中考数学复习第三单元函数及其图象ppt课件
(徐州专版)2021年中考数学复习第三单元函数及其图象第15课时二次函数的综合应用课件
(2)点 D 的坐标为(0,4),点 F 为该二次函数在第一象限内图象上的动点,连接
CD,CF,以 CD,CF 为邻边作▱CDEF,设▱CDEF 的面积为 S.
①求 S 的最大值;
1
- 4 × (-4)2 -4 + = 0,
= 1,
所以有
解得
= 8.
= 8,
1
所以二次函数的解析式为 y=- x2+x+8.
4
当 y=0 时,解得 x1=-4,x2=8,所以点 C 的坐标为(8,0).
1
2.如图 15-9,在平面直角坐标系中,二次函数 y=-4x2+bx+c 的图象与坐标轴交于
解:(2)设抛物线的表达式为y=a(x+1)(x-4)=a(x2-3x-4),
把(0,-4)代入,得-4a=-4,解得a=1,
故抛物线的表达式为y=x2-3x-4.
图15-7
例2 [2019·贺州]如图15-7,在平面直角坐标系中,已知点B的坐标为(-1,0),且
OA=OC=4OB,抛物线y=ax2+bx+c(a≠0)经过A,B,C三点.
由此得 a=10,b=-60,c=90.
∴曲线 NK 的函数表达式为 y=10x2-60x+90(2≤x≤3).
例1 [2017·徐州26题]如图15-4①,菱形ABCD中,AB=5 cm,动点P从点B出发,沿
折线BC-CD-DA运动到点A停止,动点Q从点A出发,沿线段AB运动到点B停止,它
们运动的速度相同.设点P出发x s时,△BPQ的面积为y cm2.已知y与x之间的函数
中考数学复习第三单元函数及其图象PPT课件
间的线,向上为正方向,所以“炮- ”的坐标为(3,2).故选A.
8
第9讲┃ 平面直角坐标系及函数
4.点M(a,b)是第四象限中的点,且点M到x轴的距离为 4,到y轴的距离为1,则点M的坐标为_(1_,__-__4_) _.
-
9
第9讲┃ 平面直角坐标系及函数
考点2 平面直角坐标系中点的对称与平移
在平面直角坐标系中,将点(x,y)向右(或左)平移a个单
平面内点 P(x,y)的 坐标的特征
坐标平面内的点与有序实数对是一一对应的
(1)各象限内点的坐标的特征
点P(x,y)在第一象限:x__>____0,y_>_____0; 点P(x,y)在第二象限:x__<____0,y___>___0; 点P(x,y)在第三象限:x___<___0,y___<___0; 点P(x,y)在第四象限:x__>____0,y__<____0
-
12
第9讲┃ 平面直角坐标系及函数
7.下列函数中自变量x的取值范围是x>1的是( A )
A.y=
1 x-1
B.y= x-1
C.y=
1 x-1
D.y=
1 1-x
8.在某次实验中,测得两个变量m和v之间的4组对应数据如 下表,则m与v之间的关系最接近于下列各关系式中的( B )
m1 2 3 4
v 0.01 2.9 8.03 15.1
在一个过程中有两个变量x和y,对于x 的每一个确定的值,y都有_唯__一_____的 值与之对应,则x叫做__自__变__量____,
__y __是___x __的函数 函数的表示法有__列__表__法______、
_图__象__法___和__解__析__法_____
中考数学总复习 第三单元 函数及其图象 课时13 反比例函数及应用课件
课时 13
2021/12/9
第一页,共三十四页。
反比例函数(hánshù)及应用
课前考点过关
中考(zhōnɡ
kǎo)对接
命题点一
反比例函数的图象
1. [2017·永州] 在同一平面直角坐标系中,函数(hánshù)y=x+k与y=(k为常数,k≠0)的图象大致是
课前考点过关
易错警示
( 【失分点】
jǐnɡ shì)
利用反比例函数求面积时,在不明确图形(túxí
ng)的情况下,需要对图形的存在形式进行全面的讨论.
[2018·绍兴] 过双曲线 y= (k>0)上的动点 A 作 AB⊥x 轴于点 B,P 是直线 AB 上的点,且满足 AP=2AB,过
点 P 作 x 轴的平行线交此双曲线于点 C. 如果△APC 的面积为 8,那么 k 的值是
【温馨(wēn
xīn)提示】
(1)反比例函数图象的两个分支都不与坐标轴相交;
(2)在说明反比例函数的性质时,要注意强调在每个象限内.
2021/12/9
第十三页,共三十四页。
课前考点过关
考点三
反比例函数的应用
1. 求函数表达式的方法步骤(利用待定系数法确定反比例函数的表达式):
(1)根据两变量之间的反比例关系,设 y= (k≠0);
2021/12/9
第十七页,共三十四页。
课堂互动探究
探究二 反比例函数的图象与性质
1
2
例 2 [2018·贵港] 如图 13-7,已知反比例函数 y= (x>0)的图象与一次函数 y=- x+4 的图象交于 A 和 B(6,n)
中考数学考点专题复习课件反比例函数的图象和性质
解:(1)过点 D 作 x 轴的垂线,垂足为 F,∵点 D 的坐标为(4,3),∴OF
=4,DF=3,∴OD=5,∴AD=5,∴点 A 坐标为(4,8),∴k=xy=4×8
=32,∴k=32 (2)将菱形 ABCD 沿 x 轴正方向平移,使得点 D 落在函数 y=3x2(x>0)的
图象 D′点处,过点 D′做 x 轴的垂线,垂足为 F′.∵DF=3,∴D′F′=3,∴ 点 D′的纵坐标为 3,∵点 D′在 y=3x2的图象上,∴3=3x2,解得:x=332,即 OF′=332,∴FF′=332-4=230,∴菱形 ABCD 平移的距离为230
3.(2015·苏州)若点 A(a,b)在反比例函数 y=2x的图象上,则代数式 ab
-4 的值为( B)
A.0 B.-2 C.2 D.-6
4.(2015·牡丹江)在同一直角坐标系中,函数 y=-xa与 y=ax+1(a≠0)
的图象可能是( B )
,A)
,B)
,C)
,D)
5.(2015·青岛)如图,正比例函数 y1=k1x 的图象与反 比例函数 y2=kx2的图象相交于 A,B 两点,其中点 A 的横坐标为 2,当
①ACMN =||kk12||; ②阴影部分面积是12(k1+k2); ③当∠AOC=90°时,|k1|=|k2|; ④若 OABC 是菱形,则两双曲线既关于 x 轴对称,也关于 y 轴对称.
其中正确的是①__④__.(把所有正确的结论的序号都填上)
(3)(2015·宿迁)如图,在平面直角坐标系中,已知点 A(8,1),B(0,-3), 反比例函数 y=kx(x>0)的图象经过点 A,动直线 x=t(0<t<8)与反比例函数 的图象交于点 M,与直线 AB 交于点 N.
中考数学第一轮复习精品讲解第三单元函数与其图象(共215张PPT)
·新课标
第11讲 │ 考点随堂练
9.一天老王骑摩托车外出旅游,刚开始行驶时,油箱中有油 9 升,行驶了 1 小时后发现已耗油 1.5 升. (1)求油箱中的剩余油量 Q(升)与行驶的时间 t(小时)之间的函数 关系式,并求出自变量 t 的取值范围; (2)画出这个函数的图象; (3)如果摩托车以 60 千米/小时的速度匀速行驶,当油箱中的剩 余油量为 3 升时,老王行驶了多少千米?
第12讲 函数的概念及其表示法
·新课标
第12讲 │ 考点随堂练 │考点随堂练│
考点1 一次函数的定义
≠0 ≠0
·新课标
第12讲 │ 考点随堂练
1.已知函数
y=(m-1)xm+3m
表示一次函数,则
m
等于(
Байду номын сангаас
B
)
A.1
B.-1
C.-1 或 1
D.0 或-1
[解析] m=1,所以 m=±1,又根据 m-1≠0,m≠1, 所以 m=-1.
[解析] 注意理解:从家里出发走10分钟到离家500米的地方 吃早餐,吃早餐用了20分钟;再用10分钟赶到离家1000米的学校 参加考试所对应的图象.
观察图象时,首先弄清横轴和纵轴所表示的意义.弄清哪些是 自变量,哪些是因变量,然后分析图象的变化趋势,结合实际问题 的意义进行判断.
·新课标
第12讲 │ 函数的概念及其表示法
数量
x(千克) 1
2
3
4…
售价 y(元)
8+0.4 16+0.8 24+1.2 32+1.6 …
请根据表中所提供的信息,写出售价 y 与数量 x 之间的关
系式,并求出当数量是 2.5 千克时的售价.
中考数学 第三单元 函数及其图象 第13课时 二次函数的图象与性质(一) 数学
UNIT THREE
第三单元
第 13 课时 二次函数的图象与性质(一)
函数及其图象
课前双基巩固
考点一 二次函数的定义
若 y=(m-1)
2 +2-1
+2mx-1 是二次函数,则 m 的值是
-3
.
课前双基巩固
知识梳理
1.定义:形如y=ax2+bx+c(a
≠0
)的函数叫二次函数,其中a,b,c为常数.
点、与坐标轴的交点等.
高频考向探究
针对训练
[2017·丽水] 将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是
A.向左平移1个单位
B.向右平移3个单位
C.向上平移3个单位
D.向下平移1个单位
(
)
高频考向探究
[答案]D
[解析]
选项
A
B
C
D
知识点
将函数y=x2的图象向左平移1个单位得到函数y=(x+1)2,其
3
1 2
把(1,0)和(0, )代入 y=- x +bx+c,得 2 3
解得
3
2
2
= ,
= ,
2
2
1
3
2
2
∴抛物线的函数表达式为 y=- x2-x+ .
高频考向探究
1
3
2
2
例 2 [2018·宁波] 已知抛物线 y=- x2+bx+c 经过点(1,0),(0, ).
1
(2)将抛物线 y=- x2+bx+c 平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.
中考数学第一轮复习 第章第讲 平面直角坐标系ppt(共20张PPT)
技法点拨►在平面直角坐标系中,解决点所处的象限与坐标符号之间的关系问题,综合各象限的坐标特征,经常利用不等式(组)解答.
技法点拨C►.应(用2函0数1图1,象解2题)的三D步.骤:(2(10)找1:0,找清0图)象的横、纵坐标各自具有的含义;
典型例题运用 类型1 平面直角坐标系中点的坐标
(【3)思点路P(分x,析y【A】)到.根原例据点第每1的一】一距A段离函象等数若于图限⑤象点_的__A倾_(B斜a.程+度第,1反,二映b象了-水限面1上)升在速第度的二快慢象,限再观,察则容器点的粗B(细-,作a出,判断b.+2)在(
)
.第三象限 .第四象限 C D (2)点P(x,y)在第二、四象限角平分线上⇔x+y=0
提示
确定位置常用的方法一般有两种:(1)用有序实数对(a,b)表示;(2)用方向和 距离表示.
考点2 点的坐标特征
象限内的点 第一象限:x>0,y>0; 第二象限:x<0,y>0;
第三象限:x<0,y<0; 第四象限:x>0,y<0
(1)点P(x,y)在x轴上⇔y=0,x为任意实数;
坐标轴上的点
(2)点P(x,y)在y轴上⇔x=0,y为任意实数; (3)点P(x,y)既在x轴上,又在y轴上⇔x=y=0,即点
B 以时间为点P的下标.观察,发现规律:P0(0,0),P1(1,1), P2(2,0),P3(3,-1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n +1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,-1).∵2017= 504×4+1,∴第2017秒时,点P的坐标为(2017,1).
平面直角坐标系与函数-2023年中考数学第一轮总复习课件(全国通用)
地理位置的 ①平面直角坐标系法;②方位角+距离;③经纬度.
表示方法
典例精讲
坐标的几何意义
知识点二
【例2】如图,直线m⊥n,在某直角坐标系中,x轴∥m,y轴∥n,点A的坐标为
(-4,2),点B的坐标为(2,-4),则坐标原点为( A )
A.O1 B.O2 C.O3 D.O4
A n
O1 O4
O2
B m
秒的速度分别沿折线A-D-C与折线A-B-C运动至点C.设阴影部分△AMN的面
积为S,运动时间为t,则S关于t的函数图象大致为( D )
D
Cs
s
s
s
M
A N B O A tO B tO C t O D t 6.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和 BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( B )
强化训练
平面直角坐标系与函数
提升能力
7.如图,在菱形ABCD中,∠B=60º,AB=2,动点P从点B出发,以每秒1个单位长度
的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线
AC→CD运动到点D,当一个点停止运动时,另一个点也随之停止.设△APQ的
面积P为y,A运动Q时间为Dx秒43y3,则下列图象43y3能大致反映yy4与33 x之间函数4y33关系的是( B )
原点对称,则这时C点的坐标可能是( B )
A.(1,3) B.(2,-1) C.(2,1) D.(3,1)
2.在平面直角坐标系中,A,B,C,D,M,N的位置如图所示,若点M、N的坐标分
别为(-2,0),(2,0)则在第二象限内的点时__A___.
中考数学复习第三章函数讲义
第三章函数第一节函数及其图象【考点1】平面直角坐标系及点的坐标1. 在平面内两条且有公共原点的数轴组成了平面直角坐标系。
2. 建立了平面直角坐标系的平面称为坐标平面。
3.坐标平面内每一个点P都对应着一个坐标x和一个坐标y,我们称一对有序实数P(x,y),即点P的坐标。
4. 平面直角坐标系中点的特征【考点2】函数的有关概念及其表达式1. 变量:某一变化的过程中可以取不同数值的量叫做变量。
2. 常量:某一变化的过程中保持相同数值的量叫做常量。
3. 函数:在某一变化的过程中有两个量x和y,如果对于x的每一个值,y都有的值与它对应,那么称y是x的函数,其中x是,y是因变量。
4. 函数的表示方法有:、、。
在解决一些与函数有关的问题时,有时可以同时用两种或两种以上的方法来表示函数。
5. 画函数图象的一般步骤:列表、、。
【考点3】函数自变量的取值范围与函数值【中考试题精编】 1. 在函数中3-x =y ,自变量x 的取值范围是 ( )A. x ≠3B. x >3C. x <3D. x ≥32. 王芳同学为参加学校组织的科技知识竞赛,她周末到新华书店购买资料,如图是王芳离家的距离与时间的函数关系图象,若黑点表示王芳家的位置,则王芳走的路线可能是( )A. B. C. D.3. 函数1-x 2=y 中,自变量的取值范围是 。
4. 在函数x x y +-=31中,自变量x 的取值范围是 .5. 根据图中的程序,当输入x=2时,输出结果是 。
第二节 一次函数【考点1】一次函数的概念如果y=kx+b (k,b 为常数,且 ),那么y 叫做x 的一次函数。
当b=0时,也就是y=kx(k ≠0),这时称y 是x 的正比例函数。
【考点2】一次函数的图象和性质 的增大而减小【考点3】一次函数与一次方程和一次不等式的关系一次函数y=kx+b (k,b 为常数,k ≠0) (1)当y=0时,一元一次方程kx+b=0(2) 当y >0或y <0时,一元一次不等式kx+b >0或kx+b <0【提示】当一次函数中的一个变量的值确定时,可用一元一次方程确定另一个变量的值;当 已知一次函数中的一个变量取值的范围时,可用一元一次不等式(组)确定另一个变量的取值。
中考数学复习课件(全国通用版):第三单元 函数及其图象(123张PPT)【学霸笔记、状元学案、名师教案】
第11课时┃ 考点聚焦
考点3 图形变换引起点的坐标的变化
在平面直角坐标系中,将点(x,y)向右(或 向左)平移a个单位长度,可以得到对应点 点的平移 ________( (x+a,y) 或( x-a,y) ;将点(x,y)向上 ________) (或下)平移b个单位长度,可以得到对应点 (x,y+b) 或( ________ (________) x, y - b) 图形的 平移 图形的平移只改变图形的位置(图形上所 有点的坐标都要发生相应的变化),不改 变图形的大小和形状
第11课时┃ 考点聚焦
考点6
函数的表示方法
表示方法
(1)列表法
(2)图象法
(3)解析法
使用指导
表示函数时,要根据具体情况选择适 当的方法,解决问题时,常常综合应 用这三种方法来深入研究函数的性质
第11课时┃ 考点聚焦 考点7 函数图象的概念及画法
一般地,对于一个函数,如果以自变量与因变量 的每对对应值分别作为点的横坐标、纵坐标,那 概念 么坐标平面内由这些点组成的图形就是这个函数 的图象 画法 (1)列表;(2)描点;(3)连线 步骤
点到两坐标轴 的距离 点到原点的距离
第11课时┃ 考点聚焦
(1)x 轴上两点 P1(x1,0)与 P2(x2,0)的距离 P1P2 =|x1-x2|; 坐标轴 (2)y 轴上两点 Q1(0,y1)与 Q2(0,y2)的距离 Q1Q2 上两点 =|y1-y2|; 间距离 (3)x 轴上一点 P(x,0)与 y 轴上一点 Q(0,y)的 距离 PQ= x2+y2
对应关 坐标平面内的点与有序实数对是 ________ 一一 对 系 应的 (1)各象限内点的坐标的特征 点 P(x, y)在第一象限 ⇔____________ ; x>0 y>0 x<0 y>0 ; 点 P(x, y)在第二象限 ⇔____________ 平面内 点 P(x, y)在第三象限 ⇔____________ x<0 y<0 ; 点 P(x, 点 P(x, y)在第四象限 ⇔____________ x>0 y<0 y)的 (2)坐标轴上点的坐标的特征 坐标的 点 P(x, y)在 x 轴上⇔__________________ y=0,x为任意实数; 特征 点 P(x, y)在 y 轴上⇔__________________ x=0,y为任意实数; 点 P(x, y)既在 x 轴上,又在 y 轴上 ⇔x、y 同 时为零,即点 P 的坐标为(0, 0); 坐标轴上的点 不属于任何象限
中考数学第一轮系统复习夯实基础第三章函数及其图象第13讲二次函数课件
1.将抛物线解析式写成 y=a(x-h)2+k 的形式,则顶点坐标为(h,k), 对称轴为直线 x=h,也可应用对称轴公式 x2.解题时尽可能画出草图.
【解析】如图所示:图象与x轴有两个交点,则b2-4ac>0,故①错 误;根据图象有a>0, b<0, c<0,∴abc>0,故②正确;当x=-1时 ,a-b+c>0,故③错误;二次函数y=ax2+bx+c的顶点坐标纵坐 标为-2,∵关于x的一元二次方程ax2+bx+c-m=0有两个不相等的 实数根,∴m>-2,故④正确.故选B.
二次函数是中考的重点内容: 1.直接考查二次函数的概念、图象和性质等. 2实际情境中构建二次函数模型,利用二次函数的性质来解释、解决实 际问题. 3在动态的几何图形中构建二次函数模型,常与方程、不等式、几何知 识等结合在一起综合考查. 4.体现数形结合思想、转化的思想、方程的思想.
1.(2016·衢州)二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x, y)对应值列表如下:
(2)∵将 x=0 代入 y=12x+32得 y=32,将 x=1 代入得 y=2,∴直线 y=12x +32经过点(0,32),(1,2).直线 y=12x+32的图象如图所示,由函数图象可 知:当 x<-1.5 或 x>1 时,一次函数的值小于二次函数的值 (3)先向上平移54个单位,再向左平移12个单位,平移后的顶点坐标为 P(-1, 1).平移后的表达式为 y=(x+1)2+1,即 y=x2+2x+2.点 P 在 y=12x+32的 函数图象上.理由:∵把 x=-1 代入得 y=1,∴点 P 的坐标符合直线的 解析式,∴点 P 在直线 y=12x+32的函数图象上
安徽省庐江县陈埠中学中考数学一轮复习第三章函数及其图象第13讲二次函数的图象和性质课件
解:(1)由题意得,b2=2,
解得 b=4,c=3,∴抛物线的解析式
为.y=x2-4x+3
(2)∵点 A 与点 C 关于 x=2 对称,∴连接 BC 与 x=2 交于 点 P,则点 P 即为所求,根据抛物线的对称性可知,点 C 的坐标为(3,0),y=x2-4x+3 与 y 轴的交点为(0,3),∴ 设直线 BC 的解析式为:y=kx+b,3bk=+3b,=0,解得,k =-1,b=3,∴直线 BC 的解析式为:y=-x+3,则直 线 BC 与 x=2 的交点坐标为:(2,1)∴点 P 的交点坐标为: (2,1)
B.当x>1时,y随x的增大而减小
C.当x<1时,y随x的增大而减小
D.图象的对称轴是直线x=-1
4.在平面直角坐标系中,将抛物线y=x2-4先向右平移2个单
位,再向上平移2个单位,得到的抛物线的解析式为( B )
A.y=(x+2)2+2
B.y=(x-2)2-2
C.y=(x-2)2+2
D.y=(x+2)2-2
考点三:二次函数的解析式的求法
【例1】 (2015·黑龙江)如图,抛物线y=x2-bx+c交x轴于点A(1,0),交y轴 于点B,对称轴是x=2. (1)求抛物线的解析式; (2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若 存在,求出点P的坐标;若不存在,请说明理由.
1-b+c=0,
解:(1)∵y=12x2+x-52=12(x2+2x)-52=12(x2+2x+1 -1)-52=12(x2+2x+1)-12-52=12(x+1)2-3, ∴抛物线的顶点坐标为(-1,-3);
(2)∵抛物线开口向上,对称轴为 x=-1, ∴当 x<-1 时,y 随 x 的增大而减小;
(山西专版)中考数学复习第三单元函数及其图象第15课时二次函数的应用课件
解:(1)∵抛物线的顶点为(3,5),∴设 y=a(x-3)2+5. 将(8,0)代入得 a=-15, ∴水柱所在抛物线(第一象限部分)的函数表达式为 y=-1(x-3)2+5,
5
即 y=-15x2+65x+156(0<x<8).
3. [2018·衢州]某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈 喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方 向喷出的水柱恰好在喷水池中心的装饰物处汇合,如图15-7所示,以水平方向为 x轴,喷水池中心为原点建立直角坐标系. (2)王师傅在水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的 王师傅站立时必须在离水池中心多少米以内?
解:(1)W1=(50+x)(160-2x)=-2x2+60x+8000, W2=19(50-x)=-19x+950.
[2018·安徽]小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆,售后统 计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现: ①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利 润增加2元;②花卉的平均每盆利润始终不变. 小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第 二期盆景与花卉售完后的利润分别为W1,W2(单位:元). (2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总 利润是多少?
90 米(即 AB=90 米),以最高点 O 为坐标原点,以平行于 AB 的直线为 x 轴建立平面
直角坐标系,则此抛物线型钢拱的函数表达式为 ( )
A.y=62765x2 C.y= 13 x2
湖南省中考数学总复习第三单元函数及其图象课时10平面直角坐标系与函数课件
中考对接
命题点一 平面直角坐标系中点的坐标特征
1. [2016· 衡阳] 点P(x-2,x+3)在第一象限,则x的 取值范围是 . 【答案】x>2 【解析】 ∵点P(x-2,x+3)在第一象
限,∴解得x>2.故答案为x>2.
课前考点过关
命题点二 图形与坐标
2. [2016· 常德] 平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为 M,N的“和点”. 若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和 点四边形”. 现有点A(2,5),B(-1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标 (1,8)或 是 . (-3,-2)或(3,2)
边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中
“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,-1), P5(-1,-1),P6(-1,2),…,根据这个规律,点P2016的坐标为
图10-2
课前考点过关
命题点五 与坐标有关的创新题
6. [2017· 湘潭] 阅读材料:设a=(x1,y1),b=(x2,y2),a∥b,则 x1· y2=x2· y1. 根据该材料填空:已知a=(2,3),b=(4,m),且a∥b,则 m= .
轴和y轴构成一个平面斜坐标系. 规定:过点P作y轴的平行线,交x轴于点A,过点P作x轴的平行线,交y轴于点
B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标. 在某平 面斜坐标系中,已知θ=60°,点M的斜坐标为(3,2),点N与点M关于y轴对称,则点N的斜坐标为 .
中考数学第一轮复习课件第3单元:函数及其图像.
第11课时 平面直角坐标系与函数 第12课时 一次函数的图象与性质 第13课时 一次函数的应用 第14课时 反比例函数 第15课时 二次函数的图象与性质 第16课时 二次函数与一元二次方程 第17课时 二次函数的应用
第三单元 函数及其图像
·人教版
考点聚焦
考点1 平面直角坐标系 1.x轴、y轴上的点不属于任何象限.
列表
描点
连线
·人教版
归类示例
类型之一 坐标平面内点的坐标特征
命题角度: 1.四个象限内点的坐标特征 2.坐标轴上的点的坐标特征
3.平行于 x 轴、平行于 y 轴的点的坐标特征
4.第一、三,第二、四象限角平分线上的点的坐标特征
[2011·桂林] 若点 P(a,a-2)在第四象限,则 a 的取值范
围是( B )
观察图象时,首先弄清横轴和纵轴所表示的意义.弄清哪些是 自变量,哪些是因变量,然后分析图象的变化趋势,结合实际问题 的意义进行判断.
·人教版
第12课时 一次函数的图象与性质
·人教版
第12课时 │考点聚焦 考点聚焦
考点1 一次函数与正比例函数的概念及其性质
一般地,如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数,特别 地,当b=0时,一次函数y=kx+b变为y=kx(k为常数,k≠0),这时y叫做x的正 比例函数.
7、函数图像的平移: 由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这
两个锐角的大小相等,且它们是同位角,因此,它们是平行 的.另外,从平移的角度也可以分析,例如:直线y=x+1可 以看作是正比例函数y=x向上平移一个单位得到的.
8、由于k,b的符号不同,直线所经过的象限也不同; ①当k>0,b>0时, 直线经过第一、二、三象限 (直线不经过第四象限);
(呼和浩特专版)中考数学复习第三单元函数及其图象第14课时二次函数的简单综合课件
例2 [2018·北京]在平面直角坐标系xOy中,直线y=4x+4与x轴、y轴分别交于点A,B, 抛物线y=ax2+bx-3a经过点A,将点B向右平移5个单位长度,得到点C. (2)求抛物线的对称轴; (2)∵抛物线 y=ax2+bx-3a 经过点 A,
③ 没有 实数根
2.二次函数与不等式的关系 (1)ax2+bx+c>0的解集 函数y=ax2+bx+c的图象位于x轴上方的部分对应的点的横坐标的取值范围. (2)ax2+bx+c<0的解集 函数y=ax2+bx+c的图象位于④ x轴下方 的部分对应的点的横坐标的取值范围.
考点二 二次函数的综合应用
∵OC=3,OB=4,∴由勾股定理得 BC=5,PB=BC+PC=5+2=7, ∴OQ=12PB=72,故选 C.
2.[2019·凉山州]如图 14-2,正方形 ABCD 中,AB=12,AE=1AB,点 P 在 BC 上运动(不
4
与 B,C 重合),过点 P 作 PQ⊥EP,交 CD 于点 Q,则 CQ 的最大值为
第 14 课时
二次函数的简单综合
考点聚焦
考点一 二次函数与一元二次方程、不等式的关系
1.二次函数与一元二次方程的关系
抛物线y=ax2+bx+c 与x轴的交点个数
2个 1个 没有
判别式b2-4ac的正负
b2-4ac>0 b2-4ac=0 b2-4ac<0
2023年中考数学专项突破之函数的图象与性质课件 52张PPT
就是含有字母x的二次函数.
返回子目录
例题3
已知,点M为二次函数y=-(x-b)2+4b+1图象的顶点,直线y=mx+5分别交x轴、y轴于点
A,B.
(1)判断顶点M是否在直线y=4x+1上,并说明理由;
(2)如图1,若二次函数图象也经过点A,B,且mx+5>-(x-b)2+
即为所求;(3)根据反函数的图象和性质,当点P在第一象限时,p>0;当点P在第三象限
时,p≤-2.
解析:(1)把A(2,m),B(n,-2)代入y= 得k2=2m=-2n,即m=-n,则A(2,-n),
如图,过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE,BF交于D,
∵A(2,-n),B(n,-2),
方法点拨
解答此类问题需要掌握二次函数的概念、图象和性质,画出草图观察分析,将函数
的平移、最值、增减性等贯穿在草图中,此类问题就会迎刃而解.
解题技巧
解决这类问题一般遵循这样的方法:
(1)求二次函数的图象与x轴的交点坐标,需将二次函数转化为一元二次方
程;
(2)求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶
点入口.两车距学校的路程s(单位:km)和行驶时间t(单位:min)之间的函数关系如
图所示.
请结合图象解决下面问题:
(1)学校到自然保护区的路程为 40 km,大客车途中停留了
5min, a=
;15
(2)在小轿车司机驶过自然保护区入口时,大客车离景点入口还有多远?
(3)小轿车司机到达自然保护区入口时发现本路段限速80 km/h,请你帮助小轿车司
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v 0.01 2.9 8.03 15.1
A.v=2m-2
B.v=m2-1
C.v=3m-3
D.v=m+1
[解析] 当m=4时,A.v=2m-2=6;
B.v=m2-1=15;C.v=3m-3=9;D.v=m+1=5.
精选ppt
13
第9讲┃ 平面直角坐标系及函数
9.小华利用计算机设计了一个计算程序,输入和输出的数
据如下表.那么当输入数据是8时,输出的数据是( C)
输入 … 1 2 3 4 5
…
输出 … 1 2 3 4 5
…
2 5 10 17 26
8
8
8
A.61
B.63
C.65
8 D.67
[解析] 由表可知:输入x时,输出x2+x 1,
∴x=8时,输出82+8 1=685.故选C.
精选ppt
14
第9讲┃ 平面直角坐标系及函数
对应关系
平面内点 P(x,y)的 坐标的特征
坐标平面内的点与有序实数对是一一对应的
(1)各象限内点的坐标的特征
点P(x,y)在第一象限:x__>____0,y_>_____0; 点P(x,y)在第二象限:x__<____0,y___>___0; 点P(x,y)在第三象限:x___<___0,y___<___0; 点P(x,y)在第四象限:x__>____0,y__<____0
精选ppt
4
第9讲┃ 平面直角坐标系及函数
平面内点 P(x,y)的 坐标的特征
(2)坐标轴上点的坐标的特征 点P(x,y)在x轴上,则y=0,x为任意数; 点P(x,y)在y轴上,则x=0,y为任意数; 点P(x,y)既在x轴上,又在y轴上,则x、y
同时为零,即点P的坐标为(0,0)
精选ppt
5
第9讲┃ 平面直角坐标系及函数
称都变号
精选ppt
10
第9讲┃ 平面直角坐标系及函数
5. 在平面直角坐标系中,P(-1,2)关于x轴的对称点的坐
标为( A )
A.(-1,-2)
B.(1,-2)
C.(2,-1)
D.(-2,1)
6.在平面直角坐标系中,将点(-2,-3)向上平移3个单位, 则平移后的点的坐标为__(_-__2_,0_)_.
图象上点的坐标与函数解析式的两个变量 是相对应的,也就是说点在函数图象上, 则点的坐标能使函数解析式_成__立_____,反 之,能使函数解析式成立的一对值为坐标
的点一定_在__函_数__图__象上
精选ppt
16
第9讲┃ 平面直角坐标系及函数
11.已知y关于x的函数图象如图9-3所示,则当y<0时,自变 量x的取值范围是( B)
10.下列图象不是函数图象的是( C )
A
B
C
D
图9-2
精选ppt
15
第9讲┃ 平面直角坐标系及函数
考点4 函数图象的应用
函数图象
作函数图 象的一般
步骤
函数图象 的应用
把一个函数的自变量x和函数的值y分别作 为横、纵坐标,描出点,所有这些点所组
成的图象就是函数图象
作函数图象的一般步骤为_列__表____、 _描__点____和_连__线_____
_图__象__法___和__解__析__法_____
使函数有意义的自变量所取的值的范围
精选ppt
12
第9讲┃ 平面直角坐标系及函数
7.下列函数中自变量x的取值范围是x>1的是( A )
A.y=
1 x-1
B.y= x-1
C.y=
1 x-1
D.y=
1 1-x
8.在某次实验中,测得两个变量m和v之间的4组对应数据如 下表,则m与v之间的关系最接近于下列各关系式中的( B )
用坐标 表示对
称点
关于x轴 关于y轴 关于原点
点P(x,y)关于x轴对称的点 P1的坐标为_(_x_,_-__y_)_
规律可归纳 为:谁对称谁
点P(x,y)关于y轴对称的点 P2的坐标为_(_-__x,__y_)_
不变,另一个 变号,原点对
点P(x,y)关于原点对称的点 P3的坐标为_(_-__x, __-__y)
精选ppt
7
第9讲┃ 平面直角坐标系及函数
3.如图9-1,已知棋子“車”的坐标为(-2,3),棋子 “馬”的坐标为(1,3),则棋子“炮”的坐标为(A )
A.(3,2) C.(2,2)
图9-1 B.(3,1) D.(-2,2)
[解析]由棋子“車”的坐标为(-2,3),棋子“馬”的坐标为(1,3),
1.若点A(2,n)在x轴上,则点B(n-2,n+1)在
(B ) A.第一象限 C.第三象限
B.第二象限 D.第四象限
精选ppt
6
第9讲┃ 平面直角坐标系及函数
2.在坐标平面内,若点P(x-2,x+1)在第二象限,则x的取
值范围是1
D.-1<x<2
[解析] 因为点P(x-2,x+1)在第二象限,所以x-2<0,x+1 >0,解得-1<x<2.故选D.
9
第9讲┃ 平面直角坐标系及函数
考点2 平面直角坐标系中点的对称与平移
在平面直角坐标系中,将点(x,y)向右(或左)平移a个单
用坐标表 位长度,可以得到对应点是_(_x+__a_,__y_)(或_(x_-__a_,__y_) );将
示平移 点(x,y)向上(或下)平移b个单位长度,可以得到点
_(x_,__y_+__b_) (或_(x_,__y_-__b_) )
第9讲 平面直角坐标系及函数 第10讲 一次函数的图象与性质 第11讲 一次函数的应用 第12讲 反比例函数 第13讲 二次函数的图象与性质 第14讲 二次函数的应用
精选ppt
1
精选ppt
2
第9讲 平面直角坐标系及 函数
精选ppt
3
第9讲┃ 平面直角坐标系及函数
┃考点自主梳理与热身反馈 ┃ 考点1 平面直角坐标系
精选ppt
11
第9讲┃ 平面直角坐标系及函数
考点3 函数的概念及其表示法
函数的 概念
函数的 表示法 函数自变量 的取值范围
在一个过程中有两个变量x和y,对于x 的每一个确定的值,y都有_唯__一_____的 值与之对应,则x叫做__自__变__量____,
__y __是___x __的函数 函数的表示法有__列__表__法______、
可知原点为底边正中间的点,x轴是底边,向右为正,y轴是左右正中
间的线,向上为正方向,所以“精选炮p” pt 的坐标为(3,2).故选A.
8
第9讲┃ 平面直角坐标系及函数
4.点M(a,b)是第四象限中的点,且点M到x轴的距离为 4,到y轴的距离为1,则点M的坐标为_(1_,__-__4_) _.
精选ppt