利用勾股定理求立体图形最短路径

合集下载

人教版八年级数学下册《勾股定理的应用——立体图形中的最短距离》教学设计

人教版八年级数学下册《勾股定理的应用——立体图形中的最短距离》教学设计

“勾股定理的应用——立体图形中的最短距离”教学设计三、研学问题活动一:如图有一个圆柱,底面周长为18,高为12.有一只蚂蚁在它下面的A点,它想吃上底面上与A点相对的B点处的食物,教师提问A点和B点在一个曲面上最短路径还能直接连接AB两点吗?引导学生思考后回让学生通过动手操作找到最短路径,培养学生的动手能力和空间想象能力。

蚂蚁爬行的最短路径是多少?变式训练如图,若上述问题中点B在点A的正上方,蚂蚁沿圆柱侧面爬行的最短路程是多少?答。

教师启发学生利用长方形纸卷出圆柱体,引导学生观察,找出A点到B点的最短路径。

学生画出圆柱的侧面展开图与蚂蚁爬行路径,并写出完整的解题过程。

(请一位同学到黑板完成解答,其他学生点评)通过此问题进一步加深学生对两点沿“曲面”的最短路程的解决方法掌握。

1四、学以致用如图,有一个圆柱,底面周长是10厘米,高为14厘米.在距离下底面1厘米的A点有一只蚂蚁,它想吃到距离上底面1厘米且与A点相对的B点处的食物,则沿圆柱侧面爬行的最短路程是多少?教师利用多媒体展示问题。

学生动手操作,独立思考后画出侧面展开图并确定最短路径。

教师请学生代表发表想法,并与上题进行比较,得出结论:蚂蚁在侧面爬行半圈与一圈,点A与点B的位置关系。

教师利用多检查学生对前面知识的理解和掌握情况,让学生学以致用。

五、知识迁移活动二:如图,是一个长为10cm,宽为6cm,高为8cm的长方体牛奶盒,现在A处有一只蚂蚁,想沿着长方体的外表面到达B处吃食物,求蚂蚁爬行的最短距离是多少. 媒体展示问题,学生组内讨论,画图并计算。

教师利用手机拍照展示小组研究成果,请小组代表讲解解题思路。

教师利用多媒体验证学生成果的对错情况。

教师利用多媒体出示问题,在前面知识的基础上,把两点迁移到长方体上,进一步研究折面中的两点的最短距离,同时让学生利用长方体动手找出最短路径,解决问题,培养学生的动手能力,空间想象能力和小组合作探究能力,通过对问题的解决体会分类讨论、转发现规律:如图,若长方体的长,宽,高分别为a,b和c,且a>b>c,则沿长方体表面从A 到Cˊ所走的最短路程是六、强化训练如图,一个长方体盒子,其中AB=9,BC=6,BB′=5,在线通过长方体教具启发学生找出蚂蚁至少要经过几个面,学生分组利用自制长方体探究从A点到B点的不同走法,请小组代表说出不同走法。

用勾股定理求几何体中的最短路线长课件

用勾股定理求几何体中的最短路线长课件

问题描述
问题定义
给定一个几何体,如长方体、球体等,求从一个顶点到另一个顶点的最短路线长 度。
问题分析
最短路线问题可以通过几何学中的勾股定理进行求解。勾股定理是直角三角形中 ,直角边的平方和等于斜边的平方。在三维空间中,可以利用勾股定理找到最短 路径。
02
勾股定理简介
勾股定理的定义
勾股定理:在直角三角形中,直角边 的平方和等于斜边的平方。即,如果 直角三角形的两条直角边长度分别为 a和b,斜边长度为c,则有a^2 + b^2 = c^2。
用勾股定理求几何体中的 最短路线长ppt课件
• 引言 • 勾股定理简介 • 几何体的最短路线问题 • 用勾股定理求解最短路线长 • 结论
01
引言
目的和背景
目的
介绍如何使用勾股定理在几何体中寻找最短路线长度。
背景
几何体中的最短路线问题在实际生活中有着广泛的应用,如建筑、工程、机器 人等领域。通过解决这类问题,可以优化设计、提高效率、降低成本等。
THANKS
感谢观看
勾股定理的证明方法
勾股定理的证明方法有多种,其中比较常见的是欧几里得证 明法。该证明方法利用了相似三角形的性质和边长之间的关 系,通过一系列的推导和证明,最终证明了勾股定理。
除了欧几里得证明法外,还有其他的证明方法,如利用代数 方法和微积分方法等。这些证明方法虽然不同,但都能够证 明勾股定理的正确性。
的性质和勾股定理得出的结论。
空间几何体中的最短路线问题
1 2 3
球面几何中的大圆弧最短
在球面几何中,两点之间的大圆弧是最短的路径 。大圆弧是指经过球心并与球面相切的圆弧。
圆柱体或圆锥体中的母线最短
在圆柱体或圆锥体中,从顶点到底面的母线是最 短的路径。母线是与底面平行的线段,也是旋转 轴。

勾股定理的应用——立体图形中最短路程问题教案

勾股定理的应用——立体图形中最短路程问题教案

《勾股定理的应用——立体图形中最短路程问题》教案(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--教学过程分析第一环节:情境引入创设情景:如图一圆柱体底面周长为32cm,高AB为12cm,BC是上底面的直径。

一只蚂蚁从A点出发,沿着圆柱的表面爬行到C点,试求出蚂蚁爬行的最短路线长。

意图:创设引入新课,从学生熟悉的生活场景引入,提出问题,学生探究热情高涨,激发学生探究热情.第二环节:合作探究内容:引导学生分析题意,明确已知信息,明确题目问题,引导学生合作探究蚂蚁爬行的最短路线,充分讨论汇总方案,在全班范围内讨论每种方案的路线计算方法,四种方案:A A A(1)(2)(3)(4)通过具体分析,得出最短路线,并计算出最短路线长。

让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法.意图:通过学生的合作探究,找到解决“蚂蚁怎么走最近”的方法,将曲面最短距离问题转化为平面最短距离问题并利用勾股定理求解.在活动中体验数学建摸,培养学生与人合作交流的能力,增强学生探究能力,分析能力,发展空间观念.就此问题的解决进行思路小结:将立体图形问题转化为平面图形问题,构建直角三角形利用勾股定理解决此问题,渗透了建模思想。

练习:1.有一圆形油罐底面圆的周长为16m,高为7m,一只蚂蚁从距底面1m的A处爬行到对角B处吃食物,它爬行的最短路线长为多少?2. 如图是一个三级台阶,它的每一级的长、宽和高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是多少?第三环节:拓展一:正方体内容:如果圆柱换成如图的棱长为10cm的正方体盒子,蚂蚁沿着表面从A点爬行到B点的最短路线长又是多少呢?1.如图,在棱长为10 cm的正方体的一个顶点A处有一只蚂蚁,现要向顶点B处爬行,已知蚂蚁爬行的速度是1 cm/s,且速度保持不变,问蚂蚁能否在20 s内从A爬到BBA渗透解题思路:即 1、展 -----(立体图形转为平面图形)2、找-----起点A,终点B或B′3、连-----最短路线AB和AB ′4、算-----利用勾股定理总结:对于正方体展开任意两个面连接起点和终点线段即最短的路线大小相等。

勾股定理(求立体图形中的最短路径问题1)

勾股定理(求立体图形中的最短路径问题1)
老张讲数学
勾股定理(求立体图形中的最短距离 1)
学习探究一 圆柱体表面的最短路径
为筹备2019 年国庆晚会,同学们设计了一个圆筒 形灯罩,底色漆成白色,然后缠绕红色油线,如图 所示1,已知圆筒高 30cm ,其横截面周长为 40cm , 如果在圆筒表面恰好能缠绕油线 1圈,应至少裁剪 ____2____cm 的油线.
3
我可以这样想……
ቤተ መጻሕፍቲ ባይዱ
把圆柱形直筒沿 AD 所在直线展开,先求出第一圈 油线的最短长度。
E
在Rt△ABD 中,由勾
股定理得
D
D
D
AD 2=BD 2+AB 2
30c
A
A
A
mB
40cm
AD? 302 ? 402 ? 502 ? 50
50 ×2=100
如果油线缠绕四圈呢?缠绕 n圈呢?
我可以这样想……
通过平移把第一圈油线和第二圈油纸首尾衔接,构建 直角三角形,求最短距离。
E
E
E
D60c m
D 40c
m
D
60c m
A 40c
A 40c
A
80c
O
m
m
m
在Rt△AEO 中,由勾股定理得
AE 2=EO 2+AO 2
AE ? 602 ? 802 ? 1002 ? 100
学习探究二 长(正)方体表面的最短路径
? 如图,边长为2的正方体中,一只蚂蚁 从顶点A 出发沿着正方体的外表面爬到 顶点F的最短距离是 ________ .
3
A
①展开
D
②定点
③连线
④计算
AD ? 30 2 ? 40 2 ? 50 2 ? 50

勾股定理求最短路径方法技巧

勾股定理求最短路径方法技巧

勾股定理求最短路径方法技巧摘要:1.引言2.勾股定理简介3.求最短路径方法技巧4.应用实例与分析5.结论正文:【引言】在数学领域中,勾股定理及其求最短路径方法一直是备受关注的热点。

本文将详细介绍勾股定理求最短路径的方法和技巧,帮助读者更好地理解和应用这一理论。

【勾股定理简介】勾股定理,又称毕达哥拉斯定理,是指在直角三角形中,直角边平方和等于斜边的平方。

其数学表达式为:a + b = c。

其中a、b为直角边,c为斜边。

【求最短路径方法技巧】利用勾股定理求最短路径,关键在于找到起点和终点之间的直角三角形,然后运用勾股定理计算出路径长度。

这里有两种求最短路径的方法:1.直接法:在平面上给定两个点A和B,找出一条直线路径,使得这条路径上的所有点与A、B两点的距离之和最小。

可以通过构建直角三角形,利用勾股定理求解路径长度。

2.间接法:先找到起点和终点之间的中间点C,然后分别计算从起点到C 点和从C点到终点的路径长度。

最后在所有路径中选择长度最短的一条。

同样可以利用勾股定理计算路径长度。

【应用实例与分析】以一个简单的平面直角坐标系为例,设有两点A(0, 0)和B(3, 4)。

现在需要求从A点到B点的最短路径。

首先,求出AB的中点C:(1.5, 2)。

然后,分别计算从A到C和从C到B 的路径长度。

AC的长度:√((1.5-0) + (2-0)) = √(2.25 + 4) = √6.25BC的长度:√((3-1.5) + (4-2)) = √(1.25 + 4) = √5.25现在可以计算出从A点到B点的最短路径长度:√6.25 + √5.25 ≈ 7.27【结论】通过以上分析,我们可以看出,利用勾股定理求最短路径方法是简单且实用的。

只需找到起点和终点之间的直角三角形,然后运用勾股定理计算路径长度,最后在所有路径中选择长度最短的一条。

勾股定理长方体最短路径问题解题步骤小结

勾股定理长方体最短路径问题解题步骤小结

勾股定理长方体最短路径问题解题步骤小结嘿,咱今儿个就来讲讲勾股定理长方体最短路径问题的解题步骤哈!
你想想看,那长方体就像个大盒子,里面藏着好多秘密呢!要找到
最短路径,那可得有点小窍门。

首先呢,咱得认清这个长方体的各个面和棱。

就好比认识一个新朋友,得先知道他长啥样,有啥特点不是?然后呢,在脑海里构想出各
种可能的路径。

比如说,从一个顶点到另一个顶点,那可以直直地沿着棱走过去,
可这往往不是最短的哟!这时候就得发挥咱的想象力啦。

咱可以把长方体展开呀,就像把一个盒子打开一样。

展开之后,原
来在长方体里弯弯绕绕的路径就变得一目了然啦!然后再根据勾股定理,找到直角三角形的两条边,一计算,最短路径不就出来啦?
你可别小看这勾股定理,它就像一把神奇的钥匙,能帮咱打开最短
路径的大门呢!这不就跟咱出门找路一样嘛,得找条最近最方便的道
儿呀。

再举个例子哈,就像你要从家去个啥地方,你肯定得找最近的路走呀,总不能绕一大圈吧?那多浪费时间和精力呀!
在解这题的时候,一定要仔细认真,可别马马虎虎的。

要是算错一步,那可就前功尽弃啦!就好像你走在路上看错了方向,那不就走冤
枉路啦?
所以呀,对待这个勾股定理长方体最短路径问题,咱可得像对待宝
贝一样,小心翼翼地去解开它的秘密。

咱得不断地练习,多做几道题,这样才能熟能生巧呀!等你熟练了,再遇到这种题,那不就跟玩儿似的,轻松就解决啦!
总之呢,解勾股定理长方体最短路径问题,就得有耐心、有细心,
还得有想象力。

只要咱掌握了方法,那都不是事儿!加油吧,朋友们,相信你们一定能行!。

勾股定理应用之最短路径问题

勾股定理应用之最短路径问题

沿着台阶面爬到B点去吃可口的食物,最短线路是多少?
A
20
CHale Waihona Puke 解:如图,将台阶3
展开, BC=(3+2) ×3=15AC=2

0
∵△ABC为直角
3
三角形 2
答:最短路线
3
是25cm。
2
B
利用勾股定理解决实际问题的一般思路:
1.在解决实际问题时,首先要画出适当的示意图, 将实际问题抽象为数学问题,并构建直角三角形模 型,再运用勾股定理解决实际问题。
如图所示,圆柱体的底面周长为18cm ,高AC为12cm ,
一只蚂蚁从A点出发,沿着圆柱的侧面爬行到点B,试求出爬
行的最短路程。
解:如图,将圆柱体 展开, BC=18÷2=9 AC=1
2 ∵△ABC为直角 三角形
C
B
答:蚂蚁爬行的最短路线
是15cm。
A
最短路径问题
几何体的表面路径的最短的问题,一般将 立体图形展开为平面图形来计算。
勾股定理 --最短路线问
1
1.两点之间,线段最短!
2.一个圆柱体的侧面展开图是长方形,它的一边长是圆 柱的高,它的另一边长是底面圆的周长。
圆柱侧面两点最短路径问题
如图所示,圆柱体的底面周长为18cm ,高AC为12cm ,
一只蚂蚁从A点出发,沿着圆柱的侧面爬行到点B,试求为出什爬么
行的最短路程。
1
1B
B
1
1 1
1
A
1
1
长方体中的最值问题
如图,长方体的长、宽、高分别为4、2、8。现有一蚂
蚁从顶点A出发,沿长方体表面到达顶点B,蚂蚁走的路程
最短为多少厘米?

勾股定理最短路径问题长方体

勾股定理最短路径问题长方体

勾股定理最短路径问题长方体
勾股定理最短路径问题涉及到在长方体中寻找两点之间的最短
路径,其中路径是沿着长方体的棱或者对角线移动。

这个问题在实
际生活中有着广泛的应用,比如在物流领域中优化货物的运输路径、在建筑设计中优化管道的布置等等。

首先,我们来看长方体的情况。

长方体有12条棱,8个顶点和
6个面。

如果我们要在长方体内部寻找两点之间的最短路径,我们
可以利用勾股定理来解决这个问题。

勾股定理表明,在直角三角形中,斜边的平方等于两直角边的平方和。

因此,我们可以利用这个
定理来计算两点之间的最短路径。

其次,我们可以考虑在长方体内部沿对角线移动的情况。

长方
体的对角线是连接长方体两个对立顶点的线段,而沿着对角线移动
是一种更加直接的路径。

因此,如果两点之间的最短路径可以沿着
长方体的对角线移动,那么我们可以通过计算两点之间的距离来找
到最短路径。

另外,我们还可以考虑在长方体内部沿棱移动的情况。

沿着棱
移动也是一种可能的路径,尤其是当两点不在同一条对角线上时。

在这种情况下,我们可以通过计算沿着棱移动的距离来找到最短路径。

综上所述,勾股定理最短路径问题涉及到在长方体内部寻找两点之间的最短路径,可以通过勾股定理、沿对角线移动和沿棱移动等多种方法来解决。

在实际问题中,我们可以根据具体情况选择合适的方法来求解最短路径问题,从而优化路径规划和设计布局。

《利用勾股定理解决最短路径问题》教学设计

《利用勾股定理解决最短路径问题》教学设计

C BA《利用勾股定理解决最短路径问题》教学设计教材分析 本节课是最短路径问题的延续和拓广,不但要寻找最短路径,还要计算其长度。

在初中阶段,求解两点之间的距离问题多借助勾股定理进行计算,在中考中占有一定地位.而勾股定理是直角三角形非常重要的性质,有极其广泛的应用。

勾股定理指出了直角三角形三边之间的数量关系,是几何图形和数量关系之间的一座桥梁. 学情分析学生在初一上学期学习线段相关知识时已掌握“同一平面内,两点之间,线段最短”,初二上学期学习轴对称一章时,又接触了最短路径问题,因此对最短路径问题有一定的理解。

分类讨论一直都是学生觉得比较难掌握的思想方法,分类不清、分类不全是学生经常犯的错误. 教 学 目 标知识目标能运用勾股定理求最短路径问题能力目标学会观察图形,勇于探索图形间的关系,培养学生的空间观念;在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.情感目标通过有趣的问题提高学习数学的兴趣;在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学,增强自信心,体现成功感.教学重点 探索、发现立体图形展开成平面图形各种途径,利用勾股定理求最短路径问题.教学难点利用数学中的建模思想构造直角三角形,寻找不同路径,利用勾股定理,解决实际问题.教学过程教学环节 教学内容教学活动 学生活动 设计意图复习巩固 1.如图,在Rt △ABC 中,90C ∠=︒,AC =4,BC =2,则AB = .2.如图,小华的家在A 处,书店在B 处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线( ) A .A C D B →→→ B .A C F B →→→C .A C E F B →→→→ 引导学生复习利用勾股定理计算三角形的边长.引导学生回顾同一平面内,两点之间线段最短学生回顾勾股定理和两点之间线段最短的知识.帮助学生温故知新D.A C M B→→→的知识.探究问题类型一:圆柱体中的最短路径1.如图,一只蚂蚁沿着图示的路线从圆柱高AA1的端点A到达A1,若圆柱底面半径为π6,高为5,则蚂蚁爬行的最短距离是.2.如图,圆柱高8cm,底面半径2cm,BC是上底面的直径.一只蚂蚁从点A出发,.沿着圆柱的侧面爬行到点B,则蚂蚁爬行的最短路程是.(π的值取3)变式一:将“侧面”改为“表面”,求蚂蚁爬行的最短路程.变式二:再将“高为8cm”改为“2cm”,求蚂蚁爬行的最短路程.解决圆柱体中的最短路径问题的步骤:类型二:正方形中的最短路径如图,边长为1的正方体中,一只蚂蚁从顶点A出发沿着正方体的外表面爬到顶点B的最短距离是.变式:如图,边长为1的正方体中,一只蚂蚁从棱的中点A出发沿着正方体的外表面爬到顶点B的最短距离是.提问:怎样确定平面上两点间的最短距离?立体图形上的最短距离问题如何解决?引导学生寻找关键点.引导学生根据不同的条件选择不同的路径.引导学生思考最短距离怎么体现.怎样计算最短距离?引导小结结圆柱体中计算最短距离要注意的问题.提问:正方体由几个面组成?这些面有什么关系?正方体怎么展开?至少需要展开几个面?学生审题,思考并作答指明圆柱体、正方体上的数量和展开图上的数量之间一一对应关系,以及如何利用勾股定理进行计算由有趣的实际问题引入,激发学生学习兴趣.启发学生把立体图形展开成平面图形,并用平面图形的知识来解决立体图形中最短距离问题.注重路径的多样性,渗透分类讨论思想.使学生体会数学上的转化思想.通过先寻找“关键点”,再找到不同路径,最终在直角三角形内利用勾股计算最短距离这一过程,使学生再次领悟任何一个几何图形都是由基本元素“点”,“线”,“面”构成,回归几何的本类型三:长方体中的最短路径如图,长方体长、宽、高分别为5cm、3cm、4cm.一只蚂蚁从顶点A出发沿表面爬到顶点B.求蚂蚁经过的最短路程.小结:解决路径最短问题的依据是.也就是将曲面或多面体展成一个面,然后连接需求最短路径的两点,构造三角形,用勾股定理的数学模型去解决.解决最短路径问题四部曲1 .展(立体展平面)2 .找(找各种路径)3 .算(算各种路径的长度)4 .比(比较各种路径的长度)类型四(拓展提高):与物体表面和内部相关的最短路径如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时已知蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离是.引导学生思考长方体与正方体有何区别?为什么长方体有六种展开方式?(长,宽,高的组合),为什么排除后只有三种?(重复)引导学生小结解决立体图形上的两点之间最短路径问题的步骤引导学生将此问题与利用轴寻找最短路径的问题相结合.在教师引导下,学生对六种展开方式分析排除,最终归纳出三种方式计算比较得出最短距离.总结归纳做题的步骤将曲线化直线,将此问题转化为利用轴对称解决最短路径问题.真!在圆柱体的基础上提升难度,变为正方体,再变为长方体,引导学生由浅入深,认识到要解决立体图形上的最短路径问题一定要将其展开.渗透分类讨论思想.在初二上学期寻找最短路径的问题上提升到求最短路径长,体现勾股定理是计算线段长的有力手段.ABCD.12830巩固练习 1.如图是一个三级台阶,它的每一级的长、宽、高分别为20cm 、3cm 、2cm .A 和B 是这个台阶上两个相对的端点,点A 处有一只蚂蚁,想到点B 处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B 的最短路程为 cm .课后完成通过配套练习加深学生对本节课所学知识的印象和理解2.如图,在一个长为2m ,宽为1m 的长方形草地上,放着一根长方体的木块,它的棱和场地宽AD 平行且棱长大于AD ,木块从正面看是边长为0.2m 的正方形,一只蚂蚁从点A 处到达C 处需要走的最短路径是 m .3.一盛满水的圆柱形容器,它的高等于8cm .底面半径等于3cm ,在圆柱下底面上的A 点有一条小鱼,它想从点A 游到点B ,小鱼游过的最短路程是多少? 若是蚂蚁想从点A 爬到点B ,最短路程是多少?(π的值取3)若把圆柱的高改为2cm呢?4.如图所示,有一棱长为3cm 的正方体,把所有的面均分成3×3个小正方形.假设一只蚂蚁每秒爬行2cm ,则它从下底面点A 沿表面爬行至侧面的B 点,最少要用 秒? 5.如图,长方体盒子(无盖)的长、宽、高分别12cm ,8cm ,30cm .(1)在AB 中点C 处有一滴蜜糖,一只小虫从D 处爬到C 处去吃,最短路程是多少?(2)此长方体盒子(有盖)能放入木棒的最大长度是多少?6.有一个如图示的长方体的透明玻璃鱼缸,假设其长AD=80 cm,高AB=60 cm,水深为AE=40 cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60cm;一小虫想从鱼缸外的A点沿壁爬进鱼缸内G处吃鱼饵.求小动物爬行的最短路线长?Welcome To Download !!!欢迎您的下载,资料仅供参考!。

初中数学华东师大八年级上册第14章 勾股定理利用勾股定理求最短路径(教案)

初中数学华东师大八年级上册第14章 勾股定理利用勾股定理求最短路径(教案)

教学内容:勾股定理的应用——关于最短路径问题知识目标:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题。

能力目标:学会观察图形,勇于探索图形间的关系,培养学生的空间观念;在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

情感目标:通过有趣的问题提高学习数学的兴趣;在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学。

教学重点:探索、发现给定事物中隐含的勾股定理及其逆定理,并用它们解决生活实际问题。

教学难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。

教学准备:多媒体课件。

教学过程:一、复习回顾 1. 如图,直角三角形中的三边a ,b ,c 满足什么关系?2. 当a =2,b =3时,求c ; 当c =3,a =2时,求b 。

二、新课讲解㈠立体图形中的最短路径1. 正方体蚂蚁怎样走最近:学生分组,测量、画图、计算、总结规律例1 如图,蚂蚁在边长为10cm 的正方体A 处嗅到了放置在正方体的B 处位置上的面包,蚂蚁沿着正方体表面怎样的路线行走才能很快地吃到面包?蚂蚁行走的最短路线长是多少?利用多媒体展示展开图,并引导“两点之间线段最短”得到AB 的最短路径:500201022=+=AB ㎝2. 长方体例2 长为3cm ,宽为1cm ,高为2cm 的长方体,蚂蚁沿着表面从A 到B 爬行的最短路程又是多少呢?教师利用多媒体展示长方体的三种展开方式和计算结果:()189921322=+=++=AB ()2016431222=+=++=AB BBA BA b a c 1 2 3 A B()2625132122=+=++=AB ∴AB 的最短路径为18。

利用以上计算,小结方法:对于一般的长方体,长、宽、高分别为a 、b 、c 时,AB 的最短路径可能有三种情况:⑴()bc c b a c b a AB 222222+++=++= ⑵()ac c b a c a b AB 222222+++=++= ⑶()ab c b a b a c AB 222222+++=++= 要找最短距离,只需要比较bc 、ac 、ab 的大小,取最小值。

立体图形与路径最短问题

立体图形与路径最短问题
B
问题解决
从A点向上剪开,则侧面展开图如图所示, 连接AB,则AB为爬行的最短路径.
B
A
最短路径:AB
2
2
2
4
2
变式
在底面半径为1、高 为2的圆柱体的左下角A 处有一只蚂蚁,欲爬行去 吃右上角B处的食物,问 怎样爬行路径最短,最短 路径是多少?
B
A
情况一解决
从A点向上剪开,则侧面展开图如图所示, 连接AB,则AB为爬行的最短路径.
方法一
1、展开前面和右面 2、连接AB1 则AB1为最短路径 由勾股定理得 AB1=
前面 右面
B
B1
2 1
2
2
5
A
方法二
B2
1、展开前面和上面 2、连接AB2 则AB2为最短路径 由勾股定理得 AB2=
上面 B
2 1
2
2
5
A
前面
方法三
1、展开前面和上面 2、连接A1B3 则A1B3为最短路径 由勾股定理得
A
B
比较与总结
比较
2
h r
2 2 2 2
2
和 h+2r的大小
h r
=h+2r
h
2
4 r 4
当h
2
当h
当h
2
4 r时,沿侧面爬行路径最 短 4
2
4 r时,两种路径情况一样 4
4 r时,沿A向上再沿上底直径爬行 最短 4
问题情境三
在长为5、宽为3、高
为4的长方体的右下角A
处有一只蚂蚁,欲从长方
B
体的外表面爬行去吃右上
角B处的食物,问怎样爬 行路径最短,最短路径是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题《利用勾股定理求立体图形最短路径》学案
【学习目标】
1. 理解并掌握勾股定理的内容,学会用勾股定理求最短路径
2. 通过动手探究,了解求立体图形上任意两点之间的最短距离的常用方法
3. 通过把立体图形转化为平面图形,体会转化思想
【学习活动】
一、知识回顾,加强理解
1.勾股定理的基本内容:
2.在同一平面上两点之间的最短路径常用的方法:两点之间,最短
一、典例分析,规律升华
探究一:正方体中的最短路径
例1:如图,边长为1的正方体中,一只蚂蚁从顶点A出发沿着正方体的外表面爬到顶点B的最短距离是多少?
探究二:长方体中的最短路径
例2:如图是一块长,宽,高分别是6cm,4cm和3cm的长方体木块一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物那么它需要爬行的最短路径为多少?
探究三:圆柱中的最短路径
例3:如图,有一个圆柱,它的高等于12厘米,底面半径等于3厘米,在圆柱下底面上的A点有一只蚂蚁,它想从点A爬到点B , 蚂蚁沿着圆柱侧表面爬行的最短路程是多少? (π的值取3)
B
A
总结:1. 通过长方体的最短路径你发现了什么规律?
2. 立体图形最短路径常用的方法是
二、巩固提高,归纳提升
如图,有一个如图示的长方体的透明玻璃鱼缸,假设其长AD=80 cm,高AB=60 cm,水深为AE=40 cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60cm;一小虫想从鱼缸外的A点沿壁爬进鱼缸内G处吃鱼饵.求小动物爬行的最短路线长?
三、达标测评,查漏补缺
1.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁
如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是。

2.如图A,一圆柱体的底面周长为24cm,高BD为4cm ,BC是直径,一只蚂蚁从点D 出发沿着圆柱的侧表面爬行到点C的最短路径是
3.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为多少?
四、回顾反思、总结升华
五、布置作业、深化认知。

相关文档
最新文档