高二下第一次月考

合集下载

新疆高二下学期第一次月考数学试题(解析版)

新疆高二下学期第一次月考数学试题(解析版)

高二下学期第一次月考数学试题一、单选题1.某物体的运动路程s (单位:m )与时间t (单位:s )的关系可用函数表示,则该()21s t t t =++物体在s 时的瞬时速度为( ) 1t =A .0m/s B .1m/s C .2m/s D .3m/s【答案】D【分析】根据瞬时速度的概念即可利用平均速度取极限求解. 【详解】该物体在时间段上的平均速度为[]1,1t +∆,当无限趋近于0时,无限趋()()()()()22111111113t t s t s s t t t t+∆++∆+-+++∆-∆===+∆∆∆∆Δt 3t +∆近于3,即该物体在s 时的瞬时速度为3m/s . 1t =故选:D2.曲线在点(1,-2)处的切线的倾斜角为( ) 43y x x =-A .B .C .D .6π4π3π23π【答案】B【分析】根据导数的几何意义求解.【详解】因为,所以,故所求切线的倾斜角为.343y x '=-11x y ='=4π故选:B .3.函数的单调递增区间为( )21=ln 22y x x -+A . B .C .D .()1,1-()0,1[)1,+∞()0,∞+【答案】C【分析】先对函数求导,然后令导函数大于0解出不等式,并结合函数的定义域,即可得到本题答案.【详解】因为,所以,21=ln 22y x x -+211x y x x x -'=-=令,得或,0y >'A A A A 1x <-1x >又函数的定义域为,所以函数的单调递增区间为, {}0x x >[1,)+∞故选:C4.若函数在区间上单调递增,则实数k 的取值范围是( )()331f x x kx =-+()1,+∞A . B . C . D .(),1-∞(],1-∞[)1,-+∞[)1,+∞【答案】B【分析】利用函数在区间上的导函数为非负数,列不等式,解不等式即可求得的取值()f x (1,)+∞k 范围.【详解】由题意得,在区间上恒成立, 22()333()0f x x k x k '=-=-≥(1,)+∞即在区间上恒成立,2k x ≤(1,)+∞又函数在上单调递增,得, 2y x =(1,)+∞21x >所以,即实数的取值范围是. 1k ≤k (,1]-∞故选:B5.已知函数的导函数图象如下图所示,则原函数的图象是( )()y f x =()y f x '=()y f x =A .B .C .D .【答案】B【分析】根据函数的单调性与导数的关系以及导数的变化可得结果.【详解】由图可知,当时,,则函数在上为增函数, 11x -<<()0f x ¢>()f x ()1,1-当时,单调递增,故函数在上的增长速度越来越快,10x -<<()f x '()f x ()1,0-当时,单调递减,故函数在上的增长速度越来越慢. 01x <<()f x '()f x ()0,1B 选项中的图象满足题意. 故选:B.6.函数在区间上的最大值为( ) ()cos sin f x x x x =-[]π,0-A .1 B .C .D .π323π2【答案】B【分析】求出函数的导数,判断函数的单调性,即可求得答案. 【详解】由题意得, ()cos sin cos sin f x x x x x x x '=--=-当时,,,[]π,0x ∈-sin 0x ≤()0f x '≤所以在区间单调递减,故函数最大值为, ()f x []π,0-()ππf -=故选:B7.“一笔画”游戏是指要求经过所有路线且节点可以多次经过,但连接节点间的路线不能重复画的游戏,下图是某一局“一笔画”游戏的图形,其中为节点,若研究发现本局游戏只能以为起,,A B C A 点为终点或者以为起点为终点完成,那么完成该图“一笔画”的方法数为( )C C AA .种B .种C .种D .种6122430【答案】C【分析】采用分步乘法可计算得到以为起点,为终点的方法数,再利用分类加法计数原理求得A C 结果.【详解】以为起点时,三条路线依次连接即可到达点,共有种选择;自连接到A B 326⨯=B C 时,在右侧可顺时针连接或逆时针连接,共有种选择,C 2以为起点,为终点时,共有种方法;∴A C 6212⨯=同理可知:以为起点,为终点时,共有种方法;C A 12完成该图“一笔画”的方法数为种.∴121224+=故选:C.8.过去的一年,我国载人航天事业突飞猛进,其中航天员选拔是载人航天事业发展中的重要一环.已知航天员选拔时要接受特殊环境的耐受性测试,主要包括前庭功能、超重耐力、失重飞行、飞行跳伞、着陆冲击五项.若这五项测试每天进行一项,连续5天完成.且前庭功能和失重飞行须安排在相邻两天测试,超重耐力和失重飞行不能安排在相邻两天测试,则选拔测试的安排方案有( ) A .24种 B .36种C .48种D .60种【答案】B【分析】根据特殊元素“失重飞行”进行位置分类方法计算,结合排列组合等计数方法,即可求得总的测试的安排方案种数.【详解】①若失重飞行安排在第一天则前庭功能安排第二天,则后面三天安排其他三项测试有种安排方法,33A 6=此情况跟失重飞行安排在第五天则前庭功能安排第四天安排方案种数相同;②若失重飞行安排在第二天,则前庭功能有种选择,超重耐力在第四、第五天有种选择,剩12C 12C 下两种测试全排列,则有种安排方法,22A 112222C C A 8=此情况与失重飞行安排在第四天方安排方案种数相同;③若失重飞行安排在第三天,则前庭功能有种选择,超重耐力在第一、第五天有种选择,剩12C 12C 下两种测试全排列,则有种安排方法;22A 112222C C A 8=故选拔测试的安排方案有种. 6282836⨯+⨯+=故选:B.二、多选题9.某高一学生想在物理、化学、生物、政治、历史、地理这六门课程中选三门作为选科科目,则下列说法正确的有( )A .若不选择政治,选法总数为种25C B .若物理和化学至少选一门,选法总数为1225C C C .若物理和历史不能同时选,选法总数为种3164C C -D .若物理和化学至少选一门,且物理和历史不同时选,选法总数为种 121244(C C C )-【答案】AC【分析】根据组合数性质判断A ;若物理和化学至少选一门,分物理和化学选一门和物理和化学都选,求出选法数,判断B ;物理和历史不能同时选,即六门课程中任意选3门减去物理和历史同时选的选法数,判断C ;物理和化学至少选一门,且物理和历史不同时选,分三种情况考虑,求得选法数,判断D.【详解】对于A, 若不选择政治,选法总数为种,正确;3255C C =对于B ,若物理和化学选一门,选法总数为, 1224C C 若物理和化学都选,则选法数有种,2124C C 故物理和化学至少选一门,选法总数为种,而,B 错误;12212424C C C C 16+=1225C C 20=对于C, 若物理和历史不能同时选,即六门课程中任意选3门有种选法,36C 减去物理和历史同时选的选法数,故选法总数为种,C 正确;14C 3164C C -对于D,当物理和化学中只选物理时,有种选法; 23C 当物理和化学中只选化学时,有种选法; 24C 当物理和化学中都选时,有种选法,13C 故物理和化学至少选一门,且物理和历史不同时选,选法总数为种,而,D 错误,221343C +C +C =12121244C C C 8-=故选:AC 10.下列等式正确的是( )A .B .()111A A m m n n n +++=()()!2!1n n n n =--C .D .A C !mm n nn =11A A m m n n n m+=-【答案】ABD【分析】利用排列数公式、组合数公式,逐项计算判断作答.【详解】对于A ,,A 正确;()11!(1)!(1)()![(1)(1)]!1A A mm n n n n n n n m n m +++=+⋅=-+-++=对于B ,,B 正确; ()()!(1)!(1)(2)!2!1(1)1n n n n n n n n n n n ⋅--⋅-===----对于C ,,而与不一定相等,则与不一定相等,C 不正确;A C !m m nnm =!m !n A !m n m A !m n n 对于D ,,D 正确. 111!!A A (1)!()!m m n n n n n m n m n m n m +⋅==-----=故选:ABD11.如图是函数的导函数的图像,则下列判断正确的是( )()y f x =()f x 'A .在区间上,单调递增 ()2,1-()f xB .在区间上,单调递增 ()1,2()f xC .在区间上,单调递增 ()4,5()f xD .在区间上,单调递增 ()3,2--()f x 【答案】BC【分析】当,则单调递增,当,则单调递减,据此可得答案. ()0f x ¢>()f x ()0f x '<()f x 【详解】由题图知当时,,()()1245,,,x x ∈∈()0f x ¢>所以在区间上,单调递增,BC 正确; ()()1245,,,()f x 当时,,当时,,所以在区间上,单调递减.()2,1x ∈--()0f x '<()1,1x ∈-()0f x ¢>()2,1--()f x 在上递增,A 错误;()1,1-当时,,所以在区间上,单调递减,D 错误; ()3,2x ∈--()0f x '<()3,2--()f x 故选:BC12.已知函数,则( ) 321()()3f x x ax x a =+-∈R A .当时,函数的极大值为0a =()f x 23-B .若函数图象的对称中心为,则 ()f x (1,(1))f 1a =-C .若函数在上单调递增,则或 ()f x R 1a ≥1a ≤-D .函数必有3个零点 ()f x 【答案】BD【分析】根据函数极大值的定义,结合函数的导数的性质、函数零点的定义逐一判断即可.【详解】A 项:当时,,则,所以在单调递增,在0a =31()3f x x x =-2()1f x x '=-()f x (,1)-∞-单调递减,在单调递增,所以极大值为,故错误; (1,1)-(1,)+∞()f x 12(1)133f -=-+=B 项:因为函数图象的对称中心为,()f x (1,(1))f所以有,故正确;()()()()21121101f x f x f a x a ++-=⇒+=⇒=-C 项:恒成立,显然必有两根,则2()210f x x ax =+-≥'()0f x '=()121212,,10x x x x x x <⋅=-<()f x 在递减,故错误;()12,x x D 项:必有2相异根,且非零,()2221111001010333f x x ax x x x ax x ax ⎛⎫=+-=⇒=+-=+-= ⎪⎝⎭或,故必有3个零点,故正确. ()f x 故选择:BD三、填空题13.已知函数,则在处的切线方程为___________.()e sin 2xf x x =-()f x ()()0,0f 【答案】10x y +-=【分析】由导数的几何意义求切线的斜率,利用点斜式求切线方程.【详解】因为,()e sin 2xf x x =-所以,,()00e sin 01f =-=()e 2cos 2xf x x =-'所以,()00e 2cos 01f =-=-'切线方程为, 即. ()10y x -=--10x y +-=故答案为:.10x y +-=14.函数有极值,则实数的取值范围是______.()322f x x x ax a =-++a 【答案】1(,3-∞【分析】求出函数的导数,再利用存在变号零点求出a 的范围作答.()f x '()f x '【详解】函数定义域为R ,求导得:,()322f x x x ax a =-++2()32f x x x a '=-+因为函数有极值,则函数在R 上存在变号零点,即有两个不等实根, ()f x ()f x '()0f x '=即有方程有两个不等实根,于是得,解得,2320x x a -+=4120a ∆=->13a <所以实数的取值范围是.a 1(,)3-∞故答案为:1(,)3-∞15.某公司新开发了4件不同的新产品,需放到三个不同的机构A ,B ,C 进行测试,每件产品只能放到一个机构里,则所有测试的情况有________种(结果用具体数字表示). 【答案】81【分析】利用分步乘法原理求解即可【详解】由题意可知,每一个新产品都有3种放法,所以由分步乘法原理可得 4件不同的新产品共有种放法, 333381⨯⨯⨯=故答案为:8116.已知,则_________.233A C 0!4m -+=m =【答案】2或3【分析】利用排列数公式,组合数公式进行计算即得.【详解】,233A C 0!4m -+= ,又,3A 6m∴=323216⨯=⨯⨯=所以或. 2m =3m =故答案为:2或3.四、解答题17.求下列函数的导数. (1); ln(21)y x =+(2); sin cos xy x=(3). 1()23()()y x x x =+++【答案】(1) 221y x '=+(2) 21cos y x'=(3) 231211y x x =++'【分析】利用导数的运算法则求解. 【详解】(1)解:因为, ln(21)y x =+所以; 221y x '=+(2)因为, sin cos xy x=所以; ()2222cos sin 1cos cos x xy xx +'==(3)因为, 1()23()()y x x x =+++,326116x x x =+++所以.231211y x x =++'18.已知函数.()322f x x ax b =-+(1)若函数在处取得极小值-4,求实数a ,b 的值; ()f x 1x =(2)讨论的单调性.()f x 【答案】(1) 33a b =⎧⎨=-⎩(2)答案不唯一,具体见解析【分析】(1)根据求导和极值点处导数值为0即可求解;(2)求导,分类讨论的取值即可求解. a 【详解】(1),则 ()262f x x ax '=-()()1014f f ⎧=⎪⎨=-'⎪⎩即解得,经验证满足题意,62024a a b -=⎧⎨-+=-⎩33a b =⎧⎨=-⎩(2)()()26223f x x ax x x a '=-=-令解得或 ()0f x '=0x =3a x =1°当时,在上单调递增0a =()f x ()∞∞-,+2°当时,在,上单调递增,上单调递减a<0()f x ,3a ⎛⎫-∞ ⎪⎝⎭()0∞,+,03a ⎛⎫ ⎪⎝⎭3°当时,在,(上单调递增,上单调递减0a >()f x ()0∞-,,3a ⎛⎫+∞ ⎪⎝⎭0,3a ⎛⎫ ⎪⎝⎭19.已知函数.()e 2x f x ax a =++(1)若为的一个极值点,求实数a 的值并此函数的极值; 0x =()f x (2)若恰有两个零点,求实数a 的取值范围. ()f x 【答案】(1),极小值为,无极大值12a =-12(2) ,⎛-∞ ⎝【分析】(1)由求得,结合函数的单调性求得的极值. ()00f '=a ()f x (2)由分离常数,利用构造函数法,结合导数求得的取值范围. ()0f x =a a 【详解】(1),依题意,()e 2x f x a '=+()10120,2f a a =+==-'此时,所以在区间递减;()e 1xf x '=-()f x ()()(),0,0,f x f x '-∞<在区间递增. ()()()0,,0,f x f x '+∞>所以的极小值为,无极大值. ()f x ()110122f =-=(2)依题意①有两个解,()e 20x f x ax a =++=,所以不是①的解,121e 02f -⎛⎫-=> ⎪⎝⎭12x =-当时,由①得,12x ≠-e 21xa x =-+构造函数,()e 1212x g x x x ⎛⎫=-≠- ⎪+⎝⎭,()()()()22e 212e 21e 2121x xx x x g x x x +--'=-=-⋅++所以在区间递增;()()111,,,,0,222g x g x ⎛⎫⎛⎫'-∞--> ⎪ ⎪⎝⎭⎝⎭在区间递减.()()1,,0,2g x g x ⎛⎫'+∞< ⎪⎝⎭当时,;当时,,12x <-()0g x >12x >-()0g x <与的图象有两个交点, 121e 22g ⎛⎫=-= ⎪⎝⎭y a =()y g x =则需a <综上所述,的取值范围是. a ,⎛-∞ ⎝【点睛】根据极值点求参数,要注意的是由求得参数后,要根据函数的单调区间进行验()00f x '=证,因为导数为零的点,不一定是极值点.利用导数研究函数的零点,可以考虑分离常数法,通过分离常数,然后利用构造函数法,结合导数来求得参数的取值范围.20.已知一条铁路有8个车站,假设列车往返运行且每个车站均停靠上下客,记从车站上车到A B 车站下车为1种车票().A B ≠(1)该铁路的客运车票有多少种?(2)为满足客运需要,在该铁路上新增了个车站,客运车票增加了54种,求的值.n n 【答案】(1)56(2)3【分析】根据条件利用排列公示建立方程就可以解决.【详解】(1)铁路的客运车票有.288756A =⨯=(2)在新增了个车站后,共有个车站,因为客运车票增加了54种,则, n 8n +285654n A +-=所以,解得.28(8)(7)110n A n n +=++=3n =21.现有如下定义:除最高数位上的数字外,其余每一个数字均比其左边的数字大的正整数叫“幸福数”(如346和157都是三位“幸福数”).(1)求三位“幸福数”的个数;(2)如果把所有的三位“幸福数”按照从小到大的顺序排列,求第80个三位“幸福数”.【答案】(1)个84(2)589【分析】(1)由幸福数的定义结合组合公式求解即可;(2)分类讨论最高位数字,由组合公式结合分类加法计数原理得出第80个三位“幸福数”.【详解】(1)根据题意,可知三位“幸福数”中不能有0,故只需在数字1,2,3,…,9中任取3个,将其从小到大排列,即可得到一个三位“幸福数”,每种取法对应1个“幸福数”,则三位“幸福数”共有个.39C 84=(2)对于所有的三位“幸福数”,1在最高数位上的有个, 28C 28=2在最高数位上的有个,27C 21=3在最高数位上的有个,2615C =4在最高数位上的有个,25C 10=5在最高数位上的有个.24C 6=因为,28211510680++++=所以第80个三位“幸福数”是最高数位为5的最大的三位“幸福数”,为589.22.为响应国家提出的“大众创业万众创新”的号召,小王大学毕业后决定利用所学专业进行自主创业,生产某小型电子产品.经过市场调研,生产该小型电子产品需投入年固定成本2万元,每生产x 万件,需另投入流动成本万元.已知在年产量不足4万件时,,在年产量不小()W x ()3123W x x x =+于4万件时,.每件产品售价6元.通过市场分析,小王生产的产品当年能全部售()64727W x x x=+-完.(1)写出年利润(万元)关于年产量(万件)的函数解析式.(年利润=年销售收入-年固定成()P x x 本-流动成本.)(2)年产量为多少万件时,小王在这一产品的生产中所获年利润最大?最大年利润是多少? 【答案】(1); ()3142,0436425,4x x x P x x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩(2)当年产量为8万件时,所获年利润最大,为9万元.【分析】(1)分以及,分别求解得出表达式,写成分段函数即可;04x <<4x ≥()P x (2)当时,求导得出.然后根据基本不等式求出时,的最值,04x <<()max 10()23P x P ==4x ≥()P x 比较即可得出答案.【详解】(1)由题意,当时,;当时,04x <<()33116224233x x x x x P x ⎛⎫=--+=-+- ⎪⎝⎭4x ≥. ()64646272725P x x x x x x ⎛⎫=--+-=-- ⎪⎝⎭所以. ()3142,0436425,4x x x P x x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩(2)当时,,令,解得.04x <<()24P x x '=-+()0P x '=2x =易得在上单调递增,在上单调递减,所以当时,()P x ()0,2()2,404x <<. ()max 10()23P x P ==当时,, 4x ≥()6425259P x x x ⎛⎫=-+≤-= ⎪⎝⎭当且仅当,即时取等号. 64x x=8x =综上,当年产量为8万件时,所获年利润最大,为9万元.。

高二第二学期第一次月考总结1000字8篇

高二第二学期第一次月考总结1000字8篇

高二第二学期第一次月考总结1000字8篇篇1随着春风拂面,高二第二学期的第一次月考也已经落下帷幕。

本次考试不仅是对学生们学习成果的一次检验,更是对班级整体学习氛围和教学成果的全面评估。

在此,我将对本次月考进行全面而深入的总结。

一、考试概况本次月考共涉及九门学科,包括语文、数学、英语等核心科目以及物理、化学、生物等自然科学。

考试时间为三天,形式为闭卷考试。

全体高二学生参加,总体考试情况良好,但也暴露出一些问题。

二、成绩分析1. 总体成绩:本次月考平均成绩较上学期有所提高,反映出学生们在寒假期间进行了有效的复习和预习。

尤其是数学和英语成绩提升明显,显示出学生们在基础学科上的扎实功底和持续进步。

2. 学科差异:在学科之间,成绩存在差异。

语文、历史等人文科目的成绩相对稳定,而物理、化学等自然科学科目则呈现出较大的波动。

这可能与学科特点和教学方法有关,需要在后续教学中加以关注和调整。

3. 学生表现:部分优秀学生表现出色,成绩稳定在班级前列。

然而,也有部分学生在某些科目上表现不佳,需要找到原因并采取措施加以改进。

三、存在问题1. 心态问题:部分学生在考试前存在过度紧张现象,影响正常发挥。

建议加强心理辅导,引导学生树立正确的学习态度。

2. 复习方法:一些学生复习方法不够科学,导致效率低下。

老师需要指导学生们制定合理的复习计划,提高学习效率。

3. 知识掌握:部分学生在自然科学科目上表现出知识掌握不牢的现象,需要在日常教学中加强基础知识的巩固和深化。

四、改进措施1. 加强心理辅导:组织专题心理辅导活动,帮助学生缓解考试压力,调整心态。

2. 优化教学方法:针对不同学科特点,调整教学策略,提高教学效果。

3. 提高课堂效率:加强课堂管理,确保课堂效率。

老师需要关注每位学生的学习情况,及时解答疑惑。

4. 加强基础训练:针对自然科学科目,加强基础知识的训练和巩固,提高学生知识掌握程度。

5. 家校合作:加强与家长的沟通与合作,共同关注学生的学习情况,形成家校共同促进的良好氛围。

2022-2023尤溪五中高二语文下学期第一次月考试卷及答案

2022-2023尤溪五中高二语文下学期第一次月考试卷及答案

2022-2023尤溪五中高二语文下学期第一次月考试卷一、现代文阅读(35分)(一)现代文阅读Ⅰ(17分)材料一:作诗一定是“情动于中而形于言”。

中国古典诗歌自始即以其能予人直接的感发之力量为最基本的特色。

“情动于中而形于言”,即看到外界的景、物、情、事使内心感动,然后用诗歌表达出来。

钟嵘在《诗品序》中说:“嘉会寄诗以亲,离群托诗以怨。

至于楚臣去境,汉妾辞宫。

或骨横朔野,魂逐飞蓬。

或负戈外戍,杀气雄边。

或士有解佩出朝,一去忘返。

凡斯种种,感荡心灵,非陈诗何以展其义?非长歌何以骋其情?”可见钟嵘所认识的诗歌,其本质乃是心物相感应之下发自性情的产物。

使人心动的,除了外在的、大自然的景物外,人世间的死生离别更加使人心动。

如杜甫写在天宝乱世年间的诗歌:“朱门酒肉臭,路有冻死骨。

”当你看到沿途有饿死、冻死的人,难道不会去关心吗?所以,作诗的真正动机和兴起,可以使人对宇宙万物、社会产生一种关怀。

诗歌的吟诵是中华民族所独有的。

诗词是一种美文,它包括了形、音、义等几个方面,所以诗词的声音是非常重要的。

中国的语言有四声——平、上、去、入,这种单音独体是我们中国语言的特色。

因此,诗歌有平仄和结构,有一种独特的声调。

而这不是古人生编硬派给我们的,而是自然而然形成的。

《诗经》大多是四个字一句,就是因为我们独体单音的语言,四个字一句才能够表现出仄仄平平、平平仄仄的声调和节奏。

《诗经》里的第一首是:“关关雎鸠,在河之洲,窈窕淑女,君子好逑。

”两字一停顿,才有节奏,而这个节奏是我们中华民族语言的基本节奏。

不管是五言诗还是七言诗,原则上是两个字一个停顿,如“国破山河在”,是二二一的停顿。

“相见时难别亦难”,是二二三的停顿。

这种停顿,是诗词最基本的节奏。

中国的传统诗歌吟诵是结合中华民族的语言文字特色,经过了必然的、自然而然的演化过程所形成的一种音调,它是中华民族所独有的。

读词背诗,要懂得它所隐藏的深厚内涵。

我们来欣赏一首李白的作品《忆秦娥》。

山西省忻州市名校2022-2023学年高二下学期第一次月考试题 英语含答案

山西省忻州市名校2022-2023学年高二下学期第一次月考试题 英语含答案

高二年级2022~2023学年第二学期第一次月考英语(答案在最后)全卷满分150分,考试时间120分钟。

第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A. £19.15.B. £9.18.C. £9.15.答案是C。

1. When are the speakers going to meet?A. At 9:30.B. At 12:30.C. At 12:45.2. Which dish is most suitable for Paul?A. Beef steak.B. Roast chicken.C. Salad.3. What are the speakers mainly talking about?A. A meeting.B. An exhibition.C. A lecture.4. What will the man probably do this weekend?A. Visit a professor.B. Take a class.C. Have a big dinner.5. Why does the woman want to learn Chinese?A. To learn Chinese music.B. To be a teacher in college.C. To attend college in China.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。

2022-2023学年浙江省杭州重点大学附属中学高二下期第一次月考语文试卷(含答案)

2022-2023学年浙江省杭州重点大学附属中学高二下期第一次月考语文试卷(含答案)

2022-2023学年浙江省杭州重点大学附属中学高二下期第一次月考语文试卷1. 下列句中加点词的解释,不正确的一项是()A. 方其系燕父子以组组:丝带、丝绳,这里泛指绳索。

B. 其意气之盛,可谓壮哉壮:雄壮。

C. 抑本其成败之迹抑:或者。

D. 逸豫可以亡身身:身体。

2. 下列句子中加点词的用法与其他三项不相同的一项是()A. 天下云集响应B. 席卷天下C. 履至尊而制六合D. 赢粮而景从3. 下列句子中对加点词的解释全都正确的一项是()A. ①才能不及中人(平常的人)②流血漂橹(船桨)B. ①蹑足行伍之间(小心翼翼地行走)②不爱珍器重宝肥饶之地(吝惜)C. ①赢粮而景从(担负)②非抗于九国之师也(匹敌,相当)D. ①委命下吏(下达命令)②以致天下之士(招引,招致)4. 选出“举世混浊,何不随其流而扬其波”翻译正确一项是()A. 整个世道都是混浊的,您为什么不随着流水去推波助澜呢?B. 整个世界都污浊不清,您为什么不随着流水去推波助澜呢?C. 整个世界都污浊不清,您为什么不随波逐流并推波助澜呢?D. 整个世界都是混浊的,您为什么不像流水那样推波助澜呢?阅读下面这首诗,完成小题。

书愤陆游早岁那知世事艰,中原北望气如山。

楼船夜雪瓜洲渡,铁马秋风大散关。

塞上长城[注]空自许,镜中衰鬓已先斑。

出师一表真名世,千载谁堪伯仲间。

【注】塞上长城:《南史》载,宋文帝要杀名将檀道济,檀大怒道:“乃坏汝万里长城。

”5. 下列对这首诗的理解和分析,不正确的一项是()A. 首联,表现了诗题中的“愤”字,形成了全诗的感情基调。

B. 颔联将诗人的报国愿望渲染得更加鲜明,再次突出理想与现实的矛盾,与首联相比,悲愤之情更加强烈。

C. 颈联从现实到回忆,诗意转为悲凉,一“空”一“已”互为映衬,有着无限沉痛与悲愤。

D. 尾联诗人以诸葛亮自况,矢志北伐,死而后已,悲愤中蕴藉着豪壮之情。

6. 下列对这首诗的理解和分析,不正确的一项是()A. 首句写诗人早年不懂世事之艰难,既表现年轻时的意气风发,又暗示今日的意志消沉。

南通市2021-2022学年(下)高二第一次月考数学试题(后附答案解析)

南通市2021-2022学年(下)高二第一次月考数学试题(后附答案解析)

南通市2021-2022学年(下)高二第一次月考真题卷数学试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数21()9ln 2f x x x =-的单调递减区间是A.()0,3 B.(,3)-∞ C.(3,)+∞ D.()3,3-2.函数()sin x f x e x =+在点(0,1)处的切线与直线210x ay -+=互相垂直,则实数a 等于()A.2- B.4- C.12-D.23.拉格朗日中值定理是微分学中的基本定理之一,定理内容是:如果函数()f x 在闭区间[],a b 上的图象连续不间断,在开区间(),a b 内的导数为()f x ',那么在区间(),a b 内至少存在一点c ,使得()()()()f b f a f c b a '-=-成立,其中c 叫做()f x 在[],a b 上的“拉格朗日中值点”.根据这个定理,可得函数()33f x x x =-在[]22-,上的“拉格朗日中值点”的个数为()A .3B.2C.1D.04.下列说法中正确的是()①设随机变量X 服从二项分布16,2B ⎛⎫ ⎪⎝⎭,则()5316P X ==②已知随机变量X 服从正态分布()22,N σ且()40.9P X <=,则()020.4P X <<=③小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点互不相同”,事件B =“小赵独自去一个景点”,则()29P A B =;④()()2323E X E X +=+;()()2323D X D X +=+.A.①②③B.②③④C.②③D.①③5.函数f (x )=22ax +(1﹣2a )x ﹣2ln x 在区间1,32⎛⎫ ⎪⎝⎭内有极小值,则a 的取值范围是()A.12,3⎛⎫-- ⎪⎝⎭B.12,2⎛⎫--⎪⎝⎭C.112,,33⎛⎫⎛⎫--⋃-+∞ ⎪ ⎪⎝⎭⎝⎭D.112,,22⎛⎫⎛⎫--⋃-+∞ ⎪ ⎪⎝⎭⎝⎭6.若对1x ∀、()2,x m ∈+∞,且12x x <,都有122121ln ln 1x x x x x x -<-,则m 的最小值是()A.1eB.eC.1D.3e7.已知函数()sin f x x x =+,若存在[0,]x π∈使不等式(sin )(cos )f x x f m x ≤-成立,则整数m 的最小值为()A.1- B.0C.1D.28.已知函数()f x 是定义域为R 的奇函数,且当x <0时,函数()1x f x xe =+,若关于x 的函数[]2()()(1)()F x f x a f x a =-++恰有2个零点,则实数a 的取值范围为A.1,1e ⎛⎫-∞- ⎪⎝⎭B.()(),11,-∞-+∞U C.111,11,1e e ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭D.(][),11,-∞-+∞ 二、多项选择题:本题共4 小题,每小题5 分,共20 分.在每小题给出的选项中,有多项符合题 目要求,全部选对得5 分,部分选对得2 分,有项选错得0 分.9. 为了防止受到核污染的产品影响民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为16,第二轮检测不合格的概率为110,两轮检测是否合格相互没有影响.若产品可以销售,则每件产品获利40元;若产品不能销售,则每件产品亏损80元.已知一箱中有4件产品,记一箱产品获利X 元,则下列说法正确的是()A.该产品能销售的概率为34B.若ξ表示一箱产品中可以销售的件数,则34,4B ξ⎛⎫ ⎪⎝⎭~C.若ξ表示一箱产品中可以销售的件数,则()()7403120P X P ξ====;D.()2780128P X =-=10.(多选)已知函数()ln ()f x ax x a =-∈R ,则下列说法正确的是()A.若0a ≤,则函数()f x 没有极值B.若0a >,则函数()f x 有极值C.若函数()f x 有且只有两个零点,则实数a 的取值范围是1,e ⎛⎫-∞ ⎪⎝⎭D.若函数()f x 有且只有一个零点,则实数a 的取值范围是1(,0]e ⎧⎫-∞⋃⎨⎬⎩⎭11.已知函数()2exax x a f x ++=(a为常数),则下列结论正确的有()A.当0a =时,()f x 有最小值1eB.当0a ≠时,()f x 有两个极值点C.曲线()y f x =在点()()0,0f 处的切线方程为()10a x y a -+-=D.当e 102a -<≤时,()ln f x x x ≤-12.对于函数()ln xf x x=,下列说法错误的是()A.f (x )在(1,e )上单调递增,在(e ,+∞)上单调递减B.若方程()1fx k +=有4个不等的实根1234,,,x x x x,则12344x x x x +++=-C.当1201x x <<<时,1221ln ln x x x x <D.设()2g x x a =+,若对12,(1,)x R x ∀∈∃∈+∞,使得()()12g x f x =成立,则ea ≤三、填空题:本题共4小题,每小题5分,共20分,请把答案直接填写在答题卡相应位置上.13.盒中放有12个乒乓球,其中9个是新的,第一次比赛时从中任取3个来使用,比赛后仍放回盒中.第二次比赛时再从中任取3个球,则第二次取出的球都是新球的概率为___________.14.已知函数()cos xf x e x =+,则使得()()21f x f x ≤-成立的x 范围是_______.15.已知函数()ln xf x x =.若对任意[)12,,x x a ∞∈+,都有()()121ef x f x -≤成立,则实数a 的最小值是________.16.已知()3ln 44x f x x x=-+,()224g x x ax =--+,若对(]10,2x ∀∈,[]21,2x ∃∈,使得()()12f x g x ≥成立,则a 的取值范围是______.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.17.已知函数()()330f x x ax b a =-+>的极大值为16,极小值为-16.(1)求a 和b 的值;(2)若过点()1,M m 可作三条不同的直线与曲线()y f x =相切,求实数m 的取值范围.18.某公司对项目A 进行生产投资,所获得的利润有如下统计数据表:项目A 投资金额x (单位:百万元)12345所获利润y (单位:百万元)0.30.30.50.91(1)请用线性回归模型拟合 y 与 x 的关系,并用相关系数加以说明;(2)该公司计划用 7 百万元对 A 、B 两个项目进行投资.若公司对项目 B 投资x (1 ≤x ≤6)百万元所获得的利润y 近似满足:0.490.160.491y x x =-++,求A 、B 两个项目投资金额分别为多少时,获得的总利润最大?附.①对于一组数据()11,x y 、()22,x y 、……、(),n n x y ,其回归直线方程ˆˆˆy bx a =+的斜率和截距的最小二乘法估计公式分别为:121ˆˆˆ,niii nii x ynx y bay bx xnx==-⋅==--∑∑.②线性相关系数iinx ynx yr -⋅=∑.一般地,相关系数r 的绝对值在0.95以上(含0.95)认为线性相关性较强;否则,线性相关性较弱.参考数据:对项目A投资的统计数据表中5521111, 2.1iii i i x yy ====≈∑∑.19.甲、乙两队进行排球比赛,每场比赛采用“5局3胜制”(即有一支球队先胜3局即获胜,比赛结束).比赛排名采用积分制,积分规则如下:比赛中,以3:0或3:1取胜的球队积3分,负队积0分;以3:2取胜的球队积2分,负队积1分,已知甲、乙两队比赛,甲每局获胜的概率为23.(1)甲、乙两队比赛1场后,求甲队的积分X 的概率分布列和数学期望;(2)甲、乙两队比赛2场后,求两队积分相等的概率.20.已知函数()e (ln 1)(R)ax f x x a =+∈,()f x '为()f x 的导数.(1)设函数()()eaxf xg x '=,求()g x 的单调区间;(2)若()f x 有两个极值点,1212,()x x x x <,求实数a 的取值范围21.已知函数2()ln (2)f x a x x a x =+-+,其中.a R ∈(1)讨论函数()f x 的单调性;(2)若函数()f x 的导函数()'f x 在区间()1,e 上存在零点,证明:当()1,e x ∈时,()2e .f x >-22.已知函数()ln .f x x x ax a =-+(1)若1≥x 时,()0f x ≥恒成立,求a 的取值范围;(2)当1a =,01b <<时,方程()f x b =有两个不相等的实数根12,x x ,求证:12 1.x x <南通市2021-2022学年(下)高二第一次月考真题卷数学试题参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数21()9ln 2f x x x =-的单调递减区间是A.()0,3 B.(,3)-∞C.(3,)+∞ D.()3,3-【答案】A 【解析】【分析】求出函数的定义域,求出函数的导函数,令导函数小于0求出x 的范围,写出区间形式即得到函数21()9ln 2f x x x =-的单调递减区间.【详解】函数的定义域为x >0,∵9()f x x x'=-,令90x x-<,由于x >0,从而得0<x <3,∴函数21()9ln 2f x x x =-的单调递减区间是(0,3).故选:A .【点睛】本题考查利用导数研究函数的单调性,考查导数的应用,要注意先确定函数定义域,属于基础题.2.函数()sin x f x e x =+在点(0,1)处的切线与直线210x ay -+=互相垂直,则实数a 等于()A.2-B.4- C.12-D.2【答案】B 【解析】【分析】由导数的几何意义得函数()sin x f x e x =+在点(0,1)处的切线的斜率为2,进而221a⨯=-即可得答案.【详解】解:因为()'cos xf x e x =+,()'0112f =+=,所以函数()sin x f x e x =+在点(0,1)处的切线的斜率为2,因为切线与直线210x ay -+=互相垂直,21y x a a=+,所以221a⨯=-,解得4a =-.故选:B.【点睛】本题解题的关键在于根据导数的几何意义求得函数在(0,1)处的切线的斜率为2,考查运算求解能力,是基础题.3.拉格朗日中值定理是微分学中的基本定理之一,定理内容是:如果函数()f x 在闭区间[],a b 上的图象连续不间断,在开区间(),a b 内的导数为()f x ',那么在区间(),a b 内至少存在一点c ,使得()()()()f b f a f c b a '-=-成立,其中c 叫做()f x 在[],a b 上的“拉格朗日中值点”.根据这个定理,可得函数()33f x x x =-在[]22-,上的“拉格朗日中值点”的个数为()A.3B.2C.1D.0【答案】B 【解析】【分析】根据题中给出的“拉格朗日中值点”的定义分析求解即可.【详解】函数3()3f x x x =-,则()()()222,22,33f f f x x '=-=-=-,由()()()()2222f f f c '--=+,得()1f c '=,即2331c -=,解得[]232,23c =±∈-,所以()f x 在[2-,2]上的“拉格朗日中值点”的个数为2.故选:B.4.下列说法中正确的是()①设随机变量X 服从二项分布16,2B ⎛⎫ ⎪⎝⎭,则()5316P X ==②已知随机变量X 服从正态分布()22,N σ且()40.9P X <=,则()020.4P X <<=③小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点互不相同”,事件B =“小赵独自去一个景点”,则()29P A B =;④()()2323E X E X +=+;()()2323D X D X +=+.A.①②③ B.②③④C.②③D.①③【答案】A 【解析】【分析】根据题意条件,利用二项分布、正态分布、条件概率、期望与方程的定义与性质等对每一项进行逐项分析.【详解】解:命题①:设随机变量X 服从二项分布16,2B ⎛⎫ ⎪⎝⎭,则()3336115312216P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭,正确;命题②:∵ξ服从正态分布()22,N σ,∴正态曲线的对称轴是2x =,()()()40.9400.1P X P X P X <=⇒>=<= ,()()02240.4P X P X ∴<<=<<=,正确;命题③:设事件A =“4个人去的景点不相同”,事件B =“小赵独自去一个景点”,则()()34443!43,44P AB P B ⨯⨯==,所以()()()29P AB P A B P B ==,正确;命题④:()()2323E X E X +=+正确,()()232D X D X +=错误,应该为()()234D X D X +=,故不正确.故选:A【点睛】本题考查了二项分布、正态分布、条件概率、期望与方程的定义与性质等;若命题正确,则应能给出证明;若错误,则应能给出反例.5.函数f (x )=22ax +(1﹣2a )x ﹣2ln x 在区间1,32⎛⎫ ⎪⎝⎭内有极小值,则a 的取值范围是()A.12,3⎛⎫-- ⎪⎝⎭B.12,2⎛⎫--⎪⎝⎭C.112,,33⎛⎫⎛⎫--⋃-+∞ ⎪ ⎪⎝⎭⎝⎭D.112,,22⎛⎫⎛⎫--⋃-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】【分析】求出函数的导数,然后令导数等于零,求出方程的两个根,通过讨论根的范围可得a 的取值范围.【详解】解:由2()(12)2ln 2ax f x a x x =+--,得2'2(12)2(2)(1)()(12)ax a x x ax f x ax a x x x+---+=+--==,(1)当0a =时,'2()x f x x-=,当02x <<时,'()0f x <,当2x >时,'()0f x >,所以2x =为函数的一个极小值点,(2)当0a ≠时,令'()0f x =,则2x =或1x a=-,①当0a >时,当02x <<时,'()0f x <,当2x >时,'()0f x >,所以2x =为函数的一个极小值点,②当0a <时,i)若12a ->,即102a -<<时,02x <<时,'()0f x <,当12x a <<-时,'()0f x >,所以2x =为函数的一个极小值点,ii)若12a -=,即12a =-时,当(0,)x ∈+∞时,'()0f x <,函数无极值;iii)若1122a <-<,即122a -<<-时,当10x a<<-时,'()0f x <,当12x a -<<时,'()0f x >,所以1x a =-为1,32⎛⎫⎪⎝⎭上的极小值点,综上a 的取值范围是112,,22⎛⎫⎛⎫--⋃-+∞ ⎪ ⎪⎝⎭⎝⎭,故选:D【点睛】此题考查了函数的极值,考查了分类讨论思想,属于中档题.6.若对1x ∀、()2,x m ∈+∞,且12x x <,都有122121ln ln 1x x x x x x -<-,则m 的最小值是()A.1eB.eC.1D.3e【答案】C 【解析】【分析】由题意可得122121ln ln x x x x x x -<-,变形得出1212ln 1ln 1x x x x ++>,构造函数()ln 1x g x x+=,可知函数()y g x =在区间(),m +∞上单调递减,利用导数求得函数()y g x =的单调递减区间,由此可求得实数m 的最小值.【详解】对1x ∀、()2,x m ∈+∞,且12x x <,都有122121ln ln 1x x x x x x -<-,可得122121ln ln x x x x x x -<-,1212ln 1ln 1x x x x ++∴>,构造函数()ln 1x g x x+=,则函数()y g x =在区间(),m +∞上单调递减,()2ln xg x x'=-,令()0g x '<,解得1x >,即函数()y g x =的单调递减区间为()1,+∞,()(),1,m ∴+∞⊆+∞,则m 1≥,因此,实数m 的最小值为1.故选:C.【点睛】本题考查利用函数在区间上的单调性求参数,将问题转化为函数的单调性是解答的关键,考查计算能力,属于中等题.7.已知函数()sin f x x x =+,若存在[0,]x π∈使不等式(sin )(cos )f x x f m x ≤-成立,则整数m 的最小值为()A.1- B.0C.1D.2【答案】A 【解析】【分析】先对()f x 求导可得()1cos 0f x x '=+≥,()f x 单调递增,原不等式可化为存在[0,]x π∈使得sin cos x x m x ≤-有解,即sin cos m x x x ≥+对于[0,]x π∈有解,只需()min m g x ≥,利用导数判断()g x 的单调性求最小值即可.【详解】由()sin f x x x =+可得()1cos 0f x x '=+≥,所以()sin f x x x =+在[0,]x π∈单调递增,所以不等式(sin )(cos )f x x f m x ≤-成立等价于sin cos x x m x ≤-,所以sin cos m x x x ≥+对于[0,]x π∈有解,令()sin cos g x x x x =+,只需()min m g x ≥,则()sin cos sin cos g x x x x x x x '=+-=,当02x π≤≤时,()cos 0g x x x '=≥,()g x 在0,2π⎡⎤⎢⎥⎣⎦单调递增,当2x ππ<≤时,()cos 0g x x x '=<,()g x 在,2ππ⎡⎤⎢⎥⎣⎦单调递减,()0cos01g ==,()sin cos 1g ππππ=+=-,所以()()min 1g x g π==-,所以1m ≥-,整数m 的最小值为1-,故选:A.【点睛】方法点睛:若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()max g x λ≤或()()min g x x D λ≥∈,求()g x 的最值即可.8.已知函数()f x 是定义域为R 的奇函数,且当x <0时,函数()1x f x xe =+,若关于x 的函数[]2()()(1)()F x f x a f x a =-++恰有2个零点,则实数a 的取值范围为A.1,1e ⎛⎫-∞- ⎪⎝⎭B.()(),11,-∞-+∞U C.111,11,1e e ⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭ D.(][),11,-∞-+∞ 【答案】C【解析】【分析】由F (x ) =0 得 f (x ) =1或 f (x ) =a ,而x <0 时, f (x ) =1无解,需满足 f (x ) =a 有两个解.利用导数求得()f x 在0x <时的性质,由奇函数得0x >时的性质,然后可确定出a 的范围.【详解】()(()1)(())0F x f x f x a =--=,()1f x =或()f x a =,0x <时,()11x f x xe =+<,()(1)x f x x e '=+,1x <-时,()0f x '<,()f x 递减,10x -<<时,()0f x '>,()f x 递增,∴()f x 的极小值为1(1)1f e-=-,又()1f x <,因此()1f x =无解.此时()f x a =要有两解,则111a e-<<,又()f x 是奇函数,∴0x >时,()1f x =仍然无解,()f x a =要有两解,则111x e-<<-.综上有111,11,1a e e ⎛⎫⎛⎫∈--- ⎪ ⎪⎝⎭⎝⎭.故选:C .【点睛】关键点点睛:本题考查函数的奇偶性与函数的零点,考查导数的应用.首先方程化为()1f x =或()f x a =,然后用导数研究0x <时()f x 的性质,同理由奇函数性质得出0x >廛()f x 的性质,从而得出()1f x =无解,()f x a =有两解时a 范围.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,部分选对得2分,有项选错得0分.9.为了防止受到核污染的产品影响民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为16,第二轮检测不合格的概率为110,两轮检测是否合格相互没有影响.若产品可以销售,则每件产品获利40元;若产品不能销售,则每件产品亏损80元.已知一箱中有4件产品,记一箱产品获利X 元,则下列说法正确的是()A.该产品能销售的概率为34B.若ξ表示一箱产品中可以销售的件数,则34,4B ξ⎛⎫ ⎪⎝⎭~C.若ξ表示一箱产品中可以销售的件数,则()()7403120P X P ξ====;D.()2780128P X =-=【答案】ABD 【解析】【分析】根据题意先求出该产品能销售的概率,从而选项A 可判断,由题意可得3~4,4B ξ⎛⎫ ⎪⎝⎭可判断选项B ,根据独立重复事件的概率问题可判断C ,D 选项.【详解】选项A.该产品能销售的概率为113116104⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭,故选项A 正确;选项B.由A 可得每件产品能销售的概率为34一箱中有4件产品,记一箱产品获利X 元,则3~4,4B ξ⎛⎫⎪⎝⎭,故选项B 正确;选项C.由题意()334312734464P C ξ⎛⎫==⨯⨯= ⎪⎝⎭,故选项C 不正确;选项D.由题意80X =-,即4件产品中有2件能销售,有2件产品不能销售,所以()222427128318044P X C ⎛⎫⎛⎫=-=⨯= ⎪ ⎪⎝⎭⎝⎭,故选项D 正确.故选:ABD.10.(多选)已知函数()ln ()f x ax x a =-∈R ,则下列说法正确的是()A.若0a ≤,则函数()f x 没有极值B.若0a >,则函数()f x 有极值C.若函数()f x 有且只有两个零点,则实数a 的取值范围是1,e ⎛⎫-∞ ⎪⎝⎭D.若函数()f x 有且只有一个零点,则实数a 的取值范围是1(,0]e ⎧⎫-∞⋃⎨⎬⎩⎭【答案】ABD 【解析】【分析】先对()f x 进行求导,再对a 进行分类讨论,根据极值的定义以及零点的定义即可判断.【详解】解:由题意得,函数()f x 的定义域为(0,)+∞,且11()ax f x a x x'-=-=,当0a ≤时,()0f x '<恒成立,此时()f x 单调递减,没有极值,又 当x 趋近于0时,()f x 趋近于+∞,当x 趋近于+∞时,()f x 趋近于-∞,∴()f x 有且只有一个零点,当0a >时,在10,a ⎛⎫⎪⎝⎭上,()0f x '<,()f x 单调递减,在1,a ⎛⎫+∞⎪⎝⎭上,()0f x '>,()f x 单调递增,∴当1x a=时,()f x 取得极小值,同时也是最小值,∴min 1()1ln f x f a a ⎛⎫==+⎪⎝⎭,当x 趋近于0时,ln x 趋近于-∞,()f x 趋近于+∞,当x 趋近于+∞时,()f x 趋近于+∞,当1ln 0a +=,即1a e=时,()f x 有且只有一个零点;当1ln 0a +<,即10a e<<时,()f x 有且仅有两个零点,综上可知ABD 正确,C 错误.故选:ABD .【点睛】方法点睛:函数零点的求解与判断方法:(1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要函数在区间[]a b ,上是连续不断的曲线,且()()·0f a f b <,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.11.已知函数()2e xax x a f x ++=(a为常数),则下列结论正确的有()A.当0a =时,()f x 有最小值1eB.当0a ≠时,()f x 有两个极值点C.曲线()y f x =在点()()0,0f 处的切线方程为()10a x y a -+-=D.当e 102a -<≤时,()ln f x x x ≤-【答案】BCD 【解析】【分析】对于A ,求导后通过求出函数的单调区间,从而可求出其最值,对于B ,分0a >和0a <两种情况求函数的极值,对于C ,利用导数的几何意义求解,对于D ,由已知可得()()22e 12e 1e 2e x x x x ax x af x -++-++=≤,构造函数()()2e 12e 12exx x g x -++-=,利用导数求得其()()max 11g x g ==⎡⎤⎣⎦,构造函数()ln h x x x =-,利用导数求得()()min 11h x h ==⎡⎤⎣⎦,从而可得结论【详解】对于A 选项,当0a =时,()exx f x =,求导得()1e x xf x -'=,令()0f x '=,解得x =1.当x <1时,f (′x > )0,f (x )在,∞−(1 )上单调递增;当x >1时,f (′x < )0,f (x )在(1)∞+,上单调递减,所以当x =1时, f (x )有最大值1e,故选项 A 错误;对于 B 选项,当a ≠0时,对 f (x )求导得()f x '=()()()211211e e xxx ax a ax a x a---⎡⎤---+⎣⎦-=-,当0a >时,令()0f x '=,解得111x a=-,21x =且12x x <,当1,1x a ⎛⎫∈-∞-⎪⎝⎭时,()0f x '<,当11,1x a ⎛⎫∈- ⎪⎝⎭时,()0f x '>,当()1,x ∈+∞时,()0f x '<,所以()f x 在11x a=-时取极小值,在1x =时取极大值.当0a <时,令()0f x '=,解得11x =,211x a=-且12x x <,当(),1x ∈-∞时,()0f x '>,当11,1x a ⎛⎫∈-⎪⎝⎭时,()0f x '<,当11,x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0f x '>,所以()f x 在1x =时取极大值,在11x a=-时取极小值,所以当0a ≠时,()f x 有两个极值点,故选项B 正确;对于C 选项,因为()()2211exax a x af x ---+'=-,所以()01f a '=-,又()0f a =,所以曲线()y f x =在点()()0,0f 处的切线方程为()()10y a a x -=--,即()10a x y a -+-=,故选项C 正确;对于D 选项,当e 102a -<≤时,()()22e 12e 1e 2ex xx x ax x a f x -++-++=≤,令()()2e 12e 12e xx x g x -++-=,()0,x ∈+∞,则()()()2e 12e 2e 32e xx x g x ---+-'=-()()()1e 1e 32e xx x ----⎡⎤⎣⎦=-,显然当0x >时,()()e 1e 30x --->,所以当01x <<时,()0g x '>,()g x 在()0,1上单调递增;当1x >时,()0g x '<,()g x 在()1,+∞上单调递减,所以()()max 11g x g ==⎡⎤⎣⎦,令()ln h x x x =-,求导得()111x h x x x-'=-=,当01x <<时,()0h x '<,()h x 在()0,1上单调递减;当1x >时,()0h x '>,()h x 在()1,+∞上单调递增,所以()()min 11h x h ==⎡⎤⎣⎦,所以()ln f x x x ≤-,故选项D 正确,故选:BCD.【点睛】关键点点睛:此题考查导数的应用,对于选项D 解题的关键是由e 102a -<≤时,()()22e 12e 1e 2e x x x x ax x af x -++-++=≤,然后构造()()2e 12e 12exx x g x -++-=,然后利用导数求出其最大值,再利用导数求出()ln h x x x =-的最小值即可,考查数学转化思想和计算能力,属于中档题12.对于函数()ln xf x x=,下列说法错误的是()A.f (x )在(1,e )上单调递增,在(e ,+∞)上单调递减B.若方程()1fx k +=有4个不等的实根1234,,,x x x x,则12344x x x x +++=-C.当1201x x <<<时,1221ln ln x x x x <D.设()2g x x a =+,若对12,(1,)x R x ∀∈∃∈+∞,使得()()12g x f x =成立,则ea ≤【答案】ACD 【解析】【分析】函数()ln xf x x=,(0x ∈,1)(1⋃,)∞+,2ln 1()ln x f x x -'=,利用导数研究函数的单调性和极值,画出图象.A .由上述分析即可判断出正误;.B .方程(|1|)f x k +=有4个不等的实根,结合函数奇偶性以及图象特点可知四个根两两关于直线1x =-对称,可判断出正误;.C .由函数()ln xf x x =在(0,1)x ∈单调递减,可得函数ln x y x=在(0,1)x ∈单调递增,即可判断出正误;D .设函数()g x 的值域为G ,函数()f x 的值域为E .若对1x R ∀∈,2(1,)x ∃∈+∞,使得12()()g x f x =成立,可得G E ⊆,即可判断出正误.【详解】函数()ln xf x x=,(0x ∈,1)(1⋃,)∞+.2ln 1()ln x f x x-'=,可得函数()f x 在(0,1)上单调递减,在(1,e)上单调递减,在(e,)+∞上单调递增,其大致图象如图:A .由上述分析可得A 不正确.B .函数(||)y f x =为偶函数,其图象关于y 轴对称,则(|1|)y f x =+的图象关于1x =-对称,故(|1|)f x k +=的有4个不等实根时,则这四个实根必两两关于1x =-对称,故12344x x x x +++=-,因此B 正确.C .由函数()ln xf x x =在(0,1)x ∈单调递减,可得函数ln x y x=在(0,1)x ∈单调递增,因此当1201x x <<<时,1212ln ln x x x x <,即1221ln ln x x x x >,因此C 不正确;D .设函数()()g x x R ∈的值域为G ,函数()((1f x x ∈,))+∞的值域为E ,2()g x x a =+,对x R ∀∈,[G a =,)∞+.(1,)x ∀∈+∞,[e E =,)∞+.2()g x x a =+,若对1x R ∀∈,2(1,)x ∃∈+∞,使得12()()g x f x =成立,则G E ⊆.e a ∴,因此D 不正确,故选:ACD .三、填空题:本题共4小题,每小题5分,共20分,请把答案直接填写在答题卡相应位置上.13.盒中放有12个乒乓球,其中9个是新的,第一次比赛时从中任取3个来使用,比赛后仍放回盒中.第二次比赛时再从中任取3个球,则第二次取出的球都是新球的概率为___________.【答案】4413025【解析】【分析】令i A 表示第一次任取3个球使用时,取出i 个新球(0,1,2,3)i =,B 表示第二次任取的3个球都是新球,求出()i P A ,再应用全概率公式求P (B )即可.【详解】令i A 表示第一次任取3个球使用时,取出i 个新球(0,1,2,3)i =,B 表示第二次任取的3个球都是新球,则3303121()220C P A C ==,2139131227()220C C P A C ==,12392312108()220C C P A C ==,39331284()220C P A C ==,根据全概率公式,第二次取到的球都是新球的概率为:00112233()()(|)()(|)()(|)()(|)P B P A P B A P A P B A P A P B A P A P B A =+++=3333987633331212121212710884441.2202202202203025C C C C C C C C ⨯+⨯+⨯+⨯=故答案为:4413025.14.已知函数()cos xf x e x =+,则使得()()21f x f x ≤-成立的x 范围是_______.【答案】11,3⎡⎤-⎢⎥⎣⎦【解析】【分析】分析出函数()f x 为偶函数,再利用导数分析出函数()f x 在区间[)0,+∞上为增函数,由()()21f x f x ≤-可得出()()21f x f x ≤-,进而得出21x x ≤-,进而可求得x 的取值范围.【详解】函数()f x 的定义域为R ,()()()cos cos xxf x e x e x f x --=+-=+=,所以,函数()f x 为偶函数,当0x ≥时,()cos x f x e x =+,则()sin 1sin 0x f x e x x '=-≥-≥,所以,函数()f x 在区间[)0,+∞为增函数,由()()21f x f x ≤-可得()()21fx f x ≤-,所以21x x ≤-,则有()2241x x ≤-,可得23210x x +-≤,解得113x -≤≤.因此,使得()()21f x f x ≤-成立的x 范围是11,3⎡⎤-⎢⎥⎣⎦.故答案为:11,3⎡⎤-⎢⎥⎣⎦.【点睛】利用偶函数的基本性质解不等式,可充分利用性质()()f x f x =,同时注意分析出函数()f x 在区间[)0,+∞上的单调性.15.已知函数()ln x f x x =.若对任意[)12,,x x a ∞∈+,都有()()121ef x f x -≤成立,则实数a 的最小值是________.【答案】1【解析】【分析】利用导数可求得()f x 单调性和()max 1ef x =,将问题转化为()()max min 1ef x f x -≤;分别在e a ≥和0e a <<的情况下,确定最小值,由此构造不等式求得a 的范围,进而得到最小值.【详解】()21ln xf x x-'= ,∴当()0,e x ∈时,()0f x '>;当()e,x ∈+∞时,()0f x '<;()f x ∴在()0,e 上单调递增,在()e,+∞上单调递减,()()max 1e ef x f ∴==;若对任意[)12,,x x a ∞∈+,都有()()121e f x f x -≤成立,则()()max min 1e f x f x -≤;当e a ≥时,()0f x >恒成立,又()()max 1e e f x f ≤=,()()max min 1ef x f x ∴-≤恒成立;当0e a <<时,()f x 在[),e a 上单调递增,在()e,+∞上单调递减,则只需()ln 0af a a=≥即可,即1e a ≤<;综上所述:a 的取值范围为[)1,+∞;a ∴的最小值为1.故答案为:1.16.已知()3ln 44x f x x x=-+,()224g x x ax =--+,若对(]10,2x ∀∈,[]21,2x ∃∈,使得()()12f x g x ≥成立,则a 的取值范围是______.【答案】1[,)8-+∞【解析】【分析】根据对(]10,2x ∀∈,[]21,2x ∃∈,使得()()12f x g x ≥成立,只需()()min minf xg x ≥求解即可.【详解】因为()3ln 44x f x x x=-+,所以()()()222213113434444x x x x f x x x x x ---+-'=--==-,当01x <<时,()0f x '<,当12x <<时,()0f x '>,所以()()min 112f x f ==,因为()224g x x ax =--+开口方向向下,所以在区间[]1,2上的最小值的端点处取得,所以要使对(]10,2x ∀∈,[]21,2x ∃∈,使得()()12f x g x ≥成立,只需()()min min f x g x ≥,即()112g ≥或()122g ≥,即11242a ≥--+或14442a ≥--+,解得18a ≥-,所以a 的取值范围是1[,)8-+∞,故答案为:1[,)8-+∞四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.17.已知函数()()330f x x ax b a =-+>的极大值为16,极小值为-16.(1)求a 和b 的值;(2)若过点()1,M m 可作三条不同的直线与曲线()y f x =相切,求实数m 的取值范围.【答案】(1)4a =,0b =;(2)()12,11--.【解析】【分析】(1)求出导函数'()f x ,确定极大值和极小值,由题意可求得,a b ;(2)设切点()()00,P x f x ,切线方程为()()()000y f x f x x x '-=-,即()2300342y x x x =--,由切线过点()1,M m ,得()233200003422312m x x x x x =--=-+-,从而此方程有 3 个实数根,问题转化为函数g (x = )2x 3 −3x 2+m +12 有 3 个零点,再由导数研究g (x ) 的极大值和极小值可得出结论.【详解】(1)函数()()330f x x ax b a =-+>,()(2333f x x a x x '=-=+-.可得:函数()f x 在(,-∞,)+∞上单调递增,在(上单调递减.∴x =时函数()f x 取得极大值16,x =时函数()f x 取得极小值-16.∴(316f b =-=,316f b ==-,联立解得:4a =,0b =,(2)由(1)可知()312f x x x =-,设切点()()00,P x f x ,则切线方程为()()()000y f x f x x x '-=-,即()2300342y x x x =--,因为切线过点()1,M m ,所以()233200003422312m x x x x =--=-+-,由于有3条切线,所以方程有3个实数根,设()322312g x x x m =-++,则只要使()g x 有3个零点,令()2660g x x x '=-=,解得1x =或0x =,当(),0x ∈-∞,()1,+∞时,()0g x '>,()g x 单调递增;当()0,1x ∈时,()0g x '<,()g x 单调递减,所以0x =时,()g x 取极大值,1x =时,()g x 取极小值,所以要是曲线()g x 与x 轴有3个交点,当且仅当(0)0(1)0g g >⎧⎨<⎩,即120110m m +>⎧⎨+<⎩,解得1211m -<<-,即实数m 的取值范围为()12,11--.【点睛】本题考查用导数研究函数的极值,考查导数的几何意义,考查用导数研究函数零点个数问题,本题对计算能力的要求较高,属于难题.18.某公司对项目A 进行生产投资,所获得的利润有如下统计数据表:项目A 投资金额x (单位:百万元)12345所获利润y (单位:百万元)0.30.30.50.91(1)请用线性回归模型拟合y 与x 的关系,并用相关系数加以说明;(2)该公司计划用7百万元对A 、B 两个项目进行投资.若公司对项目B 投资()16x x ≤≤百万元所获得的利润y 近似满足:0.490.160.491y x x =-++,求A 、B 两个项目投资金额分别为多少时,获得的总利润最大?附.①对于一组数据()11,x y 、()22,x y 、……、(),n n x y ,其回归直线方程ˆˆˆy bx a =+的斜率和截距的最小二乘法估计公式分别为:1221ˆˆˆ,ni ii n i i x ynx ybay bx x nx==-⋅==--∑∑.②线性相关系数1222211()()iii i i i i nn nx ynx yr x nx y n y ===-⋅=--∑∑∑.一般地,相关系数r 的绝对值在0.95以上(含0.95)认为线性相关性较强;否则,线性相关性较弱.参考数据:对项目A 投资的统计数据表中5521111, 2.24, 4.4 2.1iii i i x yy ====≈∑∑.【答案】(1)0.95r >,用线性回归方程ˆ0.2y x =对该组数据进行拟合合理;(2)对A 、B项目分别投资4.5百万元,2.5百万元时,获得总利润最大.【解析】【分析】(1)根据给定数表,计算出,x y ,再代入最小二乘法公式及线性相关系数公式计算即得;(2)由题设条件列出获得的总利润的函数关系,再借助均值不等式求解即得.【详解】(1)对项目A 投资的统计数据进行计算得:3x =,0.6y =,52155ii x==∑,于是得5512221511530.60.255535i ii i i x y x ybx x==-⋅-⨯⨯===-⨯-∑∑ ,ˆˆ0.60.230a y bx =-=-⨯=,所以回归直线方程为:ˆ0.2yx =,线性相关系数550.95340.95iix yx yr -⋅=>∑,这说明投资金额x 与所获利润y 之间的线性相关关系较强,用线性回归方程ˆ0.2yx =对该组数据进行拟合合理;(2)设对B 项目投资()16x x ≤≤百万元,则对A 项目投资()7x -百万元,所获总利润0.490.490.160.490.2(7) 1.930.04(1)11w x x x x x ⎡⎤=-++-=-++⎢⎥++⎣⎦1.93 1.65≤-=,当且仅当0.490.04(1)1x x +=+,即 2.5x =时取等号,所以对A 、B 项目分别投资4.5百万元,2.5百万元时,获得总利润最大.19.甲、乙两队进行排球比赛,每场比赛采用“5局3胜制”(即有一支球队先胜3局即获胜,比赛结束).比赛排名采用积分制,积分规则如下:比赛中,以3:0或3:1取胜的球队积3分,负队积0分;以3:2取胜的球队积2分,负队积1分,已知甲、乙两队比赛,甲每局获胜的概率为23.(1)甲、乙两队比赛1场后,求甲队的积分X 的概率分布列和数学期望;(2)甲、乙两队比赛2场后,求两队积分相等的概率.【答案】(1)分布列见解析,18481;(2)11206561【解析】【分析】(1)随机变量X 的所有可能取值为0,1,2,3,再由独立事件的概率公式求得每个X 的取值所对应的概率即可得分布列,然后由数学期望的计算公式,得解;(2)设第i 场甲、乙两队积分分别为i X ,i Y ,则3i i X Y =-,1i =,2,由两队积分相等,可推出123X X +=,再分四种情况,并结合独立事件的概率公式,即可得解.【详解】(1)随机变量X 的所有可能取值为0,1,2,3,312312111(0)()()33339P X C ==+⋅⋅⋅=,22242118(1)()()33381P X C ==⋅⋅⋅=,222421216(2)()()33381P X C ==⋅⋅⋅=,2233212216(3)()()333327P X C ==⋅⋅⋅+=,所以X 的分布列为X0123P1988116811627所以数学期望181616184()0123981812781E X =⨯+⨯+⨯+⨯=.(2)记“甲、乙比赛两场后,两队积分相等”为事件A ,设第i 场甲、乙两队积分分别为i X ,i Y ,则3i i X Y =-,1i =,2,因两队积分相等,所以1212X X Y Y +=+,即1212(3)(3)X X X X +=-+-,则123X X +=,所以P (A )12121212(0)(3)(1)(2)(2)(1)(3)(0)P X P X P X P X P X P X P X P X ===+==+==+==1168161681611120927818181812796561=⨯+⨯+⨯+⨯=.20.已知函数()e (ln 1)(R)ax f x x a =+∈,()f x '为()f x 的导数.(1)设函数()()eaxf xg x '=,求()g x 的单调区间;(2)若()f x 有两个极值点,1212,()x x x x <,求实数a 的取值范围【答案】(1)当0a <时,()g x 的减区间为(0,)+∞,无增区间;当0a >时,()g x 的减区间为1(0,)a,增区间为1(,)a +∞(2)2(e ,).+∞【解析】【分析】(1)依题意,()f x 的定义域为(0,)+∞,且()1()ln e axf xg x a x a x'==++,则21()ax g x x-'=,再对a 进行分类讨论即可得到答案.(2)因为()f x 有两个极值点,所以()g x 有两个零点.由(1)知0a <时不合题意;当0a >时,min 1()((21)g x g a na a==-,接下来对a 进行讨论即可得到答案.【小问1详解】依题意,()f x 的定义域为(0,)+∞,e ()e (ln 1)axaxf x a x x'=++,则()1()ln e axf xg x a x a x'==++,则21().ax g x x -'=①当0a <时,()0g x '<在,()0x ∈+∞上恒成立,()g x 单调递减;②当0a >时,令()0g x '=得,1x a=,所以,当1(0,)x a ∈时,()0g x '<,()g x 递减;当1(,)x a∈+∞时,()0g x '>,()g x 递增;综上,当0a <时,()g x 的减区间为(0,)+∞,无增区间;当0a >时,()g x 的减区间为1(0,)a ,增区间为1(,).a+∞【小问2详解】因为()f x 有两个极值点,所以()g x 有两个零点,由(1)知0a <时不合;当0a >时,min 1()((21).g x g a na a==-当20e a <<时,1()(0g x g a>>,()g x 没有零点,不合题意;当2e a =时,1(0g a=,()g x 有一个零点1a,不合题意;当2e a >时,1()0g a <,21()(12ln )g a a a a=+-,设()12ln a a a ϕ=+-,2e a >,则2()10a aϕ'=->,所以22()(e )e 30a ϕϕ>=->,即21(0g a>,所以存在1211(,)x a a∈,使得1()0g x =;又因为1(e 0eg =>,所以存在211(,ex a ∈,使得2()0.g x =()f x 的值变化情况如下表:x 1(0,)x 1x 12(,)x x 2x 2(,)x +∞()'f x +0-0+()f x 递增极大值递减极小值递增所以当2e a >时,()f x 有两个极值点,综上,a 的取值范围是2(e ,).+∞21.已知函数2()ln (2)f x a x x a x =+-+,其中.a R ∈(1)讨论函数()f x 的单调性;(2)若函数()f x 的导函数()'f x 在区间()1,e 上存在零点,证明:当()1,e x ∈时,()2e .f x >-【答案】(1)答案不唯一,具体见解析(2)证明见解析【解析】。

四川省广元市广元名校2021-2022学年高二下学期第一次月考语文试题(原卷版+解析版)

四川省广元市广元名校2021-2022学年高二下学期第一次月考语文试题(原卷版+解析版)

2021-2022学年高二下学期第一次月考语文试题一、现代文阅读(一)论述类文本阅读阅读下面的文字,完成下列小题。

所谓“戏曲中国”,即戏曲所表现的中国,或者说,戏曲所表现的中国文化。

中国戏曲是“世界三大古老戏剧”中剧种最多、艺术生命力最强、剧目遗存最丰富的样式,但它为何比古希腊戏剧和古印度梵剧“晚出”呢?不少学者从外部条件和自身特征两个方面探讨戏曲晚熟,取得了一些成果,但亦不乏值得商榷之处。

例如,着眼于外部条件者所得出的“主要原因在于商品经济不发达”这一影响至巨的结论就值得商榷。

单就外部条件而言,戏曲创作的艰难与迟缓绝非经济因素一端所能解释。

人类文化史已反复证明,文化创造除了受经济基础的制约之外,还受社会结构、风俗习惯、文化传统、时代精神等框架的制约。

经济基础即使大体相仿,不同民族、社会的文化创造主体所面临的文化场合、文化情景也可能很不一样。

因此,从文化生态学角度来看,“戏曲何以晚出”在很大程度上是由于平民文化发展得不够充分。

中国戏曲建立在平民文化的基础上,所表现的中国文化以平民文化为主体。

文化的平民化不只是为戏曲的生成和发展提供了故事情节、表现形式,更为主要的是使文化发展的指向发生了重要变化——由朝而野,由雅而俗。

戏曲史上有一个引人瞩目的现象:许多取材于唐传奇、诗文的元代杂剧,其结局都变悲剧为团圆。

元代王实甫的《西厢记》,源于唐元稹《莺莺传》;元代白朴的《墙头马上》,源于白居易《井底引银瓶》,并非偶然,《莺莺传》和《井底引银瓶》都以悲剧结束,而《西厢记》和《墙头马上》则是大团圆的喜剧。

在这种不谋而合的共同现象背后,深层的原因何在?其实就在文化的平民化转向。

《莺莺传》中崔莺莺是名门闺秀,但没有勇气维护婚姻权利,预感张生有可能始乱终弃,她不是设法阻止这一结局的到来,而是向张生倾诉:“始乱之,终弃之,固其宜矣。

愚不敢恨。

”因为按照唐代上流社会习惯法,一个私订终身的女子是没有资格成为妻子的。

但上流社会的习惯法在平民社会中并不一定需要遵守。

河北省石家庄市十五中2022-2023学年高二下学期第一次月考数学试题

河北省石家庄市十五中2022-2023学年高二下学期第一次月考数学试题
数 f (x) sin x ln(x 1) ,则 f (0) ( )
A. 1
B.0
C.1
D.2
3.如图,在四面体
OABC
中,G

BC
的中点,设
uuur OA
r a
,OuuBur
r b
uuur ,OC
r c
,则
uuur AG
()
A.
r a
1
r b
1
r c
22
C. 13 3
D. 15 5
二、多选题 9.函数 y f (x) 的导函数 f (x) 的图象如图所示,则下列结论正确的是( )
A. x 3是函数 y f (x) 的极值点 C. y f (x) 在区间 (3,1) 上单调
B. x = 1是函数 y f (x) 的最小值点 D. y f (x) 在 x 0 处切线的斜率小于 0
10.已知等差数列 {an } 的前
n
项和为
S
n
,

a 1
>
0, 2a 5
+
a 11
=
0, 则
A. a8 0
B.当且仅当 n= 7 时, Sn 取得最大值
C. S4 S9
D.满足 Sn 0 的 n 的最大值为 12
11.如图,一个结晶体的形状为平行六面体 ABCD A1B1C1D1 ,其中,以顶点 A 为端点 的三条棱长都相等,且它们彼此的夹角都是 60°,下列说法中正确的是( )
19.已知△ ABC 的顶点 C 1,5 ,边 AB 所在直线的方程为 y 0 ,边 BC 上的高 AH 所
在直线的方程为 x y 2 0 . (1)求顶点 A 与 B 的坐标;

辽宁省沈阳市东北育才学校高中部2023-2024学年高二下学期第1次月考化学试题(解析版)

辽宁省沈阳市东北育才学校高中部2023-2024学年高二下学期第1次月考化学试题(解析版)
A.对二甲苯的一氯代物有4种B.过程②中C原子杂化方式都是由sp3变为sp
C.该反应的副产物不可能有间二甲苯D.M的结构简式为
【答案】D
【解析】
【详解】A.对二甲苯的结构简式为 ,分子中含有2种氢原子,一氯取代物有2种,故A错误;
B.M中环上部分碳原子为饱和碳,采用sp3杂化,但碳碳双键中的碳原子采用sp2杂化,M转化为对二甲苯过程中环上饱和碳原子杂化方式由sp3变为sp2,双键碳的杂化方式未变,故B错误;
D.在某种铁的氧化物样品的晶胞中,O原子在晶胞的内部,数目为8,Fe原子在晶胞内部有5个,顶点有4个,棱上有2个,Fe原子数目为 ,所以化学式为Fe3O4,D错误;
故选D。
7.由下列实验方案、现象得出的结论正确的是
实验方置
水层颜色变浅
植物油可用于萃取溴水中的溴
C.纳米颗粒尺寸越小,表面积越大,吸附能力越强,故C正确;
D.纳米材料尺寸不同将影响其性质,故D正确;
故答案为:A。
2.下列说法中,正确的是
A. 空间结构为正四面体形,与VSEPR模型一致
B.离子晶体中不可能存在共价键
C.共价键和氢键都是化学键,且都具有饱和性和方向性
D.通过X射线衍射实验难以区分玻璃和水晶
B
向 溶液中加入乙醇
析出深蓝色固体
在乙醇中溶解度小
C
用毛皮摩擦过的带电橡胶靠近CF2Cl2液流
液流方向改变
CF2Cl2为四面体结构
D
将氯气通入盛有鲜花的集气瓶中
鲜花褪色
氯气具有漂白性
A.AB.BC.CD.D
【答案】B
【解析】
【详解】A.植物油含碳碳双键,与溴水发生加成反应,不发生萃取,故A错误;
B. 在乙醇中的溶解度小于水中,故向该溶液中加入乙醇后析出深蓝色固体 ,故B正确;

2022-2023学年山东省聊城市颐中外国语学校高二(下)第一次月考英语试卷(含答案)

2022-2023学年山东省聊城市颐中外国语学校高二(下)第一次月考英语试卷(含答案)

2022-2023学年山东省聊城市颐中外国语学校高二(下)第一次月考英语试卷第一部分听力第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对仅读一遍。

1.(1.5分)Why does Linda learn Chinese songs?A.She is learning Chinese.B.She'll give a performance.C.She hopes to become a singer.2.(1.5分)What does Jason like doing now?A.Reading.B.Dancing.C.Watching movies.3.(1.5分)What does the man advise the woman to do?A.Enjoy the spring time.B.Do some indoor activities.C.Study hard for exams.4.(1.5分)When can the speakers meet?A.On Monday.B.On Tuesday.C.On Wednesday.5.(1.5分)What are the speakers talking about?A.A part-time job.B.House cleaning.C.The woman's father.第二节(共15 小题;每小题 1.5 分,满分22.5 分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。

每段对话或独白读两遍。

6.(3分)(1)What is Mrs.West doing?A.Shopping for groceries.B.Doing some baking.C.Having dinner.(2)What do Mrs.West's kids like best?A.Milk.B.Cheese.C.Homemade bread.7.(3分)(1)What is the relationship between the speakers?A.Classmates.B.Brother and sister.C.Teacher and student.(2)Who will be in charge of the introduction?A.Tom.B.John.C.Mary.8.(4.5分)(1)Where does the conversation probably take place?A.In the woman's house.B.In a newspaper office.C.In a publishing company.(2)Why is the man talking to the woman?A.To borrow her book.B.To ask for an article.C.To inform her of a meeting.(3)How does the woman sound at the end of the conversation?A.Serious.B.Excited.C.Annoyed.9.(6分)(1)What are the special boards used for?A.Keeping sunshine out.B.Covering buildings.C.Producing energy.(2)Where are the gardens?A.On the roofs.B.In the backyards.C.Next to the work stations.(3)How will Molly go home today?A.By bike.B.By bus.C.By car.(4)What does Molly say about BedZED?A.The public transportation is poor.B.There's much parking space.C.It is environment-friendly.10.(6分)(1)What is today's Art Review about?A.A report on an artistic film.B.An interview with an artist.C.An event in London National Museum.(2)When does The Vanishing Lady begin?A.At 7:30.B.At 8:00.C.At 9:30.(3)What is Porten?A.An actor.B.A playwright (剧作家).C.A director.(4)What are Peter Field's boats like?A.They are strongly built.B.They are huge.C.They are fast.第二部分阅读理解第一节阅读下列短文,从每题所给的A、B、C 和D四个选项中,选出最佳选项。

辽宁省鞍山市普通高中2022-2023学年高二下学期第一次月考高二语文(A卷)答案

辽宁省鞍山市普通高中2022-2023学年高二下学期第一次月考高二语文(A卷)答案

高二月考语文试卷(A)答案时间:150分钟,满分:150分一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,17分)1.(3分)【答案】D【解析】A项,“自20世纪60年代起,小说成为拉美文学最有力的代表”扩大范围。

由材料一第一段“那么从20世纪60年代开始,长篇小说就成为拉美文学最有力的代表”可知,选项将原文的“长篇小说”扩大范围为“小说”。

B项,“拉美文学便终结了之前那种划时代作品集中诞生的热闹场面”曲解文意。

由材料一第四段“从20世纪70年代起,拉美文学就难以复制那种划时代作品集中诞生的热闹场面了,但其余波仍久久未平”可知,此时期拉美文学仍有划时代作品。

C项,“学界一致认为……”张冠李戴。

据材料二第二段,这是美国学者哈罗德·布鲁姆在《影响的焦虑》中的观点。

故选D项。

2.(3分)【答案】A【解析】A项,“成为当时拉美小说的全部特征”错误,“魔幻现实主义”不等于当时拉美小说的全部。

见材料一第三段:“这些拉美故事不断突破小说自身的界限,或与其他艺术形式有所联系,或邀请读者一起向传统的小说阅读方式发起挑战,它们意味着新的结构新的语言。

”故选A项。

3.(3分)【答案】C【解析】由材料一第三段“这些拉美故事不断突破小说自身的界限,或与其他艺术形式有所联系,或邀请读者一起向传统的小说阅读方式发起挑战,它们意味着新的结构、新的语言”可知,“不断突破小说自身的界限”指与其他艺术形式有所联系,或向传统的小说阅读方式发起挑战,或运用新的结构、新的语言。

A、B、D三项属于“突破小说自身的界限”。

C项是传统的小说结构。

故选C项。

4.(4分)【答案】①首先,提出问题,总的指出新时期魔幻写作存在“影响的焦虑”和“同质化”的隐忧两方面问题,这促使作家追求魔幻写作的独创性与个人化特征。

②其次,从“影响的焦虑”和“同质化”两个方面展开论述,先分析问题,然后论述如何解决“影响的焦虑”以及“同质化”的问题。

(每点2分,意思对即可。

重庆市巴蜀中学2022-2023学年高二下学期第一次月考语文试题

重庆市巴蜀中学2022-2023学年高二下学期第一次月考语文试题

高2024届高二(下)学月考试语文试卷注意事项:1.答题前,考生务必将自己的姓名、准考证号、班级、学校在答题卡上填写清楚。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试卷上作答无效。

3.考试结束后,请将答题卡交回,试卷自行保存。

满分150分,考试用时150分钟。

一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,共19分)阅读下面的文字,完成1~5题材料一:建构中国现代散文理论的首要任务是确立散文文体的核心。

散文的特点是自由与真实。

散文没有自己特定的文体标识,其写作内容无所不包,它也没有属于自己的结构要求和特殊写作技巧,散文唯一的不自由是不能任意虚构,真实是它的最基本要求和最可贵品质。

虽不一定是客观上的真人真事,但作者在主观上起码不能有意虚构,更重要的是文中所写的必须是真情实感,在散文中,真实的作者始终在场。

因而,如果追问散文的真正核心是什么,只能说是“人—文”。

在散文中,“人”与“文”一体两面,“人”是散文作者自己,而“文”是“人”的创造物,亦是“人”得以呈现的文本符号。

小说、戏剧和诗歌也包含作者与作品两个层面,但这些文体作者隐藏在形式和话语背后,而散文的“人”与“文”之间无需话语装置和形式中介,作者在文章中是直接在场的,散文是“人文一体”的直接呈现。

以“人—文”为核心,散文文体可分为四个层面:一是知识与经验层面,二是思想与情感层面(理性与情感),三是精神与境界层面,四是文体与语体层面。

知识与经验、思想与情感、精神与境界三个层面是散文的内涵层面,由具体到抽象层层叠加、内化和升华。

知识与经验、思想与情感关乎内容的宽度(丰富性)与深度(深刻性),其中知识与经验层面是直接性、事实性和偏于客观性的内容信息,诉诸叙述、描述和说明;思想与情感层面与前者相伴相生,“理不可以直指也,故即物以明理;情不可以显言也,故即事以寓情”(刘大櫆《论文偶记》),思想统摄知识,经验伴随情感,是基于前者的偏于主观性的方面,诉诸议论与抒情,表现为散文的理趣和意境;精神与境界层面是在前述两个层面基础上的最终升华与结晶,是散文内涵的最高层面,涉及散文整体的精神品质、价值立场、道德理想和性灵情致等,是散文最终达到的境界,也是前述两个层面的人格化,是散文的核心——写作主体人格的最终显现。

江西省九江市濂溪区第一中学2023-2024学年高二下学期4月月考英语试题(含答案)

江西省九江市濂溪区第一中学2023-2024学年高二下学期4月月考英语试题(含答案)

九江一中2023-2024学年下学期高二年级第一次月考英语试题第一部分听力(共两节,满分30分)第一节(共5小题; 每小题1.5分,满分7.5分)听下列5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1.When will the woman meet the staff manager?A. At 9:30.B. At 11:00.C. At 12:40.2. Why hasn’t the woman seen the man for a long time?A. He went traveling.B. He moved to Glasgow.C. He was i1l.3. Where does the conversation take place?A. At a restaurant.B. At a supermarket.C. At home.4. How does the man feel now?A. Excited.B. Regretful.C. Refreshed.5. What is the man doing?A. Offering a favor.B. Serving a customer.C. Showing the way.第二节(共15小题;每小题15分,满分22.5分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C 三个选项中选出最佳选项。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。

每段对话或独白读两遍。

听第6段材料,回答第6、7题。

6.What are the speakers talking about?A. Making an outing plan.B. Entertaining some friendsC. Working on a cat.7. What does the woman ask the man to do?A. Cancel his plan to meet Frank.B. Invite Frank to join them.C. Ignore their guests.听第7段材料,回答第8、9题。

河北省唐山市开滦第二中学2020-2021学年高二下学期第一次月考数学试题(含答案解析)

河北省唐山市开滦第二中学2020-2021学年高二下学期第一次月考数学试题(含答案解析)

河北省唐山市开滦第二中学2020-2021学年高二下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.将5封信投入3个邮筒,不同的投法有()A .35种B .53种C .3种D .15种2.已知二项式((0)na >的展开式的第五、六项的二项式系数相等且最大,且展开式中2x 项的系数为84,则a 为A .2B .1C .15D .3103.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有A .192种B .216种C .240种D .288种4.某种产品的广告费支出x 与销售额y (单位:万元)之间有下表关系:x24568y3040605070y 与x 的线性回归方程为ˆ 6.517.5y x =+,当广告支出5万元时,随机误差的效应(残差)为()A .10-B .20-C .20D .105.将7个座位连成一排,安排4个人就坐,恰有两个空位相邻的不同坐法有A .240B .480C .720D .9606.5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有A .150种B .180种C .200种D .280种7.形如45132这样的数称为“波浪数”,即十位上的数字,千位上的数字均比与它们各自相邻的数字大,则由1,2,3,4,5可组成数字不重复的五位“波浪数”的个数为A .20B .18C .16D .118.有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有A .1344种B .1248种C .1056种D .960种二、双空题9.已知离散型随机变量X 的分布列如下:X 012Px4x5x由此可以得到期望E (X )=___________,方差D (X )=___________.三、填空题10.设随机变量()~3,1X N ,若()4P X p >=,则()24P X <<=___________.11.若2019220190122019(12)()x a a x a x a x x R -=++++∈ ,则010********()()()()a a a a a a a a ++++++++ =_______.(用数字作答)12.某学校要对如图所示的5个区域进行绿化(种花),现有4种不同颜色的花供选择,要求相邻区域不能种同一种颜色的花,则共有___________种不同的种花方法.13.用数字0,1,2,3,4,5,6组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.14.投掷3枚骰子,记事件A :3枚骰子向上的点数各不相同,事件B :3枚骰子向上的点数中至少有一个3点,则()P A B =___________.四、解答题15.从4名男生和2名女生中任选3人参加演讲比赛.(1)求所选3人既有女生又有男生的概率;(2)设随机变量ξ表示所选3人中女生的人数,求ξ的分布列和数学期望.16.考取驾照是一个非常严格的过程,有的人并不能够一次性通过,需要补考.现在有一张某驾校学员第一次考试结果汇总表,由于保管不善,只残留了如下数据(见下表):成绩性别合格不合格合计男性4510女性30合计105(1)完成此表;(2)根据此表判断:是否可以认为性别与考试是否合格有关?如果可以,请问有多大把握;如果不可以,试说明理由.参考公式:①相关性检验的临界值表:()20P k x ≥0.400.250.150.100.050.0250.100x 0.7081.3232.0722.7063.8415.0246.635②卡方值计算公式:()()()()()22n ad bc k a b c d a c b d -=++++.其中n a b c d =+++.17.有4个编号为1,2,3,4的小球,4个编号为1,2,3,4的盒子,现需把球全部放进盒子里,(最后结果用数字作答)(1)没有空盒子的方法共有多少种?(2)可以有空盒子的方法共有多少种?(3)恰有1个盒子不放球,共有多少种方法?(4)恰有一个小球放入自己编号的盒中,有多少种不同的放法?18.已知在()*n n N ∈的展开式中,第6项为常数项.()I 求n 的值;()II 求展开式的所有项的系数之和;()III 求展开式中所有的有理项.19.甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23.(1)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望;(2)求乙至多击目标2次的概率;(3)求甲恰好比乙多击中目标2次的概率.20.某银行招聘,设置了A,B,C三组测试题供竞聘人员选择.现有五人参加招聘,经抽签决定甲、乙两人各自独立参加A组测试,丙独自参加B组测试,丁、戊两人各自独立参加C组测试.若甲、乙两人各自通过A组测试的概率均为23;丙通过B组测试的概率为12;而C组共设6道测试题,每个人必须且只能从中任选4题作答,至少答对3题者就竞聘成功.假设丁、戊都只能答对这6道测试题中4道题.(1)求丁、戊都竞聘成功的概率;(2)记A、B两组通过测试的总人数为ξ,求ξ的分布列和期望.参考答案:1.B【分析】本题是一个分步计数问题,首先第一封信有3种不同的投法,第二封信也有3种不同的投法,以此类推每一封信都有3种结果,根据分步计数原理得到结果.【详解】:由题意知本题是一个分步计数问题,首先第一封信有3种不同的投法,第二封信也有3种不同的投法,以此类推每一封信都有3种结果,∴根据分步计数原理知共有35种结果,故选:B .2.B【分析】如果n 是奇数,那么是中间两项的二次项系数最大,如果n 是偶数,那么是最中间那项的二次项系数最大,由此可确定n 的值,进而利用展开式,根据二次项的系数,即可求出a 的值.【详解】∵二项式(0)na ⎛> ⎝的展开式的第五、六项的二项式系数相等且最大,∴9n =,又∵9⎛⎝的通项为:275999362199r r r r r r r r T C a x x a C x -----+==,令27526r-=,解得3r =,又∵展开式中2x 项的系数为84,即63984a C =,解得1a =或1a =-(舍去)故选B.【点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,根据展开式中某项的系数求参数,属于中档题3.B【详解】分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论.解:最左端排甲,共有55A =120种,最左端只排乙,最右端不能排甲,有1444C A =96种,根据加法原理可得,共有120+96=216种.故选B .【分析】随机误差的效应(残差)为观测值减去预测值【详解】当广告支出5万元时,观测值为60,预测值为ˆ 6.5517.550y=⨯+=,则随机误差的效应(残差)为605010-=.故选:D.5.B【详解】12或67为空时,第三个空位有4种选择;23或34或45或56为空时,第三个空位有3种选择;因此空位共有24+43=20⨯⨯,所以不同坐法有4420480A =,选B.6.A【详解】人数分配上有两种方式即122,,与113,,若是113,,,则有311352132260C C C A A ⨯=种若是122,,,则有122354232290C C C A A ⨯=种则不同的分派方法共有150种故选A点睛:本题主要考查的知识点是排列,组合及简单计数问题.由题意知本题是一个分类问题,根据题意可知人数分配上两种方式即122,,与113,,,分别计算出两种情况下的情况数目,相加即可得到答案.7.C【分析】根据“波浪数”的定义,可得“波浪数”中,十位数字,千位数字必有5、另一数是3或4,分别计算出每种的个数,相加即可.【详解】此“波浪数”中,十位数字,千位数字必有5、另一数是3或4;是4时“波浪数”有232312A A =;另一数3时4、5必须相邻即45132;45231;13254;23154四种.则由1,2,3,4,5可构成数字不重复的五位“波浪数”个数为16,故选C .【点睛】本题主要考查了排列组合的应用,要对该问题准确分类,做到不充分,不遗漏,正确求解结果,属于中档题.【详解】首先确定中间行的数字只能为1,4或2,3,共有1222C A 4=种排法.然后确定其余4个数字的排法数.用总数46A 360=去掉不合题意的情况数:中间行数字和为5,还有一行数字和为5,有4种排法,余下两个数字有24A 12=种排法.所以此时余下的这4个数字共有360412312-⨯=种方法.由乘法原理可知共有43121248⨯=种不同的排法,选B .9. 1.40.44【详解】根据分布列的性质可知:45101x x x x ++==,解得110x =.()042514 1.4E x x x x x =⨯++⨯==.()()()()2220 1.41 1.442 1.45 1.960.64 1.80.44D x x x x x x x =-⨯+-⨯+-⨯=++=.10.12p-【分析】由正态曲线的对称性直接求得.【详解】因为随机变量()~3,1X N ,()4P X p >=,所以由正态曲线的对称性可得:()2P X p <=,所以()()()2112442p P X P X P X <<=->=--<.故答案为:12p -.11.2017【分析】由题意,根据二项式的展开式,令0x =和1x =可得00120191,1a a a a =+++=- ,进而得01020201900122019()()()2018()a a a a a a a a a a a ++++++=+++++ ,即可求解,得到答案.【详解】由题意,可知201922018201901220182019(12)x a a x a x a x a x -=+++++ ,令0x =,可得01a =,令1x =,可得012320191a a a a a +++++=- ,所以01020302019001232019()()()()2018()a a a a a a a a a a a a a a ++++++++=++++++ 2018112017=⨯-=,故答案为2017.【点睛】本题主要考查了二项式定理的应用问题,其中解答中利用二项展开式,合理化简、赋值是解答此类问题的关键,着重考查了分析问题和解答问题的能力,属于基础题.12.72【分析】根据题意,分4步进行分析:依次分析区域1、2、3、4和5的着色方法数目,由分步计数原理计算可得答案.【详解】根据题意,分4步进行分析:①对于区域1,有4种颜色可选,即有4种着色方法,②对于区域2,与区域1相邻,有3种颜色可选,即有3种着色方法,③对于区域3,与区域1、2相邻,有2种颜色可选,即有2种着色方法,④对于区域4,若其颜色与区域2的相同,区域5有2种颜色可选,若其颜色与区域2的不同,区域4有1种颜色可选,区域5有1种颜色可选,所以区域4、5共有2+1=3种着色方法;综上,一共有4×3×2×(1+2)=72种着色方法;故答案为:7213.90【分析】一共有3个奇数,故只能是3个奇数加1个偶数,分类讨论该偶数是不是为0.【详解】一共有3个奇数,故只能是3个奇数加1个偶数.当该偶数不为0时,则有1434C A 72=种;当该偶数为0时,0不能作为首位,则有1333C A 18=种;故共有721890+=种.故答案为:90.14.6091【分析】分别求出事件B 和事件AB 所包含的基本事件的个数,再根据条件概率公式求解即可.【详解】解:投掷3枚骰子,3枚骰子向上的点数共有36216=种情况,其中3枚骰子向上的点数没有一个3点的有35125=种,则3枚骰子向上的点数中至少有一个3点有21612591-=种,即()91n B =,3枚骰子向上的点数中至少有一个3点且3枚骰子向上的点数各不相同有1235C A 60=种,即()60n AB =,所以()6091P A B =.故答案为:6091.15.(1)45(2)分布列见解析,1【分析】(1)根据对立事件的概率和为1得,之需求两人来自同一性别即可.(2)此分布为超几何分布,对应的概率为()32436C C C k kP k ξ-==.【详解】(1)3个人来自于两个不同专业的概率为3436C 41C 5-=(2)ξ可能取的值为0,1,2.()32436C C C k k P k ξ-==,0,1,2k =.∴ξ的分布列为ξ012P153515∴ξ的数学期望为1310121555E ξ=⨯+⨯+⨯=16.(1)答案见解析(2)可以,有97.5%的把握【分析】(1)直接根据题意即可完成表格;(2)计算得出2 6.109k ≈,根据独立性检验思想即可得结果.【详解】(1)成绩合格不合格合计性别男性451055女性302050合计7530105(2)假设0H :性别与考试是否合格无关,()2210545203010 6.10975305550k ⨯-⨯=≈⨯⨯⨯.若0H 成立,()25.2040.025P k ≥=,∵2 6.109 5.204k ≈≥,∴有97.5%的把握认为性别与考试是否合格有关.17.(1)24(2)256(3)144(4)8【分析】(1)4个球全放4个盒中,没有空盒则全排列即可求得.(2)有4个球,每个球有4种放法,此时随意放,盒子可以空也可以全用完.(3)恰有一个空盒,说明另外三个盒子都有球,而球共四个,必然有一个盒子中放了两个球.(4)恰有一个小球放入自己编号的盒中,选定从四盒四球中选定标号相同得球和盒,另外三球三盒不能对应共两种.【详解】(1)没有空盒子的方法:4个球全放4个盒中,没有空盒则全排列共44A 24=种;(2)可以有空盒子,有4个球,每个球有4种放法共44256=种;(3)恰有一个空盒子,说明另外三个盒子都有球,而球共四个,必然有一个盒子中放了两个球,先将四盒中选一个作为空盒,再将四球中选出两球绑在一起,再排列共123443C C A 144=种;(4)恰有一个小球放入自己编号的盒中,选定从四盒四球中选定标号相同得球和盒,另外三球三盒不能对应共两种,则共14C 28⋅=种.18.(I )10n =;(II )11024;(III )有理项分别为23454T x =,6638T =-;2945256T x -=⋅.【分析】()1在二项展开式的第六项的通项公式1055361()2n n T C x -=⋅-⋅中,令x 的幂指数等于0,求出n 的值;()2在二项展开式中,令1x =,可得展开式的所有项的系数之和;()3二项式()*n n N ∈的展开式的通项公式为10231101()2r r r r T C x -+=⋅-⋅,令1023r -为整数,可求出r 的值,即可求得展开式中所有的有理项.【详解】()1在()*n n N ∈的展开式中,第6项为1055361(2n n T C x -=⋅-⋅为常数项,1003n -∴=,10n ∴=.()2在()*10)n n N ∈=的展开式中,令1x =,可得展开式的所有项的系数之和为1011(1)21024-=.()3二项式()*n n N ∈的展开式的通项公式为10231101()2r r r r T C x -+=⋅-⋅,令1023r -为整数,可得2r =,5,8,故有理项分别为22231014544T C x x =⋅⋅=,50610163328T C x ⎛⎫=⋅-⋅=- ⎪⎝⎭;8822910145(2256T C x x --=⋅-⋅=⋅.【点睛】本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1r n r r r n T C a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.19.(1)分布列见解析,1.5;(2)1927;(3)124.【分析】(1)ξ的可能取值为0,1,2,3,根据独立事件概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得ξ的数学期望;(2)根据独立事件与对立事件的概率公式求解即可;(3)根据互斥事件的概率公式以及独立事件的概率公式求解即可.【详解】(1)ξ的概率分布列为ξ0123P()E ξ=0×+1×+2×+3×=1.5或()E ξ=3×=1.5.(2)乙至多击中目标2次的概率为1-C ()3=.(3)设甲恰好比乙多击中目标2次为事件A ,甲恰击中目标2次且乙恰击中目标0次为事件B 1,甲恰击中目标3次且乙恰击中目标1次为事件B 2,则A =B 1+B 2,B 1、B 2为互斥事件,P (A )=P (B 1)+P (B 2)=×+×=.20.(1)925(2)分布列见解析,116【分析】对于(1),因两人竞聘成功相互独立,算出一人竞聘成功概率即可.而一人竞聘成功概率,相当于从6道题中至少抽中3道会做题的概率;对于(2),由题意可知通过的总人数可能为3,2,1,0.又甲,乙,丙竞聘成功相互独立,结合题目条件可分别算得人数为3,2,1,0的概率,即可得答案.【详解】(1)设参加C 组测试的每个人竞聘成功为A 事件,则()43144246C C C 183C 155P A ++===又两人竞聘成功相互独立,故丁、戊都竞聘成功的概率等于3395525⨯=(2)由题意可知ξ可取0,1,2,3,又3人竞聘成功相互独立,则()21210112318P ξ⎛⎫⎛⎫==-⨯-= ⎪ ⎪⎝⎭⎝⎭,()221121512113323218P ξ⎛⎫⎛⎫⎛⎫==⨯⨯⨯-+-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()22112182213323218P ξ⎛⎫⎛⎫⎛⎫==⨯⨯⨯+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()221433218P ξ⎛⎫==⨯= ⎪⎝⎭,故ξ的分布列为:ξ0123P 118518818418所以()15843311 0123 181********E=⨯+⨯+⨯+⨯==ξ.。

扬州中学2021-2022学年高二(下)第一次月考数学试卷(后附答案解析)

扬州中学2021-2022学年高二(下)第一次月考数学试卷(后附答案解析)

扬州中学2021-2022学年高二(下)第一次月考真题卷数学一、单项选择题1.点()2,1,3P -关于Oxy 平面的对称点的坐标为()A.()2,1,3-B.()2,1,3C.()2,1,3-- D.()2,1,3--2.已知圆心为()2,1-的圆与y 轴相切,则该圆的标准方程是()A.()()22211x y ++-= B.()()22214x y ++-=C.()()22211x y -++= D.()()22214x y -++=3.已知向量()1,1,0a =r ,()1,0,2b =-- ,且ka b + 与2a b -互相垂直,则k 的值是().A.1B.15C.35D.754.已知函数()f x 的导函数为()f x ',且满足()cos 2f x x xf π⎛⎫'=-⎪⎝⎭,则曲线()y f x =在0x =处的切线方程是()A.210x y --= B.210x y ++= C.220x y -+= D.210x y ++=5.小明跟父母、爷爷和奶奶一同参加《中国诗词大会》的现场录制,5人坐一排.若小明的父母都与他相邻,则不同坐法的种数为()A.6B.12C.24D.486.在四棱锥P ABCD -中,底面ABCD 是正方形,E 是PD 的中点,若,,PA a PB b PC c === ,则BE = ()A.111222a b c -+B.131222a b c --C.131222a b c -+ D.113222a b c -+ 7.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(biēnào ).如图,在鳖臑M ABC -中,MA ⊥平面ABC ,P ,Q 分别为MA ,MC 的中点,2MA AB BC ===,则异面直线BQ 与CP 所成角的余弦值为()A.39B.6C.33D.08.已知 2.12.2a =, 2.22.1b =, 2.12.1c =,则()A.a c b<< B.c b a<< C.b<c<aD.c<a<b二、多项选择题:本大题共4小题,每小题5分,共20分.在每题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(请将所有选择题答案填到答题卡的指定位置中.)9.已知函数()y f x =的导函数的图象如图所示,则下列结论正确的是()A.-1是函数()f x 的极小值点B.-4是函数()f x 的极小值点C.函数()f x 在区间(,4)-∞-上单调递减D.函数()f x 在区间(4,1)--上先增后减10.已知空间三点()1,0,1A -,()1,2,2B -,()3,0,4C-,则下列说法正确的是()A.3AB AC ⋅=B.//AB ACC.BC =D.3cos ,65AB AC =11.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 在线段B 1C 上运动,则()A.直线BD 1⊥平面A 1C 1DB.三棱锥P ﹣A 1C 1D 的体积为定值C.异面直线AP 与A 1D 所成角的取值范用是[45°,90°]D.直线C 1P 与平面A 1C 1D 所成角的正弦值的最大值为312.已知1F ,2F 为双曲线C :x 2–24y =1的左、右焦点,在双曲线右支上取一点P ,使得PF 1⊥PF 2,直线PF 2与y 轴交于点Q ,连接QF 1,△PQF 1,的内切圆圆心为I ,则下列结论正确的有()A.F 1,F 2,P ,I 四点共圆B.△PQF 1的内切圆半径为1C.I 为线段OQ 的三等分点D.PF 1与其中一条渐近线垂直三、填空题:本大题共4小题,每小题5分,共20分.(请将所有填空题答案填到答题卡的指定位置中.)13.已知集合{}1,2,3M ∈-,{}4,5,6,7N ∈--,从两个集合中各取一个元素作为点的坐标,则这样的坐标在平面直角坐标系中表示第二象限内不同的点的个数是______.14.已知向量(1,2,2),(2,1,1)a b ==-,则向量b 在向量a上的投影向量的坐标为__________.15.已知函数()321,2{3,2x x f x x x x -≥=-+<,若函数y=f (x )-m 有2个零点,则实数m 的取值范围是________.16.已知正方体1111ABCD A B C D -的棱长为4,点P 是1AA 的中点,点M 在侧面11AA B B 内,若1D M CP ⊥,则BCM 面积的最小值为________.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(请将所有解答题答案填到答题卡的指定位置中.)17.已知()33210n n f n A A =-(n N ∈,且3n ≥).(1)求()4f 的值;(2)若()0f n =,求n 的值.18.如图,在四面体OABC 中,M 是棱OA 上靠近A 的三等分点,N 是棱BC 的中点,P 是线段MN 的中点.设OA a = ,OB b = ,OC c = .(1)用a ,b ,c 表示向量OP;(2)若1a b c ===,且满足(从下列三个条件中任选一个,填上序号:①,,,3π=== a b b c c a ;②,,,,32ππ=== a b c a c ;③2,,,,23a b c a b c ππ=== ,则可求出OP 的值;并求出OP 的大小.19.如图,已知四边形ABCD 是正方形,PD ⊥平面,2ABCD PD AD ==.(1)求点D 到平面PAC 的距离;(2)在线段PB 上是否存在点E ,使PC ⊥平面ADE ?若存在,求PEEB的值;若不存在,说明理由.20.如图,在四棱锥P ABCD -中,四边形ABCD 是直角梯形,AB AD ⊥,AB CD ∕∕,PC ⊥底面ABCD ,224AB AD CD ===,2PC a =,E 是PB 的中点.(1)若二面角P AC E --的余弦值为63,求a 的值;(2)在(1)的条件下求直线PA 与平面EAC 所成角的正弦值.21.已知椭圆C :()222210x y a b a b+=>>的离心率为12,且椭圆C 上的点到右焦点F 的距离最长为3.(1)求椭圆C 的标准方程.(2)过点F 的直线l 与椭圆C 交于,A B 两点,AB 的中垂线1l 与x 轴交于点G ,试问AB FG是否为定值?若是,求出该定值;若不是,说明理由.22.已知函数121()(1)e (0)2x f x x a x ax x -=---+>.(1)讨论()f x 的单调性.(2)当2a ≤时,若()f x 无最小值,求实数a 的取值范围.扬州中学2021-2022学年高二(下)第一次月考真题卷数学答案一、单项选择题1.点()2,1,3P -关于Oxy 平面的对称点的坐标为()A.()2,1,3-B.()2,1,3C.()2,1,3-- D.()2,1,3--【答案】B 【解析】【分析】根据点关于坐标轴,坐标平面对称时,关于谁对称谁不变可得.【详解】关于Oxy 平面对称的点的x ,y 坐标不变,只有z 坐标相反,所以点()2,1,3P -关于Oxy 平面的对称点的坐标为()2,1,3.2.已知圆心为()2,1-的圆与y 轴相切,则该圆的标准方程是()A.()()22211x y ++-= B.()()22214x y ++-=C.()()22211x y -++= D.()()22214x y -++=【答案】B 【解析】【分析】圆的圆心为(2,1)-,半径为2,得到圆方程.【详解】根据题意知圆心为(2,1)-,半径为2,故圆方程为:22(2)(1)4x y ++-=.故选:B.3.已知向量()1,1,0a =r,()1,0,2b =-- ,且ka b + 与2a b - 互相垂直,则k 的值是().A.1B.15C.35D.75【答案】D 【解析】【分析】向量的垂直用坐标表示为1212120x x y y z z ++=,代入即可求出答案.【详解】=(1,1,0)(1,0,2)(1,,2)ka b k k k ++--=--,2=a b -2(1,1,0)(1,0,2)---=(3,2,2),因为ka b + 与2a b -互相垂直,所以(1,,2)k k --⋅(3,2,2)=0,所以57=0k -,所以7=5k .故选:D.4.已知函数()f x 的导函数为()f x ',且满足()cos 2f x x xf π⎛⎫'=- ⎪⎝⎭,则曲线()y f x =在0x =处的切线方程是()A.210x y --= B.210x y ++= C.220x y -+= D.210x y ++=【答案】C 【解析】【分析】求得()f x '后,代入2x π=即可求得2f π⎛⎫' ⎪⎝⎭,从而得到()(),f x f x ';利用导数的几何意义即可求得结果.【详解】()cos 2f x x xf π⎛⎫'=-⎪⎝⎭ ,()sin 2f x x f π⎛⎫''∴=-- ⎪⎝⎭,sin 12222f f f ππππ⎛⎫⎛⎫⎛⎫'''∴=--=-- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,解得:122f π⎛⎫'=- ⎪⎝⎭,()1cos 2f x x x ∴=+,()1sin 2f x x '=-+,()01f ∴=,()102f '=,()y f x ∴=在0x =处的切线方程为112y x -=,即220x y -+=.故选:C.5.小明跟父母、爷爷和奶奶一同参加《中国诗词大会》的现场录制,5人坐一排.若小明的父母都与他相邻,则不同坐法的种数为()A. 6B. 12C. 24D. 48【答案】B 【解析】【分析】将小明父母与小明三人进行捆绑,其中小明居于中间,形成一个元素,与其他两个元素进行排序即可.【详解】将小明父母与小明三人进行捆绑,其中小明居于中间,形成一个元素,与其他两个元素进行排序,则232312A A =,故所求的坐法种数为12,故选:B .6.在四棱锥P ABCD -中,底面ABCD 是正方形,E 是PD 的中点,若,,PA a PB b PC c === ,则BE =()A.111222a b c -+B.131222a b c --C.131222a b c -+ D.113222a b c -+ 【答案】C 【解析】【分析】根据向量加减法,和空间向量基本定理直接求解即可.【详解】()()()11112222BE PE PB PD PB PB BD PB BD PB BA BC PB=-=-=+-=-=+-()11312222PA PB PC PB PB PA PB PC =-+--=-+131222a b c -+= .故选:C【点睛】本题主要考查向量在几何中的应用以及向量共线定理,空间向量基本定理,属于基础题.7.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(biēnào ).如图,在鳖臑M ABC -中,MA ⊥平面ABC ,P ,Q 分别为MA ,MC 的中点,2MA AB BC ===,则异面直线BQ 与CP 所成角的余弦值为()A.39B.36C.33D.0【答案】A 【解析】【分析】以B 点为原点建立空间直角坐标系,用向量法可解.【详解】由题意得,ABC 为直角三角形,且90ABC ∠=︒,建立如图所示的空间直角坐标系,则()0,0,0B ,()2,0,2M ,()2,0,1P ,()0,2,0C ,()1,1,1Q ,则()1,1,1BQ =,()2,2,1CP =-.设异面直线BQ 与CP 所成角为θ,则()1212113cos cos ,93441BQ CP θ⨯+⨯-+⨯==⨯++ .故选:A.8.已知 2.12.2a =, 2.22.1b =, 2.12.1c =,则()A.a c b<< B.c b a<< C.b<c<aD.c<a<b【答案】B 【解析】【分析】利用幂函数的单调性可得出a 、c 的大小关系,利用指数函数的单调性可得出b 、c 的大小关系,构造函数()ln xf x x=,利用函数()f x 在()0,e 上的单调性可得出a 、b 的大小关系,即可得出结论.【详解】因为 2.1 2.12.2 2.1>, 2.2 2.12.1 2.1>,即a c >,b c >,构造函数()ln xf x x=,则()21ln x f x x -'=,当0e x <<时,()0f x ¢>,故函数()f x 在()0,e 上为增函数,因为0 2.1 2.2e <<<,则()()2.1 2.2f f <,即ln 2.1ln 2.22.1 2.2<,可得2.2ln 2.1 2.1ln 2.2<,即 2.2 2.1ln 2.1ln 2.2<,故 2.2 2.12.1 2.2<,因此c b a <<.故选:B.二、多项选择题:本大题共4小题,每小题5分,共20分.在每题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(请将所有选择题答案填到答题卡的指定位置中.)9.已知函数()y f x =的导函数的图象如图所示,则下列结论正确的是()A.-1是函数()f x 的极小值点B.-4是函数()f x 的极小值点C.函数()f x 在区间(,4)-∞-上单调递减D.函数()f x 在区间(4,1)--上先增后减【答案】BC 【解析】【分析】根据导函数图象确定()f x 的单调性,由此确定正确选项.【详解】由()'fx 图象可知,()f x 在(),4-∞-上递减,在()4,-+∞上递增,所以1-不是极值点,A 选项错误;4-是极小值点,B 选项正确;C 选项正确;D 选项错误.故选:BC10.已知空间三点()1,0,1A -,()1,2,2B -,()3,0,4C-,则下列说法正确的是()A.3AB AC ⋅=B.//AB ACC.BC =D.3cos ,65AB AC =【答案】AC 【解析】【分析】由条件可得,,AB AC BC的坐标,然后逐一判断即可.【详解】因为()1,0,1A -,()1,2,2B -,()3,0,4C-,所以()()()0,2,1,2,0,3,2,2,2AB AC BC ==-=--所以0033AB AC ⋅=++=uu u r uuu r,365cos ,65AB AC AB AC AB AC ⋅==⋅,BC ==所以,AB AC不共线.故选:AC11.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 在线段B 1C 上运动,则()A.直线BD 1⊥平面A 1C 1DB.三棱锥P ﹣A 1C 1D 的体积为定值C.异面直线AP 与A 1D 所成角的取值范用是[45°,90°]D.直线C 1P 与平面A 1C 1D所成角的正弦值的最大值为3【答案】ABD 【解析】【分析】在选项A 中,推导出111A C BD ⊥,11DC BD ⊥,从而直线1BD ⊥平面11AC D ;在选项B 中,由1//B C 平面11AC D ,得到P 到平面11AC D 的距离为定值,再由△11AC D 的面积是定值,从而三棱锥11P AC D -的体积为定值;在选项C 中,异面直线AP 与1A D 所成角转化为直线AP 与直线1B C 的夹角,可求取值范围;在选项D 中,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法进行求解即可.【详解】对于选项A ,正方体中1111A C B D ⊥ ,111A C BB ⊥,1111B D BB B ⋂=,且11B D ,1BB ⊂平面11BB D ,11A C ∴⊥平面11BB D ,1BD ⊂平面11BB D ,111A C BD ∴⊥,同理,11DC BD ⊥,1111A C DC C ⋂= ,且11A C ,1DC ⊂平面11AC D ,∴直线1BD ⊥平面11AC D ,A 选项正确;对于选项B ,正方体中11//A D B C ,1A D ⊂平面11AC D ,1B C ⊂/平面11AC D ,1//B C ∴平面11AC D ,点P 在线段1B C 上运动,P ∴到平面11AC D 的距离为定值,又△11AC D 的面积是定值,∴三棱锥11P AC D -的体积为定值,B 选项正确;对于选项C ,11//A D B C ,∴异面直线AP 与1A D 所成角为直线AP 与直线1B C 的夹角.易知△1AB C 为等边三角形,当P 为1B C 的中点时,1AP B C ⊥;当P 与点1B 或C 重合时,直线AP 与直线1B C 的夹角为60 .故异面直线AP 与1A D 所成角的取值范围是[60,90] ,C 选项错误;对于选项D ,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设正方体1111ABCD A B C D -的棱长为1,点P 竖坐标为a ,01a ≤≤,则(,1,)P a a ,1(0,1,1)C ,(1,1,0)B ,1(0,0,1)D ,所以1(,0,1)C P a a =-,1(1,1,1)D B =- .由选项A 正确:可知1(1,1,1)D B =-是平面11AC D 的一个法向量,∴直线1C P 与平面11AC D 所成角的正弦值为:1111C P D B C P D B⋅==⋅ ∴当12a =时,直线1C P 与平面11AC D所成角的正弦值的最大值为3,D 选项正确.故选:ABD .12.已知1F ,2F 为双曲线C :x 2–24y =1的左、右焦点,在双曲线右支上取一点P ,使得PF 1⊥PF 2,直线PF 2与y 轴交于点Q ,连接QF 1,△PQF 1,的内切圆圆心为I ,则下列结论正确的有()A.F 1,F 2,P ,I 四点共圆B.△PQF 1的内切圆半径为1C.I 为线段OQ 的三等分点D.PF 1与其中一条渐近线垂直【答案】ABD 【解析】【分析】根据双曲线的定义可得1||4PF =,2||2PF =,由双曲线的对称性可判断A ;由双曲线的定义可判断B ;根据122Rt Rt F PF QOF ∽可判断C 、D.【详解】解析:由勾股定理及双曲线的定义可得:1||4PF =,2||2PF =对于A:易知I 在y 轴上,由对称性可得112GF I EF I IF Q ∠=∠=∠,则1290F IF ∠=︒,可知1F ,2F ,P ,I 四点共于以12F F 为直径的圆上;A 正确对于B:11||||||2PF PQ F Q r +-=1212||||||||||122PF PQ F Q PF PF a +--====,正确对于C:121222||||Rt Rt ||22||||||F P PF F PF QOF QO OI QO OF ⇒=⇒=∽△△,故I 为QO 中点,C 错误.D 显然正确.故选:ABD三、填空题:本大题共4小题,每小题5分,共20分.(请将所有填空题答案填到答题卡的指定位置中.)13.已知集合{}1,2,3M ∈-,{}4,5,6,7N ∈--,从两个集合中各取一个元素作为点的坐标,则这样的坐标在平面直角坐标系中表示第二象限内不同的点的个数是______.【答案】6【解析】【分析】根据题意,可得所取的横坐标为负数,纵坐标为正数,结合所给集合列举分析即可得答案【详解】因为两个集合中各取一个元素作为点的坐标,且该点表示第二象限内的点,所以所取的横坐标为负数,纵坐标为正数,若横坐标为-2,则纵坐标可为5、6,即点为(2,5),(2,6)--,若横坐标为-4,则纵坐标可为1、3,即点为(4,1),(4,3)--,若横坐标为-7,则纵坐标可为1、3,即点为(7,1),(7,3)--,所以点的个数为6.故答案为:614.已知向量(1,2,2),(2,1,1)a b ==-,则向量b 在向量a 上的投影向量的坐标为__________.【答案】244,,999⎛⎫ ⎪⎝⎭【解析】【分析】由已知求得向量b 在向量a 上的投影,设向量b 在向量a上的投影向量为m ,则(0)m a λλ=> 且2||3m = ,由向量的模列式求解λ值,即可求解.【详解】∵(1,2,2),(2,1,1)a b ==-,∴1(2)21212a b ⋅=⨯-+⨯+⨯=,∴向量b 在向量a上的投影为2||3a b a ⋅==,设向量b 在向量a 上的投影向量为m ,则(0)m a λλ=> 且2||3m =.∴(,2,2)m λλλ= ,则22222443λλλ⎛⎫++= ⎪⎝⎭,解得29λ=.∴244,,999m ⎛⎫=⎪⎝⎭.故答案为:244,,999⎛⎫⎪⎝⎭.15.已知函数()321,2{3,2x x f x x x x -≥=-+<,若函数y=f (x )-m 有2个零点,则实数m 的取值范围是________.【答案】m=2或m≥3【解析】【详解】【分析】分析:画出函数()f x 的图象,结合图象,求出m 的范围即可.详解:画出函数()f x的图象,如图:若函数 y=f (x )﹣m 有 2 个零点,结合图象:m =2 或m ≥3 .故答案为m =2 或m ≥3 .点睛:对于“a =f (x )有解”型问题,可以通过求函数 y =f (x )的值域来解决,解的个数也可化为函数y =f (x )的图象和直线y =a 交点的个数.16.已知正方体1111ABCD A B C D -的棱长为4,点P 是1AA 的中点,点M 在侧面11AA B B 内,若1D M CP ⊥,则BCM 面积的最小值为________.【答案】5【解析】【分析】取AB 的中点N ,AD 的中点\Q ,连接11,,,D Q QN B N AC ,容易证得⊥CP 平面11D QNB ,要使1⊥CP D M ,进而得1∈M B N ,进而得当1⊥BM B N 时,BM 最小,此时,BCM 的面积最小,再根据几何关系求解即可.【详解】如图,取AB 的中点N ,AD 的中点\Q ,连接11,,,.D Q QN B N AC 由于CP 在面ABCD 内的射影为AC ,QN AC ⊥,故⊥QN CP 因为CP 在面11ADD A 内的射影为DP ,1⊥D Q DP ,所以1⊥D Q CP .故由⊥QN CP ,1⊥D Q CP ,因为1D Q QN Q ⋂=,所以⊥CP 平面11D QNB .要使1⊥CP D M ,必须点M 在平面11D QNB 内,又点M 在侧面11AA B B 内,所以点M 在平面11D QNB 与平面11AA B B 的交线上,即1∈M B N .因为CB ⊥平面11ABB A ,所以CB BM ⊥,所以12BCM S CB BM ⨯⨯=当1⊥BM B N 时,BM 最小,此时,BCM 的面积最小.又14,2BB BN ==,故1B N =由1Rt B BN 的面积可得455BM ==,所以145854255BCM S =⨯⨯=.故答案为:5【点睛】本题考查空间线面垂直的证明,考查空间想象能力,运算求解能力,是中档题.本题解题的关键在于根据题意寻求M 的轨迹,即1∈M B N ,进而根据几何关系求解.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(请将所有解答题答案填到答题卡的指定位置中.)17.已知()33210n n f n A A =-(n N ∈,且3n ≥).(1)求()4f 的值;(2)若()0f n =,求n 的值.【答案】(1)96(2)8【解析】【分析】(1)由排列数计算公式即可求解;(2)由排列数计算公式即可求解方程.【小问1详解】解:()()3384487610432564069610f A A =⨯⨯-⨯⨯⨯=-⨯=-=;【小问2详解】解:由33210n n A A =,得()()()()221221012n n n n n n --=--,又3n ≥,*n ∈N ,所以()()22152n n -=-,即8n =,∴正整数n 为8.18.如图,在四面体OABC 中,M 是棱OA 上靠近A 的三等分点,N 是棱BC 的中点,P 是线段MN 的中点.设OA a = ,OB b = ,OC c =.(1)用a ,b ,c 表示向量OP;(2)若1a b c ===,且满足(从下列三个条件中任选一个,填上序号:①,,,3π=== a b b c c a ;②,,,,32ππ=== a b c a c ;③2,,,,23a b c a b c ππ===,则可求出OP 的值;并求出OP 的大小.【答案】(1)111344OP a b c=++(2)①67||12OP ⇒=②58||12OP ⇒= ③5||12OP ⇒=【解析】【分析】(1)连接ON 由()121232⎡⎤=++⎢⎥⎣⎦O OA OB P OC 可得答案;(2)选①,对111344=++a b P c O 两边平方代入已知再开方可得答案;选②,对111344=++a b P c O 两边平方代入已知再开方可得答案;③对111344=++a b P c O 两边平代入已知再开方可得答案.【小问1详解】连接ON ,因为N 是棱BC 的中点,所以()12=+OM ON OP ,因为M 是棱OA 上靠近A 的三等分点,所以()()121121111232232344⎡⎤⎡⎤=++=++=++⎢⎥⎢⎥⎣⎦⎣⎦ OA OC OB a c b O a P b c .【小问2详解】选①,,,3π=== a b c a ,因为1a b c === ,111344=++ a b P c O ,所以()()22222111111111344944668⎛⎫⎛⎫⎛⎫=++=+++⋅+⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭O a b c a b c a b a c Pc b111111116798626282144=++⨯+⨯+⨯=,所以6712= OP ;选②,,,,32ππ=== a b c a b c ,因为1a b c === ,111344=++a b P c O ,所以()()22222111111111344944668⎛⎫⎛⎫⎛⎫=++=+++⋅+⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭O a b c a b c a b a c Pc b1111112998626272=++⨯+⨯=,所以5812= OP ;③2,,,,23ππ=== a b c a c ,因为1a b c === ,111344=++a b P c O ,所以()()22222111111111344944668⎛⎫⎛⎫⎛⎫=++=+++⋅+⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ O a b c a b c a b a c Pc b1111259882144=+-⨯=,所以512= OP .19.如图,已知四边形ABCD 是正方形,PD ⊥平面,2ABCD PD AD ==.(1)求点D 到平面PAC 的距离;(2)在线段PB 上是否存在点E ,使PC ⊥平面ADE ?若存在,求PEEB的值;若不存在,说明理由.【答案】(1)233(2)1【解析】【分析】(1)建立空间直角坐标系,利用向量法,即可求解.(2)设PE PB λ=,根据位置关系,解出λ即可.【小问1详解】以D 为原点,DA 为x 轴,DC 为y 轴,DP 为z 轴,建立空间直角坐标系,则()()()0,0,2,2,0,00,2,0,P A C .设平面PAC 的法向量(,,)n x y z =,00n PA x z n PC y z ⎧⋅=-=⎨⋅=-=⎩,令1x =,得(1,1,1)n =,(2,0,0)DA =点D 到平面PAC 的距离||||3DA n d n ⋅===.【小问2详解】假设在PB 上存在E 点,使PC ⊥平面ADE ,则PE PB λ=,因为()2,2,2PB =- ,所以()2,2,2PE λλλ=-,所以()2,2,22E λλλ-,所以()22,2,22AE λλλ=-- ,若PC ⊥平面ADE ,则PC ⊥AE ,即840PC AE λ⋅=-=,故12λ=,此时E 为PB 的中点时,1PE EB =.20.如图,在四棱锥P ABCD -中,四边形ABCD 是直角梯形,AB AD ⊥,AB CD ∕∕,PC ⊥底面ABCD ,224AB AD CD ===,2PC a =,E 是PB 的中点.(1)若二面角P AC E --的余弦值为63,求a 的值;(2)在(1)的条件下求直线PA 与平面EAC 所成角的正弦值.【答案】(1)2a =(2)3【解析】【分析】(1)如图建系,求得各点坐标,根据线面垂直的判定定理,可证BC ⊥平面 PAC ,即可求得平面PAC 的法向量,再求得平面EAC 的法向量,根据二面角的向量求法,代入计算,即可得答案.(2)由(1)可得平面EAC 的法向量n ,求得PA,根据线面角的向量求法,即可求得答案.【小问1详解】以点C 为原点,作CD 的垂线为x 轴,以CD ,CP分别为y 轴、z 轴正方向,建立空间直角坐标系,如图,则()0,0,0C ,()2,2,0A ,()2,2,0B -,设()()0,0,20P a a >,则()1,1,E a -,所以()2,2,0CA = ,()0,0,2CP a = ,()1,1,CE a =- ,(2,2,0)CB =-,在直角梯形ABCD中,==AC,BC =所以222AC BC AB +=,即ACBC ⊥,又PC ⊥平面ABCD ,BC ⊂平面ABCD ,所以PC BC ⊥,所以BC ⊥平面PAC ,即CB即为平面PAC 的一个法向量,设(),,n x y z =为平面EAC 的法向量,则00n CA n CE ⎧⋅=⎨⋅=⎩ ,即00x y x y az +=⎧⎨-+=⎩,取x a =,y a =-,2z =-,则(),,2n a a =--,依题意,cos ,3CB n CB n CB n⋅<>==,解得2a =.【小问2详解】由(1)可得()2,2,2n =-- ,()2,2,4PA =-.设直线PA 与平面EAC 所成角为θ,则2sin cos ,3PA n PA n PA nθ⋅=<>====⋅,即直线PA 与平面EAC 所成角的正弦值为3.21.已知椭圆C :()222210x y a b a b+=>>的离心率为12,且椭圆C 上的点到右焦点F 的距离最长为3.(1)求椭圆C 的标准方程.(2)过点F 的直线l 与椭圆C 交于,A B 两点,AB 的中垂线1l 与x 轴交于点G ,试问AB FG是否为定值?若是,求出该定值;若不是,说明理由.【答案】(1)22143x y +=;(2)是定值,定值为4.【解析】【分析】(1)由离心率,椭圆上的点到右焦点距离最大值为a c +和椭圆,,a b c 关系可构造方程组求得,a b ,进而得到椭圆标准方程;(2)当直线l 的斜率不为0时,设:1l x my =+,与椭圆联立可得韦达定理的形式,利用弦长公式可求得AB ,并利用中点坐标公式求得AB 中点H 坐标,由此可表示出1l 方程,从而求得G 点坐标,得到FG ,化简可得定值;当直线l 的斜率为0时,易求得满足所求定值;综合两种情况可得结论.【详解】(1)设椭圆的半焦距为c ,由题意可得:222312a c c a a b c+=⎧⎪⎪=⎨⎪=+⎪⎩,解得:2a =,b =,1c =,∴椭圆C 的标准方程为22143x y +=.(2)当直线l 的斜率不为0时,设直线l 的方程为1x my =+,()11,A x y ,()22,B x y ,AB的中点为()00,H x y .联立221143x my x y =+⎧⎪⎨+=⎪⎩整理得:()2234690m y my ++-=,由题意可知:0m ≠,则122634m y y m +=-+,122934y y m =-+,()2212134m AB m +∴=+.H 为AB 的中点,02334my m -∴=+,0024134x my m =+=+,即2243,3434m H m m ⎛⎫- ⎪++⎝⎭.直线1l 的方程可设为221343434m x y m m m ⎛⎫=-++ ⎪++⎝⎭,令0y =得:2134x m =+,则()22231113434m FG m m +=-=++,()()22221213443134m ABm FG m m ++∴==++.当直线l 的斜率为0时,24AB a ==,1FG c ==,则4AB FG=.综上所述:AB FG为定值,且定值为4.【点睛】思路点睛:本题考查直线与椭圆综合应用中的定值问题的求解,求解此类问题的基本思路如下:①假设直线方程,与椭圆方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出所求量;④化简所得式子,消元可得定值.22.已知函数121()(1)e(0)2x f x x a x ax x -=---+>.(1)讨论()f x 的单调性.(2)当2a ≤时,若()f x 无最小值,求实数a 的取值范围.【答案】(1)当0a ≤时,()f x 在()0,1上单调递减,在()1,+¥上单调递增;当01a <<时,()f x 在(),1a 上单调递减,在()0,a 和()1,+¥上单调递增;当1a =时,()f x 在()0,+¥上单调递增;当1a >时,()f x 在()1,a 上单调递减,在(0,1),(,)a +∞上单调递增.(2)1,22e ⎛⎤- ⎥⎝⎦.【解析】【分析】(1)对()f x 求导,然后对a 分类讨论分别得出()f x ¢所对应的x 的取值范围即为函数的单调增区间,()f x ¢所对应的x 的取值范围即为函数的单调减区间.(2)结合(1)中的单调性结论对函数的最小值进行讨论.对于第四种情况,得出关于a 的不等式后,需要构造新的函数分析求解.【详解】解:(1)因为121()(1)e(0)2x f x x a x ax x -=---+>,所以()1()(1)(0)x f x x a e x -'=-->.令()0f x ¢=,得x a =或1x =.①当0a ≤时,由()0f x ¢>,得1x >;由()0f x ¢<,得01x <<.则()f x 在()0,1上单调递减,在()1,+¥上单调递增;②当01a <<时,由()0f x ¢>,得0x a <<或1x >;由()0f x ¢<,得1<<a x .则()f x 在(),1a 上单调递减,在()0,a 和()1,+¥上单调递增.③当1a =时,()0f x ¢³恒成立,则()f x 在()0,+¥上单调递增.④当1a >时,由()0f x ¢>,得01x <<或x a >;由()0f x ¢<,得1x a <<.则()f x 在()1,a 上单调递减,在(0,1)和(,)a +∞上单调递增.综上,当0a ≤时,()f x 在()0,1上单调递减,在()1,+¥上单调递增;当01a <<时,()f x 在(),1a 上单调递减,在()0,a 和()1,+¥上单调递增;当1a =时,()f x 在()0,+¥上单调递增;当1a >时,()f x 在()1,a 上单调递减,在(0,1)和(,)a +∞上单调递增.(2)①当0a ≤时,由(1)可知()f x 在()0,1上单调递减,在()1,+¥上单调递增,则()f x 有最小值()112f =-,故0a ≤不符合题意.②当01a <<时,由(1)可知()f x 在(),1a 上单调递减,在()0,a 和()1,+¥上单调递增,因为()f x 无最小值,所以()()01f f <,即11<2a e +--,解得112e a -<<;③当1a =时,由(1)可知()f x 在()0,+¥上单调递增,所以()f x 无最小值,所以1a =符合题意;④当12a <≤时,由(1)可知()f x 在()1,a 上单调递减,在()()0,1,,a +∞上单调递增.因为()f x 无最小值,所以()()0f f a <,即2111<2a a a e e -+--,即121102a a e a e-+--<.设()()1211122x x g x ex x e -+=--<≤,则()()1112x g x e x x e-'=--<≤设()()()1112x h x g x e x x e-'==--<≤,则()110x h x e -'=->在(]1,2上恒成立.故()h x 在(]1,2上单调递增,即()g x '在(]1,2上单调递增.因为()()1110,220g g e e e''=-<=-->,所以存在唯一的(]01,2x ∈,使得()00g x '=.故()g x 在()01,x 上单调递减,在(]0,2x 上单调递增.因为()()124310,22022e g g e e e e-=--=<=--<,所以()0g x <在(]1,2上恒成立,即1211<02a a ea e-+--在(]1,2恒成立,即12a <≤符合题意.综上,实数a 的取值范围为1,22e ⎛⎤-⎥⎝⎦.【点睛】本题主要考查分类讨论思想,首先利用函数求导公式对函数求导,然后再利用导函数大于 0 或者小于 0 讨论函数单调性,分类时一般利用 f ¢(x )有无解对参数进行分类.常见注意点如下:(1)对二次项系数的符号进行讨论;(2)导函数是否有零点进行讨论;(3)导函数中零点的大小进行讨论;(4)导函数的零点与定义域端点值的关系进行讨论等.。

广东省台山市重点中学2022-2023学年高二下学期第一次月考语文试题及参考答案

广东省台山市重点中学2022-2023学年高二下学期第一次月考语文试题及参考答案

台山市重点中学高二下学期第一次月考试题语文一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,17分)阅读下面的文字,完成1~5题。

材料一:在竞速时代,速度浸入了现代人的日常生活,也不断重塑现代人的感知经验。

个体虽然在时间和空间上变得更加自由,但越来越难以跟上社会的快节奏发展,焦虑感也愈发强烈。

与此同时,速度逐渐成为当代艺术创作的主题,甚至成为一种随处可见的文化景观。

速度美学关注审美艺术中加速或快速的时间体验,强调审美感知的瞬间性、快节奏。

捕捉新奇、紧跟时尚,成为竞速时代审美艺术的共同追求。

在这一背景下出现的“慢速生活”观念,具有某种反拨意味。

对“慢速生活”的提倡,并非逃避生活,而是通过远离加速生活和撤回内心来实现自我保护。

“慢速生活”理念通过减速来与加速的外在生活保持距离,强调关注内心体验,表现了对主体精神和情感的当下性的关注。

现代人对慢食、慢走、慢旅行和休闲阅读等生活模式的倡导,也是希望通过慢生活实现心理时间与物理时间的平衡。

在慢速生活的审美体验中,个体从外部物理时间中抽离,更亲近和关注当下,进而实现对竞速生存的审美救赎。

在“慢速生活”中应运而生的“慢速美学”,是对竞速时代的反思。

慢速审美的核心在于理解和挖掘“当下性”,进而建构过去、当下和未来的时间经验关系。

关注“当下性”,意味着将当下的瞬间固化,将当下视为过去和未来的连接,这实际上是以一种减速的时间模式对抗加速的时间模式。

慢速艺术尝试延长的时间结构,使用了犹豫、延迟和减速的策略,试图让我们暂停下来,体验“当下”短暂的存在。

在中国,对慢速审美的提倡古已有之。

在日常生活美学中,太极、书法、棋艺、茶道、园林等传统文化的审美形式,都提倡在快与慢之间寻求一个平衡点,保持适当的生活节奏和张力。

无论是对文化记忆的留存和保护,还是对绿色城市的提倡,也都体现了身处竞速时代的人们对于传统生活态度、情感关系、文化精神的追忆和传承。

昆德拉反思技术革命所带来的“令人出神的速度”,发出“慢的乐趣怎么失传了呢”的追问。

山西省高二下学期第一次月考数学试题(解析版)

山西省高二下学期第一次月考数学试题(解析版)

一、单选题1.已知集合,,则( ) {}12M x x =-<(){}ln 1N x y x ==+A . B .C .D .N M ⊆M N ⊆M N ⋂=∅M N =R 【答案】B【分析】化简集合,判断两个集合之间的关系即可得答案. 【详解】由题可得,, {}13M x x =-<<{}1N x x =>-所以,且 ,,. M N ⊆M N M N M =≠∅I R M N N =≠ 故选:B.2.已知向量,,且,则实数( ) ()2,a m = ()3,4b m =- a b ⊥ m =A .3 B .1C .D .131-【答案】B【分析】根据向量垂直的坐标表示可直接构造方程求得结果. 【详解】由得:,a b ⊥ ()2340a b m m ⋅=-+= 解得:. 1m =故选:B.3.在中,角,,的对边分别为,,,若,且,则角的余弦值为ABC A A B C a b c 3a c =13c b =A ( )A .B .C .D .15141613【答案】C【分析】根据余弦定理即得. 【详解】由题可得,,3a c =3b c =试题. ()()22222233cos 223c c c b c a A bc c c+-+-==⋅⋅16=故选:C .4.设为所在平面内一点,,则( )D ABC A 3BC CD =A .B .1433AD AB AC =-+1334AD AB AC =-C .D .4133AD AB AC =+ 4133AD AB AC =- 【答案】A【分析】根据给定条件,利用平面向量的线性运算求解作答.【详解】在中,,ABC A 3BC CD =.1114()3333AD AC CD AC BC AC AC AB AB AC =+=+=+-=-+故选:A5.在中,三角形三条边上的高之比为,则为( ) ABC A 2:3:4ABC A A .钝角三角形 B .直角三角形C .锐角三角形D .等腰三角形【答案】A【分析】由题可得三角形三条边之比为,然后利用余弦定理,求出最大边所对角的余弦值,6:4:3即可判断出结果.【详解】因为三角形三条边上的高之比为,2:3:4所以三角形三条边之比为,即,111::2346:4:3不妨设,6,4,3,0a x b x c x x ===>则最大角的余弦值为,22216911362c 44os 023x x x A x x +-==-<⋅⋅因此角为钝角,三角形为钝角三角形. A 故选:A.6.定义在上的偶函数满足,且在区间上递增,则( ) R ()f x ()()22f x f x +=-[]2,0-A .B .()216log 63f f f ⎛⎫<< ⎪⎝⎭()2166log 3f f f⎛⎫<< ⎪⎝⎭C .D . ()216log 63f f f ⎛⎫<< ⎪⎝⎭()2166log3f ff ⎛⎫<< ⎪⎝⎭【答案】B【分析】由条件求出函数的周期,再根据函数的单调性结合条件即得. 【详解】∵定义在R 上的偶函数,所以, ()()f x f x -=又满足,()f x ()()22f x f x +=-所以, ()()()()()42222f x f x f x f x f x +=++=--=-=所以是周期为4的函数,又函数在区间上递增, ()f x ()f x []2,0-所以在区间上递减,()f x []0,2所以,,()()62f f =()2222161616log log 4log log 3333f f f f ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为,,所以,3223<3223<322222log 4log 3l 3g 202o ==>>>>所以,即.()()22log 3f f f <<()2166log 3f f f ⎛⎫<< ⎪⎝⎭故选:B .7.已知是的外心,,,则( ) O ABC A 4AB =u u u r 2AC = ()AO AB AC ⋅+=A .10B .9C .8D .6【答案】A【分析】根据三角形外心的性质,结合数量积的几何意义以及数量积运算律,即可求得答案. 【详解】如图,O 为的外心,设为的中点, ABC A ,D E ,AB AC 则,,OD AB OE AC ⊥⊥故()AO AB AC AO AB AO AC ⋅+=+⋅⋅||||cos |||co |s AO AB AO AC OAD OAE ⋅∠+=∠⋅⋅⋅||||||||AD AB AE AC +=⋅⋅ , 2222111||41||2222210AB AC +=⨯+⨯⋅==故选:A8.在中,角所对的边分别为,,,若,则ABC A ,,A B C a b c 2022sin sin sin c C b B a A -=的值为( )()sin sin tan tan tan cos cos A BC A B A B ⋅+⋅⋅A .2013 B .C .2029D .2029220212【答案】D【分析】对,利用正、余弦定理整理得,根据题意结2022sin sin sin c C b B a A -=22021cos 2ab C c =合三角恒等变换分析运算即可.【详解】∵,由正弦定理可得:, 2022sin sin sin c C b B a A -=2222022c b a -=整理得:,22222021a b c c +-=由余弦定理可得:,故 22cos 2021ab C c =22021cos 2ab C c =()sin sin sin sin sin sin tan tan tan cos cos tan cos cos cos cos A BA B A B C A B A BC A BA B ⋅⋅=+⋅⋅⎛⎫+⋅⋅ ⎪⎝⎭()()22sin sin sin sin sin sin cos cos sin tan sin cos cos sin sin sin cos A B A B A B C ab CC C A B A B C c A B C⋅⋅⋅⋅====⋅⋅+⋅⋅+. 222021202122cc ==故选:D.二、多选题9.下列说法中错误的是( )A .若,,则B .a b ∥ b c∥a c ∥()()()a b c a b c b a c ⋅=⋅=⋅C .若,则D .a b a c ⋅=⋅b c = ()2222a ba ab b +=+⋅+ 【答案】ABC【分析】根据共线向量的概念,向量数量积的概念及运算法则逐项分析即得.【详解】对于A ,若时,,不一定能推出,故A 错误;0b →→=a b ∥b c ∥ a c ∥ 对于B ,不妨考虑不共线且不互相垂直时,向量与向量不共线,所以不能推,,a b c →→→()a b c ⋅()a b c ⋅ 出,故B 错误;()()a b c a b c ⋅=⋅对于C ,若且时,则,而不一定相等,故C 错误;a b ⊥ a c ⊥ a b a c ⋅=⋅,b c 对于D ,根据数量积的运算法则可知,故D 正确.()2222a ba ab b +=+⋅+故选:ABC.10.在中,,则的面积可以是( )ABC ∆1,6AB AC B π===ABC ∆AB .1 CD【答案】AD【分析】由余弦定理求出,再根据三角形的面积公式即可求出答案. BC 【详解】解:∵,1,6AB AC B π===由余弦定理得,2222cos AC AB BC AB BC B =+-⋅⋅∴, 2320BC BC -+=∴,或, 1BC =2BC =∴由的面积公式得或, ABC ∆1sin 2ABC S AB BC B ∆=⋅⋅⋅ABC S ∆=ABC S ∆=故选:AD .【点睛】本题主要考查三角形的面积公式的应用,考查余弦定理解三角形,属于基础题. 11.在中,,,则下列说法正确的是( ) ABC A cos 2C 1BC =5AC =A . B .的面积为2 4sin 5C =ABC A C.D .ABC A ABC A 【答案】ABD【分析】利用二倍角公式求出,根据同角三角函数的基本关系求出,再由余弦定理求出cosC sin C ,由正弦定理求出外接圆的直径,利用面积公式及等面积法判断B 、D ;c 【详解】解:因为,cos 2C 223cos 2cos 12125C C =-=⨯-=所以,,故A 、B 正确; 4sin 5==C 114sin 152225ABC S ab C ==⨯⨯⨯=A 由余弦定理,即,所以,2222cos c a b ab C =+-222315215205c =+-⨯⨯⨯=c =所以外接圆的直径,故C 错误; 2sin c R C ===设的内切圆半径为,则,即,所以ABC A r ()12ABCS a b c r =++△(11522r ++=r =D 正确; 故选:ABD12.设P 为所在平面内一点,则下列说法正确的是( )ABC A A .若,则点P 是的重心0PA PB PC ++=ABC A B .若,则点P 是的垂心PA PB PB PC PC PA ⋅=⋅=⋅ABC A C .若,,则点P 是的内心 (||||AB ACAP AB AC λ=+,[)0λ∈+∞ABC A D .若,则点P 是的外心()()()0PA PB BA PB PC CB PC PA AC +⋅=+⋅=+⋅=ABC A 【答案】ABD【分析】对于A :以,为邻边作平行四边形PADB ,M 为PD 的中点,利用向量的线性运算PA PB得到,即可证明;对于B :利用数量积运算证明出,,得到P 为||2||PC PM =PB CA ⊥PA BC ⊥的垂心,即可证明;对于C :在边AB ,AC 上分别取点E ,F ,使,,ABC A ||ABAE AB =||AC AF AC = 以AE ,AF 为邻边作平行四边形AEGF ,则四边形AEGF 为菱形,即可判断;对于D :证明出,,,即可证明.||||PA PB = ||||PB PC = ||||PC PA =【详解】对于A :若,则.0PA PB PC ++= PA PB PC +=-以,为邻边作平行四边形PADB ,M 为PD 的中点,则,所以,又PA PBPA PB PD += PD PC =- ,所以,故P 为的重心. 2PD PM=||2||PC PM = ABC A 所以A 正确;对于B :若,则,即,即,所以PA PB PB PC ⋅=⋅ 0PA PB PB PC ⋅-⋅=()0PB PA PC ⋅-= 0PB CA ⋅= .PB CA ⊥同理,则,故P 为的垂心.PA PB PA PC ⋅=⋅u u r u u r u u r u u u rPA BC ⊥ABC A 故B 正确;对于C :在边AB ,AC 上分别取点E ,F ,使,,则,以AE ,||ABAE AB =||AC AF AC = ||||1AE AF == AF 为邻边作平行四边形AEGF ,则四边形AEGF 为菱形.连接AG ,则AG 为的角平分线,由,所以点P 在角平分线AG 上,故点P 的||||AB AC AP AB AC λ⎛⎫=+ ⎪⎝⎭轨迹一定通过的内心. ABC A 所以C 错误;对于D :若,则,同理有22()()()0PA PB BA PA PB PA PB PA PB +⋅=+⋅-=-= ||||PA PB = ,,故P 为的外心.||||PB PC = ||||PC PA =ABCA所以D 正确. 故选:ABD三、填空题13.在△ABC 中,,则=__________ ()()()a c a c b b c +-=+A ∠【答案】2π3【分析】由可得,再由余弦定理可得结果. ()()()a c a c b b c +-=+222b c a bc +-=-【详解】 ()()()a c a c b b c +-=+ 222a c b bc ∴--=222b c a bc -∴+=-,2221cos 222b c a bc A bc bc +--===-所以,故答案为. 23A π∠=23π【点睛】本题主要考查余弦定理及特殊角的三角函数,属于简单题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条2222cos a b c bc A =+-222cos 2b c a A bc+-=件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数30,45,60o o o 值,以便在解题中直接应用.14.若,且,则的最小值为______.0a >20a b +=21a b -+【答案】5【分析】由,且,得到,进而有,利用基本不等式求0a >20a b +=20a b =->22121a b b b -+=--+解.【详解】解:因为,且, 0a >20a b +=所以,20a b =->则,2212115a b b b -+=--+≥=当且仅当,即时,等号成立, 22b b-=-1b =-所以的最小值为5,21a b -+故答案为:515.探空气球是将探空仪器带到高空进行温度、大气压力、湿度、风速、风向等气象要素测量的气球,利用探空仪将实时探测到的大气垂直方向上的气象数据反馈给地面雷达,通过数据处理,成为全球预报员制作天气预报的重要依据.大气压强对气球能达到的最大高度和停留时间有非常大的影响.已知大气压强随海拔高度的变化规律是,其中是海平面()Pa p ()m h ()0e 0.000126k hp p k -⋅==0p 大气压强.若探空气球在两处测得的大气压强分别为,,且,那么两处的海,A B 1p 2p 122p p =,A B 拔高度的差约为______m.(参考数据:) ln20.693≈【答案】5500【分析】根据题意结合对数运算求解. 【详解】设两处的海拔高度分别为,,A B 12,h h 由题意可得:,且, 121020e e k h k h p p p p -⋅-⋅⎧=⋅⎨=⋅⎩122p p =即,且,12002ee k h k h p p -⋅-⋅⋅=⋅00p ≠可得,两边同时取对数可得:,122e e k h k h -⋅-⋅=()1212,ln lne 2ln 2e k h k h k h k h -⋅-⋅-⋅-⋅==即,整理得, 12ln 2k h k h -⋅-⋅=21ln 20.69355000.000126h h k -=≈=即两处的海拔高度的差约为5500 m. ,A B 故答案为:5500.16.已知为的垂心(三角形的三条高线的交点),若,则H ABC A 1235AH AB AC =+sin BAC ∠=______.【分析】由题可得,,利用,得2235=-+BH AB AC 1335=- CH AB AC 0BH AC ⋅= 0CH AB ⋅= ,,可得, 再利用平方关系结合条件即得.3cos 5AC BAC AB∠= 5cos 9AB BAC AC ∠= 21cos 3BAC ∠=【详解】因为,1235AH AB AC =+所以,同理,2235BH BA AH AB AC =+=-+1335CH CA AH AB AC =+=-由H 为△ABC 的垂心,得,即, 0BH AC ⋅= 22035AB AC AC ⎛⎫-+⋅= ⎪⎝⎭可知,即, 222cos 53AC AC AB BAC =∠ 3cos 5AC BAC AB∠=同理有,即,可知,即0CH AB ⋅= 13035AB AC AB ⎛⎫-⋅= ⎪⎝⎭213cos 35AB AC AB BAC =∠ ,5cos 9ABBAC AC∠= 所以, ,又, 21cos 3BAC ∠=2231cos 2sin 113∠∠=-=-=BAC BAC ()0,πBAC ∠∈所以 sin BAC ∠四、解答题17.已知,,且与的夹角为.1a = 2b = a b 2π3(1)求.()()23a b a b +⋅-(2)求.2a b +【答案】(1)5-【分析】(1)先求得,再利用数量积的运算律求解;a b ⋅(2)先求得,根据向量模的求法,结合数量积的运算律求解.a b ⋅【详解】(1)解:因为,,且与的夹角为,1a = 2b = a b 2π3所以,c 2π3o 1s a b a b ⋅-⋅=⋅=所以()()2223253a b a b a a b b +⋅-=-⋅- ;()22151325=⨯-⨯--⨯=-(2), 2a b +===18.在中,角,,的对边为,,,已知. ABC A A B C a b c ()12cos b A c +=(1)证明:; 2A B =(2)若,求的值. 23a b =cb【答案】(1)证明见解析; (2). 54【分析】(1)根据给定条件,利用正弦定理边化角,再利用和差角的正弦公式推理作答. (2)由已知结合余弦定理角化边,代入计算作答.【详解】(1)在中,由及正弦定理得:, ABC A ()12cos b A c +=sin 2sin cos sin B B A C +=而,因此, ()C A B π=-+sin 2sin cos sin()sin cos cos sin B B A A B A B A B +=+=+即有,显然,有, sin sin cos cos sin sin()B A B A B A B =-=-sin 0B >sin()0A B ->即,角B 为锐角,又,,因此, 0A B ->0πA B <-<()πB A B A +-=<B A B =-所以. 2A B =(2)在中,由及余弦定理得:,整理得,ABC A ()12cos b A c +=22222b c a b b c bc+-+⋅=22bc a b =-而,即,于是,又,即23a b =32a b =22235()24bc b b b =-=0b >54c b =所以. 54c b =19.如图,在矩形中,和分别是边和上的点,满足,.OACB E F AC BC 3AC AE =3BC BF=(1)若,其中,,求,的值;OC OE OF λμ=+ λμ∈R λμ(2)连接分别交,于,两点.记,,以,为基底来表示.AB OC OE M N CO a = CA b = a b CN 【答案】(1); 33,44λμ==(2). 1142CN a b =+【分析】(1)根据给定的图形,利用作基底,结合平面向量基本定理求解作答.,OA OB (2)结合(1)中信息,利用平面向量基本定理确定点的位置,即可求解作答.N 【详解】(1)在矩形中,,,则OACB 3AC AE = 3BC BF = 1133OE OA AE OA AC OA OB =+=+=+ ,,因此1133OF OB BF OB BC OB OA =+=+=+ , 11()()()()3333O OA OB OB OA C OA OB λμμλλμ++=+++=+ 又,不共线,于是,解得, OC OA OB =+ ,OA OB 1313μλλμ⎧+=⎪⎪⎨⎪+=⎪⎩33,44λμ==所以. 33,44λμ==(2)为与的交点,则, N AB OE 1(),R 33t ON tOE t OA OB tOA OB t ==+=+∈ ,, (1)33t t AN ON OA tOA OB OA t OA OB =-=+-=-+ AB OB OA =- 又,即存在,,则, //AN AB R m ∈AN mAB = (1)3t t OA OB mOA mOB -+=-+ 因为不共线,因此,解得, ,OA OB 13t m t m -=-⎧⎪⎨=⎪⎩31,44t m ==显然与的交点是线段、的中点,则,即是线段的中AB OC M AB OC 1142AN AB AM == N AM 点,所以. 11111111()22224242CN CA AN CA AM CA CM CA CM CA CM CA a b =+=+=+-=+=+=+ 20.已知函数的最小正周期为,的图象过点,且()()π2sin 03,2f x x ωϕωϕ⎛⎫=+<<< ⎪⎝⎭T ()f x (),1T ,将的图象向左平移个单位长度后得到函数的图象. ()π3f x f x ⎛⎫-= ⎪⎝⎭()f x π4()g x (1)求函数在上的值域; ()g x π0,2⎡⎤⎢⎥⎣⎦(2)在上恰有两个不同的实数解,求的取值范围. ()()2x g x +=[]0,m m【答案】(1)⎡-⎣(2) 11π5π,124⎡⎤⎢⎥⎣⎦【分析】(1)利用函数的最小正周期公式表示点,代入求解角,再根据对称性()f x (),1T ()f x ϕ求解,得到函数,根据图像平移变换得到函数,并求其在给定区间上的值域;ω()f x ()g x(2)化简变形,通过恰有两个不同的实数()()()F x x g x =+()()2x g x +=解,限制的取值范围,从而得解.m 【详解】(1)因为函数的最小正周期为, ()()π2sin 03,2f x x ωϕωϕ⎛⎫=+<<< ⎪⎝⎭T 所以,. 2πT ω=0ω>由于的图象过点,即过,代入得 ()f x (),1T 2π,1ω⎛⎫ ⎪⎝⎭,即. ()()2π2sin 2sin 2π2sin 1f x ωϕϕϕω⎛⎫=⋅+=+== ⎪⎝⎭1sin 2ϕ=则,或,又, πZ π2,6k k ϕ=+∈5π2π,Z 6k k ϕ=+∈π2ϕ<所以取. π0,6k ϕ==由于,则的图象关于对称, ()π3f x f x ⎛⎫-= ⎪⎝⎭()f x π6x =故,则. ππππ,Z 662k k ω+=+∈26,Z k k ω=+∈又因为,则令.03ω<<0,2k ω==故. ()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭将的图象向左平移个单位长度后得. ()f x π4()ππ2π2sin 22sin 2463g x x x ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦当,, π0,2x ⎡⎤∈⎢⎣⎦2π2π5π2,333x ⎡⎤+∈⎢⎥⎣⎦令,在单调递减,在单调递增, 2π23t x =+()2sin h t t =2π3π,32⎡⎤⎢⎥⎣⎦3π5π,32⎡⎤⎢⎥⎣⎦当时,取最小值,最小值为;当时,3π2t =()h t 2-2π3t =()h t所以,()h t ⎡∈-⎣所以函数在上的值域为. ()g x π0,2⎡⎤⎢⎥⎣⎦⎡-⎣(2)因为,, ()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭()2π2sin 23g x x ⎛⎫=+ ⎪⎝⎭令 ()()()π2π22sin 263F x x g x x x ⎛⎫⎛⎫=+=+++ ⎪ ⎪⎝⎭⎝⎭, πππ22cos 24sin 2663x x x ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由于在上恰有两个不同的实数解,()2F x =[]0,m 则在上恰有两个不同的实数解, π1sin 232x ⎛⎫+= ⎪⎝⎭[]0,m 当,, []0,x m ∈πππ2,2333x m ⎡⎤+∈+⎢⎥⎣⎦当时,,或,或, π1sin 232x ⎛⎫+= ⎪⎝⎭π5π236x +=π13π236x +=π17π236x +=所以依题意,解得. 13ππ17π2636m ≤+<11π5π124m ≤<所以的取值范围. m 11π5π,124⎡⎤⎢⎥⎣⎦21.在中,内角,,所对的边分别为,,.ABC AA B C a b c cos sin C c A =(1)求角的大小;C(2)已知,若为锐角三角形,求的取值范围.c =ABC A a b +【答案】(1) π3(2)【分析】(1,再根据cos sin C c A =cos sin sin A C C A =求解;(),0,πA C ∈(2)由(1)求得,再由,利用三角函数24sin c R C ==2sin 2sin a b R A R B +=+6A π⎛⎫=+ ⎪⎝⎭的性质求解.【详解】(1)解:在中, ,ABCA cos sin C c A =,cos sin sin A C C A =因为,(),0,πA C ∈所以,即sin sin A C C ≠=tan C =则; π3C =(2)由(1)知:, 24sin c R C ===所以,2sin 2sin a b R A R B +=+, 2π4sin sin 3A A ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭, 34sin2A A ⎛⎫= ⎪ ⎪⎝⎭, 6A π⎛⎫=+ ⎪⎝⎭因为为锐角三角形,ABC A 所以所以,则,解得, π02π02π02A B C ⎧<<⎪⎪⎪<<⎨⎪⎪<<⎪⎩π022ππ032A B A ⎧<<⎪⎪⎨⎪<=-<⎪⎩ππ62A <<所以,则,ππ2π663A <+<1sin 126A π⎛⎫<+≤ ⎪⎝⎭所以a b <+≤所以的取值范围是.a b +22.已知函数.()()2ln e 2e 3x x f x a =-+(1)若的定义域为,求的取值范围;()f x R a (2)若,使得在区间上单调递增,且值域为,求的取值范围.,m n ∃∈R ()f x [],m n [],m n a 【答案】(1); 13a >(2). 2334a ≤< 【分析】(1)由题可得恒成立,然后利用参变分离结合函数的性质即得; 2e 2e 30x x a -+>(2)根据复合函数的单调性结合条件可得,且,进而可得在上0a >1e m a ≤2330ax x -+=1,a ⎡⎫+∞⎪⎢⎣⎭有两个不等实根,然后根据二次函数的性质即得.【详解】(1)因为的定义域为,, ()f x R ()()2ln e 2e 3x x f x a =-+所以,即恒成立, 2e 2e 30x x a -+>2222e 3321113e e e e 33x x x x x a -⎛⎫>=-+=--+ ⎪⎝⎭因为,,当时等号成立, 10e x >23211113333e e e x x x ⎛⎫+=--+≤ ⎪⎝⎭-1e 13x =所以,即的取值范围为; 13a >a 13a >(2)因为函数在其定义域上为增函数,要使在区间上单调递增, ln y x =()f x [],m n 则函数在区间上单调递增,又为增函数,2e 2e 3x x u a =-+[],m n e x t =所以在上为增函数,显然时不合题意,223y at t =-+e ,e m n ⎡⎤⎣⎦0a ≤所以,且, 0a >1e m a≤又在区间上单调递增,且值域为,()f x [],m n [],m n 所以,即, ()()()()22ln e 2e 3ln e 2e 3m m n n f m a m f n a n ⎧=-+=⎪⎨=-+=⎪⎩22e 3e 30e 3e 30m m n n a a ⎧-+=⎨-+=⎩所以在上有两个不等实根, 2330ax x -+=1,a ⎡⎫+∞⎪⎢⎣⎭则,解得, ()22Δ312031211330a a aa a a ⎧⎪=-->⎪⎪>⎨⎪⎪⎛⎫⋅-⋅+≥⎪ ⎪⎝⎭⎩2334a ≤<所以的取值范围为. a 2334a ≤<【点睛】方法点睛:恒(能)成立问题的解法:若在区间上有最值,则()f x D (1)恒成立:;;()()min ,00x D f x f x ∀∈>⇔>()()max ,00x D f x f x ∀∈<⇔<(2)能成立:;. ()()max ,00x D f x f x ∃∈>⇔>()()min ,00x D f x f x ∃∈<⇔<若能分离常数,即将问题转化为:(或),则 ()a f x >()a f x <(1)恒成立:;; ()()max a f x a f x >⇔>()()min a f x a f x <⇔<(2)能成立:;. ()()min a f x a f x >⇔>()()max a f x a f x <⇔<。

福建省高二下学期第一次月考数学试题(Word版)

福建省高二下学期第一次月考数学试题(Word版)

高二下学期第一次月考数学试题(考试时间:120分钟 满分:150分)、、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数在处的导数为,则( )()f x 1x =6()()11lim 3x f x f x∆→+∆-=∆A .1B .2C .D .6232.如图所示是函数的图象,其中为的导函数,则下列大小关系正确()y f x =()f x '()f x 的是( )A .B . ()()()213f f f ''>>'-()()()231f f f ''>>'-C .D .()()()312f f f >>''-'()()()321f f f >->'''3.已知某物体在平面上作变速直线运动,且位移(单位:米)与时间(单位:秒)之s t 间的关系可用函数:表示,则该物体在秒时的瞬时速度为( )()2ln 1s t t t =++-3t =A .米/秒 B .米/秒C .米/秒 D .米秒214()62ln2+212()4ln2+4.函数的图象大致为( )sin x xx xy e e --=+A .B .C .D .5.若对任意的 ,,且,都有,则m 的最小值是1x ()2,x m ∈+∞12x x <122121ln ln 2x x x x x x -<-( ) A .B .C .1D .1ee 3e6.已函数及其导函数定义域均为,且,,则关于()f x ()f x 'R ()()0f x f x '->()01f =x的不等式的解集()e xf x >为( ) A . B .C .D .{}0x x >{}0x x <{}1x x <{}1x x >7.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并且是构成一般不动点定理的基石.简单地讲就是对于满足一定条件的连续函数,存在点,使得,那么我们称该函数为“不动点”函数.若函数()f x 0x ()00f x x =为“不动点”函数,则实数的取值范围是( ) ()()e ln xf x x a x =-a A . B .C .D .(],0-∞1,e ⎛⎤-∞ ⎝⎦(],1-∞(],e -∞8.已知,则( ) 1ln1.1,,11a b c ===A .B .C .D .a b c >>a c b >>c b a >>c a b >>二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列函数的求导正确的是( )A .B .C .D .211x x '⎛⎫= ⎪⎝⎭()sin cos x x '=()()'e 1e x x x x =+()1ln 22'=x x10.已知,下列说法正确的是( ) ()ln xf x x=A .在处的切线方程为B .若方程有两个不相等的实数()f x 1x =1y x =+()f x a =根,则 10a e<<C .的极大值为D .的极小值点为()f x 1e()f x e x =11.若函数在区间上存在最小值,则整数可以取( )()321233f x x x =+-()1,4a a -+a A .-3B .-2C .-1D .012.若存在实常数k 和b ,使得函数和对其公共定义域上的任意实数x 都满足:()F x ()G x 和恒成立,则称此直线为和的“隔离直线”,已()F x kx b ≥+()G x kx b ≤+y kx b =+()F x ()G x 知函数,,(e 为自然对数的底数),则下列结2()()f x x x R =∈1()(0)g x x x=<()2ln h x e x =论正确的是( ).A .函数在区间上单递减()()()m x f x g x =-,⎛-∞ ⎝B .和之间存在“隔离直线”,且k 的最小值为 ()f x ()g x 4-C .和之间存在“隔离直线”,且b 的取值范围是 ()f x ()g x [4,0]-D .和之间存在“隔离直线”,且“隔离直线”不唯一()f x ()h x 三、填空题:本题共4小题,每小题5分,共20分.13.函数在点处的切线方程为____________. 1()ln f x x x=-(1,1)-14.函数,则________. ()2(1)21xf x f x x '=+-()0f '=15.不等式对任意恒成立,则正实数的取值范围为________. 1e ln 0a x x a x --≥()1,x ∈+∞a 16.若函数在区间D 上有定义,且均可作为一个三角形的()g x ,,,(),(),()a b c D g a g b g c ∀∈三边长,则称在区间D 上为“M 函数”.已知函数在区间为()g x ()1ln x f x x k x -=-+1,e e ⎡⎤⎢⎥⎣⎦“M 函数”,则实数k 的取值范围为_________________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知函数,,且.求:()32f x x ax =-a ∈R ()11f '=(1)a 的值及曲线在点处的切线方程; ()y f x =()()1,1f (2)函数在区间上的最大值. ()f x []0,218. (12分)已知函数在及处取得极值.()32f x x ax bx c =+++13x =-1x =(1)求a ,b 的值;(2)若方程有三个不同的实根,求c 的取值范围. ()0f x =19.(12分)已知函数.()2211ln 2a f x x x x a +=-+(1)当时,求函数的单调增区间. 2a =()f x (2)讨论函数的单调性. ()f x20.(12分)2022年2月4日,第二十四届冬季奥林匹克运动会开幕式在北京国家体育场举行,拉开了冬奥会的帷幕.冬奥会发布的吉祥物“冰墩墩”、“雪容融”得到了大家的广泛喜爱,达到一墩难求的地步.当地某旅游用品商店获批经销此次奥运会纪念品,其中某个挂件纪念品每件的成本为5元,并且每件纪念品需向税务部门上交元的税收,预计5a +(58)a ≤≤当每件产品的售价定为元时,一年的销售量为万件,x (1317)x ≤≤2(18)x -(1)求该商店一年的利润(万元)与每件纪念品的售价的函数关系式; L x (2)求出的最大值. L ()Q a21.(12分) 已知函数为的导数.()e cos 2,()x f x x f x '=+-()f x (1)当时,求的最小值;0x ≥()f x '(2)当时,恒成立,求的取值范围.π2x ≥-2e cos 20xx x x ax x +--≥a22.(12分)已知函数.2()e (e 2.718)=-= x f x ax (1)若在有两个零点,求实数的取值范围;()f x ()0,∞+a (2)设函数,证明:存在唯一的极大值点,且2()e [()1]x g x f x ax x =+--()g x 0x . 0321()e 4<<g x龙岩一中2024届高二下学期第一次月考数学试题参考答案题号1 2 3 4 5 6 7 8 9 10 11 12 答案BAABABBDBCBCBC DAB C13.14. 1 15. 16.23y x =-(],e -∞()2e 4,-+∞17.解:(1),解得:()32f x x ax =-Q ()'232f x x ax ∴=-()'1321f a ∴=-=1a =故,()32f x x x =-(1)0f =曲线在点处的斜率为,切线方程即 ...........5()y f x =()()1,1f 1k =(1)(1)y f k x -=-1y x =-分(2)由(1)可知:,令,解得()32f x x x =-()'232f x x x =-()'2320f x x x =-= 1220,3x x ==故当时,,所以单调递减;当时,,所以2[0,)3x ∈()'0f x <()f x 2[,2]3x ∈()'0f x >()f x 单调递增;区间内,当时取最大值,最大值为 ...........10分()f x []0,22x =(2)4f =18.解:(1)由题意得,函数在及处取得极值, ()232f x x ax b '=++()f x 13x =-1x =得,解得 .()11203331320af b f a b ⎧⎛⎫-=-+=⎪ ⎪⎝'⎭⎨⎪=++'=⎩11a b =-⎧⎨=-⎩此时,.()()()2321311x x x x f x --=+'-=当时,,函数在上单调递增; 13x <-()0f x ¢>()f x 1,3⎛⎫-∞- ⎪⎝⎭当时,,函数在上单调递减;113-<<x ()0f x '<()f x 1,13⎛⎫- ⎪⎝⎭当时,,函数在上单调递增. 1x >()0f x ¢>()f x ()1,+∞所以,在处取得极大值,在处取得极小值,满足题意. ...........6分 ()f x 13x =-1x =(2)由(1)知,在处取得极大值,在处取得极小值.又有三()f x 13x =-1x =()0f x =个不同的实根,由图象知,解得,所以实数c 的取值范围是()150327110fc f c ⎧⎛⎫-=+>⎪ ⎪⎝⎭⎨⎪=-+<⎩5127c -<<5,127⎛⎫- ⎪⎝⎭............12分19.解:(1)函数的定义域为,()2211ln 2a f x x x x a+=-+()0,∞+当时,,所以. 2a =()215ln 22f x x x x =-+()()221251252()22x x x x f x x x x x---+'=-+==故当时, ,函数在上单调递增;10,2x ⎛⎫∈ ⎪⎝⎭()0f x ¢>()f x 10,2⎛⎫ ⎪⎝⎭当时,,函数在上单调递减;1,22x ⎛⎫∈ ⎪⎝⎭()0f x '<()f x 1,22⎛⎫ ⎪⎝⎭当时,,函数在上单调递增;()2,x ∈+∞()0f x ¢>()f x ()2,+∞所以函数的单调递增区间有和;...........4分()f x 10,2⎛⎫⎪⎝⎭()2,+∞(2)由可得:()2211ln 2a f x x x x a+=-+. ()2221()11(1)()ax x a a ax a x a f x x a x ax ax--+-++'=-+==①当时, ,在上单调递增;...........6分 a<0()0f x ¢>()f x ()0,∞+②当时,时,时,在上单调递增;01a <<()0,x a ∈()0f x ¢>()f x ()0,a 时,时,在上单调递减; 1,x a a ⎛⎫∈ ⎪⎝⎭()0f x '<()f x 1,a a ⎛⎫⎪⎝⎭时, ,在上单调递增;............8分 1,x a ⎛⎫∈+∞ ⎪⎝⎭()0f x ¢>()f x 1,a ⎛⎫+∞ ⎪⎝⎭③当时,,且仅在时,,所以函数在上单调递增1a =()0f x '≥1x =()0f x '=()f x ()0,∞+;...........9分④当时,时,时,在上单调递增;1a >10,x a ⎛⎫∈ ⎪⎝⎭()0f x '>()f x 10,a ⎛⎫⎪⎝⎭时,时,在上单调递减; 1,x a a ⎛⎫∈ ⎪⎝⎭()0f x '<()f x 1,a a ⎛⎫⎪⎝⎭时, ,在上单调递增;............11分(),x a ∈+∞()0f x ¢>()f x (),a +∞综上所述,当时,函数在上单调递增;a<0()f x ()0,∞+当时,函数在和上单调递增,在上单调递减;01a <<()f x ()0,a 1,a ⎛⎫+∞ ⎪⎝⎭1,a a ⎛⎫⎪⎝⎭当时,函数在上单调递增;1a =()f x ()0,∞+当时,函数在和上单调递增,在上单调递减;...........12分1a >()f x 10,a ⎛⎫ ⎪⎝⎭(),a +∞1,a a ⎛⎫⎪⎝⎭20.解(1)由题意,预计当每件产品的售价为元,而每件产品的成本为5x (1317)x ≤≤元,且每件产品需向税务部门上交元,(5)a +(58)a ≤≤所以商店一年的利润(万元)与售价的函数关系式为:L x 2(10)(18),[13,17]L x a x x =---∈............5分(2)∵,∴, 2(10)(18),[13,17]L x a x x =---∈(3823)(18)L a x x =+--'令,解得:或,而,则,...........7分 0L '=3823a x +=18x =58a ≤≤38216183a+≤≤①当,即时,当时,,单调递38216173a +≤<5 6.5a ≤<38213,3a x +⎛⎫∈ ⎪⎝⎭0L >'A A A A L 增,当时,,单调递减,∴当时,取最大值382,173a x +⎛⎫∈ ⎪⎝⎭0L '<L 3823a x +=L 34(8)27a -;...........9分 ②当,即时,当时,,单调递增, 38217183a+≤≤ 6.58a ≤≤()13,17x ∈0L >'A A A A L ∴当时,取最大值,...........11分17x =L 7a -综上, ...........12分 ()()348,5 6.5277,6.58a a Q a a a ⎧-≤<⎪=⎨⎪-≤≤⎩21.(1)由题意,,令,则, ()e sin x f x x '=-()e sin x g x x =-()e cos x g x x '=-当时,,,所以,从而在上单调递增, 0x ≥e 1x ≥cos 1≤x ()0g x '≥()g x [0,)+∞则的最小值为,故的最小值1;...........4分()g x (0)1g =()f x '(2)由已知得当时,恒成立,令,π2x ≥-()e cos 20xx x ax +--≥()e cos 2x h x x ax =+--,...........5分()e sin x h x x a '=--①当时,若时,由(1)可知,∴为增函数, 1a ≤0x ≥()10h x a '≥-≥()h x ∴恒成立,∴恒成立,即恒成立,()()00h x h ≥=()0x h x ⋅≥()e cos 20x x x ax +--≥若,令 则,令,则π,02x ⎡⎫∈-⎪⎢⎣⎭()e sin x m x x a =--()e cos x m x x '=-()e cos xn x x =-,()e sin x n x x '=+令,则,∵在在内大于零恒成立,()e sin x p x x =+()e cos x p x x '=+()p x 'π,02x ⎡⎫∈-⎪⎢⎣⎭∴函数在区间为单调递增,又∵,,,()p x π,02⎡⎫-⎪⎢⎣⎭π2πe 102p -⎛⎫-=-< ⎪⎝⎭()01p =∴上存在唯一的使得,∴当时,,此时()p x 0π,02x ⎛⎫∈- ⎪⎝⎭()00p x =0π,2x x ⎡⎫∈-⎪⎢⎣⎭()0n x '<为减函数,()n x 当时,,此时为增函数,又∵,,()0,0x x ∈()0h x '>()n x π2πe 02n -⎛⎫-=> ⎪⎝⎭()00n =∴存在,使得,∴当时,,为增函数,10π,2x x ⎛⎫∈- ⎪⎝⎭()10n x =1π,2x x ⎡⎫∈-⎪⎢⎣⎭()0m x '>()m x 当时,,为减函数,又∵,,()1,0x x ∈()0m x '<()m x π2πe 102m a -⎛⎫-=+-> ⎪⎝⎭()010m a =-≥∴时,,则为增函数,∴,∴π,02x ⎡⎫∈-⎪⎢⎣⎭()0h x '>()h x ()()00h x h ≤=()e cos 20x x x ax +--≥恒成立,..........9分②当时,在上恒成立,则在上为增函数, 1a >()e cos 0x m x x '=-≥[0,)+∞()m x [0,)+∞∵,, ()010m a =-<ln(1)(ln(1))e sin(ln(1))1sin(ln(1))0a m a a a a ++=-+-=-+≥∴存在唯一的使,()20,x ∈+∞()20h x '=∴当时,,从而在上单调递减,∴,20x x ≤<()0h x '<()h x [)20,x ()()00h x h <=∴,与矛盾,...........11分()e cos 20xx x ax +--<2e cos 20x x x x ax x +--≥综上所述,实数的取值范围为. ...........12分 a (,1]-∞22.(1)解:令,,则,2()0xf x e ax =-=()0,x ∈+∞2e xa x=23.因为在有两个零点,所以函数与的图象有两个不同的交点,()f x ()0,∞+y a =2ex y x=令,则, ()22e (),0,h x x x =∈+∞()()23e 2e (),0,xx x h x x x x -'==∈+∞当时,;当时,. (0,2)x ∈()0h x '<(2,)x ∈+∞()0h x '>所以在单调递减,在单调递增,所以,()h x (0,2)(2,)+∞()()2mine 24h x h ==又当时,,当时,,所以;...........4分0x +→()h x →+∞x →+∞()h x →+∞2e4a >(2) 证明:,故,()e (e 1)x x g x =x --()e (2e 2)x xg x =x '--令,, ()2e 2x m x =x --()2e 1x m x ='-当时,,当时,, 1ln2x <()0m x '<1ln 2x >()0m x '>所以在上单调递减,在上单调递增, ()m x 1(,ln )2-∞1(ln +)2∞,又,,,(0)0m =1ln 211(ln )2e ln 2ln 21022m =--=-<22(2)2e (2)20e 2m ==----->由零点存在性定理及的单调性知,方程在上有唯一根,...........6分()h x ()0m x =1(2,ln )2-设为且,从而有两个零点和,0x 002e 20xx =--()m x 0x 0当或时,,当时,,0x x <0x >()0g x '>00x x <<()0g x '<所以在单调递增,在上单调递减,在单调递增, ()g x 0(,)x -∞0(0)x ,(0+)∞,从而存在唯一的极大值点,由,得, ...........8分 ()g x 0x 002e 20x x =--002e 2xx +=,2000000000222111()e (e 1)(1)()(2)=224444x x x x x x g x x x x x ++-++∴=--=--=-+≤()当且仅当,即时,取等号,002x x -=+01x =-若,则,与题意矛盾,01x =-0102e 22e 10x x =----≠故,所以取等不成立,所以得证,...........10分 01x ≠-01()4g x <又,在单调递增,012ln2x -<< ()g x 0,x -∞()所以得证,...........11分 2242032()(2)e e (2)1e e e g x g ----⎡⎤>-=---=+>⎣⎦所以............12分 0321()e 4g x <<。

2023北京九中高二(下)第一次月考物理(教师版)

2023北京九中高二(下)第一次月考物理(教师版)

2023北京九中高二(下)第一次月考物理(选考)第一部分(选择题共42分)选择题共14小题,每小题3分,共42分。

在每小题列出的四个选项中,选出最符合题目要求的一项。

1. 如图,在磁感应强度为B、方向垂直纸面向里的匀强磁场中,金属杆MN在平行金属导轨上以速度v向右匀速滑动,MN中产生的感应电动势为E l,若磁感应强度增为2B,其他条件不变,MN中产生的感应电动势变为E2.则通过电阻R的电流方向及E1与E2之比E l∶E2分别为A. c→a,2∶1B. a→c,2∶1C. a→c,1∶2D. c→a,1∶22. 如图所示,匀强磁场中有两个导体圆环a、b,磁场方向与圆环所在平面垂直,磁感应强度B随时间均匀增大,两圆环半径之比为2∶1,圆环中产生的感应电动势分别为E a和E b,不考虑两圆环间的相互影响,下列说法正确的是( )A. E a∶E b=4∶1,感应电流均沿逆时针方向B. E a∶E b=4∶1,感应电流均沿顺时针方向C. E a∶E b=2∶1,感应电流均沿逆时针方向D. E a∶E b=2∶1,感应电流均沿顺时针方向3. 如图所示,将带铁芯的线圈A通过滑动变阻器和开关连接到电源上,线圈B的两个接线柱连接到灵敏电流计上,把线圈A静置于线圈B的内部。

下列判断正确的是()A. 开关闭合,向右移动滑动变阻器滑片的过程中,电流计指针不偏转B. 开关闭合,向上拔出线圈A的过程中,线圈B将排斥线圈AC. 开关闭合瞬间,电流计指针不偏转D. 开关闭合瞬间,电流计指针会偏转4. 如图所示,一根长1m左右的空心铝管竖直放置,把一枚磁性比较强的小圆柱形永磁体从铝管上端放入管口,圆柱直径略小于铝管的内径。

让磁体从管口处由静止下落,磁体在管内运动时,没有跟铝管内壁发生摩擦。

有关磁体在铝管中下落的过程,下列说法可能正确的是()A. 磁体做自由落体运动B. 磁体受到铝管中涡流的作用力方向先向上后向下C. 磁体受到铝管中涡流的作用力方向一直向上D. 磁体的机械能守恒5. 如图所示,两个很轻的铝环a、b,环a闭合,环b不闭合,a、b环都固定在一根可以绕O点自由转动的水平细杆上,此时整个装置静止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高2015级2014学年第一次月考数学试卷 (理科)
一、选择题:本大题共10小题,每小题5分,共50分
1.已知条件:12p x +>,条件2:56q x x ->,则p 是q 的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
2.在命题“若抛物线2y ax bx c =++的开口向下,则{}
2|0x ax bx c φ++<≠”的 逆命题、否命题、逆否命题中结论成立的是( )
A .都真
B .都假
C .否命题真
D .逆否命题真
3.双曲线22
221(0,0)x y a b a b
-=>>的渐近线方程是20x y ±=,则其离心率为( ) A
B
C
D .5
4.若命题112],3,3[:0200≤++-∈∃x x x p ,则对命题p 的否定是( )
A .012],3,3[2>++-∈∀x x x
B. 012),,3()3,(2>+++∞⋃-∞∈∀x x x
C. 012),,3()3,(0200≤+++∞⋃-∞∈∃x x x
D. 012],3,3[0200<++-∈∃x x x
5.给定两个命题p 、q ,若p ⌝是q 的必要而不充分条件,则p 是q ⌝的( )
A 充分而不必要条件 B.必要而不充分条件 C 充要条件 D.既不充分也不必要条件
6.曲线5522=-ky x 的焦距为4,那么k 的值为( )
A 、 35
B 、31
C 、35或1-
D 、31或17
5- 7.设圆锥曲线r 的两个焦点分别为F 1,F 2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于( )
A .1
322或 B .23或2 C .12
或2 D .2332或 8.已知P 是椭圆19
2522=+y x 上的点,F 1、F 2分别是椭圆的左、右焦点,若121212||||PF PF PF PF ⋅=⋅,则△F 1PF 2的面积为( )
A .3 3
B .2 3
C . 3
D .33
9.已知椭圆)0(,116222>=+m y m x 和双曲线)0(,192
22>=-n y n
x 有相同的焦点21,F F ,点P 为椭圆和双曲线的一个交点,则21PF PF 的值为( )
A 、16
B 、25
C 、9
D 、不为定值
10.已知曲线C 方程为221x y -=,A,B 为左右顶点,P 为曲线C 在一象限内的动点,设α=∠PAB ,β=∠PBA ,γ=∠APB ,则( )
A 、tan tan tan 0αβγ++=
B 、tan tan tan 0αβγ+-=
C 、tan tan 2tan 0αβγ++=
D 、tan tan 2tan 0αβγ+-=
二、填空题:每小题5分,共25分
11.抛物线的焦点为椭圆14
92
2=+y x 的左焦点,顶点在椭圆中心,则抛物线方程为 12.椭圆22
1(0,0)94
x y x y +=≥≥与直线50x y --=的距离的最小值为__________ 13.已知曲线22:2(410)10200C x y kx k y k ++++++=,其中1k ≠-;C 过定点
14.已知c 是椭圆)0(,122
22>>=+b a b
y a x 的半焦距,则a c b +的取值范围为 15.以下四个关于圆锥曲线的命题中:①设A 、B 为两个定点,k 为非零常数,||||PA PB k -=,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若
1(),2OP OA OB =+则动点P 的轨迹为圆;③04πθ<<,则双曲线22122:1cos sin x y C θθ
-=与22
2222:1sin sin tan y x C θθθ
-=的离心率相同;④已知两定点12(1,0),(1,0)F F -和一动点P ,若212||||(0)PF PF a a ⋅=≠,则点P 的轨迹关于原点对称;
其中真命题的序号为 (写出所有真命题的序号)
高2015级2014学年第一次月考数学试卷 (理科)
二、填空题
11、 12、 13、 14、 15、
三、解答题
16、已知命题p :方程210x mx ++=有两个不相等的负实根,命题q :
,R x ∈∀01)2(442>+-+x m x 恒成立;若p 或q 为真,p 且q 为假,求实数m 的取值范围.
17、已知曲线C :12
+=x y ,定点)1,3(A ,B 为曲线C 上任一点,点P 在线段AB 上且有2:1||:||=PA BP ,当B 在曲线C 上运动时,求点P 的轨迹方程.
18、是否同时存在满足下列条件的双曲线,若存在,求出其方程,若不存在,说明理由.
(1)焦点在y 轴上的双曲线渐近线方程为20,20x y x y +=-=;
(2)点(5,0)A 到双曲线上动点P .
19、已知中心在原点的双曲线C 的右焦点为)0,2(,实轴长32
(1)求双曲线的方程
(2)若直线2:+=kx y l 与双曲线恒有两个不同的交点A,B,且AOB ∠为锐角(其中O 为原点),求k 的取值范围
20.已知椭圆的对称中心在坐标原点,一个顶点为A (0,2),焦点在x 轴上,若x 轴正半
轴上的焦点到直线0x y -+= 的距离为4
(1)求椭圆的方程
(2)设椭圆与直线(0)y kx m k =+≠相交与不同的两点M 和N ,当A M A N =时,求m 的取值范围.
21、如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝⎛⎭⎫1,32,离心率e =12
,直线l 的方程为x =4. AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M 。

(1)求椭圆C 的方程;
(2)若直线AB 的斜率为1,求此时ABP S ∆
(3)若记P A 、PB 、PM 的斜率分别为k 1、k 2、k 3.问:是否存在常数λ,使得k 1+k 2=λk 3?若存在,求λ的值;若不存在,说明理由.。

相关文档
最新文档