人教版高中数学必修3第二章统计-《2.2.1用样本的频率分布估计总体分布》教案(5)
人教B版高中数学必修三《第二章 统计 2.2 用样本估计总体 2.2.1 用样本的频率分布估计总体的分布》_1
2.2.1用样本的频率分布估计总体分布
一、频数,频率的概念
绘图
二、画频率分布直方图的步骤
1、
2
3
4
七、课后作业
课本P81习题2.2 A组2
3、初中时我们学习过样本的频率分布,包括频数、频率的概念,频数分布表和频数分布直方图的制作;
五
教
学
过
程
设
计
教
学
环
节
2
学生活动
教师活动
我们要思考的问题是:
(1)如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?
(2)你认为,为了较为合理地确定出这个标准,需要做哪些工作?
假设通过抽样),我们获得了100位居民某年的月平均用水量(单位:t)。
一情境引入
我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费。
幻灯出示样本数据。教师提问:从这组数据中能得到什么信息?
设计意图
由学生身边实例入手,激发学生的学习兴趣,探索热情,特别是问题提出,增加了学生的参与感。也让学生充分体会数学来源于生活,研究统计具有较强的实际意。
②从频率分布直方图看不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了
思考提升
(1)如果当地政府希望85%以上的居民每月的用水量不超出标准,根据频率分布表和频率分布直方图,你能对制定月用水量a提出建议吗?
(2)你认为3吨这个标准一定能够保证85%以上的居民用水量不超过标准吗?如果不一定那么哪些环节可能会导致结论的差别?政府是依据什么确定85%这个数呢?
人教B版高中数学必修三《第二章 统计 2.2 用样本估计总体 2.2.1 用样本的频率分布估计总体的分布》_1
用样本的频率分布估计总体的频率分布一、教学目标(1) 通过实例体会分布的意义和作用。
(2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图。
(3)通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计。
二、重点与难点 难点:能通过样本的频率分布估计总体的分布 三、教学过程(一)、引入新课1、问题:前面我们主要学习了哪些抽样方法,抽取样本的目的是什么呢?教师进一步引导:抽取样本是为从样本中获取信息,来估计总体的一些性质特点。
但是多而杂乱的数据,我们往往无法直接从原始数据中理解它们所包含的信息。
如何借助图、表、计算来分析数据,使数据所包含的信息转化为直观、易理解的形式呢?这正是这节课需研究的问题.2、引导学生带着问题阅读课本: (1):什么是频率分布 (2):如何画频率分布直方图?(归纳出5个步骤) (3):频率分布直方图中的纵坐标表示什么? (4):小长方形的面积等于什么? (5):所有小长方形的面积之和等于多少? (二)、探究新知1、我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a ,用水量不超过a 的部分按平价收费,超出a 的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a 定为多少比较合理呢?你认为,为了了较为合理地确定出这个标准,需要做哪些工作?2、教师引导学生下看课本P66表2-1(其中100位居民某年的月均用水量)3、频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.其一般步骤为:(1) 求极差(即一组数据中最大值与最小值的差):知道这组数据的变动范围4.3-0.2=4.1(2) (2)决定组距与组数组数:一般情况下,当样本容量不超过100时,按照数据的多少,一般分成5—12组 组距:指每个小组的两个端点的距离,这组数据我们确定组距为0.54.18.20.5==极差组数=组距(对于本组数据我们分9组)(3)将数据分组:[0,0.5 ),[0.5,1 ),…,[4,4.5] (4)列频率分布表(见课本P67) (5)画频率分布直方图频率/组距4、通过师生共同分析、列表、作图,让学生掌握频率分布表、频率分布直方图的画法步骤,并体会图、表的各自特点问题一:每个小正方形的面积表示什么? 问题二:所有小正方形的面积和是多少?注意:让学生注意纵坐标不是频率,而是频率/组距,在频率分布直方图中,各小长方形的面积等于相应各组的频率,频率之和等于1 (三)、运用新知题型一:画频率分布直方图题型二:频率分布直方图的应用思考题1 (1)某班50人的一次数学考试成绩(按降序排列)如下表:学号 成绩 学号 成绩 学号 成绩 学号 成绩学号 成绩01 129 07 110 02 101 33 92 47 84 08 120 28 110 45 101 15 90 10 81 26 120 03 108 18 100 46 90 50 81 43 120 21 107 41 99 48 89 42 80 39 119 12 106 27 98 25 88 14 79 04 117 05 105 49 95 38 88 24 75 16 115 37 104 29 94 35 87 32 74 17 113 13 103 40 94 06 86 34 72 23 113 20 102 31 93 22 86 44 69 1111230102099236851961题型二 频率分布直方图的应用例2 (1)观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在[2 700,3 000)的频率为________.(2)已知200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,求时速在[60,70]的汽车大约有________辆.(四)小结与作业。
人教高中数学必修三2.2.1用样本的频率分布估计总体分布课件
频率散布直方图以面积的情势反应了数据落在 各个小组的频率的大小.
作业
1、课时训练 P73 2、探究咱班学生的身高
散布情况 3、探究频率散布折线图和
总密度曲线
频率 组距 0.5 0.4 0.3 0.2 0.1
宽度:组距
高度:
频率 组距
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
画频率散布直方图
频率/组距
注意:
① 这里的纵坐标不是频率, 而是频率/组距;
0.50 0.40
0.50 ② 某个区间上的频率用
0.44
这个区间矩形的面积表示;
2.2.1用样本的频率散布 估计总体散布
学习目标
1、理解并学会画频率散布表; 2、掌握频率散布直方图的画法,
并能理解在频率散布直方图 中用面积表示频率。
一、复习回顾
1.我们已经学习了哪些抽样的方法?
简单随机抽样
系统抽样
分层抽样
随机抽样是收集数据的方法,如何通过 样本数据所包含的信息,估计总体的基 本特征,即用样本估计总体,是我们需 要进一步学习的内容.
二、样本估计总体的方法
一般分成两种: ①用样本的频率散布估计总体的散布. ②用样本的数字特征(如平均数、标准差 等)估计总体的数字特征.
• 我国是世界上严重缺水的国家之一。
如何划在本市试
行居民生活用水定额管理,即确定一个居民月用 水量标准a , 用水量不超过a的部分按平价收费,超 过a的部分按议价收费。
思考:由上表,大家可以得到什么信息?
三、样本分析
一般通过表、图、计算来分析 数据,帮助我们找出样本数据中的 规律,使数据所包含的信息转化成 直观的容易理解的情势。
高中数学人教新课标B版必修3--《2.2.1用样本的频率分布估计总体的分布》课件4
1
解1:总睡眠时间约为 6.25×5+6.75×17 +7.25×33+7.75×37+8.25×6+8.75×2 =739(h)
故平均睡眠时间约为7.39h 解2:求各组中值与对应频率之积的和, 6.25×0.05+6.75×0.17+7.25×0.33+7.75× 37+8.25×0.06+8.75×0.02 =7.39(h)
解:估计该单位职工的平均年收入为 12500×10%+17500×15%+22500×20%+ 27500×25%+32500×15%+37500×10%+ 45000×5%=26125(元) 答:估计该单位人均年收入约为26125元.
练习题: 1.若M个数的平均数是x,N个数的平均数
Mx Ny
(2)中位数不受少数几个极端数据的影 响,容易计算,它仅利用了数据中排在中 间的数据的信息。当样本数据质量比较差, 即存在一些错误数据时,应该用抗极端数 据强的中位数表示数据的中心值。
(3)平均数受样本中的每一个数据的影 响,“越离群”的数据,对平均数的影响 也越大,与众数和中位数相比,平均数代 表了数据更多的信息,当样本数据质量比 较差时,使用平均数描述数据的中心位置 可能与实际情况产生较大的误差。
2.2.2 用样本的数字特征估计 总体的数字特征(一)
一、众数、中位数、平均数
(1)众数:在样本数据中,频率散布最 大值所对应的样本数据或出现次数最多的 那个数据。
(2)中位数:样本数据中,累计频率为 0.5时所对应的样本数据或将数据按大小 排列,位于最中间的数据(如果数据的个 数为偶数,就取当中两个数据的平均数作 为中位数)。
高中数学人教版必修3课件2-2-1用样本的频率分布估计总体分布3
问题 5 用茎叶图表示数据的分布情况是一种好方法,你认 为茎叶图有哪些优点?
答 一是从茎叶图上没有原始信息的损失,所有的数据信 息都可以从茎叶图中得到;二是茎叶图可以在比赛时随时 记录,方便记录与表示. 问题 6 茎叶图有什么缺陷?
复习回顾 2. 频率分布直方图是在平面直角坐标系中画若 干个依次相邻的小长方形,这些小长方形的宽、高和面积 在数量上分别表示什么? 频率
答 长方形的宽表示组距,长方形的高=组距,长方形的面 积表示相应各组的频率.
1. 频率分布表及频率分布直方图的应用
例 1 为了了解高一学生的体能情况, 某校抽取部分学生进行一分钟跳绳 次数测试,将所得数据整理后,画出 频率分布直方图(如图),图中从左到 右各小长方形面积之比为 2∶4∶17∶15∶9∶3,第二小组频 数为 12. (1)第二小组的频率是多少?样本容量是多少? (2)若次数在 110 以上(含 110 次)为达标,试估计该学校全体 高一学生的达标率是多少?
合计 100 1
0.028 0.048 0.030 0.024 0.018 0.022 0.012 0.004
0.2
(2)频率分布直方图如图:
(3)从频率分布表得,样本中小于 100 的频率为 0.01+0.02+ 0.04+0.14=0.21,样本中不小于 120 的频率为 0.11+0.06+ 0.02=0.19,估计该片经济林中底部周长小于 100 cm 的树木 约占 21%,周长不小于 120 cm 的树木约占 19%.
答 由于折线图是取了长方形上端的中点,即每一组数据平均值 对应的频率,所以能大致反映样本数据的频率分布. 问题 3 当总体中的个体数很多时(如抽样调查全国城市居民月 均用水量),随着样本容量增加,作图时所分的组数增多,组距减少, 你能想象出相应的频率分布折线图会发生什么变化吗? 答 由于组数的增多,组距减少,长方形上端中点的数量增多,且 相距越近,各相邻长方形上端中点的折线越短,折线变得近似于 曲线.
人教版高中数学必修三第二章第2节 2.2.1用样本的频率分布估计总体分布 课件(共14张PPT)
(假设通过抽样),我们获得了100位居民某年的月平均用水量(单位:t)
问题1:面对这些比较多、比较乱、没有规律的数据,你能想到用什么方法把它 们进行归纳、分类,使它们更简洁呢? 问题2:如果希望88%的居民按平价收费,日常生活不受影响,那么标准a定为多 少比较合理呢 ?
学习环节2:自主阅读课本P65-P67完成以下问题
茎叶图 (一种被用来表示数据的图)
例: 甲乙两人比赛得分记录如下: 甲:13, 51, 23, 8, 26, 38, 16, 33, 14, 28, 39 乙:49, 24, 12, 31, 50, 31, 44, 36, 15, 37, 25, 36, 39 用茎叶图表示两人成绩,说明哪一个成绩好.
2、为了了解高一学生的体能情况,某校抽取部分学生进行一分 钟跳绳次数次测试,将所得数据整理后,画出频率分布直方 图(如图),图中从左到右各小长方形面积之比为2:4:17: 15:9:3,第二小组频数为12.
(1)第二小组的频率是多少?样本容量是多少? 频率/组距
0.036
0.032
(2)若次数在110以上(含110次) 0.028
2.2.1用样本的频率分布估计总体分布
学习环节1:问题来源
现实生活中我们会遇到许多统计数据的问题,如NBA的一 场球赛的数据统计,关于国计民生的经济数据统计等,如 何对数据进行统计才能让我们从数据中知道所其所包含的 信息呢?这节课我们来学习一些简单的统计方法
我国是世界上严重缺水的国家之一,城市缺水问题较为突 出,某市政府为了节约生活用水,计划在本市试行居民生 活用水定额管理,即确定一个居民月用水量标准a,用水 量不超过a的部分按平价收费,超出a的部分按议价收费
(1)计算极差:一组数据中最大值与最小值的差
人教版高中数学必修3第二章统计-《2.2.1用样本的频率分布估计总体分布》教案(2)
2.2.1 用样本的频率分布估计总体频率分布(二)教学要求:通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布,教学重点:学会列频率分布表、画频率分布直方图、频率折线图、茎叶图.教学难点:体会用样本估计总体的思想,会用样本的频率分布估计总体分布教学过程:一、复习准备:1.讨论:绘制频率分布直方图有哪几个步骤呢?2.练习:给出一个频率分布直方图,进行一些分析.(如何表示频率?面积和?集中范围?变化趋势?)二、讲授新课:1、教学频率分布折线图及茎叶图:①定义频率分布折线图:画好频率分布图后,我们把频率分布直方图中各小长方形上端连接起来,得到的图形.②定义总体密度曲线:在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线. 它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.注:频率折线图是随着样本而变化的,因此并不能由频率折线图得到准确的总体密度曲线.当样本容量不断增加,分组的组距不断缩小,频率分布折线图会越来越接近一条光滑的曲线即总体密度曲线,它由(a,b)的阴影部分的面积,直观反映总体在范围(a,b)内取值的百分比.③讨论:对于任何一个总体,它的密度曲线是不是一定存在?它的密度曲线是否可以被非常准确地画出来?(实际上,尽管有些总体密度曲线是客观存在的,但一般很难想函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确.)④提问:目前有哪些方式可以发现样本的规律?(分布表、直方图、折线图都能帮助发现样本数据的规律)⑤定义茎叶图:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.注:茎叶是一种形象的说法,表明两部分数据间的关系,茎是指数据中用来分组的依据数,叶是指被分到这组的数.⑥出示例:试将下列两组数据制作出茎叶图.甲得分:13 ,51,23,8,26,38,16,33,14,25,39,乙得分:49,24,12,31,60,31,44,36,15,37,25,36,39,(▲师生共同按制作茎叶图的方法进行操作)⑦讨论:用茎叶图处理样本数据有何好处,什么时候用茎叶图会比较方使?(茎叶图不仅能够保留原始数据,数据可以随时记录,随时添加,方便记录, 而且能够展示数据的分布情况,但其仅适用于样本数据较少时,否则枝叶会太长. 茎叶图中数据的茎和叶的划分,可根据数据的特点灵活地决定.)2、练习:教材P61第3题.3、小结:不易知一个总体的分布情况时,往往从总体中抽取一个样本,用样本的频率分布去估计总体的频率分布,样本容量越大,估计就越精确. 目前有:频率分布表、直方图、茎叶图.三、巩固练习:1. 练习:试制作本班男同学身高的茎叶图.四、作业:P72 1、2题,只作图.。
人教版高一数学必修三第二章2.2.1用样本的频率分布估计总体分布(一)【教案】
2用样本的频次散布预计整体散布(一)教材剖析本节内容是数学 3 第二章统计第二节用样本预计整体的第一小节第一课时,是在学习了随机抽样的基础上,进一步学惯用图、表来剖析样本数据并用样本的频次散布预计整体散布,为后边整体的众数、中位数、均匀数的预计做好知识铺垫 . 本节课的要点是频次散布表、频次散布直方图的绘制,难点是用样本的频次散布预计整体散布 . 经过对样本剖析和整体预计的过程,锻炼用图、表剖析数据的能力和对实质问题决议能力,理解用样本预计整体的思想,感觉数学对实质生活的需要,认识到数学知识源于生活并指导生活的事实,领会数学知识与现实世界的联系 .课时分派本节内容用 1 课时的时间达成,主假如学习绘制频次散布直方图和用样本的频次散布预计整体散布 .教课目的要点 :频次散布表、频次散布直方图的绘制.难点:用样本的频次散布预计整体散布.知识点:频次散布表、频次散布直方图.能力点:如何应用样本预计整体的思想,解决一些简单的实质问题.领会教育点:感觉数学对实质生活的需要,认识到数学知识源于生活并指导生活的事实,数学知识与现实世界的联系.自主研究点:相同一组数据,假如组距不一样,横轴、纵轴的单位不一样,频次散布直方图如何变化 .考试点:频次散布直方图的绘制和用样本的频次散布预计整体散布.易错易混点:频次散布直方图中误将纵轴表示频次.拓展点:能用其余图形对样本数据进行剖析吗.教具准备多媒体课件讲堂模式问题指引一、引入新课问题:前方我们主要学习了哪些抽样方法,抽取样本的目的是什么呢?【师生活动】学生思虑后回答.教师进一步指引:抽取样本是为从样本中获守信息,来预计整体的一些性质特色。
可是多而凌乱的数据,我们常常没法直接从原始数据中理解它们所包括的信息。
如何借助图、表、计算来剖析数据,使数据所包括的信息转变为直观、易理解的形式呢?这正是这节课需研究的问题 .【设计企图】回首旧知,合理设置新知识的生长点,以保证新内容的自然引入,使学生对新知识的接受不会感觉太冒昧,理解新旧知识的联系.【设计说明】留足够多时间让学生稳固旧知,在此基础上,进一步用问题惹起学生思虑,调换学生研究新知踊跃性 .二、研究新知教师——我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节俭生活用水,计划在本市试行居民生活用水定额管理,即确立一个居民月用水量标准a,用水量不超出 a 的部分按平价收费,高出 a 的部分按议价收费. 假如希望大多数居民的平时生活不受影响,那么标准 a 定为多少比较合理呢?你以为,为了了较为合理地确立出这个标准,需要做哪些工作?学生——为了拟订一个较为合理的标准a,一定先认识全市居民平时用水量的散布状况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比状况等. 所以采纳抽样检查的方式,经过剖析样本数据来预计全市居民用水量的散布状况.【设计企图】激发学生的学习兴趣,研究热忱,特别是问题提出,增添了学生的参加感. 让学生充足领会数学根源于生活,研究统计拥有较强的实质意义.学生——在教师指引下看课本P66 表 2-1 (此中 100 位居民某年的月均用水量)教师——如何将样本数据的信息反应出来,可用什么方法?学生——鉴于初中的统计知识学生议论后基本上会获得下边结论:剖析样本数据用图将它们画出来,用图反应样本信息 .教师——剖析数据的一种基本方法是用图将它们画出来,或许用紧凑的表格改变数据的摆列方式,作图能够达到两个目的,( 1)是从数据中提守信息,(2)是利用图形传达信息. 表格则是经过改变数据的组成形式,为我们供给解说数据的新方式.【设计企图】指引学生思虑如何对样本数据进行剖析,为频次散布直方图的学习做好准备. 教师——下边我们学习的频次散布表和频次散布图,则是从各个小组数据在样本容量中所占比率大小的角度,来表示数据散布的规律. 能够让我们更清楚的看到整个样本数据的频次分布状况 .频次散布是指一个样本数据在各个小范围内所占比率的大小. 一般用频次散布直方图反应样本的频次散布 . 其一般步骤为:(1)求极差 ( 即一组数据中最大值与最小值的差) :知道这组数据的改动范围(2)决定组距与组数组数:一般状况下,当样本容量不超出100 时,依据数据的多少,一般分红 5—12 组组距:指每个小组的两个端点的距离,这组数据我们确立组距为极差9 组 )组数 = 8.2 (关于本组数据我们分组距(3)将数据分组:[0, 0.5 ) ,[ 0.5 ,1 ) ,,[ 4, 4.5 ](4)列频次散布表(见课本 P67)(5 )画频次散布直方图频次/组距01234【设计企图】经过师生共同剖析、列表、作图,让学生掌握频次散布表、频次散布直方图的画法步骤,并领会图、表的各自特色问题一:每个小正方形的面积表示什么?问题二:全部小正方形的面积和是多少?【设计企图】让学生注意纵坐标不是频次,而是频次/ 组距,在频次散布直方图中,各小长方形的面积等于相应各组的频次,频次之和等于 1. 研究:相同一组数据,假如组距不一样,横轴、纵轴的单位不一样,获得的图和形状也会不一样不一样的形状给人以不一样的印象,这类印象有时会影响我们对整体的判断,分别以0.1 和1为组距从头作图,而后说说你对图的印象?结论:分组数的变化能够惹起频次散布表和频次散布直方图的构造变化;坐标系的单位长度的变化只好惹起频次散布直方图的形状沿坐标轴方向的拉伸变化.【设计企图】深入理解频次散布表、频次散布直方图的画法,同时领会到统计结果随机性、科学性,能作为整体的散布的合理性.思虑一:假如当地政府希望使85%以上的居民每个月的用水量不高出标准,依据频次散布表2-2 和频次散布直方图 2.2-1 ,(见课本 P67)你能对拟订月用水量标准提出建议吗?(标准可为 3t )思虑二:你以为 3 吨这个标准必定能够保证85%以上的居民用水量不超出标准吗?假如不一定那么哪些环节可能会致使结论的差异?( 可能出现误差 )【设计企图】从实质问题出发,再回到实质问题的决议,前后响应,使学生真实领会数据处理的全过程、统计应用于现实生活的全过程,领会这一“方法”对决议者的重要,使学生有一种身临其境之感,领会到学好数学也是一种“责任”.三、理解新知频次散布直方图的特色:(1)从频次散布直方图能够清楚的看出数据散布的整体趋向,(2)从频次散布直方图得不出原始的数据内容,把数据表示成直方图后,原有的详细数据信息就被抹掉了 .整体散布指的是整体取值的频次散布规律,因为整体散布不易知道,所以我们常常经过频次散布直方图用样本的频次散布去预计整体散布.【设计企图】掌握频次散布直方图与原始样本数据的关系,认识频次散布直方图剖析样本数据的优势和弊端,理解用样本的频次散布预计整体散布的思想.四、运用新知例 1 下表给出了某校500 名 12 岁男孩顶用随机抽样得出的120 人的身高 ( 单位cm ) 区间界线 [122,126) [126,130) [130,134) [134,138) [138,142) [142,146) 人数 5 8 10 22 33 20区间界线 [146,150) [150,154) [154,158)人数11 6 5(1) 列出样本频次散布表﹔ (2) 一画出频次散布直方图 ;(3) 预计身高小于 134cm的人数占总人数的百分比 .剖析:依据样本频次散布表、频次散布直方图的一般步骤解题 .解:(1)样本频次散布表以下:分组频数 频次 [122,126) 5 [126,130) 8 [130,134) 10 [134,138) 22 [138,142) 33 [142,146) 20 [146,150) 11[150,154) 6 (2)其[154,158) 5 频次散布直方图以下:共计频次 1201/ 组距o122 126 130 134 138 142 146 150 154 158身高( cm )(3)由样本频次散布表可知身高小于 134cm 的男孩出现的频次为0.04+0.07+0.08=0.19 ,所以我们预计身高小于 134cm 的人数占总人数的 19%.【设计企图】 经过学生的自我实践, 让学生掌握绘制频次散布表、 频次散布直方图的方法步骤,并会用样本的频次散布预计整体散布.例 2 为了认识高一学生的体能状况 , 某校抽取部频次/组距分学生进行一分钟跳绳次数测试, 将所得数据整理后,画出频次散布直方图( 如图 ) ,图中从左到右各小长方形面积之比为 2: 4:17:15:9:3,第二小 组频数为 12.(1) 第二小组的频次是多少?样本容量是多少?(2) 若次数在 110 以上(含 110 次)为达标,试预计该学校全体高一学生的达标率是多少?(3) 在此次测试中,学生跳绳次数的中位数落在哪个小组内?请说明原因 .剖析:在频次散布直方图中,各小长方形的面积等于相应各组的频次,小长方形的高与频数成正比,o100 110 120 130 140 150 次数90各组频数之和等于样本容量,频次之和等于 1.解:( 1)因为频次散布直方图以面积的形式反应了数据落在各小组内的频次大小,所以第二小组的频次为:44 17 15 92 3 又因为频次 =第二小组频数样本容量所以样本容量第二小组频数12150 =第二小组频次(2)由图可预计该学校高一学生的达标率约为17 15 9 3100% 88%2 4 17 15 9 3(3)由已知可得各小组的频数挨次为6,12,51,45,27,9,所从前三组的频数之和为 69,前四组的频数之和为 114,所以跳绳次数的中位数落在第四小组内.【设计企图】综合运用频数、样本容量、频次、小长方形面积关系解题,注意小长方形面积和为 1,加深用样本的频次散布预计整体思想的理解与应用.五、讲堂小结让学生回首议论,总结本节课学习内容:1.知识:频次散布表、频次散布直方图的绘制.2.思想:用样本预计整体的思想.教师总结 :掌握绘制频次散布直方图的步骤,注意纵轴表示频次/ 组距,小长方形面积表频率. 长处是能够很简单地表示大批数据,特别直观地表示散布形状,能看到在散布表中看不清楚的一些数据模式 . 弊端是能够大概预计出整体的散布状况,原有的详细数据信息就被抹掉了 . 领会到统计结果随机性、科学性,能作为整体的散布的合理性【设计企图】培育学生实时梳理,系统总结新学知识和方法的习惯,既从整体上掌握知识方法,又分清重难点,形成优秀的知识构造.六、部署作业1.阅读教材2.书面作业P66— 68;必做题:P81 习题 2.2 A 组 2选做题: 1. 在抽查某产品的尺寸过程中,将其尺寸分红若干组,[a,b] 是此中一组,抽查出的个体数在该组上的频率为 m ,该组上的直方图的高为h,则 | a b | 等于()( A) hmh(C )m( B) (D ) 与 m, h 没关m h2.为了认识学生身体的发育状况,对某要点中学年满 17 岁的 60 名同学的身高进行了丈量,结果以下(单位:m)身高人数 2 1 4 2 4 2 7 6 8身高人数7 4 3 2 1 2 1 1(Ⅰ)依据上表,预计这所要点中学年满 17 岁的男同学中,身高不低于于1.71 m的约占多少?不低于 1.63 m的约占多少?1.65 m且不高(Ⅱ)画出频次散布直方图,说出该校年满17 岁的男同学中身高在哪个范围内的人数所占比率最大?假如该校年满17 岁的男同学恰巧是300 人,那么在这个范围内的人数预计约有多少人?3.课外思虑能用其余图形对样本数据进行剖析吗.【设计企图】经过学生阅读和书面作业让学生进一步掌握绘制频次散布表、频次散布直方图的步骤,会用样本的频次散布预计整体散布;课外思虑的安排,是惹起学生发散思虑,为后面频次散布折线图、茎叶图的学习做好准备.七、教后反省1. 本教课设计的亮点是新知的研究,让学生参加到教课的过程中,体验数据办理、信息剖析、到最后进行决议等统计思想的整个过程,使学生一直保持较高的学习踊跃性.2.建议教师在使用本教课设计时多媒体展现与着手演示作图过程灵巧联合,兼备效率与成效.3.本节课的弱项是因为知识内容多,没能留给学生许多时间着手作图, 裸露操作中的各样不足.八、板书设计一、复习引入二、研究新知1. 频次散布直方图作2用样本的频次散布预计整体散布(3.研究相同一组数三、运用新知据,频次散布直方图例 1不一样构造变化1)四、小结五、部署作业法2. 频次散布直方图理例 2 解问题一问题二。
高中数学人教A版必修3第二章2.2.1用样本的频率分布估计总体分布课件
[150,154)
6
[154,158)
4
合计
100
频率
0.02 0.08 0.09 0.18 0.28 0.15 0.10 0.06 0.04
1.00
(2)频率散布直方图:
频率 组距
0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01
(3)估计该校学生身 高小于134cm的人 数约为多少?
知识迁移
例1 在某小学500名学生中随机抽样得到 100人的身高如下表(单位cm) :
身高区间 [122,126) [126,130) [130,134) [134,138) [138,142)
人数
2
8
9
18
28
身高区间 [142,146) [146,150) [150,154) [154,158)
(3)频率散布折线图的优点是它反应了数据的变化趋 势。如果样本容量不断增大,分组的组距不断缩小, 那么折线图就趋近于总体散布的密度曲线。
(4)用茎叶图刻画有两个优点:一是所有的信息都可 以从这个茎叶图中得到;二是便于记录和表示,能够 展示数据的散布情况。但样本数据教多或数据位数较 多时,茎叶图就显得不太方便。
月均用水量/t
三、总体密度曲线
频率 组距
总体在区间 (a,b)内取 值的百分比.
思考O :在上述背景下,相应a 的频率b散月布均折用线水图量越/t 来越接近于一条光滑曲线,统计中称这条光滑 曲线为总体密度曲线.那么图中阴影部分的面积
有何实际意义?
思考1:当总体中的个体数比较少或样 本数据不密集时,是否存在总体密度曲线? 为什么?
不存在,因为组距不能任意缩小.
思考2:对于一个总体,如果存在总体密度 曲线,这条曲线是否惟一?能否通过样本数 据准确地画出总体密度曲线?Fra bibliotek四、茎叶图
高中数学人教B版必修3第二章统计2.2.1用样本的频率分布估计总体的分布课件
6. (2011年高考四川卷文科2)
有一个容量为66的样本,数据的分组及各组的频数如下:
11.5,15.52 15.5,19.5 4 19.5,23.5 923.5, 27.5 18
2.2.1用样本的频 率散布估计总体散
布(二)
复习回顾
频率 组距 0.5 0.4 0.3 0.2 0.1
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
频率 组距 0.5 0.4 0.3 0.2 0.1
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
比赛的得分情况如下:
甲运动员得分:13,51,23,8,26,38,16, 33,14,28,39; 乙运动员得分:49,24,12,31,50,31,44, 36,15,37,25,36,39.
【例】 某赛季甲、乙两名篮球运动员每场
比赛的得分情况如下:
甲运动员得分:13,51,23,8,26,38,16, 33,14,28,39; 乙运动员得分:24,31,30,31,44,36,15, 37,25,36,39.
频率 组距 0.5 0.4 0.3 0.2 0.1
0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
频率 组距
总体密度曲线
O
a
b 月均用水量/t
频率 组距
O
总体密度曲线
总体在区间 (a,b)内取 值的百分比.
a
b 月均用水量/t
【例】 某赛季甲、乙两名篮球运动员每场
人教A版高中数学必修3第二章2.2.1 用样本的频率分布估计总体分布教案
§2.2.1用样本的频率分布估计总体分布教案【教学目标】1.知识与技能(1)通过实例体会分布的意义和作用。
(2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图。
(3)通过实例体会频率分布直方图,并准确地做出总体估计。
2.过程与方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法。
3.情感态度与价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系。
【教学重点】1.体会分布的意义与作用,学会列频率分布表、画频率分布直方图并体会各自的特点。
2.体会用样本估计总体的思想。
【教学难点】1.能通过样本的频率分布估计总体的分布。
2.体会分布的意义与作用。
【课型】新授课【教学方法】按照本课的重点和难点,我打算以学习任务驱动,以问题探究与动手操作为方式,以问题解决为主线,通过各种展示方式创设情景,引导学生通过对问题的交流讨论和实验探究,学会画图和表并理解分布的作用和意义,了解学习统计知识的基本研究方法。
【教学过程】(一)、复习旧知1.随机抽样的常用方法有哪些?2.抽样的目的是什么?(二)、创设情境引入问题我国是世界上严重缺水的国家之一,城市缺水问题较为突出,民乐县县政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费。
如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律。
可以让我们更清楚的看到整个样本数据的频率分布情况。
(三)、探究新知【概念形成】1、频数将样本按照一定的方法分成若干组,每组内含有这个样本的个体的数目。
人教版高中数学必修三第二章第2节 2.2.1用样本的频率分布估计总体分布 课件(共18张PPT)
74.5
根据上图可得这100名学生中体重在[56.5,64.5]的学生人数是(C )
A. 20
B. 30
C. 40
D. 50
7.一个容量为100的样本,数据的分组和各组的相关信息如下表, 试完成表中每一行的两个空格;
8.有一个容量为50的样本数据的分组的频数如下:
Hale Waihona Puke [12.5, 15.5) 3
[15.5, 18.5) 8 [18.5, 21.5) 9 [21.5, 24.5) 11
1. 一个容量为32的样本,已知某组样本的频率为 0.125, 那么该组样本的频数为(B ) A.2 B.4 C.6 D.8
2. 在用样本频率估计总体分布的过程中,下列说法正确的是(C ) A.总体容量越大,估计越精确 B.总体容量越小,估计越精确 C.样本容量越大,估计越精确 D.样本容量越小,估计越精确
月均用水量/t
频率 组距 0.5 0.4 0.3 0.2 0.1
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5
月均用水量/t
(1)居民月均用水量的分布是“山峰”状的,而且是“单峰”的;
(2)大部分居民的月均用水量集中在一个中间值附近,只有少数居 民的月均用水量很多或很少;
(3)居民月均用水量的分布有一定的对称性等.
2.2 用样本估计总体
2.2.1 用样本的频率分布估计总体分布
人教版高中数学 A版 必修三 第二章 《2.2.1用样本的频率分布估计总体分布》教学课件
第二章 § 2.2 用样本估计总体
2.2.1 用样本的频率分布估计总体分布(二)
学习目标
1.了解频率折线图和总体密度曲线的定义; 2.理解茎叶图的概念,会画茎叶图; 3.了解频率分布直方图、频率折线图、茎叶图的各自特征,学会选择不 同的方法分析样本的分布,从而作出总体估计.
问题导学
题型探究
达标检测
分组
频数
频率
[1.30,1.34)
4
[1.34,1.38)
25
[1.38,1.42)
30
[1.42,1.46)
29
[1.46,1.50)
10
[1.50,1.54]
2
合计
100
(1)完成频率分布表,并画出频率分布直方图;
解析答案
(2)估计纤度落在[1.38,1.50)内的可能性及纤度小于1.42的可能性各是多少? 解 纤度落在[1.38,1.50)的可能性即为纤度落在[1.38,1.50)的频率,即为 0.3+0.29+0.10=0.69=69%. 纤度小于1.42的可能性即为纤度小于1.42的频率,即为0.04+0.25+0.30= 0.59=59%.
解析答案
返回
达标检测
1 2345
1.在用样本的频率分布估计总体的频率分布的过程中,下列说法正确的 是( C ) A.总体的容量越大,估计越准确 B.总体的容量越小,估计越准确 C.样本的容量越大,估计越准确 D.样本的容量越小,估计越准确
答案
1 2345
2.一个容量为n的样本,分成若干组,已知某组的频数和频率分别为
解析答案
(3)估计身高小于134 cm的人数占总人数的百分比. 解 由样本频率分布表可知,身高小于134 cm的男孩出现的频率为0.04+ 0.07+0.08=0.19,所以我们估计身高小于134 cm的人数占总人数的19%.
高中数学第二章统计2.2.1用样本的频率分布估计总体分布课件新人教A版必修3
六、茎叶图
NBA某赛季甲、乙两名篮球运动员每场比赛的得分 的原始纪录如下: 甲运动员得分:13,51,23,8,26,38,16,33, 14,28,39; 乙运动员得分:49,24,12,31,50,31,44,36, 15,37,25,36,39.
4、画频率分布表
一、频率分布表
4、画频率分布表 55名12岁男生身高的频率分布表
分组
[125.45 ,130.45) [130.45, 135.45) [135.45, 140.45) [140.45, 145.45) [145.45, 150.45) [150.45, 155.45) [155.45, 160.45]
例1、为了了解某地高一年级男生的身高情况, 从其中的一个学校选取容量为60的样本(60名 男生的身高,单位:cm),分组情况如下:
分组 151.5~158.5 158.5~165.5 165.5~172.5 172.5~179.5
频数
6
21
27
m
频率
a
0.1
则表中的m= 6 , a= 0.45
例2、一个社会调查机构就某地居民的月收入调查了 10000人,并根据所得数据画了样本的频率分布直方图, 为了分析居民的收入与年龄、学历、职业等方面的联 系,要从这10000人中再用分层抽样的方法抽出100人 作进一步调查,则在[2500,3000](元)月收入段应抽 出 25 人
0.46
高中数学人教必修三课件:2.2.1用样本的频率分布估计总体分布
(2)当样本容量无限增大(无限大时即 认为到达总体时),作图时所分的组数增 加,组距无限缩小,那么频率散布折线图 就会无限接近于一条光滑曲线—总体密度 曲线。
总体密度曲线
频率 组距
月均用 水量/t
ab
图中阴影部分的面积,表示总体在某个区间 (a, b) 内取值的百分比(频率)。
通过抽样,我们获得了100位居民某年的月平均用水量(单位:t) ,如下表:
请同学们阅读教材66页到67页,了解并掌握如何用频率 散布表和频率散布直方图对样本数据进行统计分析?
画频率散布直方图的操作步骤
(一表一图的制作方法)
1.求极差.即数据中最大值与最小值的差 2.决定组距与组数 :组数=极差/组距 3.将数据分组.通常对组内数值所在区间,取左闭右 开区间 , 最后一组取闭区间
总体密度曲线反应了总体在各个范围 内取值的百分比,精确地反应了总体的散 布规律。是研究总体散布的工具。
频率 组距
月均用 水量/t
ab
图中阴影部分的面积,表示总体在某个区间 (a, b) 内取值的百分比(频率)。
练习
有一个容量为50的样本数据的分组的频数如下:
[12.5, 15.5) 3
[24.5, 27.5) 10
4.列出频率散布表.计算频数和频率, 列出频率散布表
5.画出频率散布直方图(纵轴表示频率/组距)
100位居民月平均用水量的频率散布表
100位居民月平均用水量的频率散布直方图
频率/组距
0.50 0.40 0.30 0.20 0.10
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
月平均用水量/t
2.2.1 用样本的频率散布估计总体散布
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1用样本的频率分布估计总体
学习目标:通过案例,使学生了解用样本的频率分布估计总体分布及其做法
学习重点:频率分布直方图的画法
学习内容:
【思考探究】
我国是世界上严重缺水的国家之一,城市缺水问题较为突出。
某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a , 用水量不超过a的部分按平价收费,超过a的部分按议价收费。
如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较合理地确定这个标准,需要做哪些工作?
(一)
通过抽样,我们获得了100位居民某年的月均用水量(单位:t) ,如下表:
思考:由上表,大家可以得到什么信息?
(二)频率分布直方图
步骤:
1.求极差
2.决定组距与组数
当样本容量不超过100时,按照数据的多少,常分成 ==组距
极差组数 3.将数据分组
确定初始值
分组
4、列频率分布表
5、画频率分布直方图
【思考】 同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图的形状也会不同。
不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断。
如分别以0.1和1为组距重新作图,然后谈谈你对图的印象。
练习:从一种零件中抽取了80件,尺寸数据表示如下(单位:cm):
这里用x×n表示有n件尺寸为x的零件,如362.51×1表示有1件尺寸为362.51cm的零件。
作出样本的频率分布表和频率分布直方图。
直方图的优点
直方图的缺点
思考:如果当地政府希望使85% 以上的居民每月的用水量不超出标准,根据频率分布表和频率分布直方图,你能对制定月用水量标准提出建议吗?
作业:课本P72 T2。