质和图象:
概念:一般地,形如y=kx+b(k , b是常数,且k z0 的函数,叫做一次函数。
图像和性质:
①k>0,b>0,则图象过_________________________ 象限
②k>0,b<0,则图象过_________________________ 象限
当k>0时,y随x的增大而__________________________
③k<0,b>0,则图象过______________________ 象限
④k<0,b<0,则图象过______________________ 象限
当k v 0时,y 随x的增大而___________________________________
三、反比例函数性质和图象:
1. ______________________ 定义:形如 (k为常数,k z0的函数称为反比例函数。
其他形式________________________________________________________
2. 图像:反比例函数的图像是双曲线。
反比例函数的图象既是轴对称图形又是中心对称图形。
,在每个象限内y
,在每个象限内y
一、正比例函数性质和图象:
概念:一般地,形如___________ (k是常数,且k z0的函数,叫做正比例函数。
当k>0时,图象过_________________象限;y随x的增大而
_________________________________。
3. _________________________________________________ 性质:当k >0时双曲线的两支分别位于_______________________________________
值随x值的增大而减小。
当k v0时双曲线的两支分别位于____________________
4. |k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
学习资料
练习题
1若y=(m—1)x2样是正比例函数,则
m
的值为(
)
A、1
B、—1
C、1 或—1
D、. 2 或—2
3、下列函数中,反比例函数是()
A 3
B 4
C 12
D 6
y = -~
7、若点A(X1,1)、B(X2,2)、C(X3, —3)在双曲线上上,(
A、X1>X2>X3
B、X1>X3>X2
C、X3>X2>X1
D、X3>X1>X2
ah
8、已知一次函数y=ax+b图象在一、二、三象限,则反比例函数讨=的函数值随x的增大而___________ 。
2、下列函数中,一次函数为(
2 2
A、y B. y x —1
5x 5
)
4 22
C. y -x D . y-X
55
1y
A、y=x+1 B y=C、:
=1
D、3xy=2
6、函数y1=kx和y2=--的图象如图,自变量x的取值范围相同的是(
4、正比例函数y=kx (k丰0)函数值y随x的增大而增大,则y=kx+k的图象大致是(
3
5、直线y -x 4与两坐标轴围成的三角形面积是(。