(完整版)小学六年级数学和差倍问题公式

合集下载

(完整)六年级奥数_和倍、差倍、和差问题

(完整)六年级奥数_和倍、差倍、和差问题

第二十三讲和倍问题【知识概述】:已知两个数的和与它们之间的倍数关系, 求这两个数各是多少的应用题,叫做和倍应用题。

要想顺利解决和倍应用题,最好的方法就是根据题意,画出线段图,使数量关系一目了然,从而正确的列式计 算。

解答和倍应用题的关键是找出两数的和以及与其对应的倍数和。

解答和倍应用题的基本数量关系是: 和+(倍数+ 1)=小数; 小数X 倍数=大数(几倍数)或者:两数和—小数=大数如果遇到三个或三个以上的数的倍数关系,也可用这个公式。

(首先找最小的一个数,再找出另几个数是最小 数的倍数即可)【经典例题】:例1.幼儿园的老师和小朋友共有 81人在做游戏,小朋友们总是跟着自己的老师转,每位 老师身边都有8个小朋友,问:小朋友有多少个?老师有多少人?练习1: 3、学校将360本图书分给二、三年级,已知三年级所 得的本书比二年级的 2倍还多60本,二、三年级各得 图书多少本?例2、甲、乙、丙3数和是183,乙比丙的2倍少4,甲比丙的3倍多7,求甲、乙、丙三数各是多少? 解析:乙数加上4就是丙数的2倍,甲数减少7就是丙数的3倍。

而总数也就应该加上 4,再减去7。

丙数1倍数,乙是2倍数。

甲是3倍数,先求丙。

丙数=(183+4-7 ) -( 1+2+3) =30,乙数=30X2 -4=56 ,甲数=30X 3+7=97。

练习2、1、三堆糖果共有105颗,其中第一堆糖果的数量是5.果园里有桃树、、苹果树共552棵.桃树比梨树的2 倍多12棵,苹果树比梨树少 20棵,求桃树、梨树和 苹果树各有多少棵? (☆☆☆)第二堆的3倍,而第三堆糖果的数量又比第二堆的 2倍少3颗•第三堆糖果有多少颗?2.甲、乙、丙三个粮仓一共存有 109吨粮食.其中甲6.某驻军有三个坦克连,共有 115辆坦克,一连坦克数量比二连的2倍多2,而二连的坦克数量比三连的3倍多1•请问:一连比三连多几辆坦克? (★★★)粮仓的粮食总量比乙粮仓的3倍多1吨,而乙粮仓的粮食总量则是丙粮仓的 2倍•问:甲粮仓比丙粮仓多 存粮多少吨?1、学校有科技书和故事书共 480本科技书的本数是故 事书的3倍,两种书各多少本?2、一个养鸡场有 675只鸡,其中母鸡是公鸡的 4倍, 这个养鸡场有公鸡、母鸡各多少只?4、爸爸要把140张邮票分给弟弟和妹妹,已知弟弟分 得的邮票张数比妹妹的 4倍少10张,弟弟和妹妹各分 得邮票多少张?【重难点例题】:甲组的图书是乙组的 3倍,若乙组给甲组 6本,则甲组的图书是乙组的 5倍,甲组原来有图 书多少本?解析:甲组的图书是乙组的 3倍,若乙组拿出6本,甲组相应的也拿出 6 X 3=18(本),则甲组仍是乙组的 3 倍。

小学奥数和差倍公式实例讲解

小学奥数和差倍公式实例讲解

小学奥数之和差倍问题1.和差问题①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数2.和倍问题和÷(倍数+1)=小数小数×倍数=大数和-小数=大数3.差倍问题差÷(倍数-1)=小数小数×倍数=大数小数+差=大数例1:某粮店购进大米和面粉共24吨,已知大米比面粉多6吨。

这个粮店购进大米和面粉各多少吨?分析: 解和差问题的关键是求得两数的和与差,根据题目得知两数的和是24,两数的差是6解法1:面粉:(24-6)÷2=9(吨)大米:9+6=15(吨)解法2:大米:(24+6)÷2=15(吨)面粉:15-6=9(吨)答:大米15吨,面粉9吨。

例2:甲、乙两个粮库原来共存大米320吨,后来从甲粮库运出40吨,给乙库运进20吨,这时甲库存的大米是乙库的2倍,两个粮库原来各存大米多少吨?分析: 解和倍问题的关键是知道两数的和与倍数,根据题目得知两数的和是320-40+20=300,两数的倍数是2解:300÷(2+1)=100(吨)100x2=200(吨)甲:200+40=240 (吨)乙:100-20=80 (吨)答:甲粮库原来存大米240吨,乙粮库存80吨。

例3:甲、乙二工程队,甲队有56人,乙队有34人。

两队调走同样多人后,甲队人数是乙队人数的3倍。

求调动后两队各有多少人?分析: 因甲、乙队调走的人数相同,并不影响他们二队人数之差,根据题目得知两数的差是56-34=22,两数的倍数是3解:乙:22÷(3-1)=11(人)甲:11x3=33(人)答:调动后甲队有33人,乙队有11人。

和倍差公式

和倍差公式

和倍差公式在咱们学习数学的道路上,有一个特别重要的“小伙伴”,那就是和倍差公式。

这玩意儿就像是一把神奇的钥匙,能帮咱们打开很多数学难题的大门。

我还记得有一次,我去朋友家给他的孩子辅导数学作业。

那孩子正为一道和倍差的题目抓耳挠腮,小脸都皱成了一团。

题目是这样的:“果园里苹果树和梨树一共有 180 棵,苹果树的棵数是梨树的 2 倍,苹果树和梨树各有多少棵?”孩子苦着脸跟我说:“叔叔,我真的不会做,这也太难了。

”我笑着跟他说:“别着急,咱们一起来看看。

”其实啊,解决这种问题,就要用到咱们的和倍差公式啦。

和倍问题的公式是:两数和÷(倍数 +1)=小数,小数×倍数 = 大数。

差倍问题的公式是:两数差÷(倍数 - 1)=小数,小数×倍数 = 大数。

咱们先来看这道和倍的题目。

苹果树和梨树的总数 180 棵就是两数之和,苹果树是梨树的 2 倍,那倍数就是 2,1 就是梨树本身的倍数。

按照公式,先算出梨树的棵数:180÷(2 + 1)= 60(棵),这 60 棵就是梨树的数量。

那苹果树的数量就是 60×2 = 120(棵)。

给孩子讲完这道题,他的眼睛一下子亮了起来,兴奋地说:“原来是这样,叔叔,我懂啦!”和倍差公式在我们的生活中也有很多用处呢。

比如说,咱们去买水果,知道两种水果的总价以及它们价格的倍数关系,就能算出每种水果的价格。

又或者在分配一些物品的时候,知道总数和分配比例,也能轻松搞定。

再比如,有一次我去超市买苹果和香蕉。

苹果的价格是香蕉的3 倍,我一共花了 50 元,买的苹果和香蕉的总重量是 15 斤。

如果假设香蕉的价格是 x 元每斤,重量是 y 斤,那么苹果的价格就是 3x 元每斤,重量就是(15 - y)斤。

根据总价可以列出方程:3x×(15 - y) + xy = 50 。

这里虽然不是直接用和倍差公式,但思路是相通的,都是通过数量关系来建立等式,从而解决问题。

六年级奥数 和倍、差倍、和差问题

六年级奥数 和倍、差倍、和差问题

六年级奥数和倍、差倍、和差问题师友教育六年级奥数第二十三讲:和倍问题和倍问题是指已知两个数的和与它们之间的倍数关系,求这两个数各是多少的应用题。

解决这类问题的最好方法是根据题意画出线段图,使数量关系一目了然,从而正确列式计算。

解答和倍问题的关键是找出两数的和以及与其对应的倍数和。

基本数量关系公式有两种:1.和÷(倍数+1)=小数;小数×倍数=大数(几倍数)2.两数和-小数=大数如果遇到三个或三个以上的数的倍数关系,也可用这个公式。

(首先找最小的一个数,再找出另几个数是最小数的倍数即可)例1.幼儿园的老师和小朋友共有81人在做游戏,小朋友们总是跟着自己的老师转,每位老师身边都有8个小朋友,问:小朋友有多少个?老师有多少人?练1:1.学校有科技书和故事书共480本,科技书的本数是故事书的3倍,两种书各多少本?2.这个养鸡场有公鸡、母鸡各多少只?3.学校将360本图书分给二、三年级,已知三年级所得的本书比二年级的2倍还多60本,二、三年级各得图书多少本?4.得的邮票XXX比妹妹的4倍少10张,弟弟和妹妹各分得邮票多少张?例2.甲、乙、丙3数和是183,乙比丙的2倍少4,甲比丙的3倍多7,求甲、乙、丙三数各是多少?解析:乙数加上4就是丙数的2倍,甲数减少7就是丙数的3倍。

而总数也就应该加上4,再减去7.丙数1倍数,乙是2倍数。

甲是3倍数,先求丙。

丙数=(183+4-7)÷(1+2+3)=30,乙数=30×2-4=56,甲数=30×3+7=97.练2:1.三堆糖果共有105颗,其中第一堆糖果的数量是第二堆的3倍,而第三堆糖果的数量又比第二堆的2倍少3颗。

第三堆糖果有多少颗?2.甲、乙、丙三个粮仓一共存有109吨粮食,其中甲粮仓的粮食总量比乙粮仓的3倍多1吨,而乙粮仓的粮食总量则是丙粮仓的2倍。

问:甲粮仓比丙粮仓多存粮多少吨?3.得的邮票XXX比妹妹的4倍少10张,弟弟和妹妹各分得邮票多少张?4.学校将360本图书分给二、三年级,已知三年级所得的本书比二年级的2倍还多60本,二、三年级各得图书多少本?5.果园里有桃树、梨树、苹果树共552棵。

小学数学知识点-和差、和倍与差倍问题详解

小学数学知识点-和差、和倍与差倍问题详解

小学数学知识点:和差、和倍与差倍问题详解(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!小学数学知识点:和差、和倍与差倍问题详解今天本店铺给大家带来小学数学知识点:和差、和倍与差倍问题详解,希望可以帮助到大家。

六年级奥数-和倍、差倍、和差问题

六年级奥数-和倍、差倍、和差问题

第一类:和倍问题练习题公式:和÷(倍数+1)=较小数,如果遇到三个以上的数的倍数关系,也可用这个公式。

(首先找最小的一个数,再找出另几个数是最小数的倍数即可)【经典例题】:例1.幼儿园的老师和小朋友共有81人在做游戏,小朋友们总是跟着自己的老师转,每位老师身边都有8个小朋友,问:小朋友有多少个?老师有多少人?练习1:1、学校有科技书和故事书共480本科技书的本数是故事书的3倍,两种书各多少本?2、一个养鸡场有675只鸡,其中母鸡是公鸡的4倍,这个养鸡场有公鸡、母鸡各多少只?3、学校将360本图书分给二、三年级,已知三年级所得的本书比二年级的2倍还多60本,二、三年级各得图书多少本?4、爸爸要把140张邮票分给弟弟和妹妹,已知弟弟分得的邮票张数比妹妹的4倍少10张,弟弟和妹妹各分得邮票多少张?例2、甲、乙、丙3数和是183,乙比丙的2倍少4,甲比丙的3倍多7,求甲、乙、丙三数各是多少?练习2、1、三堆糖果共有105颗,其中第一堆糖果的数量是第二堆的3倍,而第三堆糖果的数量又比第二堆的2倍少3颗.第三堆糖果有多少颗?2. 甲、乙、丙三个粮仓一共存有109吨粮食.其中甲粮仓的粮食总量比乙粮仓的3倍多1吨,而乙粮仓的粮食总量则是丙粮仓的2倍.问:甲粮仓比丙粮仓多存粮多少吨?5.果园里有桃树、梨树、苹果树共552棵.桃树比梨树的2倍多12棵,苹果树比梨树少20棵,求桃树、梨树和苹果树各有多少棵?(☆☆☆)6.某驻军有三个坦克连,共有115辆坦克,一连坦克数量比二连的2倍多2,而二连的坦克数量比三连的3倍多1.请问:一连比三连多几辆坦克?(★★★)【重难点例题】:甲组的图书是乙组的3倍,若乙组给甲组6本,则甲组的图书是乙组的5倍,甲组原来有图书多少本?练习1.小明原来的画片是小红的3倍,后来二人各买了5张,这样,小明的画片就是小红的2倍。

二人原来各有多少张画片?2.幼儿园买来的苹果个数是梨的3倍,吃掉10个梨和6个苹果后,剩下苹果正好是梨的5倍。

六年级奥数-和倍、差倍、和差问题

六年级奥数-和倍、差倍、和差问题
4、甲书架有图书18本,乙书架有图书8本,班级图书管理员又买来图书16本,怎样分配才能使甲书架图书的本书是乙书架的2倍?
5、某专业户养鸡、鸭、鹅共有960只,养鸡的只数是鹅的3倍,养鸭的只数是鹅的4倍。这个专业户养鸡、鸭、鹅各多少只?
6、甲、乙、丙三个数之和是400,又知甲是乙的3倍,丙是甲的4倍。求这三个数。
例2、甲、乙、丙3数和是183,乙比丙的2倍少4,甲比丙的3倍多7,求甲、乙、丙三数各是多少?
练习2、
1、三堆糖果共有105颗,其中第一堆糖果的数量是第二堆的3倍,而第三堆糖果的数量又比第二堆的2倍少3颗.第三堆糖果有多少颗?
2.甲、乙、丙三个粮仓一共存有109吨粮食.其中甲粮仓的粮食总量比乙粮仓的3倍多1吨,而乙粮仓的粮食总量则是丙粮仓的2倍.问:甲粮仓比丙粮仓多存粮多少吨?
2、菜场运来的西红柿是黄瓜的3倍,卖出西红柿950千克,黄瓜120千克后,剩下的两种蔬菜重量相等,菜场运来西红柿和黄瓜各多少千克?
3、两袋盐的重量相等,甲袋取出24千克,乙袋装入28千克,这时乙袋的重量是甲袋的3倍,甲乙两袋原来各有盐多少千克?
4、甲、乙两数的和是112.甲数除以乙数的商是6,甲、乙两数各是多少?
11、被除数、除数与商的和是79,已知商是4。被除数和除数各是多少?
12、两数相除商是5,没有余数,已知被除数、除数与商的和是59。被除数和除数各是多少?
第二类:和差问题练习题
公式:(和-差)÷2=较小数(和+差)÷2=较大数
例1、王师傅一天生产的零件比他的徒弟一天生产的零件多128个,且是徒弟的3倍。师徒二人一天各生产多少个零件?
7、三块钢板共重621千克,第一块的重量是第二块的3倍,第二块的重量是第三块的2倍。三块钢板各是多少千克?

532 和差倍问题(学生版)

532 和差倍问题(学生版)

学科培优数学和差倍问题学生姓名授课日期教师姓名授课时长知识定位在各种杯赛中和差倍问题一直是命题者的“家常菜”。

此类题型有基本的公式,相对比较容易得分,所以,学生应该扎实的掌握。

知识梳理1.“差倍问题”就是已知两个数的差和它们的倍数关系,求这两个数。

“和差问题”是已知大小两个数的和与两个数的差,求这两个数“和倍问题”是已知大小两个数的和与它们的倍数关系,求这两个数2.差倍问题基本公式:差÷倍数的差=1倍数(较小数)1倍数×几倍=几倍的数(较大的数)或:较小的数+差=较大的数。

和倍问题基本公式:小数=和÷(倍数+1)大数=和-小数(或者:大数=小数×倍数)和差问题基本公式:大数=(和+差)÷2小数=(和-差)÷2(或者:小数=大数-差,小数=和-大数)3.重点难点解析(1).如何画线段图(2).根据线段图,如何找出等量关4.竞赛考点挖掘(1).结合其他知识点出题(2).出现在3、4年级的题目例题精讲【试题来源】【题目】姐姐做自然练习比妹妹做算术练习多用48分钟,比妹妹做英语练习多用42分钟,妹妹做算术、英语两门练习共用了44分钟,那么妹妹做英语练习用了多少分钟?【试题来源】【题目】用中国象棋的车、马、炮分别表示不同的自然数。

如果,车÷马=2,炮÷车=4,炮-马=56,那么“车+马+炮”等于多少?【试题来源】【题目】两组学生参加义务劳动,甲组学生人数是乙组的3倍,而乙组的学生人数比甲组的3倍少40人,求参加义务劳动的学生共有多少人?【试题来源】【题目】今年小强7岁,爸爸35岁,当两人年龄和是58岁时,两人年龄各多少岁?【试题来源】【题目】甲、乙、丙三所小学的学生人数的总和为1999。

已知甲校学生人数的2倍和乙校学生人数减去3人与丙校学生人数加上4人都相等。

问甲、乙、丙各校学生人数是多少?【试题来源】【题目】某镇上有东西两个公交车站,东站有客车84辆,西站有客车56辆,每天从东站到西站有7辆车,从西站到东站有11辆车,几天后,东站车辆是西站的4倍?【试题来源】【题目】实验一小、实验二小两校共有学生2346人,如果实验一小增加146人,实验二小减少88人,两校的学生人数就相等,你知道两校实际各有多少人吗?【试题来源】【题目】甲乙丙三个数的和是360,已知甲是乙的3倍,乙是丙的2倍,求甲乙丙三个数各是多少?【试题来源】【题目】549是甲、乙、丙、丁4个数的和.如果甲数加上2,乙数减少2,丙数乘以2,丁数除以2以后,则4个数相等.求4个数各是多少?【试题来源】【题目】学而思学校买来白粉笔比彩色粉笔多15箱,白粉笔的箱数比彩色笔的4倍少3箱,学校买来白粉笔和彩色粉笔各多少箱?【试题来源】【题目】小新家有大小两个书架,大书架上的书的本数是小书架的3倍,如果从大书架上取走150本放到小书架上,那么两个书架上的书一样多,大小书架上原来各有多少本书?【试题来源】【题目】有100块糖,分给甲乙丙三位小朋友,甲比乙多分了3块,乙比丙多分了5块,三位小朋友各分得多少块糖?【试题来源】【题目】中关村一小三、四年级的同学们一共制作了318件航模,四年级同学制作的航模件数是三年级的2倍,三、四年级的同学各制作了多少件航模?【试题来源】【题目】学而思学校图书馆书架上下两层放着一批书,如果上层少放8本,上下两层的本书就一样多,如果下层少放8本,上层的书就是下层的2倍,问书架上下两层各有多少本书?【试题来源】【题目】我国自行设计施工的现代化桥梁——南京长江大桥共分两层,上层是公路桥,下层是铁路桥,铁路桥和公路桥共长11270米,铁路桥比公路桥长2270米.南京长江大桥的公路桥、铁路桥各长多少米【试题来源】【题目】两缸金鱼共46尾,若甲缸再放入5尾,乙缸取出2尾,这时乙缸仍比甲缸多3尾,甲、乙两缸原有金鱼多少尾?【试题来源】【题目】下面有三道加法题,当正方形、三角形、圆形各代表什么数时,才能使下面的等式成立?□+□+△+〇=16 ①□+△+△+〇=13 ②□+△+〇+〇=11 ③【试题来源】【题目】有1元和5元的人民币共17张,合计49元,两种面值的人民币各有多少张?【试题来源】【题目】有两盘苹果,如果从第一盘中拿2个放到第二个盘里,那么两盘的苹果数相同(条件A);如果从第二个盘中拿2个放到第一盘里,那么第一盘的苹果数是第二盘的2倍(条件B).第一盘有苹果多少个?【试题来源】【题目】小红家养了一些鸡,黄鸡比黑鸡多13只,比白鸡少18只.白鸡的只数是黄鸡的2倍,白鸡、黄鸡、黑鸡一共有多少只?习题演练【试题来源】【题目】三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。

小学数学“和差问题、和倍问题、差倍问题、 倍比问题”总结+解题思路+例题整理(经典应用题2收藏!)

小学数学“和差问题、和倍问题、差倍问题、 倍比问题”总结+解题思路+例题整理(经典应用题2收藏!)

小学数学“和差问题、和倍问题、差倍问题、倍比问题”总结+解题思路+例题整理一、和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解:甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。

例2长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。

长=(18+2)÷2=10(厘米)宽=(18-2)÷2=8(厘米)长方形的面积=10×8=80(平方厘米)答:长方形的面积为80平方厘米。

例3有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。

解:甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。

由此可知甲袋化肥重量=(22+2)÷2=12(千克)丙袋化肥重量=(22-2)÷2=10(千克)乙袋化肥重量=32-12=20(千克)答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。

例4甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?“从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此甲车筐数=(97+14×2+3)÷2=64(筐)乙车筐数=97-64=33(筐)答:甲车原来装苹果64筐,乙车原来装苹果33筐。

二、和倍问题【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。

小升初奥数第十六讲 、和倍、差倍、和差问题

小升初奥数第十六讲 、和倍、差倍、和差问题

第十六讲和倍、差倍、和差问题【知识概述】差倍问题:已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。

基本公式差÷(倍数-1)=较小的数较小的数×倍数=较大的数和倍问题:已知几个数的和与这几个数之间的倍数关系求这几个数的应用题。

基本公式和÷(倍数+1)=较小数(一倍数)较小数×倍数=较大数或:和-较小数=较大数。

和差问题:已知两个数的和与差,反过来求这两个数。

基本公式(和+差)÷2 = 较大的数(和-差)÷2 = 较小的数温馨提示:为了帮助我们理解题意,弄清两种量彼此间的关系,常采用画线段图的方法来表示几种量间的这种关系,以便于找到解题的途径。

【典型例题】例1 甲班和乙班共有图书160本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?【学大名师】设乙班的图书本数为1份,那么甲班图书是乙班的3倍,甲班和乙班图书本数的和是乙班图书本数的4倍.还可以理解为4份的数量是160本,求出1份的数量也就求出了乙班的图书本数,然后再求甲班的图书本数.用下图表示它们的关系:解:乙班:160÷(3+1)=40(本)甲班:40×3=120(本)答:甲班有图书120本,乙班有图书40本。

例2 师傅和徒弟共生产零件190个,师傅生产的个数比徒弟的3倍少10个,师、徒各生产多少个?【学大名师】由上图可知,如果师傅再多做10个,就正好是徒弟的3倍.如果把徒弟做的个数作为1倍,师傅是徒弟的3倍,所以190+10=200(个)相当于徒弟的1+3=4(倍),这样就可以求出徒弟做的个数,也就可以求出师傅做的个数。

解:190+10=200(个)1+3=4(倍)200÷4=50(个) 50×3-10=140(个)答:徒弟做50个,师傅做140个。

.例3 妹妹有课外书20本,姐姐有课外书25本,姐姐给妹妹多少本后,妹妹课外书是姐姐的2倍?【学大名师】由上图可知,不论姐姐给妹妹多少本,他们课外书的总数是不变的.如果把这些书分给姐姐和妹妹,使她们满足“妹妹课外书是姐姐的2倍”这样的关系,我们很快可以求出姐姐和妹妹现在的本数。

小学和差问题的公式

小学和差问题的公式

小学和差问题的公式(和+差)÷2=大数(和-差)÷2=小数植树问题1、非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2、封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数小学相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间小学和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数或小数+差=大数小学盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数小学追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间小学流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度.静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2小学浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量小学利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)小学数学图形计算公式正方形:周长=边长×4 C =4a面积=边长×边长 S=a×a正方体:体积=棱长×棱长×棱长 V=a3表面积=棱长×棱长×6 S =a×a×6长方形: 周长= (长+宽)×2 C=2(a+b)面积=长×宽 S=ab长方体: 体积=长×宽×高 V=abh.表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)三角形:面积=底×高÷2 S=ah÷2三角形的高=面积×2÷底三角形的底=面积×2÷高平行四边形:面积=底×高 S=ah梯形:面积=(上底+下底)×高÷2 S=(a+b)× h÷2圆形:周长=直径×∏或2×∏×半径 C=∏d或2∏r面积=半径×半径×∏ S=∏r2圆柱体:侧面积=底面周长×高表面积=侧面积+底面积×2体积=底面积×高 V=sh圆锥体:体积=底面积×高÷3小学数学公式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数.9、被除数÷除数=商被除数÷商=除数商×除数=被除数10、总数÷总份数=平均数。

小学奥数和差、和倍、差倍问题

小学奥数和差、和倍、差倍问题


7×2+2=16(千克)
• (2)第一筐西瓜质量:
• (80+16)÷2=48(千克)
• (3)第二筐西瓜的质量:

80-48=32(千克)
• (4)综合算式:

(80+7×2+2) ÷2=48(千克)(第一筐)

80-48=32(千克)
让奥数成为你们的朋友-Gill

练一练
• (1)A.B两袋有水果糖共200颗,如果从A 袋中取10颗放到B袋,这时A袋比B袋还多8 颗。求A.B两袋原来各有多少颗水果糖?
• 3,水果店运进苹果和梨共72筐,如果卖出12筐 苹果后,苹果的筐数就是梨的4倍。水果店运进 苹果和梨各多少筐?
为美化校园,学校 买来松树、柏树和樟树共250棵, 松树的棵树比柏树的2倍多3棵,樟树比柏树少5棵。 求学校买回松树、柏树、樟树各多少棵?
• 思路导航: 根据条件“松树的棵树比柏树 的2倍多3棵,樟树比柏树少5棵”,可知 都是同柏树相比较,以柏树的棵树为标准, 作为1份数额解答。已知三种数的总数是 250棵,如果给樟树增加5棵,那么樟树 就和柏树同样多了;再从松树里减少3棵, 那么松树的棵树就相当于柏树的2倍,而 总棵树变为250+5-3=252棵,相当于柏 树的4倍。
和差倍问题
和差问题
方法教学: 让解题过程变得清晰可见。
已知大小两个数的和及它们的差, 求这两个数 各是多少, 这类问题我们称为和差问题。 解答和差问题通常用假设法, 同时结合线段图 进行分析。可以假设小数增加到与大数同样多, 先求大数, 再求小数;也可以假设大数减少到 与小数同样多, 先求小数, 再求大数。
解: 甲筐: (140+10×2)÷2=80个

六年级下册数学素材应用题常用公式大全|通用版

六年级下册数学素材应用题常用公式大全|通用版

小学数学应用题常用公式大全1、【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。

2、【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。

3、【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。

4、【平均数问题公式】总数量÷总份数=平均数。

5、【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。

6、【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。

这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。

7、【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。

8、【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。

9、【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。

(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。

(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。

10、【工程问题公式】(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。

小升初数学复习知识点:和差倍问题公式

小升初数学复习知识点:和差倍问题公式
分析:两根绳 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。列式 ( 63-29 )÷( 3-1 ) =17 (米)…乙绳剩下的长度, 17 × 3=51 (米)…甲绳剩下的长度, 29-17=12 (米)…剪 去的长度。
小升初数学复习知识点:和差倍问题公式
解题规律:两个数的差÷(倍数-1 )= 标准数 标准数×倍数=另一个数。
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。“教授”和“助教”均原为学官称谓。前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。例:甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?

差倍问题的公式

差倍问题的公式

小学阶段的全部数学公式1每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2 1 倍数×倍数=几倍数几倍数÷1 倍数=倍数几倍数÷倍数= 1 倍数3速度×时间=行程行程÷速度=时间行程÷时间=速度4单价×数目=总价总价÷单价=数目总价÷数目=单价5工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6加数+加数=和和-一个加数=另一个加数7被减数-减数=差被减数-差=减数差+减数=被减数8因数×因数=积积÷一个因数=另一个因数9被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1正方形C周长 S 面积 a 边长周长=边长× 4C=4a面积 =边长×边长S=a×a2正方体V:体积 a: 棱长表面积 =棱长×棱长× 6S 表=a×a×6体积 =棱长×棱长×棱长V=a×a×a3长方形C周长 S 面积 a 边长周长 =( 长+宽) ×2C=2(a+b)面积 =长×宽S=ab4长方体(1)表面积 ( 长×宽 +长×高 +宽×高 )×2 S=2(ab+ah+bh)(2)体积 =长×宽×高V=abh5三角形s 面积 a 底 h 高面积 =底×高÷ 2s=ah÷2三角形高 =面积×2÷底三角形底 =面积×2÷高6平行四边形s 面积 a 底 h 高面积 =底×高s=ah7梯形s 面积 a 上底 b 下底 h 高面积 =( 上底 +下底 ) ×高÷ 2s=(a+b) × h ÷28圆形(1)周长 =直径×∏ =2×∏×半径C=∏d=2∏r(2)面积 =半径×半径×∏ 9 圆柱体v: 体积 h: 高 s; 底面积 r: 底面半径 c: 底面周长(1)侧面积 =底面周长×高(2)表面积 =侧面积 +底面积× 2(3)体积 =底面积×高(4)体积=侧面积÷ 2×半径10 圆锥体v:体积 h: 高 s; 底面积 r: 底面半径体积 =底面积×高÷ 3总数÷总份数=均匀数和差问题的公式( 和+差 ) ÷2=大数( 和-差 ) ÷2=小数和倍问题和÷ ( 倍数 +1) =小数小数×倍数=大数( 或许和-小数=大数 )差倍问题差÷ ( 倍数- 1) =小数小数×倍数=大数( 或小数+差=大数 ) 小学奥数公式和差问题的公式( 和+差 ) ÷2=大数 ( 和-差 ) ÷2=小数和倍问题的公式和÷ ( 倍数- 1) =小数小数×倍数=大数( 或许和-小数=大数 )差倍问题的公式差÷ ( 倍数- 1) =小数小数×倍数=大数( 或小数+差=大数 )植树问题的公式1 非关闭线路上的植树问题主要可分为以下三种情况:⑴假如在非关闭线路的两头都要植树, 那么:株数=段数+ 1=全长÷株距- 1全长=株距× ( 株数- 1)株距=全长÷ ( 株数- 1)⑵假如在非关闭线路的一端要植树, 另一端不要植树 , 那么 :株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶假如在非关闭线路的两头都不要植树,那么:株数=段数- 1=全长÷株距- 1全长=株距× ( 株数+ 1)株距=全长÷ ( 株数+ 1)2关闭线路上的植树问题的数目关系以下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题的公式( 盈+亏 ) ÷两次分派量之差=参加分派的份数( 大盈-小盈) ÷两次分派量之差=参加分派的份数( 大亏-小亏 ) ÷两次分派量之差=参加分派的份数相遇问题的公式相遇行程=速度和×相遇时间相遇时间=相遇行程÷速度和速度和=相遇行程÷相遇时间追及问题的公式追及距离=速度差×追实时间追实时间=追及距离÷速度差速度差=追及距离÷追实时间流水问题顺水速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度= ( 顺水速度+逆流速度 ) ÷2水流速度= ( 顺水速度-逆流速度 ) ÷2浓度问题的公式溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量收益与折扣问题的公式收益=售出价-成本收益率=收益÷成本×100%=( 售出价÷成本-1) ×100% 涨跌金额=本金×涨跌百分比折扣=实质售价÷原售价×100%(折扣< 1)利息=本金×利率×时间税后利息=本金×利率×时间×(1 - 20%)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【小学六年级数学和差倍问题公式】
和差问题的公式
(和+差)÷2=大数(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)
差倍问题
差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数) 小学奥数公式
和差问题的公式
(和+差)÷2=大数(和-差)÷2=小数
和倍问题的公式
和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)
差倍问题的公式
差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)
和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数)差倍问题
差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数) 和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题的公式
和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数)差倍问题的公式
差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数)。

相关文档
最新文档