3个品种鸭肉排酸成熟后的氨基酸组成比较及评价_谢程炜

3个品种鸭肉排酸成熟后的氨基酸组成比较及评价_谢程炜
3个品种鸭肉排酸成熟后的氨基酸组成比较及评价_谢程炜

氨基酸与水杨醛合成一种手性希夫碱

手性希夫碱的实验合成及理论分析 【摘要】在乙醇溶液和常温条件下,直接缩合水杨醛和氨基乙酸合成了一种手性希夫碱对它进行了抽滤提纯并计算了及其产率,用了显微熔点测定仪测定熔点。 【关键词】氨基酸水杨醛手性希夫碱 1前言 希夫碱是指由含有醛基和氨基的两类物质通过缩水形成含亚胺基(-CH=N-)或甲亚胺基(-RC=N-)的一类有机化合物, 它的基本结构中含有(>C=N-), 是H.Schiff在1864年首先发现的。其杂化轨道上的氮原子上的孤对电子使得希夫碱配体具有极大的灵活性和良好的配位能力, 因而希夫碱金属配合物的研究一直受到广泛的重视。由于氨基酸Schiff碱合成相对容易, 能够选择多种胺类及带有羰基的不同醛和酮进行反应, 其特点是能够灵活地选择反应物,改变取代基给予体原子本性及其位置,可合成许多链状、环合且性能、结构不同的配体。自从六十年代末人们发现过渡金属希夫碱配合物具有生物活性以来,这个领域的研究逐渐活跃起来。希夫碱不仅可以和过渡元素形成配合物,和镧系、锕系及部分主族金属元素也能形成稳定的配合物,此外还有如Zr、Mo、Ru、Ir等贵金属。这些配合物在分析化学、立体化学、电化学、光谱学、分子自组装、超分子化学、生物化学模型系统、催化、材料、核化学化工等学科领域均具有重要意义。 近年来,对手性希夫碱配合物的研究日趋广泛,它的金属配位化合物在生物医药方面由于某些希夫碱具有特殊的生理活性,越来越引起医药界的重视。据报道,氨基酸类、缩氨脲类、缩胺类、杂环类、腙类希夫碱及其应用的配合物具有抑菌、杀菌、抗肿瘤、抗病毒等独特药用效果;催化方面希夫碱及其配合物在催化领域的应用也很广泛,概括而言,希夫碱做催化剂主要是应用于聚合反应,不对称催化环丙烷化反应以及烯烃催化氧化方面和电催化领域。分析化学方面许多希夫碱用来检测、鉴别金属离子,并可借助色谱分析、荧光分析、光度分析等手段达到对某些离子的定量分析;腐蚀方面长期以来,许多金属及其合金在工业、军事、民用等各个领域得到了广泛的应用,但是该金属及其合金在大气中、海水中很不稳定,因此研究寻找有效的缓蚀剂,引起了众多科学家的重视。希夫碱(尤其是一些芳香族的希夫碱)由于含有C=N双键,再加上含有的-OH极易与铜形成稳定的络合物,从而阻止了金属的腐蚀;光致变色方面许多共轭聚合物主链可视为扩展到生色团,它们表现出似燃料的光物理性质,如光致变色、光电导。 N-亚水杨基氨基酸希夫(Schiff) 碱配合物可以作为研究维生素B6酶反应的模型化合物, 具有催化氨基转移和外消旋作用[ 1~3], 并具有良好的抗癌、抗菌活性[ 4, 5], 因此受到化学家注意并引起人们的极大兴趣。通过对它们性质的认识有助于揭示维生素B6酶结构上的特点, 加深对其催化氨基转移机理的理解。因此,本文重述设计了L-亮氨酸与水杨醛反应合成一种手性希夫碱,其反应式: HO 甲醇 + HOC

氨基酸

氨基酸 氨基酸定义 氨基酸(amino acids):含有氨基和羧基的一类有机化合物的通称。生物功能大分子蛋白质的基本组成单位,是构成动物营养所需蛋白质的基本物质。是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在α-碳上。 氨基酸的结构通式:构成蛋白质的氨基酸都是一类含有羧基并在与羧基相连的碳原子下连有氨基的有机化合物,目前自然界中尚未发现蛋白质中有氨基和羧基不连在同一个碳原子上的氨基酸。 氨基酸分类 天然的氨基酸现已经发现的有300多种,其中人体所需的氨基酸约有22种,分非必需氨基酸和必需氨基酸(人体无法自身合成)。另有酸性、碱性、中性、杂环分类,是根据其化学性质分类的。 1、必需氨基酸(essential amino acid):指人体(或其它脊椎动物)不能合成或合成速度远不适应机体的需要,必需由食物蛋白供给,这些氨基酸称为必需氨基酸。共有8种其作用分别是: ①赖氨酸(Lysine ):促进大脑发育,是肝及胆的组成成分,能促进脂肪代谢,调节松果腺、乳腺、黄体及卵巢,防止细胞退化; ②色氨酸(Tryptophane):促进胃液及胰液的产生; ③苯丙氨酸(Phenylalanine):参与消除肾及膀胱功能的损耗; ④蛋氨酸(又叫甲硫氨酸)(Methionine);参与组成血红蛋白、组织与血清,有促进脾脏、胰脏及淋巴的功能; ⑤苏氨酸(Threonine):有转变某些氨基酸达到平衡的功能; ⑥异亮氨酸(Isoleucine ):参与胸腺、脾脏及脑下腺的调节以及代谢;脑下腺属总司令部作用于甲状腺、性腺; ⑦亮氨酸(Leucine ):作用平衡异亮氨酸; ⑧缬氨酸(Viline):作用于黄体、乳腺及卵巢。 其理化特性大致有: 1)都是无色结晶。熔点约在230°C以上,大多没有确切的熔点,熔融时分解并放出CO2;都能溶于强酸和强碱溶液中,除胱氨酸、酪氨酸、二碘甲状腺素外,均溶于水;除脯氨酸和羟脯氨酸外,均难溶于乙醇和乙醚。 2)有碱性[二元氨基一元羧酸,例如赖氨酸(lysine)];酸性[一元氨基二元羧酸,例如谷氨酸(Glutamic acid)];中性[一元氨基一元羧酸,例如丙氨酸(Alanine)]

生物化学复习参考

远程教育生物化学复习参考 一、多选题A型(每题1分,总计30分) 1、属于酸性氨基酸的是 A. Lys B. Asn C. Gln D. Glu E. Cys 2、下列哪种氨基酸代谢产生SAM A. 色氨酸 B. 苏氨酸 C. 苯丙氨酸 D. 蛋氨酸 E. 脯氨酸 3、维持蛋白质分子中α-螺旋稳定的化学键是 A.肽键 B.疏水键 C.氢键 D.二硫键 E.离子键 4、下列哪个氨基酸不是 ..L-α-氨基酸 A. Gly B. Ala C. Val D. Leu E. Asp 5、酪氨酸tRNA的反密码子是5′-GUA-3′,它能辨认mRNA上的相应密码子是A. GUA B. AUG C. UAC D. GTA E. TAC 6、DNA变性后理化性质改变正确的是 A.溶液粘度不变 B.是循序渐进的过程 C.形成三股链螺旋 D. 260nm波长处的光吸收增高 E.正旋光性增高 7、DNA的Tm值描述正确的是 A.只与DNA链的长短有直接关系 B.与G-C碱基对含量成正比 C.与A-T碱基对含量成正比 D.与碱基组成无关 E.所有真核生物Tm都一样

8、DNA上的外显子是 A.不被转录的序列 B.被转录但不被翻译的序列 C.被转录也被翻译的序列 D.调节基因序列 E.以上都不对 9、下列关于DNA复制的叙述错误 ..的是 A.有DNA指导的RNA聚合酶参加 B.有RNA指导的DNA聚合酶参加 C.为半保留复制 D.以四种dNTP为原料 E.有DNA连接酶参加 10、真核生物DNA复制中催化前导链合成的酶是A. polⅠ B. polα C. polβ D. polγ E. polδ 11、原核生物的RNA聚合酶的核心酶组成是A.α2ββ′σ B.α2ββ′ C.α2β′σ D.αββ′ E.α2βσ 12、可使原核生物转录过程终止的是 A. ρ因子 B. 核心酶 C. σ因子 D. 全酶 E. α亚基 13、原核生物辨认转录起始点的是 A.α亚基 B.β亚基 C.β′亚基 D.σ亚基 E.α2ββ′ 14、关于密码子的正确描述是 A.密码子中可以有稀有碱基 B.密码子中任何碱基的突变都会影响翻译C.每个密码子都对应一种氨基酸 D.多种氨基酸都有两个以上的密码 E.不同生物的密码子是不同的 15、蛋白质分子中没有遗传密码的氨基酸是A.丝氨酸

必需氨基酸

必需氨基酸 蛋白质(protein)是生命的物质基础,没有蛋白质就没有生命。因此,它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的16%~20%,即一个60kg重的成年人其体内约有蛋白质9.6~12kg。人体内蛋白质的种类很多,性质、功能各异,但都是由20多种氨基酸按不同比例组合而成的,并在体内不断进行代谢与更新。 蛋白质在胃液消化酶的作用下,初步水解,在小肠中完成整个消化吸收过程。氨基酸的吸收通过小肠黏膜细胞,是由主动运转系统进行,分别转运中性、酸性和碱性氨基酸。在肠内被消化吸收的蛋白质,不仅来自于食物,也有肠黏膜细胞脱落和消化液的分泌等,每天有70g左右蛋白质进入消化系统,其中大部分被消化和重吸收。未被吸收的蛋白质由粪便排出体外。 必需氨基酸,是指只存在食物中,动物无法合成,只能由食物中摄取,则这些氨基酸被称为必需氨基酸。动物需摄取必需氨基酸以制造蛋白质。 人体无法合成的九种氨基酸包括: 1.苯丙胺酸(Phenylalanine) 2.缬胺酸(Valine) 3.苏胺酸(Threonine) 4.色胺酸(Tryptophan) 5.异亮氨酸(Isoleucine) 6.亮氨酸(Leucine) 7.甲硫胺酸(Methionine) 8.赖氨酸(Lysine) 注:首行括号内的文字为相应项目的测定者或测定机构的名称。数据来源: 苯丙氨酸(Phenylalanine,简称Phe或F),是二十种常见氨基酸的一种,化学式为:HO2CCH(NH2)CH2C6H5。 苯丙氨酸可被转换成另外一种DNA编码氨基酸 L-酪氨酸,接着会被转换为多巴胺、去甲肾上腺素和肾上腺素,这3种物质都属于儿茶酚胺。 作用:苯丙氨酸与色氨酸使用相同的主动转运通道来穿过血脑屏障,并在大剂量的情况下阻止血清张力素的产生。

氨基酸总结

氨基酸的分类及其结构

甘氨酸:无手性C 颉氨酸、亮氨酸、异亮氨酸、甲硫氨酸:大脂肪侧链 脯氨酸:唯一成环氨基酸,氨基酸的侧链既与α-碳原子结合又与α-氨基N-原子结合,缺少H-bond donor,无法形成α螺旋结构 苯丙氨酸:侧链有芳香环,疏水氨基酸 络氨酸:酪氨酸的芳香环有一个羟基。与其他氨基酸侧链呈化学惰性相比,酪氨酸的羟基有化学反应性,疏水性弱。 色氨酸:吲哚基团替代丙氨酸侧链的氢原子。吲哚基团有的两个环融合在一起,一个环有NH基团。有NH故疏水性弱。 丝氨酸:侧链有极性但不带电荷。侧链有羟基与脂肪链相连。亲水,其反应活性比丙氨酸和颉氨酸大得多。 苏氨酸:侧链有极性但不带电荷。侧链有羟基与脂肪链相连。亲水,其反应活性比丙氨酸和颉氨酸大得多。有第二个不对称碳原子,但蛋白质的苏氨酸只有一种构型。 天冬酰胺、谷氨酰胺:极性但不带电荷。含酰胺的极性氨基酸 半胱氨酸:极性不带电。结构上类似苏氨酸,但是用巯基替代了羟基。巯基比羟基活泼。一对巯基靠近可以形成二硫键,稳定蛋白质的结构。 赖氨酸:带电荷的氨基酸,高度亲水,侧链长,末端是氨基,在中性pH时侧链末端带正电荷。 精氨酸:带电荷,高度亲水,侧链长,末端是胍基,在中性pH时侧链末端带正电荷。 组氨酸:带电荷,高度亲水,侧链含有咪唑基,咪唑基是芳香环,也能被质子化后带正电荷。咪唑的pKa值接近于6,在中性pH附近的溶液中咪唑基既可以质子化也可以不带电荷,实际情况取决于咪唑基团所在的局部环境。组氨酸常在酶的活性中心。在酶促反应中咪唑环既可以结合质子,有可以释放质子。 天冬氨酸:酸性氨酸。常被称为天冬氨酸盐,主要是强调在生理pH溶液中侧链基团解离,因此带负电荷。在有些蛋白质中这两种氨基酸的作用是接受质子,对蛋白质功能起重要作用。 谷氨酸:酸性氨酸。常被称为谷氨酸盐,主要是强调在生理pH溶液中侧链基团解离,因此带负电荷。在有些蛋白质中这两种氨基酸的作用是接受质子,对蛋白质功能起重要作用。 天津理工大学化学化工学院XJC编辑

人体必需氨基酸

人体必需氨基酸 https://www.360docs.net/doc/3916142348.html, 2006-8-10 10:25:54 来源:生命经纬 参与蛋白质结构的20种氨基酸,在营养学中一般将它们划分为两类,称为必需氨基酸和非必需氨基酸。 必需氨基酸是指人体需要,但自身不能合成,或合成量不能满足机体需要,必须由食物蛋白质供给,否则就不能维持机体氮平衡的氨基酸。通常认为人体必需氨基酸有八种,它们是赖氨酸(Lysine, Lys)、蛋氨酸(Methionine, Met)、亮氨酸(Leucine, Leu)、异亮氨酸(Isoleucine, Ile)、缬氨酸(Valine, Val)、苯丙氨酸(Phenylalanine, Phe)、苏氨酸(Threonine, Thr)和色氨酸(Tryptophan, Try)。近年来认识到,对婴儿讲来,组氨酸(Histidine, His)属于必需氨基酸;有资料证明,对成年人组氨酸亦属必需氨基酸。 非必需氨基酸,这个名称不精确,只是相对于必需氨基酸而言,并非机体不需要,它们也为机体需要,并且必须以某种形式提供;其特点是机体自身能合成,或可由其他氨基酸转化而来,且一般食物蛋白质中含量丰富,一般不会出现供给匮乏的情形。非必需氨基酸包括甘氨酸(Glycine, Gly)、丙氨酸(Alanine, Ala)、丝氨酸(Serine,Ser )、半胱氨酸(Cysteine, Cys)、门冬氨酸(Aspartic acid, Asp)、门冬酰胺(Asparagine, Asn)、酪氨酸(Tyrosine, Tyr)、精氨酸(Arginine, Arg)、脯氨酸(Proline, Pro)。此外,胱氨酸(Cystine, Cyss)和羟脯氨酸(Hydroxyproline, HO-Pro)也可算作非必需氨基酸。在体外,半胱氨酸不稳定,分子间极易缩合,产物为胱氨酸。羟脯氨酸可看成是脯氨酸的衍生物,它大量存在于胶原蛋白质中。 在动物饲喂实验中看到,胱氨酸(Cyss)可替代蛋氨酸(Met),替代量达80%;酪氨酸(Tyr)可替代苯丙氨酸(Phe),替代量可达70%。原因是,在机体的代谢过程中,蛋氨酸本来就大量用于合成半胱氨酸(Cys);苯丙氨酸本来就大量用来合成酪氨酸,故当食物中胱氨酸和酪氨酸供给丰富时,机体便无须以宝贵的Met和Phe来合成这两种非必需氨基酸,从而可降低机体对Met和Phe的需要量,据此,有时将Cyss 和Tyr称为半必需氨基酸。 在生物化学中,是按照分子结构来对氨基酸分类的,分组情况如下: ⑴脂肪族氨基酸 ①中性氨基酸(一氨基一羧基):Gly、Ala、Val、Leu、Ile、Ser、Thr、Cys、Cyss ② 酸性氨基酸(一氨基二羧基):Asp、Asn、Glu、Gln ③ 碱性氨基酸(二氨基一羧基):Arg、Lys ⑵芳香族氨基酸:Phe、Tyr

氨基酸作为手性源在有机合成中的应用

氨基酸作为手性源在有机合成中的应用 发表时间:2018-12-24T17:14:00.553Z 来源:《基层建设》2018年第32期作者:吴法浩 [导读] 摘要:手性氨基醇是一类重要的具有光学活性的手性化合物。 南京红杉生物科技有限公司江苏南京 210000 摘要:手性氨基醇是一类重要的具有光学活性的手性化合物。由于氨基醇分子中具有良好配位能力的N原子和O原子,可与多种元素形成络合物,是合成手性催化剂或配体及某些手性化合物的重要手性源,因此被广泛应用于精细化工、材料、医药、生物学等有机合成和药物中,如苏氨醇、丙胺醇、苯丙氨醇等已被应用于多肽类药物和喹诺酮类手性药物中。手性氨基醇具有很高的立体选择性和催化效率,最成功的是广泛应用于醛的催化不对称烷基化、芳基化以及不对称迈克尔加成等一系列反应中。因此,研究手性氨基醇的合成,具有很强的实际应用价值。 关键词:氨基酸;手性源;有机合成;应用 1手性氨基酸与手性氨基酸药物中间体的合成及应用 手性氨基酸是合成多肽和内酰胺类抗生素等药物的重要原料,其在药物合成、食品添加剂、新材料合成和精细化学品的开发等方面都有巨大的应用前景。为此,中国科学院成都有机化学研究所的王立新等人在手性氨基酸及手性氨基酸合成方面做了一系列卓有成效的工作,如用固定化青霉素酶(PGA)法制备了一系列非天然手性-氨基酸;创立了高质量医药级-L-缬氨酸的固定化酶法制备新技术;抗丙肝药物特拉匹韦及伯克匹韦、抗艾药物阿扎那韦共性中间体的合成;新型抗血小板药物替卡格雷-氯吡咯雷的合成;喹诺酮抗菌药超级沙星-西他沙星的合成;“重磅炸弹”级抗糖新药—西他列汀系列药物的合成及技术开发;GABA类药物的合成;高效低毒农药L-草铵膦和DL-草铵膦的生物催化及有机合成共性关键技术开发等等[7]。该系列研究将在医药、农药、材料科学、生命科学、环境科学的研究中得到应用。 2氨基酸作为手性源在有机合成中的应用 2.1结晶拆分 结晶法具有操作简单、产品纯度高、易于实现工业化生产的优点,缺点是适用于结晶拆分的化合物较少。过去认为,适合于结晶拆分的化合物应为外消旋混合物(conglomerate),而外消旋混合物在所有晶体外消旋体中仅占5%~10%。但优先富集现象的发现,打破了这一传统观念。结晶拆分不依靠外来手性源,通过外消旋体自发结晶实现拆分,包括机械拆分外消旋混合物、优先结晶、优先富集、结晶诱导的去外消旋化和消磨诱导的去外消旋化等。其中结晶与手性位点外消旋化的结合,利于提升拆分效率、节约生产成本,相信会有巨大的应用前景。 2.1.1优先结晶 优先结晶(即为晶种法)是向外消旋混合物的过饱和溶液中加入单一对映体的晶种,诱导该对映体优先结晶析出,实现拆分。该方法的优点是不需要加入外源手性拆分剂,易于实现规模化生产。优先结晶拆分的前提条件是底物具备外消旋混合物的性质,即同手性作用大于异手性作用。因此,若要选择优先结晶拆分方法,应首先研究底物的理化性质(熔点、溶解度、晶型等),判断是否属于外消旋混合物。 2.1.2优先富集 优先富集是具有外消旋化合物性质的非外消旋体在过饱和溶液中动力学析晶,形成亚稳态晶体,在向热力学稳定的晶型转化的过程中,部分位于不规则排列区域的晶体溶于母液,使母液具有较高的ee值。优先富集应满足以下要求:①单一立体异构体的溶解度远大于外消旋体的溶解度;②结晶过程中发生固?固多晶型转化;③多晶型转化前后具有不同的晶体结构;④在晶型转化过程中产生不规则晶体;⑤热力学稳定的非外消旋晶体能够保留结晶过程中发生的对称性破缺的痕迹。 2.2化学拆分 化学拆分是利用手性拆分剂将外消旋体拆分为单一光学异构体的拆分方法。手性拆分剂可通过与外消旋体形成盐键得到非对映异构盐,根据溶解度等理化性质的差异,采用结晶方法实现拆分。当外消旋体无可离子化的基团时,手性拆分剂可通过氢键与外消旋体形成非对映异构共晶,再根据理化性质差异实现拆分;或仅与某一对映体形成单一的共晶而实现拆分。包结拆分则是利用手性拆分剂(主体)形成具有手性空穴的笼状结构,主要通过氢键作用选择性包结某一对映体(客体)。Dutch拆分和溶剂诱导的手性开关拆分则是对非对映异构体盐结晶和共晶拆分方法的完善和发展。化学拆分扩大了通过结晶方式拆分的底物范围,使该方法的应用范围更广。 2.3尼莫地平的光学活性 尼莫地平是一种双氢吡啶类钙拮抗剂,其活性名为2,6-二甲基-4-(3-硝基苯基)-1,4-二氢-3,5-吡啶二甲酸-2-甲氧基乙基酯异丙基酯,临床上主要用于治疗脑血管痉挛引起的缺血性神经损伤以及老年脑功能障碍和突发性耳聋等,研究表明,尼莫地平有两种晶形,晶形A 的空间群为P212121,晶形B为P21/C,前者是外消旋体,后者为消旋体。但关于其手性来源尚有争议。目前,国内制药企业生产的尼莫地平原料均为晶型B,但在制剂中两种晶型都有。生物学研究表明,不同来源尼莫地平药品在临床有效性上存在显著差异,这表明药物制剂的晶型种类不同可能影响药物的临床疗效。为此,山西大学的王越奎等人在第一性原理的基础上对尼莫地平分析溶液中的可能构象进行了模拟,并用含时密度泛函理论(TDFT)方法,重点分析了其构象变化对光学活性的影响,这不仅对深入了解其光学活性的起源具有重要的理论意义,而且对实验上改进实验条件,提高晶体质量等也具有一定参考价值。该研究将在医药学、结晶学、立体化学及有机分析等领域得到应用。 2.4新型手性金属配合物的设计合成 手性金属有机框架不仅具有丰富多变的空间结构,而且在不对称性催化、吸附、磁性、非线性光学、荧光等众多领域有着潜在的应用价值。手性氨基酸及其衍生物同时含有丰富的N、O配位原子,同时具有特殊的生理功能,从而表现出很大的灵活性和良好的络合性能,是合成金属有机框架的良好配体。在这当中主要用N-对苯甲酰-L-谷氨酸在常温下合成了一种新的钴配合物[Co(bzglu)(bpe) (H2O)]?H2O。其结构表征证明该配合物属三斜晶系,再通过氢键的相互作用,形成了三维超分子结构。该研究将在不对称催化、吸附、磁性及光电材料等领域得到应用。 2.5N-苯甲酰-L-谷氨酸手性银超分子配位聚合物 近年来,设计并合成手性超分子配位聚合物已成为超分子金属有机合成的一个热点,这不仅是因为它们已彰显出其迷人的结构变样性,而且在荧光、磁性、不对称催化、对称性选择分离等方面有着特殊的功能,而且在非线性光学方面也彰显出潜在的应用价值。为此,

生物化学题库

名词解释 1.蛋白质的变性 2. 等电点(pI) 3. 维生素 4. 酶的活性中心 5.竞争性抑制 6. 呼吸链 7. 氧化磷酸化 8. 糖酵解 9.糖的有氧氧化10. 糖异生11. 血糖12. 酮体13. 氮平衡14. 生物转化15.三羧酸循环16. 生物氧化17.脂肪酸的β-氧化18.一碳单位填空 1.蛋白质的组成单位,组成人体有种,其中酸性氨基酸有两种,分别是和。必须氨基酸有种,即。 2.维持蛋白质三级结构的作用力是,,和盐键。 3.核酸分为和两种,其组成单位是 ,由、和三者组成的。 4.tRNA的二级结构呈形,三级结构的形状像。 5.维持DNA双螺旋结构稳定的因素有和_____________。 6.结合酶类是由和组成。 7.影响酶促反应速度的因素主有、、 、、和六种。 8.与无机催化剂相比,酶催化作用主要具有、、 和四方面主要特性。 9.竞争性抑制剂使酶促反应的Km,而Vmax 10.糖在体内的分解途径包括、、三条,正常生理情况下主要靠供能,缺氧时加强。

11.柠檬酸循环的关键酶是,和。 12.葡萄糖有氧分解大致经历、、__________三大阶段。 13.糖异生的关键酶是、、和 。 14.三羧酸循环是由与缩合成柠檬酸开始,每循环一次有次脱氢和次脱羧,并生成 ATP。 15.1分子葡萄糖经酵解净生成分子ATP,若经有氧氧化净生成 分子ATP。 16.人体内能量的利用形式,储存形式。 17.生物体内典型的呼吸链包括和两种。线粒体外NADH 可通过两种穿梭系统将氢转移到线粒体内,这两种穿梭系统是和。 18. 生物体内形成ATP的方式有:__________________和___________________。 19.代谢物在细胞内的生物氧化与在体外燃烧的主要区别是______________、 ______________ 、______________和______________ 。 20.生物氧化主要通过代谢物的______________反应实现的,H2O是通过 ______________形成的。 21.脂肪酸发生β-氧化的四个步骤是_______ 、________、_______和______。其产物是_________。 22.人类营养必需的脂肪酸是___________、_________和_________ 。 23.人体尿素的合成在___________中进行。 24.有毒的NH3在通过循环生成无毒的,经肾尿排

氨基酸概述

第三节氨基酸 氨基酸是一类具有特殊重要意义的化合物。因为它们中许多是与生命活动密切相关的蛋白质的基本组成单位,是人体必不可少的物质,有些则直接用作药物。 α-氨基酸是蛋白质的基本组成单位。蛋白质在酸、碱或酶的作用下,能逐步水解成比较简单的分子,最终产物是各种不同的α-氨基酸。水解过程可表示如下: 蛋白质→月示→胨→多肽→二肽→α-氨基酸 由蛋白质水解所得到的α-氨基酸共有20多种,各种蛋白质中所含氨基酸的种类和数量都各不相同。有些氨基酸在人体内不能合成,只能依靠食物供给,这种氨基酸叫做必需氨基酸(见表18-3,*)。 一、氨基酸的构造、构型及分类、命名 (一)氨基酸的构造和构型 分子中含有氨基和羧基的化合物,叫做氨基酸。 由蛋白质水解所得到的α-氨基酸,可用通式表示如下: 除甘氨酸(R=H)外,所有α-氨基酸中的α碳原子均是手性碳,故有D型与L型两种构型。天然氨基酸均为L-氨基酸。 L-氨基酸 (二)α-氨基酸的分类和命名 氨基酸有脂肪族氨基酸、芳香族氨基酸和杂环氨基酸。 在α-氨基酸分子中可以含多个氨基和多个羧基,而且氨基和羧基的数目不一定相等。因此,天然存在的α-氨基酸常根据其分子中所含氨基和羧基的数目分为中性氨基酸、碱性氨基酸和酸性氨基酸。所谓中性氨基酸是指分子中氨基和羧基的数目相等的一类氨基酸。但氨基的碱性和羧基的酸性不是完全相当的,所以它们并不是真正中性的物质,只能说它们近乎中性。分子中氨基的数目多于羧基时呈现碱性,称为碱性氨基酸;反之,氨基的数目少于羧基时呈现酸性,称为酸性氨基酸。

氨基酸的系统命名方法与羟基酸一样,但天然氨基酸常根据其来源或性质多用俗名。例如胱氨酸是因它最先来自尿结石;甘氨酸是由于它具有甜味而得名(见表18-3)。 表18-3 常见的α-氨基酸

氨基酸的常见化学反应

氨基酸的常见化学反应 ? -氨基的反应 ?亚硝酸反应 ?范围:可用于Aa定量和蛋白质水解程度的测定(Van slyke法) ?注意:生成的氮气只有一半来自于Aa,ε氨基酸也可反应,速度较 慢. ?与酰化试剂的反应 ?Aa+酰氯,酸酐-→Aa被酰基化 ?丹磺酰氯用于多肽链末端Aa的标记和微量Aa的定量测量. ?烃基化反应 ?Aa的氨基的一个氢原子可被羟基(包括环烃及其衍生物)取代. ?与2,4-二硝基氟苯(DNFB,FDNB)反应 ?最早Sanger用来鉴定多肽或蛋白质的氨基末端的Aa ?与苯异硫氰酸酯(PITC)的反应 ?Edman用于鉴定多肽或蛋白质的N末端Aa.在多肽和蛋 白质的Aa顺序分析方面占有重要地位(Edman降解法) ?形成西佛碱反应 ?Aa的α-NH2能与醛类化合物反应生成弱碱,即西佛碱(schiff ‘s base) ?前述甲醛滴定:甲醛与H2N-CH2-COO-结合,有效地减低了后者的 浓度,所以对于加入任何量的碱, [H2N-CH2-COO- ]/ [+H3N-CH2-COO- ]的比值总要比不存在甲醛的情况下小得多。加入 甲醛的甘氨酸溶液用标准盐酸滴定时,滴定曲线B并不发生改变。 ?脱氨基反应 ?Aa在生物体内经Aa氧化酶催化即脱去α-NH2而转变成酮酸 ?α-COOH参加的反应 ?成盐和成酯反应 ?Aa + 碱-→盐 ?Aa + NaOH -→氨基酸钠盐(重金属盐不溶于水) ?Aa-COOH + 醇-→酯 ?Aa+ EtOH ---→氨基酸乙酯的盐酸盐 ?当Aa的COOH变成甲酯,乙酯或钠盐后,COOH的化学反 应性能被掩蔽或者说COOH被保护,NH2的化学性能得到 了加强或活化,易与酰基结合。Aa酯是制备Aa的酰氨or 酰肼的中间物 ? ?成酰氯反应 ?当氨基酸的氨基用适当的保护基保护以后,其羧基可与二氯亚砜作 用生成酰氯 ?用于多肽人工合成中的羧基激活 ?叠氮反应 ?氨基酸的氨基通过酰化保护后,羧基经酯化转变为甲酯,然后与肼

氨基酸

第三节蛋白质和核酸 第1课时氨基酸的结构和性质 一、氨基酸的分子结构特点 1.氨基酸的分子结构 氨基酸可看作是羧酸分子烃基上的______被______取代后的产物,分子中既含有________,又含有______。天然氨基酸几乎都是________,其通式可写为________________。 2 1. 2. (1)两性 在氨基酸分子中,______是酸性基团,______是碱性基团。 甘氨酸与盐酸的反应为 甘氨酸与氢氧化钠的反应为 (2)成肽反应 在的存在下,两个氨基酸分子之间通过一个分子的______和另一个分子的______间脱去一分子水,缩合形成含有肽键()的化合物。

氨基酸练习 1.下列氨基酸中与天然氨基酸结构特点相同的是() A.①③B.②④C.①④D.②③ 2.下列物质互为同分异构体的是() A.淀粉和纤维素B.甘氨酸和硝基乙烷 C.醋酸和硬脂酸D.甲醇和二甲醚 3.关于氨基酸的下列叙述,不正确的是() A.氨基酸都是晶体,一般能溶于水B.氨基酸都不能发生水解反应 C.氨基酸是两性化合物,能与酸、碱反应生成盐 D.天然蛋白质水解最终可以得到α-氨基酸、β-氨基酸等多种氨基酸 4.组成最简单的氨基酸是() A.苯丙氨酸B.丙氨酸C.谷氨酸D.甘氨酸 5.L-多巴是一种有机物,它可用于帕金森氏综合症的治疗,其结构简式如下图所示。这种药物的研制是基于获得2000年诺贝尔生理学医学奖和获得2001年诺贝尔化学奖的研究成果。下列关于L-多巴的酸、碱性的叙述正确的是() A.既没有酸性,也没有碱性B.既具有酸性,也具有碱性 C.只有酸性,没有碱性D.只有碱性,没有酸性 6.下列物质中既能与盐酸反应,又能与NaOH溶液反应的是() ①NaHCO3②(NH4)2S③Al(OH)3④NH4Cl ⑤H2N—CH2—COOH⑥CH3COOH A.①②③B.①②④⑤C.⑤⑥D.①②③⑤ 7.据最新的美国《农业研究》杂志报道,美国的科学家发现半胱氨酸能增强艾滋病病毒感染者的免疫力,对控制艾滋病病毒的蔓延有奇效。已知半胱氨酸的结构简式为 ,则下列说法错误的是() A.半胱氨酸属于α-氨基酸B.半胱氨酸是一种两性物质 C.半胱氨酸不能与NaOH溶液反应放出碱性气体 D.两分子半胱氨酸脱水形成的二肽结构简式为

手性理解

手性 手性:化学分子的实物与其镜像不能重叠的现象。 我们知道,生命是由碳元素组成的,碳原子在形成有机分子的时候,4个原子或基团可以通过4根共 价键形成三维的空间结构,形成手性碳原子。由于相连的原子或基团不同,它会形成两种分子结构。这两 种分子一般拥有完全一样的物理、化学性质。比如它们的沸点一样,溶解度和光谱也一样。但是从分子的 组成形状来看,它们依然是两种分子。 含义:这种情形像是镜子里和镜子外的物体那样,看上去互为对应。由于是三维结构,它们不管怎样旋转都不 会重合,如果你注意观察过你的手,你会发现你的左手和右手看起来似乎一模一样,但无论你怎样放,它们在 空间上却无法完全重合。如果你把你的左手放在镜子前面,你会发现你的右手才真正与你的左手在镜中的像是 完全一样的,你的右手与左手在镜中的像可以完全重叠在一起。实际上,你的右手正是你的左手在镜中的像, 反之亦然。所以又叫手性分子。 在化学中,这种现象被称之为“手性”(chirality)。几乎所有的生物大分子都是手性的。两种在分子结构上呈手性的物质,它们的化学性质完全相同,唯一的区别就是:在微观上它们的分子结构呈手性,在宏观上它们的结晶体也 呈手性。作为生命的基本结构单元,氨基酸也有手性之分。也就是说,生命最基本的东西也有左右之分。 旋光异构 氨基酸的手性: 组成地球生命体的几乎都是左旋氨基酸,而没有右旋氨基酸。 我们已经发现的氨基酸有20多个种类,除了最简单的甘氨酸以外,其它氨基酸都有另一种手性对映体! 那么,是不是所有的氨基酸都是手性的呢?答案是肯定的,检验手性的最好方法就是,让一束偏振光通过它, 使偏振光发生左旋的是左旋氨基酸,反之则是右旋氨基酸。通过这种方法的检验,人们发现了一个令人震惊的 事实,那就是除了少数动物或昆虫的特定器官内含有少量的右旋氨基酸之外,组成地球生命体的几乎都是左旋 氨基酸,而没有右旋氨基酸!右旋分子是人体生命的克星!

氨基酸是什么、作用

什么是氨基酸? 1、氨基酸是构建生物机体的众多生物活性大分子之一是构建细胞、修复组织的基础材料被人体用于制造抗体蛋白以对抗细菌和病毒的侵染制造血红蛋白以传送氧气制造酶和激素以维持和调节新陈代谢氨基酸是制造精卵细胞的主体物质是合成神经介质的不可缺少的前提物质氨基酸能够为机体和大脑活动提供能源 2、氨基酸是构成生物体蛋白质并同生命活动有关的最基本的物质,是在生物体内构成蛋白质分子的基本单位,与生物的生命活动有着密切的关系。它在抗体内具有特殊的生理功能,是生物体内不可缺少的营养成分之一。 3、氨基酸在人体内通过代谢可以发挥下列一些作用:①合成组织蛋白质;②变成酸、激素、抗体、肌酸等含氨物质;③转变为碳水化合物和脂肪;④氧化成二氧化碳和水及尿素,产生能量。 氨基酸对人体的作用: 1、构成人体的基本物质,是生命的物质基础。(构成人体的最基本的物质,有蛋白质、脂类、碳水化合物、无机盐、维生素、水和食物纤维等。 作为构成蛋白质分子的基本单位的氨基酸,无疑是构成人体内最基本物质之一。)构成人体的氨基酸有20多种,它们是:色氨酸、蛋氨酸、苏氨酸、缬氨酸、赖氨酸、组氨酸、亮氨酸、异亮氨酸、丙氨酸、苯丙氨酸、胱氨酸、半胱氨酸、精氨酸、甘氨酸、丝氨酸、酪氨酸、3.5.二碘酪氨酸、谷氨酸、天门冬氨酸、脯氨酸、羟脯氨酸、精氨酸、瓜氨酸、乌氨酸等。这些氨基酸存在于自然界中,在植物体内都能合成,而人体不能全部合成。其中8种是人体不能合成的,必需由食物

中提供,叫做“必需氨基酸”。这8种必需氨基酸是:色氨酸、苏氨酸、蛋氨酸、缬氨酸、赖氨酸、亮氨酸、异亮氨酸和苯丙氨酸。 其他则是“非必需氨基酸”。组氨酸能在人体内合成,但其合成速度不能满足身体需要,有人也把它列为“必需氨基酸”。 胱氨酸、酪氨酸、精氨酸、丝氨酸和甘氨酸长期缺乏可能引起生理功能障碍,而列为“半必需氨基酸”,因为它们在体内虽能合成,但其合成原料是必需氨基酸,而且胱氨酸可取代80%~90%的蛋氨酸,酪氨酸可替代70%~75%的苯丙氨酸,起到必需氨基酸的作用,上述把氨基酸分为“必需氨基酸”、“半必需氨基酸”和“非必需氨基酸”3类,是按其营养功能来划分的;如按其在体内代谢途径可分为“成酮氨基酸”和“成糖氨基酸”;按其化学性质又可分为中性氨基酸、酸性氨基酸和碱性氨基酸,大多数氨基酸属于中性。 生命代谢的物质基础。(生命的产生、存在和消亡,无一不与蛋白质有关,正如恩格斯所说:“蛋白质是生命的物质基础,生命是蛋白质存在的一种形式。”如果人体内缺少蛋白质,轻者体质下降,发育迟缓,抵抗力减弱,贫血乏力,重者形成水肿,甚至危及生命。一旦失去了蛋白质,生命也就不复存在,故有人称蛋白质为“生命的载体”。可以说,它是生命的第一要素。 蛋白质的基本单位是氨基酸。如果人体缺乏任何一种必需氨基酸,就可导致生理功能异常,影响抗体代谢的正常进行,最后导致疾病。同样,如果人体内缺乏某些非必需氨基酸,会产生抗体代谢障碍。精氨酸和瓜氨酸对形成尿素十分重要;胱氨酸摄入不足就会引起胰岛素减少,血糖升高。又如创伤后胱氨酸和精氨酸的需要量大增,如缺乏,即使热能充足仍不能顺利合成蛋白质。总之,氨基酸在人

氨基酸分类

氨基酸分类一、总表

20种氨基酸密码子表 二、分类 1. 根据氨基酸分子中所含氨基和羧基数目的不同,将氨基酸分为中性氨基酸、酸性氨基酸和碱性氨基酸: 2. 根据氨基酸的极性分类:

其中,属于芳香族氨基酸的是:色氨酸、酪氨酸、苯丙氨酸 属于亚氨基酸的是:脯氨酸 含硫氨基酸包括:半胱氨酸、蛋氨酸 3. 按其亲水性、疏水性可分为: 4. 其它的分类方法 天然的氨基酸现已经发现的有300多种,其中人体所需的氨基酸约有22种,分非必需氨基酸和必需氨基酸(人体无法自身合成)。另有酸性、碱性、中性、杂环分类,是根据其化学性质分类的。 1、必需氨基酸(essential amino acid):指人体(或其它脊椎动物)不能合成或合成速度远不适应机体的需要,必需由食物蛋白供给,这些氨基酸称为必需氨基酸。共有8种其作用分别是: ①赖氨酸(Lysine ):促进大脑发育,是肝及胆的组成成分,能促进脂肪代谢,调节松果腺、乳腺、黄体及卵巢,防止细胞退化; ②色氨酸(Tryptophane):促进胃液及胰液的产生; ③苯丙氨酸(Phenylalanine):参与消除肾及膀胱功能的损耗; ④蛋氨酸(又叫甲硫氨酸)(Methionine);参与组成血红蛋白、组织与血清,有促进脾脏、胰脏及淋巴的功能; ⑤苏氨酸(Threonine):有转变某些氨基酸达到平衡的功能; ⑥异亮氨酸(Isoleucine ):参与胸腺、脾脏及脑下腺的调节以及代谢;脑下腺属总司令部作用于甲状腺、性腺; ⑦亮氨酸(Leucine ):作用平衡异亮氨酸; ⑧缬氨酸(Viline):作用于黄体、乳腺及卵巢。 其理化特性大致有: 1)都是无色结晶。熔点约在230°C以上,大多没有确切的熔点,熔融时分解并放出CO2;都能溶于强酸和强碱溶液中,除胱氨酸、酪氨酸、二碘甲状腺素外,均溶于水;除脯氨酸和羟脯氨酸外,均难溶于乙醇和乙醚。 2)有碱性[二元氨基一元羧酸,例如赖氨酸(lysine)];酸性[一元氨基二元羧酸,例如谷氨酸(Glutamic acid)];中性[一元氨基一元羧酸,例如丙氨酸(Alanine)]三种类型。大多数氨基酸都呈显不同程度的酸性或碱性,呈显中性的较少。所以既能与酸结合成盐,也能与碱结合成盐。

氨基酸相关知识

氨基酸 天然氨基酸有180多种,组成蛋白质的20种基本氨基酸α-氨基酸,脯氨酸例外为α-环状亚氨基酸。基本氨基酸通式 不同α-氨基酸的R侧链不同,它对蛋白质的空间结构和理化性质有重要的影响。除了甘氨酸的R侧链为氢原子外,其它氨基酸的α-碳原子都是不对称碳原子,可形成不同构型(D-型和L-型),具有旋光性。蛋白质分子中的氨基酸都是L-型,称为L-型-α-氨基酸。 非极性疏水性氨基酸:丙氨酸(Ala,pI6.00)、缬氨酸(Val,pI5.96)、亮氨酸(Leu,pI5.98)、异亮氨酸(Ile,pI6.02)、苯丙氨酸(Phe,pI5.48)、脯氨酸(Pro,pI6.30)、蛋氨酸(Met,pI5.74)和色氨酸(Trp,pI5.89)。有酪氨酸、色氨酸、苯丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸和丙氨酸。 极性中性氨基酸:甘氨酸(Gly,pI5.97)、丝氨酸(Ser,pI5.68)、酪氨酸(tyr,pI)、半胱氨酸(Cys,pI5.07)、天冬酰胺(Asn,pI5.41)、谷氨酰胺(Gln,pI5.65)和苏氨酸(Thr,pI5.60) 酸性氨基酸:天冬氨酸(Asp,pI2.97)、谷氨酸(Glu,pI3.22)(含有两个羧基) 碱性氨基酸:赖氨酸(Lys,pI9.74)、精氨酸(Arg,pI10.76)、组氨酸(His,pI7.59) 芳香族氨基酸:苯丙氨酸和酪氨酸 杂环族氨基酸:脯氨酸色氨酸和组氨酸。 其它为脂肪族氨基酸。 人体必需氨基酸(EAA):缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、蛋氨酸、色氨酸(需要量最少的)、苏氨酸、赖氨酸。 半必需氨基酸:酪氨酸和半胱酰胺(可有苯丙氨酸和蛋氨酸转化) 组氨酸是儿童必需氨基酸。 各种基本氨基酸均为无色结晶,熔点极高(一般200℃以上)。各种氨基酸在水中的溶解度差别很大,并能溶于稀酸和稀碱中,但不能溶解于有机溶剂。通常用乙醇能把氨基酸沉淀析出。除甘氨酸外,每种氨基酸都有旋光性和一定的比旋光度。各种氨基酸对可见光均无吸收能力。酪氨酸、色氨酸和苯丙氨酸在近紫外区有吸收。氨基酸在水溶液中或在晶体状态时都以离子的形式存在,故属于离子化合物,但氨基酸以两性离子形式存在,即H3N+CH2COO-。两性离子是指在同一个氨基酸分子上带有能释放质子的—NH3能和接受质子的—COO—。 氨基酸等电点是指氨基酸静电荷为零时溶液中的pH。 一个氨基酸的氨基与另一个氨基酸的羧基可以缩合秤肽,形成的酰胺键在蛋白质中称为肽键。 维持蛋白质构象的作用力次级键和二硫键(共价键),次级键包括氢键、疏水键、离子键、范德华力。 蛋白质是一类两性电解质,能和酸或碱发生作用。各种解离基团的解离度与溶液的pH值有关,pH值越低,碱性基团的解离程度越大(—COOH也会被封

氨基酸

一、氨基酸 1.氨基酸的概念和物理性质 概念:羧酸分子里烃基上的氢原子被氨基取代后的生成物叫氨基酸。 物理性质:无色晶体,熔点极高,一般在200℃以上。不同的氨基酸其味不同,有的无味,有的味甜,有的味苦,谷氨酸的单钠盐有鲜味,是味精的主要成分。各种氨基酸在水中的溶解度差别很大,并能溶解于稀酸或稀碱中,但不能溶于有机溶剂。通常酒精能把氨基酸从其溶液中沉淀析出。 2.氨基酸的结构和化学性质 组成蛋白质的氨基酸几乎为α-氨基酸,其结构简式可表示为,如: 甘氨酸谷氨酸 丙氨酸苯丙氨酸 ①氨基酸的两性 氨基酸分子中既有羧基,又有氨基;羧基是酸性基团,氨基是碱性基团,因此氨基酸是两性化合物,既能与酸又能与碱反应生成盐(和水),例如: 拓展:中学化学常见的既能与酸又能与碱反应的物质 1.金属:Al等。 2.两性氢氧化物:Al2O3等。 3.乳酸的铵盐: 4.多元弱酸的酸式盐: 5.具有双官能团的有机物: ②成肽反应 两个氨基酸分子(可以相同,也可以不同),在酸或碱存在的条件下加热,通过一分子的氨基与另一分子的羧基间脱去一分子水,缩合形成肽键的化合物,称为成肽反应。 (1mol二肽含1mol肽键) 3.C4H9O2N的同分异构体: 二、蛋白质 蛋白质的分子结构划分: 一级结构是指蛋白质中氨基酸排列顺序,是平面结构,维持一级结构的化学键是肽键和二硫键. 二级结构是指蛋白质多肽主链有一定周期性的,有氢键(C=O和N-H),如α螺旋、β折叠等,维持的化学键是氢键、盐键等非共价键、以及疏水作用和范德华力. 三级结构是多肽链上包括主链和侧脸在内所用原子在三维空间内的分布,但只含有一条多肽链,维持的化学键也是氢键、盐键等非共价键、以及疏水作用和范德华力.

氨基酸分类

氨基酸分类Revised on November 25, 2020

氨基酸分类 一、总表 20种氨基酸密码子表 二、分类 1. 根据氨基酸分子中所含氨基和羧基数目的不同,将氨基酸分为中性氨基酸、酸性氨基酸和碱性氨基酸:

2. 根据氨基酸的极性分类: 其中,属于芳香族氨基酸的是:色氨酸、酪氨酸、苯丙氨酸 属于亚氨基酸的是:脯氨酸 含硫氨基酸包括:半胱氨酸、蛋氨酸 3. 按其亲水性、疏水性可分为: 4. 其它的分类方法 天然的氨基酸现已经发现的有300多种,其中人体所需的氨基酸约有22种,分非必需氨基酸和必需氨基酸(人体无法自身合成)。另有酸性、碱性、中性、杂环分类,是根据其化学性质分类的。 1、必需氨基酸(essential amino acid):指人体(或其它脊椎动物)不能合成或合成速度远不适应机体的需要,必需由食物蛋白供给,这些氨基酸称为必需氨基酸。共有8种其作用分别是: ①赖氨酸(Lysine ):促进大脑发育,是肝及胆的组成成分,能促进脂肪代谢,调节松果腺、乳腺、黄体及卵巢,防止细胞退化; ②色氨酸(Tryptophane):促进胃液及胰液的产生; ③苯丙氨酸(Phenylalanine):参与消除肾及膀胱功能的损耗; ④蛋氨酸(又叫甲硫氨酸)(Methionine);参与组成血红蛋白、组织与血清,有促进脾脏、胰脏及淋巴的功能; ⑤苏氨酸(Threonine):有转变某些氨基酸达到平衡的功能;

⑥异亮氨酸(Isoleucine ):参与胸腺、脾脏及脑下腺的调节以及代谢;脑下腺属总司令部作用于甲状腺、性腺; ⑦亮氨酸(Leucine ):作用平衡异亮氨酸; ⑧缬氨酸(Viline):作用于黄体、乳腺及卵巢。 其理化特性大致有: 1)都是无色结晶。熔点约在230°C以上,大多没有确切的熔点,熔融时分解并放出CO2;都能溶于强酸和强碱溶液中,除胱氨酸、酪氨酸、二碘甲状腺素外,均溶于水;除脯氨酸和羟脯氨酸外,均难溶于乙醇和乙醚。 2)有碱性[二元氨基一元羧酸,例如赖氨酸(lysine)];酸性[一元氨基二元羧酸,例如谷氨酸(Glutamic acid)];中性[一元氨基一元羧酸,例如丙氨酸(Alanine)]三种类型。大多数氨基酸都呈显不同程度的酸性或碱性,呈显中性的较少。所以既能与酸结合成盐,也能与碱结合成盐。 3)由于有不对称的碳原子,呈旋光性。同时由于空间的排列位置不同,又有两种构型:D型和L型,组成蛋白质的氨基酸,都属L型。由于以前氨基酸来源于蛋白质水解(现在大多为人工合成),而蛋白质水解所得的氨基酸均为α-氨基酸,所以在生化研究方面氨基酸通常指α-氨基酸。至于β、γ、δ……ω等的氨基酸在生化研究中用途较小,大都用于有机合成、石油化工、医疗等方面。氨基酸及其衍生物品种很多,大多性质稳定,要避光、干燥贮存。2、非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成,不需要从食物中获得的氨基酸。例如甘氨酸、丙氨酸等氨基酸。 氨基酸是构成生物体蛋白质并同生命活动有关的最基本的物质,是在生物体内构成蛋白质分子的基本单位,与生物的生命活动有着密切的关系。它在抗体内具有特殊的生理功能,是生物体内不可缺少的营养成分之一。 一、构成人体的基本物质,是生命的物质基础 1.构成人体的最基本物质之一 构成人体的最基本的物质,有蛋白质、脂类、碳水化合物、无机盐、维生素、水和食物纤维等。 作为构成蛋白质分子的基本单位的氨基酸,无疑是构成人体内最基本物质之一。 构成人体的氨基酸有20多种,它们是:色氨酸、蛋氨酸、苏氨酸、缬氨酸、赖氨酸、组氨酸、亮氨酸、异亮氨酸、丙氨酸、苯丙氨酸、胱氨酸、半胱氨酸、精氨酸、甘氨酸、丝氨酸、酪氨酸、3.5.二碘酪氨酸、谷氨酸、天门冬氨酸、脯氨酸、羟脯氨酸、精氨酸、瓜氨酸、乌氨酸等。这些氨基酸存在于自然界中,在植物体内都能合成,而人体不能全部合成。其中8种是人体不能合成的,必需由食物中提供,叫做“必需氨基酸”。这8种必需氨基酸是:色氨酸、苏氨酸、蛋氨酸、缬氨酸、赖氨酸、亮氨酸、异亮氨酸和苯丙氨酸。其他则是“非必需氨基酸”。组氨酸能在人体内合成,但其合成速度不能满足身体需要,有人也把它列为“必需氨基酸”。胱氨酸、酪氨酸、精氨酸、丝氨酸和甘氨酸长期缺乏可能引起生理功能障碍,而列为“半必需氨基酸”,因为它们在体内虽能合成,但其合成原料是必需氨基酸,而且胱氨酸可取代80%~90%的蛋氨酸,酪氨酸可替代70%~75%的苯丙氨酸,起到必需氨基酸的作用,上述把氨基酸分为“必需氨基酸”、“半必需氨基酸”和“非必需氨基酸”3类,是按其营养功能来划分的;如按其在体内代谢途径可分为“成酮氨基酸”和“成糖氨基酸”;按其化学性质又可分为中性氨基酸、酸性氨基酸和碱性氨基酸,大多数氨基酸属于中性。 2.生命代谢的物质基础 生命的产生、存在和消亡,无一不与蛋白质有关,正如恩格斯所说:“蛋白质是生命的物质基础,生命是蛋白质存在的一种形式。”如果人体内缺少蛋白质,轻者体质下降,发育迟缓,抵抗力减弱,贫血乏力,重者形成水肿,甚至危及生命。一旦失去了蛋白质,生命也就不复存在,故有人称蛋白质为“生命的载体”。可以说,它是生命的第一要素。 蛋白质的基本单位是氨基酸。如果人体缺乏任何一种必需氨基酸,就可导致生理功能异常,影响抗体

相关文档
最新文档